1
|
Moriconi D, Pucci L, Longo V, Antonioli L, Bellini R, Tricò D, Baldi S, Nannipieri M. Efficacy of Lisosan G (fermented wheat) on reactive hypoglycemia after bariatric surgery. Obes Res Clin Pract 2024; 18:350-356. [PMID: 39550318 DOI: 10.1016/j.orcp.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
INTRODUCTION post-bariatric hypoglycemia (PBH) is considered a chronic complication after gastric bypass (RYGB) impacting roughly 30 % of patients. Current treatments often focus on nutritional interventions to reduce the frequency of episodes. This prospective study evaluated the effectiveness of Lisosan G (LG), a fermented wheat-based supplement added to the diet, in mitigating PBH episodes and elucidating its mechanism of action on the gut-pancreas axis. METHODS twenty subjects with PBH, who had undergone RYGB between 2015 and 2018, were enrolled. Subjects underwent clinical examination, blood test, and a 3-hour oral glucose load test (OGTT). Then, they were monitored for 2-weeks on a free diet with continuous glucose monitoring (CGM), which was extended for another 2-weeks after introduction of LG supplementation (5 g, twice daily) on the same diet. Finally, subjects repeated OGTT and blood test. PBH was defined as interstitial glucose ≤ 54 mg/dl. RESULTS after treatment, a marked reduction in PBH time was observed (75[23-113] vs 16 [0-33], minutes, p < 0.001). During OGTT, there was an increase in glucose nadir (44 ± 11 vs 56 ± 10, mg/dl, p = 0.038), and a significantly decrease in total GLP-1 AUC (7.6 ± 4.1 vs 6.5 ± 3.8, nmol/L*min, p = 0.043), in potentiation factor ratio (p = 0.037) and in total insulin AUC (57 ± 12 vs 49 ± 9, nmol/L*min, p = 0.043). CONCLUSION LG effectively reduces PBH frequency and duration, probably by attenuating GLP-1 concentrations and leading to a decrease in the second phase of insulin secretion in response to glucose. These findings underscore the promise of LG as a novel adjunct therapy for PBH, particularly when added to the diet, and emphasize the need for further exploration into its microbiota-modulating and anti-inflammatory effects.
Collapse
Affiliation(s)
- Diego Moriconi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Laura Pucci
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Vincenzo Longo
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Rosario Bellini
- Bariatric Surgery Unit. Azienda Ospedaliera Universitaria Pisana, Pisa, Italy.
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
2
|
Bongiorni S, Catalani E, Arisi I, Lazzarini F, Del Quondam S, Brunetti K, Cervia D, Prantera G. Pathological Defects in a Drosophila Model of Alzheimer's Disease and Beneficial Effects of the Natural Product Lisosan G. Biomolecules 2024; 14:855. [PMID: 39062569 PMCID: PMC11274821 DOI: 10.3390/biom14070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Francesca Lazzarini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| |
Collapse
|
3
|
Guidotti L, Tomassi E, Marracci S, Lai M, Lapi D, Pesi R, Pucci L, Novellino E, Albi E, Garcia-Gil M. Effects of Nutraceuticals on Cisplatin-Induced Cytotoxicity in HEI-OC1 Cells. Int J Mol Sci 2023; 24:17416. [PMID: 38139245 PMCID: PMC10743635 DOI: 10.3390/ijms242417416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.
Collapse
Affiliation(s)
- Lorenzo Guidotti
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Silvia Marracci
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Strada Statale del Brennero 2, 56127 Pisa, Italy;
| | - Dominga Lapi
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Rossana Pesi
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy;
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Ettore Novellino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, Interno Orto Botanico, University of Perugia, Via Romana, 06126 Perugia, Italy;
| | - Mercedes Garcia-Gil
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
4
|
Amato R, Melecchi A, Pucci L, Canovai A, Marracci S, Cammalleri M, Dal Monte M, Caddeo C, Casini G. Liposome-Mediated Delivery Improves the Efficacy of Lisosan G against Retinopathy in Diabetic Mice. Cells 2023; 12:2448. [PMID: 37887292 PMCID: PMC10605070 DOI: 10.3390/cells12202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Nutraceuticals are natural substances whose anti-oxidant and anti-inflammatory properties may be used to treat retinal pathologies. Their efficacy is limited by poor bioavailability, which could be improved using nanocarriers. Lisosan G (LG), a fermented powder from whole grains, protects the retina from diabetic retinopathy (DR)-induced damage. For this study, we tested whether the encapsulation of LG in liposomes (LipoLG) may increase its protective effects. Diabetes was induced in mice via streptozotocin administration, and the mice were allowed to freely drink water or a water dispersion of two different doses of LG or of LipoLG. Electroretinographic recordings after 6 weeks showed that only the highest dose of LG could partially protect the retina from diabetes-induced functional deficits, while both doses of LipoLG were effective. An evaluation of molecular markers of oxidative stress, inflammation, apoptosis, vascular endothelial growth factor, and the blood-retinal barrier confirmed that the highest dose of LG only partially protected the retina from DR-induced changes, while virtually complete prevention was obtained with either dose of LipoLG. These data indicate that the efficacy of LG in contrasting DR is greatly enhanced by its encapsulation in liposomes and may lay the ground for new dietary supplements with improved therapeutic effects against DR.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Alberto Melecchi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), 56124 Pisa, Italy;
| | - Alessio Canovai
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (R.A.); (A.M.); (A.C.); (S.M.); (M.C.); (M.D.M.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Xia X, Li G, Dong Q, Wang JW, Kim JE. Endothelial progenitor cells as an emerging cardiovascular risk factor in the field of food and nutrition research: advances and challenges. Crit Rev Food Sci Nutr 2023; 64:12166-12183. [PMID: 37599627 DOI: 10.1080/10408398.2023.2248506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dietary modifications can help prevent many cardiovascular disease (CVD) events. Endothelial progenitor cells (EPCs) actively contribute to cardiovascular system maintenance and could function as surrogate markers for evaluating improvement in cardiovascular health resulting from nutritional interventions. This review summarizes the latest research progress on the impact of food and nutrients on EPCs, drawing on evidence from human, animal, and in vitro studies. Additionally, current trends and challenges faced in the field are highlighted. Findings from studies examining cells as EPCs are generally consistent, demonstrating that a healthy diet, such as the Mediterranean diet or a supervised diet for overweight people, specific foods like olive oil, fruit, vegetables, red wine, tea, chia, and nutraceuticals, and certain nutrients such as polyphenols, unsaturated fats, inorganic nitrate, and vitamins, generally promote higher EPC numbers and enhanced EPC function. Conversely, an unhealthy diet, such as one high in sugar substitutes, salt, or fructose, impairs EPC function. Research on outgrowth EPCs has revealed that various pathways are involved in the modulation effects of food and nutrients. The potential of EPCs as a biomarker for assessing the effectiveness of nutritional interventions in preventing CVDs is immense, while further clarification on definition and characterization of EPCs is required.
Collapse
Affiliation(s)
- Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
6
|
|
7
|
Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng Regen Med 2021; 18:747-758. [PMID: 34449064 PMCID: PMC8440704 DOI: 10.1007/s13770-021-00366-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells that participate in vascular repair and postnatal neovascularization and provide a novel and promising therapy for the treatment of vascular disease. Studies in different animal models have shown that EPC mobilization through pharmacological agents and autologous EPC transplantation contribute to restoring blood supply and tissue regeneration after ischemic injury. However, these effects of the progenitor cells in clinical studies exhibit mixed results. The therapeutic efficacy of EPCs is closely associated with the number of the progenitor cells recruited into ischemic regions and their functional abilities and survival in injury tissues. In this review, we discussed the regulating role of stromal cell-derived factor-1 (also known CXCL12, SDF-1) in EPC mobilization, recruitment, homing, vascular repair and neovascularization, and analyzed the underlying machemisms of these functions. Application of SDF-1 to improve the regenerative function of EPCs following vascular injury was also discussed. SDF-1 plays a crucial role in mobilizing EPC from bone marrow into peripheral circulation, recruiting the progenitor cells to target tissue and protecting against cell death under pathological conditions; thus improve EPC regenerative capacity. SDF-1 are crucial for regulating EPC regenerative function, and provide a potential target for improve therapeutic efficacy of the progenitor cells in treatment of vascular disease.
Collapse
|
8
|
Amato R, Rossino MG, Cammalleri M, Timperio AM, Fanelli G, Dal Monte M, Pucci L, Casini G. The Potential of Lisosan G as a Possible Treatment for Glaucoma. Front Pharmacol 2021; 12:719951. [PMID: 34393798 PMCID: PMC8355587 DOI: 10.3389/fphar.2021.719951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Lisosan G (LG), a fermented powder obtained from whole grains, is a nutritional supplement containing a variety of metabolites with documented antioxidant properties. We have recently demonstrated that orally administered LG protects diabetic rodent retinas from oxidative stress, inflammation, apoptosis, blood-retinal barrier disruption, and functional damage. Here, we investigated whether LG may exert protective effects in a model of glaucoma and measured the amounts of selected LG components that reach the retina after oral LG administration. Six-month-old DBA/2J mice were given an aqueous LG solution in place of drinking water for 2 mo. During the 2 mo of treatment with LG, the intraocular pressure (IOP) was monitored and the retinal ganglion cell (RGC) functional activity was recorded with pattern-electroretinography (PERG). At the end of the 2-mo period, the expression of oxidative stress and inflammatory markers was measured with qPCR, and RGC survival or macroglial activation were assessed with immunofluorescence. Alternatively, LG was administered by gavage and the concentrations of four of the main LG components (nicotinamide, gallic acid, 4-hydroxybenzoic acid, and quercetin) were measured in the retinas in the following 24 h using mass spectrometry. LG treatment in DBA/2J mice did not influence IOP, but it affected RGC function since PERG amplitude was increased and PERG latency was decreased with respect to untreated DBA/2J mice. This improvement of RGC function was concomitant with a significant decrease of both oxidative stress and inflammation marker expression, of RGC loss, and of macroglial activation. All four LG metabolites were found in the retina, although with different proportions with respect to the amount in the dose of administered LG, and with different temporal profiles in the 24 h following administration. These findings are consistent with neuroenhancing and neuroprotective effects of LG in glaucoma that are likely to derive from its powerful antioxidant properties. The co-occurrence of different metabolites in LG may provide an added value to their beneficial effects and indicate LG as a basis for the potential treatment of a variety of retinal pathologies.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Laura Pucci
- National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA), Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Nutraceutical Strategy to Counteract Eye Neurodegeneration and Oxidative Stress in Drosophila melanogaster Fed with High-Sugar Diet. Antioxidants (Basel) 2021; 10:antiox10081197. [PMID: 34439445 PMCID: PMC8388935 DOI: 10.3390/antiox10081197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain (Triticum aestivum) obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly Drosophila melanogaster fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network. Also, in high sucrose-fed Drosophila, Lisosan G reduced the levels of brain ROS and retina peroxynitrite. The analysis of oxidative stress-related metabolites suggested 7,8-dihydrofolate, uric acid, dihydroorotate, γ-L-glutamyl-L-cysteine, allantoin, cysteinyl-glycine, and quinolate as key mediators of Lisosan G-induced inhibition of neuronal ROS, along with the upregulation of glutathione system. Of note, Lisosan G may impact oxidative stress and the ensuing retinal cell death, also independently from autophagy, although the autophagy-ROS cross-talk is critical. This study demonstrated that the continuous supplementation with the alimentary integrator Lisosan G exerts a robust and multifaceted antioxidant effect on retinal neurons, thus providing efficacious neuroprotection of hyperglycemic eye.
Collapse
|
10
|
Tousian H, Razavi BM, Hosseinzadeh H. Looking for immortality: Review of phytotherapy for stem cell senescence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:154-166. [PMID: 32405357 PMCID: PMC7211350 DOI: 10.22038/ijbms.2019.40223.9522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, we discussed natural agents with protective effects against stem cell senescence. Different complications have been observed due to stem cell senescence and the most important of them is "Aging". Senescent cells have not normal function and their secretary inflammatory factors induce chronic inflammation in body which causes different pathologies. Stem cell senescence also has been investigated in different diseases or as drug adverse effects. We searched databases such as Embase, Pubmed and Web of Science with keywords "stem cell", "progenitor cell", "satellite", "senescence" and excluded keywords "cancer", "tumor", "malignancy" and "carcinoma" without time limitation until May 2019. Among them we chose 52 articles that have investigated protective effects of natural agents (extracts or molecules) against cellular senescence in different kind of adult stem cells. Most of these studies were in endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells and few were about other kinds of stem cells. Most studied agents were resveratrol and ginseng which are also commercially available as supplement. Most protective molecular targets were telomerase and anti-oxidant enzymes to preserve genome integrity and reduce senescence-inducing signals. Due to the safe and long history of herbal usage in clinic, phytotherapy can be used for preventing stem cell senescence and their related complication. Resveratrol and ginseng can be the first choice for this aim due to their protective mechanisms in various kinds of stem cells and their long term clinical usage.
Collapse
Affiliation(s)
- Hourieh Tousian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Colosimo R, Gabriele M, Cifelli M, Longo V, Domenici V, Pucci L. The effect of sourdough fermentation on Triticum dicoccum from Garfagnana: 1H NMR characterization and analysis of the antioxidant activity. Food Chem 2019; 305:125510. [PMID: 31622804 DOI: 10.1016/j.foodchem.2019.125510] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
The fermentation of Triticum dicoccum with sourdough enhances the nutritional aspects of the final product by the enrichment of several compounds with potential medical and biological activity, hence, could improve the health of consumers. This study analyzed the chemical composition of fermented spelt flour from Garfagnana (Province of Lucca, Tuscany) by 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy and its in vitro antioxidant properties by FRAP and DPPH tests. Beyond this, the ex vivo CAA-RBC assay determined the cellular antioxidant activity on human erythrocytes under oxidative condition. Carbohydrate reduction was observed, while amino acids, organic acids and aromatic compounds with potential antioxidant activity increased during the fermentation time. Moreover, both in vitro and ex vivo outcomes showed an improved antioxidant profile. As a possible industrial application, the fermentation process adopted in this research could be reproduced on a large scale for the commercialization of the products by the food industry.
Collapse
Affiliation(s)
- Raffaele Colosimo
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy; Chemistry and Industrial Chemistry Department, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Morena Gabriele
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy
| | - Mario Cifelli
- Chemistry and Industrial Chemistry Department, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Vincenzo Longo
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy
| | - Valentina Domenici
- Chemistry and Industrial Chemistry Department, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| | - Laura Pucci
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
12
|
Preliminary Study: Purple Sweet Potato Extract Seems to Be Superior to Increase the Migration of Impaired Endothelial Progenitor Cells Compared to l-Ascorbic Acid. Sci Pharm 2019. [DOI: 10.3390/scipharm87030016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Impairment of the endothelial progenitor cells (EPCs) ability to proliferate and migrate in the patients with coronary heart disease (CHD) is partly caused by oxidative stress. This research evaluates the effect of treatment with Ipomoea batatas L./purple sweet potato (PSP) extract and l-ascorbic acid on the proliferation and migration of impaired EPCs. EPCs were isolated from CHD patient’s peripheral blood. EPCs culture were cultivated and divided into control (untreated), PSP extract treatment (dose 1 and 25 μg/mL), and l-ascorbic acid treatment (dose 10 and 250 μg/mL) groups for 48 h. EPCs proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay, and migration was evaluated with the cell migration assay kit. Statistical tests were evaluated using SPSS 25.0. This research showed that EPCs proliferation and migration was significantly higher in all PSP extract and l-ascorbic acid treatment compared to the control (p < 0.001). EPCs migration on treatment with a PSP extract dose of 25 μg/mL was significantly higher compared to the treatment with l-ascorbic acid dose of 250 μg/mL (303,000 ± 1000 compared to 215,000 ± 3000 cells, p< 0.001). In conclusion, both treatments with PSP extract and l-ascorbic acid can improve the proliferation and migration of impaired EPCs. At the dose of 25 μg/mL, PSP extract seems to be superior to the l-ascorbic acid dose of 250 μg/mL to improve EPCs migration.
Collapse
|
13
|
Gabriele M, Sparvoli F, Bollini R, Lubrano V, Longo V, Pucci L. The Impact of Sourdough Fermentation on Non‐Nutritive Compounds and Antioxidant Activities of Flours from Different
Phaseolus Vulgaris
L. Genotypes. J Food Sci 2019; 84:1929-1936. [DOI: 10.1111/1750-3841.14672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Morena Gabriele
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Pisa Unit, Research Area of Pisa, Via Moruzzi 1 56124 Pisa Italy
| | - Francesca Sparvoli
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Via Bassini 15 20133 Milan Italy
| | - Roberto Bollini
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Via Bassini 15 20133 Milan Italy
| | - Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio Via Moruzzi 1 56124 Pisa Italy
| | - Vincenzo Longo
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Pisa Unit, Research Area of Pisa, Via Moruzzi 1 56124 Pisa Italy
| | - Laura Pucci
- Natl. Research CouncilInst. of Biology and Agricultural Biotechnology (IBBA) Pisa Unit, Research Area of Pisa, Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
14
|
Balli D, Bellumori M, Paoli P, Pieraccini G, Di Paola M, De Filippo C, Di Gioia D, Mulinacci N, Innocenti M. Study on a Fermented Whole Wheat: Phenolic Content, Activity on PTP1B Enzyme and In Vitro Prebiotic Properties. Molecules 2019; 24:molecules24061120. [PMID: 30901847 PMCID: PMC6470552 DOI: 10.3390/molecules24061120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Fermented cereals, staple foods in Asia and Africa, are recently receiving a growing interest in Western countries. The object of this work is the characterization of a fermented wheat used as a food ingredient and dietary supplement. To this aim, the phenolic composition, the activity on protein tyrosine phosphatase 1B (PTP1B), an enzyme overexpressed in type-II diabetes, the in vitro prebiotic properties on Lactobacillusreuteri and the microbial composition were investigated. Basic and acidic hydrolysis were tested for an exhaustive recovery of bound phenols: the acidic hydrolysis gave best yields. Methyl ferulate and neocarlinoside were identified for the first time in wheat. The inhibitory power of the extracts of several batches were investigated on PTP1B enzyme. The product was not able to inhibit the enzyme, otherwise, for the first time, a complete inhibition was observed for schaftoside, a major C-flavonoid of wheat. The microbial composition was assessed identifying Lactobacillus, Enterococcus, and Pediococcus as the main bacterial species. The fermented wheat was a suitable substrate for the grown of L. reuteri, recognized for its health properties in the human gut. The proposed method for phenols is easier compared to those based on strong basic hydrolysis; our results assessed the bound phenols as the major fraction, differently from that suggested by the literature for fermented cereals.
Collapse
Affiliation(s)
- Diletta Balli
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| | - Maria Bellumori
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50139 Firenze, Italy.
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), Department of Health Sciences, University of Florence, Viale G. Pieraccini 6, 50139 Firenze, Italy.
| | - Monica Di Paola
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - Nadia Mulinacci
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| | - Marzia Innocenti
- Department of NEUROFARBA, and Multidisciplinary Centre of Research on Food Sciences (M.C.R.F.S.- Ce.R.A.), University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no Firenze, Italy.
| |
Collapse
|
15
|
Soccio M, Laus MN, Flagella Z, Pastore D. Assessment of Antioxidant Capacity and Putative Healthy Effects of Natural Plant Products Using Soybean Lipoxygenase-Based Methods. An Overview. Molecules 2018; 23:E3244. [PMID: 30544620 PMCID: PMC6320953 DOI: 10.3390/molecules23123244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/30/2022] Open
Abstract
In the last decades, increasing demand of antioxidant-rich foods and growing interest in their putative role in prevention of degenerative diseases have promoted development of methods for measuring Antioxidant Capacity (AC). Nevertheless, most of these assays use radicals and experimental conditions far from the physiological ones, and are able to estimate only one or a few antioxidant mechanisms. On the other hand, the novel LOX/RNO and LOX⁻FL methods, based on secondary reactions between the soybean lipoxygenase (LOX)-1 isoenzyme and either 4-nitroso-N,N-dimethylaniline (RNO) or fluorescein (FL), may provide a more comprehensive AC evaluation. In fact, they are able to detect simultaneously many antioxidant functions (scavenging of some physiological radical species, iron ion reducing and chelating activities, inhibition of the pro-oxidant apoenzyme) and to highlight synergism among phytochemicals. They are applied to dissect antioxidant properties of several natural plant products: food-grade antioxidants, cereal and pseudocereal grains, grain-derived products, fruits. Recently, LOX⁻FL has been used for ex vivo AC measurements of human blood samples after short- and long-term intakes of some of these foods, and the effectiveness in improving serum antioxidant status was evaluated using the novel Antioxidant/Oxidant Balance (AOB) parameter, calculated as an AC/Peroxide Level ratio. An overview of data is presented.
Collapse
Affiliation(s)
- Mario Soccio
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Zina Flagella
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
16
|
Amato R, Rossino MG, Cammalleri M, Locri F, Pucci L, Dal Monte M, Casini G. Lisosan G Protects the Retina from Neurovascular Damage in Experimental Diabetic Retinopathy. Nutrients 2018; 10:nu10121932. [PMID: 30563182 PMCID: PMC6316708 DOI: 10.3390/nu10121932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Lisosan G (LG), a fermented powder obtained from whole grains, is a recognized antioxidant compound that improves the bioactivity and survival of different cell types. The purpose of this study was to investigate whether LG ameliorates both the neural and the vascular damage characterizing early stages of diabetic retinopathy (DR). The effects of LG were studied in cultured explants of mouse retinas challenged with oxidative stress (OS) or in retinas of streptozotocin (STZ)-treated rats. Apoptosis, vascular endothelial growth factor (VEGF) expression, OS markers, blood-retinal barrier (BRB) integrity, and inflammation were assessed, while retinal function was evaluated with electroretinogram (ERG). LG extensively inhibited apoptosis, VEGF expression, and OS both in retinal explants and in STZ rats. In addition, STZ rats treated with LG displayed an almost total BRB integrity, reduced levels of inflammatory markers and a partially restored visual function as evaluated with ERG. In summary, we demonstrated that LG exhibits antioxidant and anti-inflammatory effects that exert powerful protective actions against neural and vascular defects characteristic of DR. Therefore, LG-containing foods or supplements may be considered to implement DR treatments.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
| | | | - Maurizio Cammalleri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Filippo Locri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
| | - Laura Pucci
- National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA), Pisa Unit, Via Moruzzi 1, 56124 Pisa, Italy.
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
17
|
Lucchesi D, Popa SG, Sancho V, Giusti L, Garofolo M, Daniele G, Pucci L, Miccoli R, Penno G, Del Prato S. Influence of high density lipoprotein cholesterol levels on circulating monocytic angiogenic cells functions in individuals with type 2 diabetes mellitus. Cardiovasc Diabetol 2018; 17:78. [PMID: 29866130 PMCID: PMC5987640 DOI: 10.1186/s12933-018-0720-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High-density lipoproteins (HDLs) can exert anti-atherogenic effects. On top of removing excess cholesterol through reverse cholesterol transport, HDLs play beneficial actions on endothelial function and integrity. In particular, HDLs are strong determinant of endothelial progenitor cells (EPCs) number and function. To gain further insights into such an effect we characterized in vitro functionality of circulating "early" EPCs obtained from 60 type 2 diabetes individuals with low HDL-cholesterol (HDL-C) and 59 with high HDL-C levels. METHODS After an overnight fast, venous blood was drawn in EDTA tubes and processed within 2-h from sampling. Peripheral blood mononuclear cells were isolated and plated on fibronectin coated culture dishes; after 3 days culture, adherent cells positive for Dil-ac-LDL/Lectin dual fluorescent staining were identified as monocytic angiogenic cells (MACs). After 5-7 days culture in EBM-2 medium, adherent cells were evaluated for viability/proliferation (MTT assay), senescence (beta-galactosidase activity detection), migration (modified Boyden chamber using VEGF as chemoattractant), adhesion capacity (on fibronectin-coated culture dishes) and ROS production (ROS-sensitive fluorescent probe CM-H2DCFDA). RESULTS MACs obtained from diabetic individuals with high HDL-C had 23% higher viability compared to low HDL-C (111.6 ± 32.7% vs. 90.5 ± 28.6% optical density; p = 0.002). H2O2 exposure impaired MACs viability to a similar extent in both groups (109.2 ± 31.7% vs. 74.5 ± 40.8% in high HDL-C, p < 0.0001; 88.3 ± 25.5% vs. 72.3 ± 22.5% in low-HDL, p = 0.004). MACs senescence was comparable in the two groups (102.7 ± 29.8% vs. 99.2 ± 27.8%; p = 0.703) and was only slightly modified by exposure to H2O2. There was no difference in the MACs migration capacity between the two groups (91.3 ± 34.2% vs. 108.7 ± 39.5%; p = 0.111), as well as in MACs adhesion capacity (105.2 ± 32.7% vs. 94.1 ± 26.1%; p = 0.223). Finally, ROS production was slightly thought not significantly higher in MACs from type 2 diabetes individuals with low- than high-HDL. After stratification of HDL-C levels into quartiles, viability (p < 0.0001) and adhesion (p = 0.044) were higher in Q4 than in Q1-Q3. In logistic regression analysis, HDL-C was correlated to MACs viability and adhesion independently of HbA1c or BMI, respectively. CONCLUSIONS Our data suggest that in type 2 diabetes subjects, HDL-cholesterol is an independent determinant of circulating MACs functional capacities-mainly viability, to a lesser extent adhesion-likely contributing also through this mechanism to cardiovascular protection even in type 2 diabetes.
Collapse
Affiliation(s)
- Daniela Lucchesi
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| | - Simona Georgiana Popa
- Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Veronica Sancho
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| | - Laura Giusti
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| | - Monia Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| | - Giuseppe Daniele
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Pisa, Italy
| | - Roberto Miccoli
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| | - Giuseppe Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124 Pisa, Italy
| |
Collapse
|
18
|
Gabriele M, Pucci L, Árvay J, Longo V. Anti-inflammatory and antioxidant effect of fermented whole wheat on TNFα-stimulated HT-29 and NF-κB signaling pathway activation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Valli V, Taccari A, Di Nunzio M, Danesi F, Bordoni A. Health benefits of ancient grains. Comparison among bread made with ancient, heritage and modern grain flours in human cultured cells. Food Res Int 2018; 107:206-215. [PMID: 29580479 DOI: 10.1016/j.foodres.2018.02.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
|
20
|
Perez-Ternero C, Werner CM, Nickel AG, Herrera MD, Motilva MJ, Böhm M, Alvarez de Sotomayor M, Laufs U. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J Nutr Biochem 2017; 48:51-61. [DOI: 10.1016/j.jnutbio.2017.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
21
|
A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1026268. [PMID: 28386305 PMCID: PMC5366772 DOI: 10.1155/2017/1026268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS) orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs), bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG), on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER) stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.
Collapse
|
22
|
Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2483163. [PMID: 27668035 PMCID: PMC5030421 DOI: 10.1155/2016/2483163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS) causes cardiovascular diseases (CVDs), atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs), for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.
Collapse
|
23
|
Gabriele M, Pucci L, La Marca M, Lucchesi D, Della Croce CM, Longo V, Lubrano V. A fermented bean flour extract downregulates LOX-1, CHOP and ICAM-1 in HMEC-1 stimulated by ox-LDL. Cell Mol Biol Lett 2016; 21:10. [PMID: 28536613 PMCID: PMC5415722 DOI: 10.1186/s11658-016-0015-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
This study focused on an extract from fermented flour from the Lady Joy variety of the common bean Phaseolus vulgaris. The extract, Lady Joy lysate (Lys LJ), is enriched in antioxidant compounds during the fermentation. We assessed it for its protective effect on endothelial cells treated with oxidized-LDL (ox-LDL). The oxidative stress was determined by measuring the contents of thiobarbituric acid-reactive substances and reactive oxygen metabolites. ICAM-1, ET-1 and IL-6 concentrations were assessed using ELISA. LOX-1 and CHOP expression were analyzed using both quantitative RT-PCR and ELISA or western blotting. Ox-LDL treatment induced significant oxidative stress, which was strongly reduced by pre-treatment with the extract. The ox-LDL exposure significantly enhanced ICAM-1, IL-6 and ET-1 levels over basal levels. Lys LJ pre-treatment exerted an inhibitory effect on ox-LDL-induced endothelial activation with ICAM-1 levels comparable to those for the untreated cells. IL-6 and ET-1 production, although reduced, was still significantly higher than for the control. Both LOX-1 and CHOP expression were upregulated after ox-LDL exposure, but this effect was significantly decreased after Lys LJ pre-treatment. Lys LJ alone did not alter the ICAM-1, IL-6 and ET-1 concentrations or CHOP expression, but it did significantly lower the LOX-1 protein level. Our data suggest that Lys LJ is an effective antioxidant that is able to inhibit the oxidation process, but that it is only marginally active against inflammation and ET-1 production in HMEC-1 exposed to ox-LDL.
Collapse
Affiliation(s)
- Morena Gabriele
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Laura Pucci
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Margherita La Marca
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Daniela Lucchesi
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Clara Maria Della Croce
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
24
|
Ogita T, Vallejo Manaois R, Wakagi M, Oki T, Takano Ishikawa Y, Watanabe J. Identification and evaluation of antioxidants in Japanese parsley. Int J Food Sci Nutr 2016; 67:431-40. [PMID: 27075296 DOI: 10.3109/09637486.2016.1170770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two cultivars of Japanese parsley were harvested in different seasons; their antioxidant capacities were evaluated by oxygen radical absorbance capacity (ORAC) methods, and the contents of hydrophilic and lipophilic antioxidants were compared. Japanese parsley possessed potent antioxidant capacities both in hydrophilic and lipophilic extracts when evaluated by ORAC methods. LC/MS/MS analyses revealed that chlorogenic acid and four kinds of quercetin glycosides were major antioxidants in the hydrophilic extract. Lutein was the main contributor to the antioxidant capacity of the lipophilic extract. Antioxidant capacities of the hydrophilic extracts of both cultivars tended to be higher in winter because of the increase in the contents of chlorogenic acid and quercetin glycosides. An obvious trend in the lipophilic antioxidant capacities or lutein contents was not observed irrespective of the cultivar.
Collapse
Affiliation(s)
- Tasuku Ogita
- a National Food Research Institute, National Agriculture and Food Research Organization , Tsukuba , Ibaraki , Japan
| | - Rosaly Vallejo Manaois
- a National Food Research Institute, National Agriculture and Food Research Organization , Tsukuba , Ibaraki , Japan
| | - Manabu Wakagi
- a National Food Research Institute, National Agriculture and Food Research Organization , Tsukuba , Ibaraki , Japan
| | - Tomoyuki Oki
- b Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization , Koshi , Kumamoto , Japan
| | - Yuko Takano Ishikawa
- a National Food Research Institute, National Agriculture and Food Research Organization , Tsukuba , Ibaraki , Japan
| | - Jun Watanabe
- a National Food Research Institute, National Agriculture and Food Research Organization , Tsukuba , Ibaraki , Japan
| |
Collapse
|
25
|
Frassinetti S, Gabriele M, Caltavuturo L, Longo V, Pucci L. Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2015; 70:35-41. [PMID: 25631277 DOI: 10.1007/s11130-014-0453-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legumes and particularly beans are a key food of Mediterranean diet representing an important source of proteins, fiber, some minerals and vitamins and bioactive compounds. We evaluated the antioxidant and anti-mutagenic effects of a new fermented powder of a selected lectin-free and phaseolamin-enriched variety of common bean (Phaseolus vulgaris L.), named Lady Joy. Lady Joy lysate (Lys LJ) was studied in human erythrocytes and in Saccharomyces cerevisiae yeast cells. The antioxidant and anti-hemolytic properties of Lys LJ, studied in an ex vivo erythrocytes system using the cellular antioxidant assay (CAA-RBC) and the hemolysis test, evidenced a dose-dependent antioxidant activity as well as a significant hemolysis inhibition. Besides, results evidenced that Lys LJ treatment significantly decreased the intracellular ROS concentration and mutagenesis induced by hydrogen peroxide in S. cerevisiae D7 strain. In conclusion, Lys LJ showed both an antimutagenic effect in yeast and a strong scavenging activity in yeast and human cells.
Collapse
Affiliation(s)
- Stefania Frassinetti
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124, Pisa, Italy,
| | | | | | | | | |
Collapse
|