1
|
Kadmiel M, Diaz-Jimenez D, Oakley RH, Petrillo MG, He B, Xu X, Cidlowski JA. Glucocorticoid Receptor Signaling Is Critical for Mouse Corneal Development, Inhibition of Inflammatory Response, and Neovascularization of the Cornea. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1938-1950. [PMID: 39322334 PMCID: PMC11423760 DOI: 10.1016/j.ajpath.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 09/27/2024]
Abstract
The cornea protects the interior of the eye from external agents such as bacteria, viruses, and debris. Synthetic glucocorticoids are widely prescribed in the treatment of ocular infections and disorders. The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR); however, the molecular and physiological functions of GR signaling in the cornea are poorly understood. This study found that treatment of mice with glucocorticoid eye drops led to a profound regulation of the corneal transcriptome. These glucocorticoid-regulated genes were associated with multiple biological functions, including the immune response. To understand the direct role of GR signaling in the cornea, mice with conditional knockout of GRs in the corneal epithelium were generated. Mice lacking corneal GRs exhibited microphthalmia, loss of pupils, a deformed and opaque lens, and mislocalization of key structural proteins within the corneal epithelial layers. Global transcriptomic approaches revealed that loss of GR signaling in the cornea also resulted in the dysregulation of a large cohort of genes strongly associated with an enhanced inflammatory response. Finally, corneal GR signaling was required for preventing neovascularization of blood and lymphatic vessels and thereby immune cell infiltration of the cornea. These results reveal that corneal GR signaling plays a critical role in ocular development and in maintaining the homeostasis of the eye.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; Department of Biology, Allegheny College, Meadville, Pennsylvania
| | - David Diaz-Jimenez
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Robert H Oakley
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Maria G Petrillo
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Bo He
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - John A Cidlowski
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.
| |
Collapse
|
2
|
Cunningham CJ, Choi RB, Bullock WA, Robling AG. Perspective: The current state of Cre driver mouse lines in skeletal research: Challenges and opportunities. Bone 2023; 170:116719. [PMID: 36868507 PMCID: PMC10087282 DOI: 10.1016/j.bone.2023.116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
The Cre/Lox system has revolutionized the ability of biomedical researchers to ask very specific questions about the function of individual genes in specific cell types at specific times during development and/or disease progression in a variety of animal models. This is true in the skeletal biology field, and numerous Cre driver lines have been created to foster conditional gene manipulation in specific subpopulations of bone cells. However, as our ability to scrutinize these models increases, an increasing number of issues have been identified with most driver lines. All existing skeletal Cre mouse models exhibit problems in one or more of the following three areas: (1) cell type specificity-avoiding Cre expression in unintended cell types; (2) Cre inducibility-improving the dynamic range for Cre in inducible models (negligible Cre activity before induction and high Cre activity after induction); and (3) Cre toxicity-reducing the unwanted biological effects of Cre (beyond loxP recombination) on cellular processes and tissue health. These issues are hampering progress in understanding the biology of skeletal disease and aging, and consequently, identification of reliable therapeutic opportunities. Skeletal Cre models have not advanced technologically in decades despite the availability of improved tools, including multi-promoter-driven expression of permissive or fragmented recombinases, new dimerization systems, and alternative forms of recombinases and DNA sequence targets. We review the current state of skeletal Cre driver lines, and highlight some of the successes, failures, and opportunities to improve fidelity in the skeleton, based on successes pioneered in other areas of biomedical science.
Collapse
Affiliation(s)
- Connor J Cunningham
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Wei Z, Hao C, Chen JK, Gan L, Fan X. A tamoxifen-inducible Cre knock-in mouse for lens-specific gene manipulation. Exp Eye Res 2023; 226:109306. [PMID: 36372215 PMCID: PMC9839650 DOI: 10.1016/j.exer.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Lesciotto KM, Tomlinson L, Leonard S, Richtsmeier JT. Embryonic and Early Postnatal Cranial Bone Volume and Tissue Mineral Density Values for C57BL/6J Laboratory Mice. Dev Dyn 2022; 251:1196-1208. [PMID: 35092111 PMCID: PMC9250594 DOI: 10.1002/dvdy.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background Laboratory mice are routinely used in craniofacial research based on the relatively close genetic relationship and conservation of developmental pathways between humans and mice. Since genetic perturbations and disease states may have localized effects, data from individual cranial bones are valuable for the interpretation of experimental assays. We employ high‐resolution microcomputed tomography to characterize cranial bones of C57BL/6J mice at embryonic day (E) 15.5 and E17.5, day of birth (P0), and postnatal day 7 (P7) and provide estimates of individual bone volume and tissue mineral density (TMD). Results Average volume and TMD values are reported for individual bones. Significant differences in volume and TMD during embryonic ages likely reflect early mineralization of cranial neural crest‐derived and intramembranously forming bones. Although bones of the face and vault had higher TMD values during embryonic ages, bones of the braincase floor had significantly higher TMD values by P7. Conclusions These ontogenetic data on cranial bone volume and TMD serve as a reference standard for future studies using mice bred on a C57BL/6J genetic background. Our findings also highlight the importance of differentiating “control” data from mice that are presented as “unaffected” littermates, particularly when carrying a single copy of a cre‐recombinase gene. Higher average volume and density of cranial neural crest‐derived and intramembranously‐forming bones during embryonic development. Higher average density in bones of the braincase floor during early postnatal development. Ontogenetic data on cranial bone volume and TMD serve as a reference standard for mice bred on a C57BL/6J genetic background.
Collapse
Affiliation(s)
- Kate M Lesciotto
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | | | - Steven Leonard
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Thompson B, Chen Y, Davidson EA, Garcia-Milian R, Golla JP, Apostolopoulos N, Orlicky DJ, Schey K, Thompson DC, Vasiliou V. Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. Ocul Surf 2021; 22:190-203. [PMID: 34425299 DOI: 10.1016/j.jtos.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to elucidate the role and molecular consequences of impaired glutathione (GSH) biosynthesis on eye development. METHODS GSH biosynthesis was impaired in surface ectoderm-derived ocular tissues by crossing Gclcf/f mice with hemizygous Le-Cre transgenic mice to produce Gclcf/f/Le-CreTg/- (KO) mice. Control mice included Gclcf/fand Gclcwt/wt/Le-CreTg/- mice (CRE). Eyes from all mice (at various stages of eye development) were subjected to histological, immunohistochemical, Western blot, RT-qPCR, RNA-seq, and subsequent Gene Ontology, Ingenuity Pathway Analysis and TRANSFAC analyses. PAX6 transactivation activity was studied using a luciferase reporter assay in HEK293T cells depleted of GSH using buthionine sulfoximine (BSO). RESULTS Deletion of Gclc diminished GSH levels, increased reactive oxygen species (ROS), and caused an overt microphthalmia phenotype characterized by malformation of the cornea, iris, lens, and retina that is distinct from and much more profound than the one observed in CRE mice. In addition, only the lenses of KO mice displayed reduced crystallin (α, β), PITX3 and Foxe3 expression. RNA-seq analyses at postnatal day 1 revealed 1552 differentially expressed genes (DEGs) in the lenses of KO mice relative to those from Gclcf/f mice, with Crystallin and lens fiber cell identity genes being downregulated while lens epithelial cell identity and immune response genes were upregulated. Bioinformatic analysis of the DEGs implicated PAX6 as a key upstream regulator. PAX6 transactivation activity was impaired in BSO-treated HEK293T cells. CONCLUSIONS These data suggest that impaired ocular GSH biosynthesis may disrupt eye development and PAX6 function.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - Kevin Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
6
|
Matlock HG, Qiu F, Malechka V, Zhou K, Cheng R, Benyajati S, Whelchel A, Karamichos D, Ma JX. Pathogenic Role of PPARα Downregulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes. Diabetes 2020; 69:1279-1291. [PMID: 32213513 PMCID: PMC7243299 DOI: 10.2337/db19-0898] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/15/2020] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to investigate the protective role of peroxisome proliferator-activated receptor α (PPARα) against diabetic keratopathy and corneal neuropathy. Corneal samples were obtained from human donors with and without diabetes. Streptozotocin-induced diabetic rats and mice were orally treated with PPARα agonist fenofibrate. As shown by immunohistochemistry and Western blotting, PPARα was downregulated in the corneas of humans with diabetes and diabetic rats. Immunostaining of β-III tubulin demonstrated that corneal nerve fiber metrics were decreased significantly in diabetic rats and mice, which were partially prevented by fenofibrate treatment. As evaluated using a Cochet-Bonnet aesthesiometer, corneal sensitivity was significantly decreased in diabetic mice, which was prevented by fenofibrate. PPARα -/- mice displayed progressive decreases in the corneal nerve fiber density. Consistently, corneal sensitivity was decreased in PPARα -/- mice relative to wild-type mice by 21 months of age. Diabetic mice showed increased incidence of spontaneous corneal epithelial lesion, which was prevented by fenofibrate while exacerbated by PPARα knockout. Western blot analysis revealed significantly altered neurotrophic factor levels in diabetic rat corneas, which were partially restored by fenofibrate treatment. These results indicate that PPARα protects the corneal nerve from degeneration induced by diabetes, and PPARα agonists have therapeutic potential in the treatment of diabetic keratopathy.
Collapse
Affiliation(s)
- H Greg Matlock
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Fangfang Qiu
- Department of Ophthalmology, Tufts Medical Center, Boston, MA
| | - Volha Malechka
- National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Kelu Zhou
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Rui Cheng
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Siribhinya Benyajati
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Amy Whelchel
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Dimitrios Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
7
|
Notch Signaling and Embryonic Development: An Ancient Friend, Revisited. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:9-37. [PMID: 32060869 DOI: 10.1007/978-3-030-34436-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary highly conserved Notch pathway, which first developed during evolution in metazoans and was first discovered in fruit flies (Drosophila melanogaster), governs many core processes including cell fate decisions during embryonic development. A huge mountain of scientific evidence convincingly demonstrates that Notch signaling represents one of the most important pathways that regulate embryogenesis from sponges, roundworms, Drosophila melanogaster, and mice to humans. In this review, we give a brief introduction on how Notch orchestrates the embryonic development of several selected tissues, summarizing some of the most relevant findings in the central nervous system, skin, kidneys, liver, pancreas, inner ear, eye, skeleton, heart, and vascular system.
Collapse
|
8
|
Lens-specific conditional knockout of Msx2 in mice leads to ocular anterior segment dysgenesis via activation of a calcium signaling pathway. J Transl Med 2019; 99:1714-1727. [PMID: 30683901 DOI: 10.1038/s41374-018-0180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 11/08/2022] Open
Abstract
Ocular anterior segment dysgenesis (ASD) is a failure of normal development of anterior structures of the eye, leading to lens opacification. The underlying mechanisms relating to ASD are still unclear. Previous studies have implicated transcriptional factor muscle segment homeobox 2 (Msx2) in ASD. In this study, we used Msx2 conditional knockout (CKO) mice as a model and found that Msx2 deficiency in surface ectoderm induced ASD. Loss of Msx2 function specifically affected lens development, while other eye structures were not significantly affected. Multiple lines of evidence show that calcium signaling pathways are involved in this pathogenesis. Our study demonstrates that Msx2 plays an essential role in lens development by activating a yet undetermined calcium signaling pathway.
Collapse
|
9
|
Lam PT, Padula SL, Hoang TV, Poth JE, Liu L, Liang C, LeFever AS, Wallace LM, Ashery-Padan R, Riggs PK, Shields JE, Shaham O, Rowan S, Brown NL, Glaser T, Robinson ML. Considerations for the use of Cre recombinase for conditional gene deletion in the mouse lens. Hum Genomics 2019; 13:10. [PMID: 30770771 PMCID: PMC6377743 DOI: 10.1186/s40246-019-0192-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 12/03/2022] Open
Abstract
Background Despite a number of different transgenes that can mediate DNA deletion in the developing lens, each has unique features that can make a given transgenic line more or less appropriate for particular studies. The purpose of this work encompasses both a review of transgenes that lead to the expression of Cre recombinase in the lens and a comparative analysis of currently available transgenic lines with a particular emphasis on the Le-Cre and P0-3.9GFPCre lines that can mediate DNA deletion in the lens placode. Although both of these transgenes are driven by elements of the Pax6 P0 promoter, the Le-Cre transgene consistently leads to ocular abnormalities in homozygous state and can lead to ocular defects on some genetic backgrounds when hemizygous. Result Although both P0-3.9GFPCre and Le-Cre hemizygous transgenic mice undergo normal eye development on an FVB/N genetic background, Le-Cre homozygotes uniquely exhibit microphthalmia. Examination of the expression patterns of these two transgenes revealed similar expression in the developing eye and pancreas. However, lineage tracing revealed widespread non-ocular CRE reporter gene expression in the P0-3.9GFPCre transgenic mice that results from stochastic CRE expression in the P0-3.9GFPCre embryos prior to lens placode formation. Postnatal hemizygous Le-Cre transgenic lenses express higher levels of CRE transcript and protein than the hemizygous lenses of P0-3.9GFPCre mice. Transcriptome analysis revealed that Le-Cre hemizygous lenses deregulated the expression of 15 murine genes, several of which are associated with apoptosis. In contrast, P0-3.9GFPCre hemizygous lenses only deregulated two murine genes. No known PAX6-responsive genes or genes directly associated with lens differentiation were deregulated in the hemizygous Le-Cre lenses. Conclusions Although P0-3.9GFPCre transgenic mice appear free from ocular abnormalities, extensive non-ocular CRE expression represents a potential problem for conditional gene deletion studies using this transgene. The higher level of CRE expression in Le-Cre lenses versus P0-3.9GFPCre lenses may explain abnormal lens development in homozygous Le-Cre mice. Given the lack of deregulation of PAX6-responsive transcripts, we suggest that abnormal eye development in Le-Cre transgenic mice stems from CRE toxicity. Our studies reinforce the requirement for appropriate CRE-only expressing controls when using CRE as a driver of conditional gene targeting strategies. Electronic supplementary material The online version of this article (10.1186/s40246-019-0192-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phuong T Lam
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Thanh V Hoang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.,Present Address: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Justin E Poth
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Lin Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Adam S LeFever
- Nuclear Medicine Department, University of Cincinnati Medical Center, 234 Goodman Street, Cincinnati, OH, 45219, USA
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Penny K Riggs
- Department of Animal Sciences, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Jordan E Shields
- Department of Animal Sciences, Texas A&M University, College Station, TX, 77843-2471, USA.,Present Address: Emory Children's Center, Room 410, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Ohad Shaham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Sheldon Rowan
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, Davis One Shields Avenue, Davis, CA, 95616, USA
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis One Shields Avenue, Davis, CA, 95616, USA
| | | |
Collapse
|
10
|
Panzica DA, Findlay AS, van Ladesteijn R, Collinson JM. The core planar cell polarity gene, Vangl2, maintains apical-basal organisation of the corneal epithelium. J Anat 2019; 234:106-119. [PMID: 28833131 PMCID: PMC6284432 DOI: 10.1111/joa.12676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
The role of the core planar cell polarity (PCP) pathway protein, Vangl2, was investigated in the corneal epithelium of the mammalian eye, a paradigm anatomical model of planar cell migration. The gene was conditionally knocked out in vivo and knocked down by siRNA, followed by immunohistochemical, behavioural and morphological analysis of corneal epithelial cells. The primary defects observed in vivo were of apical-basal organisation of the corneal epithelium, with abnormal stratification throughout life, mislocalisation of the cell membrane protein, Scribble, to the basal side of cells, and partial loss of the epithelial basement membrane. Planar defects in migration after wounding and in the presence of an applied electric field were noted. However, knockdown of Vangl2 also retarded cell migration in individual cells that had no contact with their neighbours, which precluded a classic PCP mechanism. It is concluded that some of the planar polarity phenotypes in PCP mutants may arise from disruption of apical-basal polarity.
Collapse
Affiliation(s)
- D. Alessio Panzica
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Amy S. Findlay
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | | | - J. Martin Collinson
- School of MedicineMedical Sciences and NutritionUniversity of AberdeenAberdeenUK
| |
Collapse
|
11
|
Dorà NJ, Manuel M, Kleinjan DJ, Price DJ, Collinson JM, Hill RE, West JD. A conditional Pax6 depletion study with no morphological effect on the adult mouse corneal epithelium. BMC Res Notes 2018; 11:705. [PMID: 30290846 PMCID: PMC6173925 DOI: 10.1186/s13104-018-3812-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The corneas of heterozygous Pax6+/- mice develop abnormally and deteriorate further after birth but it is not known whether the postnatal deterioration is predetermined by abnormal development. Our objective was to identify whether depletion of Pax6 in adult mice caused any corneal abnormalities, similar to those in Pax6+/- mice, where Pax6 levels are low throughout development and adulthood. We used two tamoxifen-inducible, Cre-loxP experimental strategies to deplete Pax6 either ubiquitously or in a restricted range of cell types. RESULTS In a preliminary study, ubiquitous depletion of Pax6 by tamoxifen treatment of E9.5 CAG-CreERTg/-;Pax6fl/fl embryos affected eye development. Tamoxifen treatment of 12-week old, adult CAG-CreERTg/-;Pax6fl/+ and CAG-CreERTg/-;Pax6fl/fl mice resulted in weak and/or patchy Pax6 immunostaining in the corneal epithelium but caused no corneal abnormalities. GFP staining in tamoxifen-treated CAG-CreERTg/-;RCE:loxP reporter mice was also patchy. We attribute patchy Pax6 staining to mosaic deletion of the Pax6fl allele, probably caused by mosaic CAG-CreERTg expression. In a parallel study, we treated adult Krt19-CreERTg/-;Pax6fl/+ mice with tamoxifen to try to deplete Pax6 in limbal epithelial stem cells (LESCs) which replenish the corneal epithelium. However, Pax6 staining remained strong after a 12-week chase period so the Krt19-CreERTg/- transgene may have failed to target LESCs.
Collapse
Affiliation(s)
- Natalie J. Dorà
- Centre for Integrative Physiology, Biomedical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
- Present Address: Biology Teaching Organisation, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, King’s Buildings, Edinburgh, EH9 3FL UK
| | - Martine Manuel
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - Dirk-Jan Kleinjan
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
- Present Address: Centre for Mammalian Synthetic Biology, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, King’s Buildings, Edinburgh, EH9 3FF UK
| | - David J. Price
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| | - J. Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Robert E. Hill
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - John D. West
- Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD UK
| |
Collapse
|
12
|
Epistasis between Pax6 Sey and genetic background reinforces the value of defined hybrid mouse models for therapeutic trials. Gene Ther 2018; 25:524-537. [PMID: 30258099 PMCID: PMC6335240 DOI: 10.1038/s41434-018-0043-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
The small eye (Sey) mouse is a model of PAX6-aniridia syndrome (aniridia). Aniridia, a congenital ocular disorder caused by heterozygous loss-of-function mutations in PAX6, needs new vision saving therapies. However, high phenotypic variability in Sey mice makes development of such therapies challenging. We hypothesize that genetic background is a major source of undesirable variability in Sey mice. Here we performed a systematic quantitative examination of anatomical, histological, and molecular phenotypes on the inbred C57BL/6J, hybrid B6129F1, and inbred 129S1/SvImJ backgrounds. The Sey allele significantly reduced eye weight, corneal thickness, PAX6 mRNA and protein levels, and elevated blood glucose levels. Surprisingly, Pax6Sey/Sey brains had significantly elevated Pax6 transcripts compared to Pax6+/+ embryos. Genetic background significantly influenced 12/24 measurements, with inbred strains introducing severe ocular and blood sugar phenotypes not observed in hybrid mice. Additionally, significant interactions (epistasis) between Pax6 genotype and genetic background were detected in measurements of eye weight, cornea epithelial thickness and cell count, retinal mRNA levels, and blood glucose levels. The number of epistatic interactions was reduced in hybrid mice. In conclusion, severe phenotypes in the unnatural inbred strains reinforce the value of more naturalistic F1 hybrid mice for the development of therapies for aniridia and other disorders.
Collapse
|
13
|
Azimi M, Le TT, Brown NL. Presenilin gene function and Notch signaling feedback regulation in the developing mouse lens. Differentiation 2018; 102:40-52. [PMID: 30059908 DOI: 10.1016/j.diff.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Presenilins (Psen1 and Psen2 in mice) are polytopic transmembrane proteins that act in the γ-secretase complex to make intra-membrane cleavages of their substrates, including the well-studied Notch receptors. Such processing releases the Notch intracellular domain, allowing it to physically relocate from the cell membrane to the nucleus where it acts in a transcriptional activating complex to regulate downstream genes in the signal-receiving cell. Previous studies of Notch pathway mutants for Jagged1, Notch2, and Rbpj demonstrated that canonical signaling is a necessary component of normal mouse lens development. However, the central role of Psens within the γ-secretase complex has never been explored in any developing eye tissue or cell type. By directly comparing Psen single and double mutant phenotypes during mouse lens development, we found a stronger requirement for Psen1, although both genes are needed for progenitor cell growth and to prevent apoptosis. We also uncovered a novel genetic interaction between Psen1 and Jagged1. By quantifying protein and mRNA levels of key Notch pathway genes in Psen1/2 or Jagged1 mutant lenses, we identified multiple points in the overall signaling cascade where feedback regulation can occur. Our data are consistent with the loss of particular genes indirectly influencing the transcription level of another. However, we conclude that regulating Notch2 protein levels is particularly important during normal signaling, supporting the importance of post-translational regulatory mechanisms in this tissue.
Collapse
Affiliation(s)
- Mina Azimi
- Department of Cell Biology & Human Anatomy; University of California, Davis One Shields Avenue, Davis, CA 95616, USA
| | - Tien T Le
- Division of Developmental Biology, Cincinnati Childrens Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy; University of California, Davis One Shields Avenue, Davis, CA 95616, USA; Division of Developmental Biology, Cincinnati Childrens Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
Zhao J, Wu X, Wu D, Yu Y, Yu Y, Wang Y, Fu Q, Zhang J, Yao K. Embryonic Surface Ectoderm-specific Mitofusin 2 Conditional Knockout Induces Congenital Cataracts in Mice. Sci Rep 2018; 8:1522. [PMID: 29367651 PMCID: PMC5784114 DOI: 10.1038/s41598-018-19849-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
Inherited mitochondrial mutations can result in mitochondrial dysfunction or stochastic oxidative damage. Cumulative mitochondrial damage is an important factor in age-related disorders, such as cataracts and macular degeneration. Mfn2 mediates the fusion of mitochondria and contribute to the dynamic balance between fusion and fission that determines mitochondria morphology. We report here that conditional loss of Mfn2 function in the head surface ectoderm leads to a range of congenital eye defects, including small, opacified lens and small eyeball in the most severe phenotypes. The Le-Cre transgenic mouse line and Mfn2 flox mouse line were used in this study to generate Mfn2 conditional knockout mice. Our study revealed Mfn2 gene function in lens development and addressed the relationship between the mitochondria and lens transparency. Conditional loss of Mfn2 affected lens epithelium cell proliferation, apoptosis and ultrastructure of mitochondria. We conclude that proper development of the lens and lens transparency depend on normal Mfn2 gene function.
Collapse
Affiliation(s)
- Jiangyue Zhao
- The Department of ophthalmology, Eye center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310009, China.,The Department of ophthalmology of the 4th Affiliated Hospital, China Medical University, Shenyang, 110005, China
| | - Xinwei Wu
- The Department of ophthalmology of the 4th Affiliated Hospital, China Medical University, Shenyang, 110005, China
| | - Danhong Wu
- Department of Neurology, Shanghai fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Yinhui Yu
- The Department of ophthalmology, Eye center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310009, China
| | - Yibo Yu
- The Department of ophthalmology, Eye center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310009, China
| | - Yao Wang
- The Department of ophthalmology, Eye center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310009, China
| | - Qiuli Fu
- The Department of ophthalmology, Eye center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310009, China
| | - Jinsong Zhang
- The Department of ophthalmology of the 4th Affiliated Hospital, China Medical University, Shenyang, 110005, China
| | - Ke Yao
- The Department of ophthalmology, Eye center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
15
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Temme SJ, Murphy GG. The L-type voltage-gated calcium channel Ca V1.2 mediates fear extinction and modulates synaptic tone in the lateral amygdala. ACTA ACUST UNITED AC 2017; 24:580-588. [PMID: 29038219 PMCID: PMC5647931 DOI: 10.1101/lm.045773.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, CaV1.2 and CaV1.3, using transgenic mice have failed to find a role of either subtype in fear extinction. This discontinuity between the pharmacological studies of LVGCCs and the studies investigating individual subtype contributions could be due to the limited neuronal deletion pattern of the CaV1.2 conditional knockout mice previously studied to excitatory neurons in the forebrain. To investigate the effects of deletion of CaV1.2 in all neuronal populations, we generated CaV1.2 conditional knockout mice using the synapsin1 promoter to drive Cre recombinase expression. Pan-neuronal deletion of CaV1.2 did not alter basal anxiety or fear learning. However, pan-neuronal deletion of CaV1.2 resulted in a significant deficit in extinction of contextual fear, implicating LVGCCs, specifically CaV1.2, in extinction learning. Further exploration on the effects of deletion of CaV1.2 on inhibitory and excitatory input onto the principle neurons of the lateral amygdala revealed a significant shift in inhibitory/excitatory balance. Together these data illustrate an important role of CaV1.2 in fear extinction and the synaptic regulation of activity within the amygdala.
Collapse
Affiliation(s)
- Stephanie J Temme
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Geoffrey G Murphy
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
17
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
18
|
Loughner CL, Tiwari A, Kenchegowda D, Swamynathan S, Swamynathan SK. Spatiotemporally Controlled Ablation of Klf5 Results in Dysregulated Epithelial Homeostasis in Adult Mouse Corneas. Invest Ophthalmol Vis Sci 2017; 58:4683-4693. [PMID: 28910443 PMCID: PMC5598321 DOI: 10.1167/iovs.17-22498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Corneal epithelial (CE) homeostasis requires coordination between proliferation and differentiation. Here we examine the role of cell proliferation regulator Krüppel-like factor 5 (Klf5) in adult mouse CE homeostasis. Methods Klf5 was ablated in a spatiotemporally restricted manner by inducing Cre expression in 8-week-old ternary transgenic Klf5LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre (Klf5Δ/ΔCE) mouse CE by administering doxycycline via chow. Normal chow-fed ternary transgenic siblings served as controls. The control and Klf5Δ/ΔCE corneal (1) histology, (2) cell proliferation, and (3) Klf5-target gene expression were examined using (1) periodic acid Schiff reagent-stained sections, (2) Ki67 expression, and (3) quantitative PCR and immunostaining, respectively. The effect of KLF4, KLF5, and OCT1 on gastrokine-1 (GKN1) promoter activity was determined by transient transfection in human skin keratinocyte NCTC-2544 cells. Results Klf5 expression was decreased to 23% of the controls in Klf5Δ/ΔCE corneas, which displayed increased fluorescein uptake, downregulation of tight junction proteins Tjp1 and Gkn1, desmosomal Dsg1a, and basement membrane Lama3 and Lamb1, suggesting defective permeability barrier. In transient transfection assays, KLF5 and OCT1 synergistically stimulated GKN1 promoter activity. Klf5Δ/ΔCE CE displayed significantly fewer cell layers and Ki67+ proliferative cells coupled with significantly decreased cyclin-D1, and elevated phospho(Ser-10) p27/Kip1 expression. Expression of Krt12, E-cadherin, and β-catenin remained unaltered in Klf5Δ/ΔCE corneas. Conclusions Klf5 contributes to adult mouse CE homeostasis by promoting (1) permeability barrier function through upregulation of Tjp1, Gkn1, Dsg1a, Lama3, and Lamb1, and (2) basal cell proliferation through upregulation of cyclin-D1 and suppression of phospho(Ser-10) p27/Kip1, without significantly affecting the expression of epithelial markers Krt12, E-cadherin, and β-catenin.
Collapse
Affiliation(s)
- Chelsea L Loughner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Doreswamy Kenchegowda
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
19
|
Farmer DT, Finley JK, Chen FY, Tarifeño-Saldivia E, McNamara NA, Knox SM, McManus MT. miR-205 is a critical regulator of lacrimal gland development. Dev Biol 2017; 427:12-20. [PMID: 28511845 DOI: 10.1016/j.ydbio.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023]
Abstract
The tear film protects the terrestrial animal's ocular surface and the lacrimal gland provides important aqueous secretions necessary for its maintenance. Despite the importance of the lacrimal gland in ocular health, molecular aspects of its development remain poorly understood. We have identified a noncoding RNA (miR-205) as an important gene for lacrimal gland development. Mice lacking miR-205 fail to properly develop lacrimal glands, establishing this noncoding RNA as a key regulator of lacrimal gland development. Specifically, more than half of knockout lacrimal glands never initiated, suggesting a critical role of miR-205 at the earliest stages of lacrimal gland development. RNA-seq analysis uncovered several up-regulated miR-205 targets that may interfere with signaling to impair lacrimal gland initiation. Supporting this data, combinatorial epistatic deletion of Fgf10, the driver of lacrimal gland initiation, and miR-205 in mice exacerbates the lacrimal gland phenotype. We develop a molecular rheostat model where miR-205 modulates signaling pathways related to Fgf10 in order to regulate glandular development. These data show that a single microRNA is a key regulator for early lacrimal gland development in mice and highlights the important role of microRNAs during organogenesis.
Collapse
Affiliation(s)
- D'Juan T Farmer
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA; UCSF Diabetes Center, University of California, San Francisco, CA, USA; WM Keck Center for Noncoding RNAs, University of California, San Francisco, CA, USA
| | - Jennifer K Finley
- Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco, CA, USA
| | - Feeling Y Chen
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Estefania Tarifeño-Saldivia
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA; UCSF Diabetes Center, University of California, San Francisco, CA, USA; WM Keck Center for Noncoding RNAs, University of California, San Francisco, CA, USA
| | - Nancy A McNamara
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Sarah M Knox
- Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA; UCSF Diabetes Center, University of California, San Francisco, CA, USA; WM Keck Center for Noncoding RNAs, University of California, San Francisco, CA, USA.
| |
Collapse
|
20
|
Hoang TV, Horowitz ER, Chaffee BR, Qi P, Flake RE, Bruney DG, Rasor BJ, Rosalez SE, Wagner BD, Robinson ML. Lens development requires DNMT1 but takes place normally in the absence of both DNMT3A and DNMT3B activity. Epigenetics 2017; 12:27-40. [PMID: 27824296 PMCID: PMC5270636 DOI: 10.1080/15592294.2016.1253651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022] Open
Abstract
Despite the wealth of knowledge of transcription factors involved in lens development, little information exists about the role of DNA methylation in this process. Here, we investigated the role of DNA methylation in lens development and fiber cell differentiation using mice conditionally lacking maintenance or de novo methyltransferases in the lens lineage. We found that while Dnmt1 inactivation at the lens placode stage (via the Le-Cre transgene) led to lens DNA hypomethylation and severe lens epithelial apoptosis, lens fiber cell differentiation remained largely unaffected. The simultaneous deletion of phosphatase and tensin homolog (Pten) elevated the level of phosphorylated AKT and rescued many of the morphological defects and cell death in DNMT1-deficient lenses. With a different Cre driver (MLR10) we demonstrated that a small number of lens epithelial cells escaped Dnmt1-deletion and over-proliferated to compensate for the loss of Dnmt1-deleted cells, suggesting that lens epithelium possess a substantial capacity for self-renewal. Unlike lenses deficient for Dnmt1, inactivation of both Dnmt3a and Dnmt3b by either the Le-Cre or MLR10-Cre transgene did not result in any obvious lens phenotype prior to 10 months of age. Taken together, while lens epithelial cell survival requires DNMT1, morphologically normal lenses develop in the absence of both DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Thanh V. Hoang
- Department of Biology, Miami University, Oxford, OH, USA
| | | | | | - Peipei Qi
- Department of Biology, Miami University, Oxford, OH, USA
| | | | | | - Blake J. Rasor
- Department of Biology, Miami University, Oxford, OH, USA
| | | | - Brad D. Wagner
- Department of Biology, Miami University, Oxford, OH, USA
| | | |
Collapse
|
21
|
Findlay AS, Panzica DA, Walczysko P, Holt AB, Henderson DJ, West JD, Rajnicek AM, Collinson JM. The core planar cell polarity gene, Vangl2, directs adult corneal epithelial cell alignment and migration. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160658. [PMID: 27853583 PMCID: PMC5099008 DOI: 10.1098/rsos.160658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 05/13/2023]
Abstract
This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration.
Collapse
Affiliation(s)
- Amy S. Findlay
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - D. Alessio Panzica
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Petr Walczysko
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Amy B. Holt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - Deborah J. Henderson
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - John D. West
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Ann M. Rajnicek
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | - J. Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
- Author for correspondence: J. Martin Collinson e-mail:
| |
Collapse
|
22
|
Pathania M, Wang Y, Simirskii VN, Duncan MK. β1-integrin controls cell fate specification in early lens development. Differentiation 2016; 92:133-147. [PMID: 27596755 PMCID: PMC5159248 DOI: 10.1016/j.diff.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/05/2016] [Accepted: 08/09/2016] [Indexed: 02/03/2023]
Abstract
Integrins are heterodimeric cell surface molecules that mediate cell-extracellular matrix (ECM) adhesion, ECM assembly, and regulation of both ECM and growth factor induced signaling. However, the developmental context of these diverse functions is not clear. Loss of β1-integrin from the lens vesicle (mouse E10.5) results in abnormal exit of anterior lens epithelial cells (LECs) from the cell cycle and their aberrant elongation toward the presumptive cornea by E12.5. These cells lose expression of LEC markers and initiate expression of the Maf (also known as c-Maf) and Prox1 transcription factors as well as other lens fiber cell markers. β1-integrin null LECs also upregulate the ERK, AKT and Smad1/5/8 phosphorylation indicative of BMP and FGF signaling. By E14.5, β1-integrin null lenses have undergone a complete conversion of all lens epithelial cells into fiber cells. These data suggest that shortly after lens vesicle closure, β1-integrin blocks inappropriate differentiation of the lens epithelium into fibers, potentially by inhibiting BMP and/or FGF receptor activation. Thus, β1-integrin has an important role in fine-tuning the response of the early lens to the gradient of growth factors that regulate lens fiber cell differentiation.
Collapse
Affiliation(s)
- Mallika Pathania
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Vladimir N Simirskii
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
23
|
Analysis of compound heterozygotes reveals that the mouse floxed Pax6 (tm1Ued) allele produces abnormal eye phenotypes. Transgenic Res 2016; 25:679-92. [PMID: 27240603 PMCID: PMC5023747 DOI: 10.1007/s11248-016-9962-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/13/2016] [Indexed: 01/27/2023]
Abstract
Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6tm1Ued (Pax6fl) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6fl/fl and heterozygous Pax6fl/+ mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6fl/fl corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6Sey-Neu (Pax6−) null allele. Pax6fl/− compound heterozygotes had more severe eye abnormalities than Pax6+/− heterozygotes, implying that Pax6fl differs from the wild-type Pax6+ allele. Immunohistochemistry showed that the Pax6fl/− corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6fl allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.
Collapse
|
24
|
Sugiyama Y, Shelley EJ, Yoder BK, Kozmik Z, May-Simera HL, Beales PL, Lovicu FJ, McAvoy JW. Non-essential role for cilia in coordinating precise alignment of lens fibres. Mech Dev 2016; 139:10-7. [PMID: 26825015 DOI: 10.1016/j.mod.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/14/2022]
Abstract
The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis that the primary cilia have a role in coordinating the precise alignment/orientation of the fibre cells, IFT88, a key component of the intraflagellar transport (IFT) complex, was removed specifically from the lens at different developmental stages using several lens-specific Cre-expressing mouse lines (MLR10- and LR-Cre). Irrespective of which Cre-line was adopted, both demonstrated that in IFT88-depleted cells, the ciliary axoneme was absent or substantially shortened, confirming the disruption of primary cilia formation. However no obvious histological defects were detected even when IFT88 was removed from the lens placode as early as E9.5. Specifically, the lens fibres aligned/oriented towards the poles to form the characteristic Y-shaped sutures as normal. Consistent with this, in primary lens epithelial explants prepared from these conditional knockout mouse lenses, the basal bodies still showed polarised localisation at the apical surface of elongating cells upon FGF-induced fibre differentiation. We further investigated the lens phenotype in knockouts of Bardet-Biedl Syndrome (BBS) proteins 4 and 8, the components of the BBSome complex which modulate ciliary function. In these BBS4 and 8 knockout lenses, again we found the pattern of the anterior sutures formed by the apical tips of elongating/migrating fibres were comparable to the control lenses. Taken together, these results indicate that primary cilia do not play an essential role in the precise cellular alignment/orientation of fibre cells. Thus, it appears that in the lens cilia are not required to establish PCP.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia.
| | | | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics, Prague CZ-14220, Czech Republic
| | - Helen L May-Simera
- Institute of Zoology, Johannes-Gutenberg University, Mainz 55128, Germany
| | - Philip L Beales
- Genetics and Genomic Medicine, University College London Institute of Child Health, London WC1N 1EH, UK
| | - Frank J Lovicu
- Anatomy and Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - John W McAvoy
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
25
|
Chaffee BR, Hoang TV, Leonard MR, Bruney DG, Wagner BD, Dowd JR, Leone G, Ostrowski MC, Robinson ML. FGFR and PTEN signaling interact during lens development to regulate cell survival. Dev Biol 2016; 410:150-163. [PMID: 26764128 DOI: 10.1016/j.ydbio.2015.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022]
Abstract
Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIβ expression in the lens fiber cells.
Collapse
Affiliation(s)
- Blake R Chaffee
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Thanh V Hoang
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Melissa R Leonard
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Devin G Bruney
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Brad D Wagner
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Joseph Richard Dowd
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Gustavo Leone
- Department of Molecular Virology, Immunology and Medical Genetics, Department of Molecular Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael C Ostrowski
- Department of Molecular Virology, Immunology and Medical Genetics, Department of Molecular Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael L Robinson
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE A distinct subset of genes, so-called "late fiber genes," is expressed in cells bordering the central, organelle-free zone (OFZ) of the lens. The purpose of this study was to identify additional members of this group. METHODS Fiber cells were harvested from various layers of the lens by laser micro-dissection and subjected to microarray, in situ hybridization, and Western blot analysis. RESULTS Expression of Livin, a member of the inhibitor of apoptosis protein (IAP) family encoded by Birc7, was strongly upregulated in deep cortical fiber cells. The depth-dependent distribution of Livin mRNA was confirmed by quantitative PCR and in situ hybridization. The onset of Livin expression coincided with loss of organelles from primary fiber cells. Livin expression peaked at 1 month but was sustained even in aged lenses. Antibodies raised against mouse Livin labeled multiple bands on immunoblots, reflecting progressive proteolysis of the parent molecule during differentiation. Mice harboring a floxed Birc7 allele were generated and used to conditionally delete Birc7 in lens. Lenses from knockout mice grew normally and retained their transparency, suggesting that Livin does not have an indispensable role in fiber cell differentiation. CONCLUSIONS Birc7 is a late fiber gene of the mouse lens. In tumor cells, Livin acts as an antiapoptotic protein, but its function in the lens is enigmatic. Livin is a RING domain protein with putative E3 ubiquitin ligase activity. Its expression in cells bordering the OFZ is consistent with a role in organelle degradation, a process in which the ubiquitin proteasome pathway has been implicated previously.
Collapse
|
27
|
Arya P, Rainey MA, Bhattacharyya S, Mohapatra BC, George M, Kuracha MR, Storck MD, Band V, Govindarajan V, Band H. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol 2015; 408:41-55. [PMID: 26455409 DOI: 10.1016/j.ydbio.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis.
Collapse
Affiliation(s)
- Priyanka Arya
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Mark A Rainey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Sohinee Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center Omaha, NE 68198-5900, USA.
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center Omaha, NE 68198-5870, USA.
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Murali R Kuracha
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA.
| | - Venkatesh Govindarajan
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Hamid Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center Omaha, NE 68198-5900, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA.
| |
Collapse
|
28
|
Delp EE, Swamynathan S, Kao WW, Swamynathan SK. Spatiotemporally Regulated Ablation of Klf4 in Adult Mouse Corneal Epithelial Cells Results in Altered Epithelial Cell Identity and Disrupted Homeostasis. Invest Ophthalmol Vis Sci 2015; 56:3549-58. [PMID: 26047041 DOI: 10.1167/iovs.15-16463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE In previous studies, conditional disruption of Klf4 in the developing mouse ocular surface from embryonic day 10 resulted in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells, revealing the importance of Klf4 in ocular surface maturation. Here, we use spatiotemporally regulated ablation of Klf4 to investigate its functions in maintenance of adult corneal epithelial homeostasis. METHODS Expression of Cre was induced in ternary transgenic (Klf4(LoxP/LoxP)/Krt12(rtTA/rtTA)/Tet-O-Cre) mouse corneal epithelium by doxycycline administered through intraperitoneal injections and drinking water, to generate corneal epithelium-specific deletion of Klf4 (Klf4(Δ/ΔCE)). Corneal epithelial barrier function was tested by fluorescein staining. Expression of selected Klf4-target genes was determined by quantitative PCR (QPCR), immunoblotting, and immunofluorescent staining. RESULTS Klf4 was efficiently ablated within 5 days of doxycycline administration in adult Klf4(Δ/ΔCE) corneal epithelium. The Klf4(Δ/ΔCE) corneal epithelial barrier function was disrupted, and the basal cells were swollen and rounded after 15 days of doxycycline treatment. Increased numbers of cell layers and Ki67-positive proliferating cells suggested deregulated Klf4(Δ/ΔCE) corneal epithelial homeostasis. Expression of tight junction proteins ZO-1 and occludin, desmosomal Dsg and Dsp, basement membrane laminin-332, and corneal epithelial-specific keratin-12 was decreased, while that of matrix metalloproteinase Mmp9 and noncorneal keratin-17 increased, suggesting altered Klf4(Δ/ΔCE) corneal epithelial cell identity. CONCLUSIONS Ablation of Klf4 in the adult mouse corneas resulted in the absence of characteristic corneal epithelial cell differentiation, disrupted barrier function, and squamous metaplasia, revealing that Klf4 is essential for maintenance of the adult corneal epithelial cell identity and homeostasis.
Collapse
Affiliation(s)
- Emili E Delp
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Winston W Kao
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States 3McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Cell Biology, U
| |
Collapse
|
29
|
Zhang J, Upadhya D, Lu L, Reneker LW. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development. PLoS One 2015; 10:e0117089. [PMID: 25615698 PMCID: PMC4304804 DOI: 10.1371/journal.pone.0117089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2loxP/loxP mice (referred as Fgfr2CKO) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2CKO cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5–13.5 (E12.5–13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2CKO mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2CKO cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2CKO mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.
Collapse
Affiliation(s)
- Jinglin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Dinesh Upadhya
- Dept. of Ophthalmology, Mason Eye Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Lixing W. Reneker
- Dept. of Ophthalmology, Mason Eye Institute, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|