1
|
Gong B, Wang T, Sun L. Evolution and therapeutic potential of glucagon-like peptide 2 analogs. Biochem Pharmacol 2025; 233:116758. [PMID: 39842552 DOI: 10.1016/j.bcp.2025.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Glucagon-like peptide 2 (GLP-2) is a proglucagon-derived peptide released by intestinal endocrine cells. However, its therapeutic potential is limited by rapid inactivation via dipeptidyl peptidase-IV. The elucidation of three-dimensional structures of G-protein-coupled receptors, including GLP-2 receptor, has facilitated the rational design of novel peptide therapeutics. Recent studies have explored various structural modifications based on the structure of GLP-2, such as amino acid substitution, lipidation, and fusion with proteins, to extend the half-life of GLP-2 and enhance its biological activity. One promising avenue involves the development of multifunctional molecules targeting multiple pharmacological systems to boost therapeutic efficacy. This paper reviews the recent advancements in understanding GLP-2, including its physiological roles and structure-activity relationships, and evaluates the development prospects of GLP-2 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, PR China
| | - Ting Wang
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; Taizhou Hospital, Zhejiang University, Taizhou 317000, PR China.
| |
Collapse
|
2
|
Lund PM, Kristensen K, Larsen NW, Knuhtsen A, Hansen MB, Hjørringgaard CU, Eriksen AZ, Urquhart AJ, Mortensen KI, Simonsen JB, Andresen TL, Larsen JB. Tuning the double lipidation of salmon calcitonin to introduce a pore-like membrane translocation mechanism. J Colloid Interface Sci 2024; 669:198-210. [PMID: 38713958 DOI: 10.1016/j.jcis.2024.04.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
A widespread strategy to increase the transport of therapeutic peptides across cellular membranes has been to attach lipid moieties to the peptide backbone (lipidation) to enhance their intrinsic membrane interaction. Efforts in vitro and in vivo investigating the correlation between lipidation characteristics and peptide membrane translocation efficiency have traditionally relied on end-point read-out assays and trial-and-error-based optimization strategies. Consequently, the molecular details of how therapeutic peptide lipidation affects it's membrane permeation and translocation mechanisms remain unresolved. Here we employed salmon calcitonin as a model therapeutic peptide and synthesized nine double lipidated analogs with varying lipid chain lengths. We used single giant unilamellar vesicle (GUV) calcein influx time-lapse fluorescence microscopy to determine how tuning the lipidation length can lead to an All-or-None GUV filling mechanism, indicative of a peptide mediated pore formation. Finally, we used a GUVs-containing-inner-GUVs assay to demonstrate that only peptide analogs capable of inducing pore formation show efficient membrane translocation. Our data provided the first mechanistic details on how therapeutic peptide lipidation affects their membrane perturbation mechanism and demonstrated that fine-tuning lipidation parameters could induce an intrinsic pore-forming capability. These insights and the microscopy based workflow introduced for investigating structure-function relations could be pivotal for optimizing future peptide design strategies.
Collapse
Affiliation(s)
- Philip M Lund
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nanna W Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Astrid Knuhtsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten B Hansen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Claudia U Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anne Z Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew J Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jannik B Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Bauri R, Bele S, Edelli J, Reddy NC, Kurukuti S, Devasia T, Ibrahim A, Rai V, Mitra P. Reduced incretin receptor trafficking upon activation enhances glycemic control and reverses obesity in diet-induced obese mice. Am J Physiol Cell Physiol 2024; 327:C74-C96. [PMID: 38738303 DOI: 10.1152/ajpcell.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic β cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.
Collapse
Affiliation(s)
- Rathin Bauri
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jhansi Edelli
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Ahamed Ibrahim
- Division of Lipid Chemistry, National Institute of Nutrition Hyderabad, Hyderabad, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Institute of Transformative Molecular medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
4
|
Hao LS, Zhang MM, Li XF, Xin X, Zhao GL. Efficient regioselective enzymatic acylation of troxerutin: difference characterization of in vitro cellular uptake and cytotoxicity. Food Funct 2024; 15:5785-5796. [PMID: 38660890 DOI: 10.1039/d4fo00906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this study, we developed a multi-site acylation strategy to improve the lipophilicity and cellular uptake of troxerutin, a natural flavonoid with many health-promoting bioactivities. By clarifying the acylation properties of troxerutin catalyzed by lipases from different sources, a series of troxerutin ester derivatives acylated at different sites was synthesized, including troxerutin dipropyl (TDP), tripropyl (TTP), tetrapropyl (TEP), dibutyl (TDB), monohexyl (TMH), monooctyl (TMO) and monodecyl (TMD) esters. Interestingly, the troxerutin esters acylated at multiple sites with shorter fatty chains (TDP, TTP and TEP) had similar lipophilicity to the mono-acylated esters bearing longer fatty chains (TMH, TMO and TMD, respectively) and meanwhile demonstrated surprisingly lower cytotoxicity than that of the long fatty-chain mono-esters. In particular, the multi-acylated esters with shorter fatty chains showed remarkably higher cellular uptake than the mono-esters with long fatty chains. In vitro gastrointestinal digestion suggested that the multi-acylated esters of troxerutin were more resistant to gastrointestinal degradation than the mono-esters. These results indicated that multi-site acylation with short fatty chains could be an effective alternative to introducing one-site mono-acylation for the modification of troxerutin and other flavonoid compounds.
Collapse
Affiliation(s)
- Li-Sha Hao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou 510640, China.
| | - Meng-Meng Zhang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Dongsha Street 24, Guangzhou, Guangdong, 510225, China
| | - Xiao-Feng Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Wushan Road 381, Guangzhou 510640, China.
| | - Xuan Xin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Dongsha Street 24, Guangzhou, Guangdong, 510225, China.
| | - Guang-Lei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
5
|
Quagliata M, Papini AM, Rovero P. Chemically modified antiviral peptides against SARS-CoV-2. J Pept Sci 2024; 30:e3541. [PMID: 37699615 DOI: 10.1002/psc.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
To date, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) COVID-19 pandemic continues to be a potentially lethal disease. Although both vaccines and specific antiviral drugs have been approved, the search for more specific therapeutic approaches is still ongoing. The infection mechanism of SARS-CoV-2 consists of several stages, and each one can be selectively blocked to disrupt viral infection. Peptides are a promising class of antiviral compounds, which may be suitably modified to be more stable, more effective, and more selective towards a specific viral replication step. The latter two goals might be obtained by increasing the specificity and/or the affinity of the interaction with a specific target and often imply the stabilization of the secondary structure of the active peptide. This review is focused on modified antiviral peptides against SARS-CoV-2 acting at different stages of virus replication, including ACE2-RBD interaction, membrane fusion mechanism, and the proteolytic cleavage by different viral proteases. Therefore, the landscape presented herein provides a useful springboard for the design of new and powerful antiviral therapeutics.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
7
|
Gadgaard S, Windeløv JA, Schiellerup SP, Holst JJ, Hartmann B, Rosenkilde MM. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed Pharmacother 2023; 160:114383. [PMID: 36780786 DOI: 10.1016/j.biopha.2023.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially from enteroendocrine Lcells and has anabolic action on gut and bone. Short-acting teduglutide is the only approved GLP-2 analog for the treatment of short-bowel syndrome (SBS). To improve the therapeutic effect, we created a series of lipidated GLP-2R agonists. EXPERIMENTAL APPROACH Six GLP-2 analogs were studied in vitro for cAMP accumulation, β-arrestin 1 and 2 recruitment, affinity, and internalization. The trophic actions on intestine and bone were examined in vivo in rodents. KEY RESULTS Lipidations at lysines introduced at position 12, 16, and 20 of hGLP-2(1-33) were well-tolerated with less than 2.2-fold impaired potency and full efficacy at the hGLP-2R in cAMP accumulation. In contrast, N- and C-terminal (His1 and Lys30) lipidations impaired potency by 4.2- and 45-fold and lowered efficacy to 77% and 85% of hGLP-2, respectively. All variants were similarly active on the rat and mouse GLP-2Rs and the three most active variants displayed increased selectivity for hGLP-2R over hGLP-1R activation, compared to native hGLP-2. Impact on arrestin recruitment and receptor internalization followed that of Gαs-coupling, except for lipidation in position 20, where internalization was more impaired, suggesting desensitization protection. A highly active variant (C16 at position 20) with low internalization and a half-life of 9.5 h in rats showed improved gut and bone tropism with increased weight of small intestine in mice and decreased CTX levels in rats. CONCLUSION AND IMPLICATION We present novel hGLP-2 agonists suitable for in vivo studies of the GLP-2 system to uncover its pharmacological potential.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech, Copenhagen, Denmark
| | | | - Sine P Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Hundahl AC, Weller A, Larsen JB, Hjørringgaard CU, Hansen MB, Mündler AK, Knuhtsen A, Kristensen K, Arnspang EC, Andresen TL, Mortensen KI, Marie R. Quantitative live-cell imaging of lipidated peptide transport through an epithelial cell layer. J Control Release 2023; 355:122-134. [PMID: 36724849 DOI: 10.1016/j.jconrel.2023.01.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Oral drug delivery increases patient compliance and is thus the preferred administration route for most drugs. However, for biologics the intestinal barrier greatly limits the absorption and reduces their bioavailability. One strategy employed to improve on this is chemical modification of the biologic through the addition of lipid side chains. While it has been established that lipidation of peptides can increase transport, a mechanistic understanding of this effect remains largely unexplored. To pursue this mechanistic understanding, end-point detection of biopharmaceuticals transported through a monolayer of fully polarized epithelial cells is typically used. However, these methods are time-consuming and tedious. Furthermore, most established methods cannot be combined easily with high-resolution live-cell fluorescence imaging that could provide a mechanistic insight into cellular uptake and transport. Here we address this challenge by developing an axial PSF deconvolution scheme to quantify the transport of peptides through a monolayer of Caco-2 cells using single-cell analysis with live-cell confocal fluorescence microscopy. We then measure the known cross-barrier transport of several compounds in our model and compare the results with results obtained in an established microfluidic model finding similar transport phenotypes. This verifies that already after two days the Caco-2 cells in our model form a tight monolayer and constitute a functional barrier model. We then apply this assay to investigate the effects of side chain lipidation of the model peptide drug salmon calcitonin (sCT) modified with 4‑carbon and 8‑carbon-long fatty acid chains. Furthermore, we compare that with experiments performed at lower temperature and using inhibitors for some endocytotic pathways to pinpoint how lipidation length modifies the main avenues for the transport. We thus show that increasing the length of the lipid chain increases the transport of the drug significantly but also makes endocytosis the primary transport mechanism in a short-term cell culture model.
Collapse
Affiliation(s)
- Adam Coln Hundahl
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Arjen Weller
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Jannik Bruun Larsen
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Claudia U Hjørringgaard
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Morten B Hansen
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Ann-Kathrin Mündler
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Astrid Knuhtsen
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Kasper Kristensen
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Arnspang
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas Lars Andresen
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Kim I Mortensen
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| | - Rodolphe Marie
- Technical University of Denmark, Department of Health Technology, Ørsteds Plads, Building 345C, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Tran H, Aihara E, Mohammed FA, Qu H, Riley A, Su Y, Lai X, Huang S, Aburub A, Chen JJH, Vitale OH, Lao Y, Estwick S, Qi Z, ElSayed MEH. In Vivo Mechanism of Action of Sodium Caprate for Improving the Intestinal Absorption of a GLP1/GIP Coagonist Peptide. Mol Pharm 2023; 20:929-941. [PMID: 36592951 DOI: 10.1021/acs.molpharmaceut.2c00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sodium caprate (C10) has been widely evaluated as an intestinal permeation enhancer for the oral delivery of macromolecules. However, the effect of C10 on the intestinal absorption of peptides with different physicochemical properties and its permeation-enhancing effect in vivo remains to be understood. Here, we evaluated the effects of C10 on intestinal absorption in rats with a glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GIP-GLP1) dual agonist peptide (LY) and semaglutide with different enzymatic stabilities and self-association behaviors as well as the oral exposure of the LY peptide in minipigs. Furthermore, we investigated the mechanism of action (MoA) of C10 for improving the intestinal absorption of the LY peptide in vivo via live imaging of the rat intestinal epithelium and tissue distribution of the LY peptide in minipigs. The LY peptide showed higher proteolytic stability in pancreatin and was a monomer in solution compared to that in semaglutide. C10 increased in vitro permeability in the minipig intestinal organoid monolayer to a greater extent for the LY peptide than for semaglutide. In the rat jejunal closed-loop model, C10 increased the absorption of LY peptide better than that of semaglutide, which might be attributed to higher in vitro proteolytic stability and permeability of the LY peptide. Using confocal live imaging, we observed that C10 enabled the rapid oral absorption of a model macromolecule (FD4) in the rat intestine. In the duodenum tissues of minipigs, C10 was found to qualitatively reduce the tight junction protein level and allow peptide uptake to the intestinal cells. C10 decreased the transition temperature of the artificial lipid membrane, indicating an increase in membrane fluidity, which is consistent with the above in vivo imaging results. These data indicated that the LY's favorable physicochemical properties combined with the effects of C10 on the intestinal mucosa resulted in an ∼2% relative bioavailability in minipigs.
Collapse
|
10
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
11
|
Gastrointestinal Permeation Enhancers for the Development of Oral Peptide Pharmaceuticals. Pharmaceuticals (Basel) 2022; 15:ph15121585. [PMID: 36559036 PMCID: PMC9781085 DOI: 10.3390/ph15121585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, two oral-administered peptide pharmaceuticals, semaglutide and octreotide, have been developed and are considered as a breakthrough in peptide and protein drug delivery system development. In 2019, the Food and Drug Administration (FDA) approved an oral dosage form of semaglutide developed by Novo Nordisk (Rybelsus®) for the treatment of type 2 diabetes. Subsequently, the octreotide capsule (Mycapssa®), developed through Chiasma's Transient Permeation Enhancer (TPE) technology, also received FDA approval in 2020 for the treatment of acromegaly. These two oral peptide products have been a significant success; however, a major obstacle to their oral delivery remains the poor permeability of peptides through the intestinal epithelium. Therefore, gastrointestinal permeation enhancers are of great relevance for the development of subsequent oral peptide products. Sodium salcaprozate (SNAC) and sodium caprylate (C8) have been used as gastrointestinal permeation enhancers for semaglutide and octreotide, respectively. Herein, we briefly review two approved products, Rybelsus® and Mycapssa®, and discuss the permeation properties of SNAC and medium chain fatty acids, sodium caprate (C10) and C8, focusing on Eligen technology using SNAC, TPE technology using C8, and gastrointestinal permeation enhancement technology (GIPET) using C10.
Collapse
|
12
|
Yan X, Cao Y, Chen W, Yu Q, Chen Y, Yao S, Jiang C, Chen X, Han S. Peptide Tat(48-60) YVEEL protects against necrotizing enterocolitis through inhibition of toll-like receptor 4-mediated signaling in a phosphatidylinositol 3-kinase/AKT dependent manner. Front Nutr 2022; 9:992145. [PMID: 36299988 PMCID: PMC9590307 DOI: 10.3389/fnut.2022.992145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a catastrophic disease largely occurring in preterm infants, and toll-like receptor 4 (TLR4) has been implicated in its pathogenesis. The current therapeutic strategies for NEC are, however, far from optimal. In the present study, a whey-derived antioxidative peptide conjugated with a cell-penetrating TAT [Tat (48-60) YVEEL] was prepared to endow it with enhanced cell uptake capability and bioavailability. The protective effect of Tat (48-60) YVEEL on experimental NEC was evaluated both in vitro and in vivo. Inhibition of TLR4-mediated signaling by Tat (48-60) YVEEL was assessed in FHC and IEC-6 enterocytes, neonatal rat model of NEC, and the mechanism underlying this effect was determined. Tat (48-60) YVEEL significantly inhibited TLR4-mediated expression of pro-inflammatory cytokines, p65 nuclear translocation and restored the impaired enterocyte migration in cultured enterocytes. In addition, Tat (48-60) YVEEL administration strikingly increased the survival rate, and reduced the severity of NEC in rats through inhibition of TLR4-mediated signaling. These protective effects of Tat (48-60) YVEEL occurred in a PI3K/AKT dependent manner, as administration of PI3K activator Ys49 abrogated its protective effects. Combined with liposomes, Tat (48-60) YVEEL demonstrated longer retention in the intestines that better for potential clinical applications. These data demonstrate that Tat (48-60) YVEEL protects against NEC through inhibition of TLR4-mediated signaling in a PI3K/AKT dependent manner, and offer a potential therapeutic approach to this disease.
Collapse
Affiliation(s)
- Xiangyun Yan
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjuan Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinlei Yu
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanjie Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuwen Yao
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyao Jiang
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohui Chen
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,Xiaohui Chen,
| | - Shuping Han
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Shuping Han,
| |
Collapse
|
13
|
Application of Af4-Multidetection to Liraglutide in Its Formulation: Preserving and Representing Native Aggregation. Molecules 2022; 27:molecules27175485. [PMID: 36080254 PMCID: PMC9457993 DOI: 10.3390/molecules27175485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Aggregation is among the most critical parameters affecting the pharmacological and safety profile of peptide Active Pharmaceutical Ingredients (APIs). For this reason, it is of utmost importance to define the exact aggregation state of peptide drugs, particularly when the API is marketed as a ready-to-use solution. Consequently, appropriate non-destructive techniques able to replicate the peptide environment must be employed. In our work, we exploited Asymmetrical Flow Field-Flow Fractionation (AF4), connected to UV, dRI, fluorescence, and MALS detectors, to fully characterize the aggregation state of Liraglutide, a peptide API used for the treatment of diabetes type 2 and chronic obesity. In previous studies, Liraglutide was hypothesized to assemble into hexa-octamers in phosphate buffer, but no information on its behavior in the formulation medium was provided up to now. The method used allowed researchers to work using formulation as the mobile phase with excellent recoveries and LoQ/LoD, discerning between stable and degraded samples, and detecting, when present, aggregates up to 108 Da. The native state of Liraglutide was assessed and found to be an association into pentamers, with a non-spherical conformation. Combined to benchmark analyses, the sameness study was complete and descriptive, also giving insight on the aggregation process and covalent/non-covalent aggregate types.
Collapse
|
14
|
Klepach A, Tran H, Ahmad Mohammed F, ElSayed ME. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev 2022; 186:114322. [PMID: 35526665 DOI: 10.1016/j.addr.2022.114322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Peptides, an emerging modality within the biopharmaceutical industry, are often delivered subcutaneously with evolving prospects on oral delivery. Barrier biology within the subcutis or gastrointestinal tract is a significant challenge in limiting absorption or otherwise disrupting peptide disposition. Aspects of peptide pharmacokinetic performance and ADME can be mitigated with careful molecular design that tailors for properties such as effective size, hydrophobicity, net charge, proteolytic stability, and albumin binding. In this review, we endeavor to highlight effective techniques in qualifying physicochemical properties of peptides and discuss advancements of in vitro models of subcutaneous and oral delivery. Additionally, we will delineate empirical findings around the relationship of these physicochemical properties and in vivo (animal or human) impact. We conclude that robust peptide characterization methods and in vitro techniques with demonstrated correlations to in vivo data are key routines to incorporate in the drug discovery and development to improve the probability of technical and commercial success of peptide therapeutics.
Collapse
|
15
|
Yang Y, Lee C, Reddy RR, Huang DJ, Zhong W, Nguyen-Tran VTB, Shen W, Lin Q. Design of Potent and Proteolytically Stable Biaryl-Stapled GLP-1R/GIPR Peptide Dual Agonists. ACS Chem Biol 2022; 17:1249-1258. [PMID: 35417146 DOI: 10.1021/acschembio.2c00175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent clinical trials have revealed that the chimeric peptide hormones simultaneously activating glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) demonstrate superior efficacy in glycemic control and body weight reduction, better than those activating the GLP-1R alone. However, the linear peptide-based GLP-1R/GIPR dual agonists are susceptible to proteolytic cleavage by common digestive enzymes present in the gastrointestinal tract and thus not suitable for oral administration. Here, we report the design and synthesis of biaryl-stapled peptides, with and without fatty diacid attachment, that showed potent GLP-1R/GIPR dual agonist activities. Compared to a linear peptide dual agonist and semaglutide, the biaryl-stapled peptides displayed drastically improved proteolytic stability against the common digestive enzymes. Furthermore, two stapled peptides showed excellent efficacy in an oral glucose tolerance test in mice, owing to their potent receptor activity in vitro and good pharmacokinetics exposure upon subcutaneous injection. By exploring a more comprehensive set of biaryl staplers, we expect that this stapling method could facilitate the design of the stapled peptide-based dual agonists suitable for oral administration.
Collapse
Affiliation(s)
- Yifang Yang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
- Transira Therapeutics, Baird Research Park, 1576 Sweet Home Road, Amherst, Buffalo, New York 14228, United States
| | - Candy Lee
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Reddy Rajasekhar Reddy
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - David J. Huang
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Weixia Zhong
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Vân T. B. Nguyen-Tran
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Weijun Shen
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
- Transira Therapeutics, Baird Research Park, 1576 Sweet Home Road, Amherst, Buffalo, New York 14228, United States
| |
Collapse
|
16
|
Millette MA, Roy S, Salesse C. Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids Surf B Biointerfaces 2022; 211:112315. [PMID: 35026543 DOI: 10.1016/j.colsurfb.2021.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Many proteins are modified by the covalent addition of different types of lipids, such as myristoylation, palmitoylation and prenylation. Lipidation is expected to promote membrane association of proteins. Visual phototransduction involves many lipid-modified proteins. The G-Protein-coupled receptor of rod photoreceptors, rhodopsin, is inactivated by G-Protein-coupled Receptor Kinase 1 (GRK1). The C-terminus of GRK1 is farnesylated and its truncation has been shown to result in a very high decrease of its enzymatic activity, most likely because of the loss of its membrane localization. Little information is available on the membrane binding of GRK1 as well as of most prenylated proteins. Measurements of the membrane binding of the non-farnesylated and farnesylated C-terminal segment of GRK1 were thus performed using lipids typical of those found in rod outer segment disk membranes. Their random coil secondary structure was determined using circular dichroism and infrared spectroscopy. The non-farnesylated C-terminal segment of GRK1 has no surface activity. In contrast, the farnesylated C-terminal segment of GRK1 shows a particularly strong binding to lipid monolayers bearing at least one unsaturated fatty acyl chain. No binding is observed in the presence of monolayers of saturated phospholipids, in agreement with the low affinity of farnesylated Ras proteins for lipids in the liquid-ordered state. Altogether, these data demonstrate that the farnesyl group of the C-terminal segment of GRK1 is mandatory for its membrane binding, which is favored by particular lipids or lipid mixtures. This information will also be useful for the understanding of the membrane binding of other prenylated proteins.
Collapse
Affiliation(s)
- Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sarah Roy
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
17
|
Frøslev P, Franzyk H, Ozgür B, Brodin B, Kristensen M. Highly cationic cell-penetrating peptides affect the barrier integrity and facilitates mannitol permeation in a human stem cell-based blood-brain barrier model. Eur J Pharm Sci 2021; 168:106054. [PMID: 34728364 DOI: 10.1016/j.ejps.2021.106054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Abstract
The blood-brain barrier (BBB) allows passive permeation of only a limited number of, primarily lipophilic, low-molecular weight drugs that obey the so-called "rule of CNS likeness". Therefore, novel strategies to facilitate drug delivery across the BBB are needed. Cell-penetrating peptides (CPPs) enable delivery of various therapeutic cargoes into cells and may potentially serve as shuttles for delivery of brain-specific drugs across the BBB. The CPPs Tat47-57 and penetratin are prototypical cationic CPPs, whereas apidaecin and oncocin belong to the group of proline-rich cationic antimicrobial peptides displaying CPP-like properties. The aim of the present study was to investigate the potential of Tat47-57, penetratin, apidaecin, and oncocin for interaction with and permeation of the BBB in vitro. We also studied whether the CPPs facilitated permeation of the paracellular flux marker mannitol as well as the transcellular flux marker propranolol. The peptides were labelled with the fluorophore 6-TAMRA (T) for visualization and quantification purposes. CPP membrane-adherence, membrane-embedding, and cellular uptake as well as barrier-permeation were evaluated in murine brain capillary endothelial cells (bEND3) and human induced pluripotent stem cell-derived (Bioni-010c) brain capillary endothelial-like monolayers. The cationic and the proline-rich cationic CPPs were taken up into the Bioni-010c monolayers. T-Tat47-57, T-apidaecin, and T-oncocin also permeated Bioni-010c monolayers, whereas T-penetratin did not. However, both T-Tat47-57 and T-penetratin affected the barrier integrity to a degree that facilitated permeation of 14C-mannitol. These results may therefore pave the way for future CPP-mediated brain delivery of small drugs that do not obey the "rule of CNS likeness".
Collapse
Affiliation(s)
- Patrick Frøslev
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Burak Ozgür
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
| |
Collapse
|
18
|
Yassine HN, Solomon V, Thakral A, Sheikh-Bahaei N, Chui HC, Braskie MN, Schneider LS, Talbot K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement 2021; 18:478-497. [PMID: 34647685 PMCID: PMC8940606 DOI: 10.1002/alz.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon‐like peptide‐1 (GLP‐1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP‐1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP‐1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Angad Thakral
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine USC, Los Angeles, California, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
19
|
Lucey M, Ashik T, Marzook A, Wang Y, Goulding J, Oishi A, Broichhagen J, Hodson DJ, Minnion J, Elani Y, Jockers R, Briddon SJ, Bloom SR, Tomas A, Jones B. Acylation of the Incretin Peptide Exendin-4 Directly Impacts Glucagon-Like Peptide-1 Receptor Signaling and Trafficking. Mol Pharmacol 2021; 100:319-334. [PMID: 34315812 PMCID: PMC8626645 DOI: 10.1124/molpharm.121.000270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor and mainstay therapeutic target for the treatment of type 2 diabetes and obesity. Recent reports have highlighted how biased agonism at the GLP-1R affects sustained glucose-stimulated insulin secretion through avoidance of desensitization and downregulation. A number of GLP-1R agonists (GLP-1RAs) feature a fatty acid moiety to prolong their pharmacokinetics via increased albumin binding, but the potential for these chemical changes to influence GLP-1R function has rarely been investigated beyond potency assessments for cAMP. Here, we directly compare the prototypical GLP-1RA exendin-4 with its C-terminally acylated analog, exendin-4-C16. We examine relative propensities of each ligand to recruit and activate G proteins and β-arrestins, endocytic and postendocytic trafficking profiles, and interactions with model and cellular membranes in HEK293 and HEK293T cells. Both ligands had similar cAMP potency, but exendin-4-C16 showed ∼2.5-fold bias toward G protein recruitment and a ∼60% reduction in β-arrestin-2 recruitment efficacy compared with exendin-4, as well as reduced GLP-1R endocytosis and preferential targeting toward recycling pathways. These effects were associated with reduced movement of the GLP-1R extracellular domain measured using a conformational biosensor approach and a ∼70% increase in insulin secretion in INS-1 832/3 cells. Interactions with plasma membrane lipids were enhanced by the acyl chain. Exendin-4-C16 showed extensive albumin binding and was highly effective for lowering of blood glucose in mice over at least 72 hours. Our study highlights the importance of a broad approach to the evaluation of GLP-1RA pharmacology. SIGNIFICANCE STATEMENT: Acylation is a common strategy to enhance the pharmacokinetics of peptide-based drugs. This work shows how acylation can also affect various other pharmacological parameters, including biased agonism, receptor trafficking, and interactions with the plasma membrane, which may be therapeutically important.
Collapse
Affiliation(s)
- Maria Lucey
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Tanyel Ashik
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Amaara Marzook
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Yifan Wang
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Joëlle Goulding
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Atsuro Oishi
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Johannes Broichhagen
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - David J Hodson
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - James Minnion
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Yuval Elani
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Ralf Jockers
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Stephen J Briddon
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Alejandra Tomas
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| |
Collapse
|
20
|
Revealing the importance of carrier-cargo association in delivery of insulin and lipidated insulin. J Control Release 2021; 338:8-21. [PMID: 34298056 DOI: 10.1016/j.jconrel.2021.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Delivery of therapeutic peptides upon oral administration is highly desired and investigations report that the cell-penetrating peptide (CPP) penetratin and its analogues shuffle and penetramax show potential as carriers to enhance insulin delivery. Exploring this, the specific aim of the present study was to understand the impact that their complexation with a lipidated or non-lipidated therapeutic cargo would have on the delivery, to evaluate the effect of differences in membrane interactions in vitro and in vivo, as well as to deduce the mode of action leading to enhanced delivery. Fundamental biophysical aspects were studied by a range of orthogonal methods. Transepithelial permeation of therapeutic peptide was evaluated using the Caco-2 cell culture model supplemented with epithelial integrity measurements, real-time assessment of the carrier peptide effects on cell viability and on mode of action. Pharmacokinetic and pharmacodynamic (PK/PD) parameters were evaluated following intestinal administration to rats and tissue effects were investigated by histology. The biophysical studies revealed complexation of insulin with shuffle and penetramax, but not with penetratin. This corresponded to enhanced transepithelial permeation of insulin, but not of lipidated insulin, when in physical mixture with shuffle or penetramax. The addition of shuffle and penetramax was associated with a lowering of Caco-2 cell monolayer integrity and viability, where the lowering of cell viability was immediate, but reversible. Insulin delivery in rats was enhanced by shuffle and penetramax and accompanied by a 10-20-fold decrease in blood glucose with immediate effect on the intestinal mucosa. In conclusion, shuffle and penetramax, but not penetratin, demonstrated to be potential candidates as carriers for transmucosal delivery of insulin upon oral administration, and their effect depended on association with both cargo and cell membrane. Interestingly, the present study provides novel mechanistic insight that peptide carrier-induced cargo permeation points towards enhancement via the paracellular route in the tight epithelium. This is different from the anticipated belief being that it is the cell-penetrating capability that facilitate transepithelial cargo permeation via a transcellular route.
Collapse
|
21
|
Generation of KS-58 as the first K-Ras(G12D)-inhibitory peptide presenting anti-cancer activity in vivo. Sci Rep 2020; 10:21671. [PMID: 33303890 PMCID: PMC7730438 DOI: 10.1038/s41598-020-78712-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Ras mutations (e.g., occur in K-Ras, N-Ras, and H-Ras) are one of the most desirable and promising drug targets in chemotherapy treatments for cancer. However, there are still no approved drugs directly targeting mutated Ras. In 2017, an artificial cyclic peptide, KRpep-2d, was discovered as the first selective inhibitor of K-Ras(G12D), the most frequent K-Ras mutation. Here, we report the generation of KS-58, a KRpep-2d derivative that is identified as a bicyclic peptide and possess unnatural amino acid structures. Our in vitro data and molecular dynamics simulations suggest that KS-58 enters cells and blocks intracellular Ras–effector protein interactions. KS-58 selectively binds to K-Ras(G12D) and suppresses the in vitro proliferation of the human lung cancer cell line A427 and the human pancreatic cancer cell line PANC-1, both of which express K-Ras(G12D). Moreover, KS-58 exhibits anti-cancer activity when given as an intravenous injection to mice with subcutaneous or orthotropic PANC-1 cell xenografts. The anti-cancer activity is further improved by combination with gemcitabine. To the best of our knowledge, this is the first report of K-Ras(G12D)-selective inhibitory peptide presenting in vivo anti-cancer activity. KS-58 is an attractive lead molecule for the development of novel cancer drugs that target K-Ras(G12D).
Collapse
|
22
|
Brayden D, Hill T, Fairlie D, Maher S, Mrsny R. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020; 157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
In its 33 years, ADDR has published regularly on the po5tential of oral delivery of biologics especially peptides and proteins. In the intervening period, analysis of the preclinical and clinical trial failures of many purported platform technologies has led to reflection on the true status of the field and reigning in of expectations. Oral formulations of semaglutide, octreotide, and salmon calcitonin have completed Phase III trials, with oral semaglutide being approved by the FDA in 2019. The progress made with oral peptide formulations based on traditional permeation enhancers is against a background of low and variable oral bioavailability values of ~1%, leading to a current perception that only potent peptides with a viable cost of synthesis can be realistically considered. Desirable features of candidates should include a large therapeutic index, some stability in the GI tract, a long elimination half-life, and a relatively low clearance rate. Administration in nanoparticle formats have largely disappointed, with few prototypes reaching clinical trials: insufficient particle loading, lack of controlled release, low epithelial particle uptake, and lack of scalable synthesis being the main reasons for discontinuation. Disruptive technologies based on engineered devices promise improvements, but scale-up and toxicology aspects are issues to address. In parallel, medicinal chemists are synthesizing stable hydrophobic macrocyclic candidate peptides of lower molecular weight and with potential for greater oral bioavailability than linear peptides, but perhaps without the same requirement for elaborate drug delivery systems. In summary, while there have been advances in understanding the limitations of peptides for oral delivery, low membrane permeability, metabolism, and high clearance rates continue to hamper progress.
Collapse
|
23
|
Zhou Y, Liu L, Cao Y, Yu S, He C, Chen X. A Nanocomposite Vehicle Based on Metal-Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22581-22592. [PMID: 32340452 DOI: 10.1021/acsami.0c04303] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oral insulin delivery has revolutionized diabetes treatment, but challenges including degradation in the gastrointestinal environment and low permeation across the intestinal epithelium remain. Herein, to overcome these barriers, we developed a novel biodegradable nanocomposite microsphere embedded with metal-organic framework (MOF) nanoparticles. An iron-based MOF nanoparticle (NP) (MIL-100) was first synthesized as a carrier with an insulin loading capacity of 35%. The insulin-loaded MIL-100 nanoparticles modified with sodium dodecyl sulfate (Ins@MIL100/SDS) promoted insulin permeation across Caco-2 monolayer models in vitro. To improve resistance to the gastric acid environment, Ins@MIL100/SDS nanoparticles were embedded into a biodegradable microsphere to construct the nanocomposite delivery system (Ins@MIL100/SDS@MS). The microspheres effectively protected the MOF NPs from rapid degradation under acidic conditions and could release insulin-loaded MOF NPs in the simulated intestinal fluid. After the oral administration of Ins@MIL100/SDS@MS into BALB/c nude mice, increased intestinal absorption of the insulin was detected compared to the oral administration of free insulin or Ins@MIL100/SDS. Furthermore, significantly enhanced plasma insulin levels were obtained for over 6 h after oral administration of Ins@MIL100/SDS@MS into diabetic rats, leading to a remarkably enhanced effect in lowering blood glucose level with a relative pharmacological availability of 7.8%. Thus, the MOF-nanoparticle-incorporated microsphere may provide a new strategy for effective oral protein delivery.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Biodegradable Plastics/chemistry
- Caco-2 Cells
- Diabetes Mellitus, Experimental/drug therapy
- Drug Carriers/administration & dosage
- Drug Carriers/chemistry
- Drug Liberation
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacokinetics
- Hypoglycemic Agents/therapeutic use
- Insulin, Regular, Pork/administration & dosage
- Insulin, Regular, Pork/chemistry
- Insulin, Regular, Pork/pharmacokinetics
- Insulin, Regular, Pork/therapeutic use
- Male
- Metal-Organic Frameworks/administration & dosage
- Metal-Organic Frameworks/chemistry
- Mice, Inbred BALB C
- Microspheres
- Nanocomposites/administration & dosage
- Nanocomposites/chemistry
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Polyesters/administration & dosage
- Polyesters/chemistry
- Polyethylene Glycols/administration & dosage
- Polyethylene Glycols/chemistry
- Rats, Wistar
- Swine
Collapse
Affiliation(s)
- Yuhao Zhou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Liu
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yue Cao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shuangjiang Yu
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Furtado FADS, Escobar JFBO, Martinez AM, Giordani C, Caiut JMA, Caseli L, Molina C. Molecular Information on the Potential of Europium Complexes for Local Recognition of a Nucleoside-Based Drug by Using Nanostructured Interfaces Assembled as Langmuir-Blodgett Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3843-3852. [PMID: 32207954 DOI: 10.1021/acs.langmuir.0c00708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The production of nanostructured materials for biological and medical applications may be applied toward the conjugation of adequate substances to boost the stimulus response of sensors and diagnostic probes. In this sense, Langmuir-Blodgett films constituted of bioinspired and biomimetic materials have attracted attention because of the ease of manipulation of the molecular architecture. In this paper, we employed a nucleoside-based drug, which was linked with a sterol hydrophobic moiety (3',4'-acetonide-uridine-succinate-cholesterol conjugate) to provide it an amphiphilic character. The drug was spread on the air-water interface, alone or mixed with stearic acid, forming Langmuir monolayers, and the complex Eu(tta)3(H2O)2 was incorporated in the drug-containing monolayer. Interactions at the air-water interface between stearic acid, the drug, and the europium complex were then investigated with tensiometry, surface potential, infrared spectroscopy, and Brewster angle microscopy. The Langmuir films were transferred to solid supports as Langmuir-Blodgett films, which presented luminescent properties that could be tuned according to the molecular architecture. We believe that these results can serve as a novel approach to characterize and assemble materials organized in the molecular scale for medical applications.
Collapse
Affiliation(s)
| | - Jhon Fernando Berrı O Escobar
- Marine Natural Products, Department of Pharmacy, Faculty of Pharamaceutiacal and Food Sciences, University of Antioquia, UdeA, Medellín, Antioquia 050010, Colombia
| | - Alejandro Martinez Martinez
- Marine Natural Products, Department of Pharmacy, Faculty of Pharamaceutiacal and Food Sciences, University of Antioquia, UdeA, Medellín, Antioquia 050010, Colombia
| | - Cristiano Giordani
- Marine Natural Products, Department of Pharmacy, Faculty of Pharamaceutiacal and Food Sciences, University of Antioquia, UdeA, Medellín, Antioquia 050010, Colombia
- Institute of Physics, University of Antioquia, UdeA, Medellín, Antioquia 050010, Colombia
| | - José Maurício Almeida Caiut
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo 09913-030, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo 09913-030, Brazil
| | - Celso Molina
- Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo 09913-030, Brazil
| |
Collapse
|
25
|
Wolff M, Schüler A, Gast K, Seckler R, Evers A, Pfeiffer-Marek S, Kurz M, Nagel N, Haack T, Wagner M, Thalhammer A. Self-Assembly of Exendin-4-Derived Dual Peptide Agonists is Mediated by Acylation and Correlated to the Length of Conjugated Fatty Acyl Chains. Mol Pharm 2020; 17:965-978. [DOI: 10.1021/acs.molpharmaceut.9b01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Wolff
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Anja Schüler
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Klaus Gast
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Robert Seckler
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Andreas Evers
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | | | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Torsten Haack
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Michael Wagner
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
26
|
Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opin Drug Deliv 2019; 16:1113-1131. [DOI: 10.1080/17425247.2019.1662785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sadia Sikder
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Vrinda Gote
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Meshal Alshamrani
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Jeff Sicotte
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Dhananjay Pal
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| |
Collapse
|
27
|
Bech EM, Kaiser A, Bellmann-Sickert K, Nielsen SSR, Sørensen KK, Elster L, Hatzakis N, Pedersen SL, Beck-Sickinger AG, Jensen KJ. Half-Life Extending Modifications of Peptide YY3–36 Direct Receptor-Mediated Internalization. Mol Pharm 2019; 16:3665-3677. [DOI: 10.1021/acs.molpharmaceut.9b00554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Esben M. Bech
- Gubra Aps, Hørsholm, Denmark
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | | | - Kasper K. Sørensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | | | - Nikos Hatzakis
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Knud J. Jensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
28
|
Costa F, Teixeira C, Gomes P, Martins MCL. Clinical Application of AMPs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:281-298. [PMID: 30980363 DOI: 10.1007/978-981-13-3588-4_15] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) have been described as one of the most promising compounds able to address one of the main health threats of the twenty-first century that is the continuous rise of multidrug-resistant microorganisms. However, despite the clear advantages of AMPs as a new class of antimicrobials, such as broad spectrum of activity, high selectivity, low toxicity and low propensity to induce resistance, only a small fraction of AMPs reported thus far have been able to successfully complete all phases of clinical trials and become accessible to patients. This is mainly related to the low bioavailability and still somewhat expensive production of AMP along with regulatory obstacles. This chapter offers an overview of selected AMPs that are currently in the market or under clinical trials. Strategies for assisting AMP industrial translation and major regulatory difficulties associated with AMP approval for clinical evaluation will be also discussed.
Collapse
Affiliation(s)
- Fabíola Costa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
29
|
Menacho-Melgar R, Decker JS, Hennigan JN, Lynch MD. A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release 2018; 295:1-12. [PMID: 30579981 DOI: 10.1016/j.jconrel.2018.12.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
The use of biologics (peptide and protein based drugs) has increased significantly over the past few decades. However, their development has been limited by their short half-life, immunogenicity and low membrane permeability, restricting most therapies to extracellular targets and administration by injection. Lipidation is a clinically-proven post-translational modification that has shown great promise to address these issues: improving half-life, reducing immunogenicity and enabling intracellular uptake and delivery across epithelia. Despite its great potential, lipidation remains an underutilized strategy in the clinical translation of lead biologics. We review how lipidation can overcome common challenges in biologics development as well as highlight gaps in our understanding of the effect of lipidation on therapeutic efficacy, where increased research and development efforts may lead to next-generation drugs.
Collapse
Affiliation(s)
| | - John S Decker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Buckley ST, Bækdal TA, Vegge A, Maarbjerg SJ, Pyke C, Ahnfelt-Rønne J, Madsen KG, Schéele SG, Alanentalo T, Kirk RK, Pedersen BL, Skyggebjerg RB, Benie AJ, Strauss HM, Wahlund PO, Bjerregaard S, Farkas E, Fekete C, Søndergaard FL, Borregaard J, Hartoft-Nielsen ML, Knudsen LB. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med 2018; 10:10/467/eaar7047. [DOI: 10.1126/scitranslmed.aar7047] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/22/2018] [Indexed: 11/02/2022]
Abstract
Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodiumN-[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC. SNAC protects against enzymatic degradation via local buffering actions and only transiently enhances absorption. The mechanism of absorption is shown to be compound specific, transcellular, and without any evidence of effect on tight junctions. These data have implications for understanding how highly efficacious and specific therapeutic peptides could be transformed from injectable to tablet-based oral therapies.
Collapse
|
31
|
Tyagi P, Pechenov S, Anand Subramony J. Oral peptide delivery: Translational challenges due to physiological effects. J Control Release 2018; 287:167-176. [DOI: 10.1016/j.jconrel.2018.08.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023]
|
32
|
Jiang L, Wang D, Zhang Y, Li J, Wu Z, Wang Z, Wang D. Investigation of the pro-apoptotic effects of arbutin and its acetylated derivative on murine melanoma cells. Int J Mol Med 2017; 41:1048-1054. [PMID: 29207077 DOI: 10.3892/ijmm.2017.3256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Arbutin, a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses whitening and anticancer properties. The effects of arbutin on melanogenesis and its pro-apoptotic effect on B16 murine melanoma cells have not yet been reported. In the present study, acetylated arbutin was prepared in order to improve the biological effects of arbutin, and it was found to significantly inhibit the biosynthesis of melanin and tyrosinase activity compared with parent arbutin in B16 murine melanoma cells. Interestingly, only acetylated arbutin strongly inhibited B16 murine melanoma cell migration in a dose-dependent manner. Both arbutin and acetylated arbutin significantly reduced cell viability, promoted cell apoptosis, caused G1 cell cycle arrest and induced mitochondrial disruption in B16 murine melanoma cells. Furthermore, reduced expression of B-cell lymphoma‑extra large (Bcl-xL) and Bcl-2 were observed in arbutin- and acetylated arbutin-treated cells. Therefore, arbutin and acetylated arbutin were found to exert pro-apoptotic effects on B16 murine melanoma cells, mediated through the mitochondrial pathway. The findings of the present study also support the use of acetylated arbutin as a new potential candidate agent for skin whitening and melanoma treatment.
Collapse
Affiliation(s)
- Liyan Jiang
- Laboratory of Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Junyang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Zhiping Wu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Zhi Wang
- Laboratory of Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Di Wang
- Laboratory of Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
33
|
Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017; 7:20170030. [PMID: 29147559 DOI: 10.1098/rsfs.2017.0030] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of biological therapeutic agents in the clinic and development pipeline has increased dramatically over the last decade and the number will undoubtedly continue to increase in the coming years. Despite this fact, there are considerable challenges in the development, production and formulation of such biologics particularly with respect to their physical stabilities. There are many cases where self-association to form either amorphous aggregates or highly structured fibrillar species limits their use. Here, we review the numerous factors that influence the physical stability of peptides including both intrinsic and external factors, wherever possible illustrating these with examples that are of therapeutic interest. The effects of sequence, concentration, pH, net charge, excipients, chemical degradation and modification, surfaces and interfaces, and impurities are all discussed. In addition, the effects of physical parameters such as pressure, temperature, agitation and lyophilization are described. We provide an overview of the structures of aggregates formed, as well as our current knowledge of the mechanisms for their formation.
Collapse
Affiliation(s)
| | - Frederik J Becher
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Sophie E Jackson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
34
|
Trier S, Linderoth L, Bjerregaard S, Strauss HM, Rahbek UL, Andresen TL. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement. Eur J Pharm Biopharm 2015; 96:329-37. [PMID: 26347924 DOI: 10.1016/j.ejpb.2015.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may decrease the permeability. In conclusion, acylated sCT acts as its own in vitro intestinal permeation enhancer, with reversible effects on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers.
Collapse
Affiliation(s)
- Sofie Trier
- Dept. of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Building 423, Produktionstorvet, DK-2800 Kgs. Lyngby, Denmark; Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Lars Linderoth
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Simon Bjerregaard
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Holger M Strauss
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Ulrik L Rahbek
- Global Research, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Maaloev, Denmark
| | - Thomas L Andresen
- Dept. of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Building 423, Produktionstorvet, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
35
|
Frederiksen TM, Sønderby P, Ryberg LA, Harris P, Bukrinski JT, Scharff-Poulsen AM, Elf-Lind MN, Peters GH. Oligomerization of a Glucagon-like Peptide 1 Analog: Bridging Experiment and Simulations. Biophys J 2015; 109:1202-13. [PMID: 26340816 DOI: 10.1016/j.bpj.2015.07.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/08/2015] [Accepted: 07/30/2015] [Indexed: 01/01/2023] Open
Abstract
The glucagon-like peptide 1 (GLP-1) analog, liraglutide, is a GLP-1 agonist and is used in the treatment of type-2 diabetes mellitus and obesity. From a pharmaceutical perspective, it is important to know the oligomerization state of liraglutide with respect to stability. Compared to GLP-1, liraglutide has an added fatty acid (FA) moiety that causes oligomerization of liraglutide as suggested by small-angle x-ray scattering (SAXS) and multiangle static light scattering (MALS) results. SAXS data suggested a global shape of a hollow elliptical cylinder of size hexa-, hepta-, or octamer, whereas MALS data indicate a hexamer. To elaborate further on the stability of these oligomers and the role of the FA chains, a series of molecular-dynamics simulations were carried out on 11 different hexa-, hepta-, and octameric systems. Our results indicate that interactions of the fatty acid chains contribute noticeably to the stabilization. The simulation results indicate that the heptamer with paired FA chains is the most stable oligomer when compared to the 10 other investigated structures. Theoretical SAXS curves extracted from the simulations qualitatively agree with the experimentally determined SAXS curves supporting the view that liraglutide forms heptamers in solution. In agreement with the SAXS data, the heptamer forms a water-filled oligomer of elliptical cylindrical shape.
Collapse
Affiliation(s)
- Tine M Frederiksen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pernille Sønderby
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Line A Ryberg
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | - Maria N Elf-Lind
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Günther H Peters
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
36
|
Self-assembling bubble carriers for oral protein delivery. Biomaterials 2015; 64:115-24. [DOI: 10.1016/j.biomaterials.2015.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022]
|