1
|
Preza S, Zheng B, Gao Z, Liu M, Biju A, Alvarez-Dominguez JR. DEC1 Regulates Human β Cell Functional Maturation and Circadian Rhythm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647023. [PMID: 40236051 PMCID: PMC11996484 DOI: 10.1101/2025.04.03.647023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Stem cell-derived islet (SC-islet) organoids offer hope for cell replacement therapy in diabetes, but their immature function remains a challenge. Mature islet function requires the β-cell circadian clock, yet how the clock regulates maturation is unclear. Here, we show that a circadian transcription factor specific to maturing SC-β cells, DEC1, regulates insulin responsiveness to glucose. SC-islet organoids form normally from DEC1 -ablated human pluripotent stem cells, but their insulin release capacity and glucose threshold fail to increase during in vitro culture and upon transplant. This deficit reflects downregulation of maturity-linked effectors of glucose utilization and insulin exocytosis, blunting glycolytic and oxidative metabolism, and is rescued by increasing metabolic flux. Moreover, DEC1 is needed to boost SC-islet maturity by synchronizing circadian glucose-responsive insulin secretion rhythms and clock machinery. Thus, DEC1 links circadian control to human β-cell maturation, highlighting its vitality to foster fully functional SC-islets.
Collapse
|
2
|
Zakaria EM, El-Gamal SF, Mahmoud SM, El-Nahas HM, El-Bassossy HM. Sustained linagliptin administration: superior glycemic control and less pancreatic injury in diabetic rats. Pharm Dev Technol 2024; 29:874-885. [PMID: 39311002 DOI: 10.1080/10837450.2024.2407852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
While linagliptin is the most potent dipeptidyl peptidase 4 inhibitor, its use is limited due to poor bioavailability and the potential risk of pancreatic injury. Here, we investigated whether the sustained weekly administration of linagliptin could provide better effect compared to frequent daily oral administration. Type 2 diabetes was induced by feeding rats a high fructose/fat/salt diet followed by STZ injection. Compared to the partial glycemic control achieved with daily oral linagliptin, a weekly subcutaneous injection containing about one-fourth of the oral dose produced superior glycemic control, as evidenced by the 4-week postprandial glucose follow-up and oral glucose tolerance test. This was confirmed by the significant increase in serum insulin in the case of the sustained linagliptin administration. Higher levels of the anti-inflammatory cytokine adiponectin and lower triglyceride levels were observed after sustained linagliptin administration compared with daily oral linagliptin. In addition, sustained linagliptin displayed a significant increase in β-cells' insulin immunoreactivity when compared with daily linagliptin. More reduction in collagen deposition and caspase-3 immunoreactivity in pancreatic tissue were observed in sustained linagliptin compared with oral linagliptin. In conclusion, sustained linagliptin administration provided superior glycemic control, which seems to be mediated by more reduction in pancreatic injury.
Collapse
Affiliation(s)
- Esraa M Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shrouk Fayrouz El-Gamal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Mortada Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanan M El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Irisin Ameliorates Oxidative Stress-Induced Injury in Pancreatic Beta-Cells by Inhibiting Txnip and Inducing Stat3-Trx2 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4674215. [PMID: 36111165 PMCID: PMC9470320 DOI: 10.1155/2022/4674215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Lipotoxicity can lead to beta-cell dysfunction and apoptosis because it induces oxidative stress. Recent studies have found that Irisin prevents pancreatic beta-cell dysfunction induced by palmitic acid (PA). However, an association between the protection against oxidative stress conferred by Irisin and beta-cell dysfunction has not been fully elucidated. In this study, we observed that Irisin treatment prevented INS-1 cell apoptosis induced by PA treatment and preserved the insulin-secreting function of INS-1 cells in vitro. These effects probably resulted from the Irisin-induced decrease in intracellular ROS levels triggered by PA treatment. In addition, PA treatment induced oxidative stress partially by inhibiting the activation of thioredoxin 2 (Trx2) through its increase of thioredoxin-interacting protein (Txnip) expression. However, Irisin administration blocked the increase in Txnip expression, which reversed the PA-induced inactivation of Trx2. Irisin also increased the nuclear translocation of Stat3, and the inhibition of Stat3 by siRNAs blocked Irisin-induced Trx2 expression, indicating that both Txnip and Stat3 are involved in Irisin-induced activation of Trx2. Furthermore, blockade of Stat3 by siRNAs led to the decreased gene expression of MafA and Ins and to cessation of glucose-induced insulin secretion that had been enhanced by Irisin. In vivo, HFD treatment led to reduced glucose tolerance and an increase in the level of the oxidative marker malondialdehyde (MDA) compared to that in the control group. However, these effects were ameliorated by Irisin injection due to the inhibition of beta-cell apoptosis and the activation of Trx2, probably through Txnip inhibition and Stat3 activation. In conclusion, our results reveal a possible mechanism for Irisin-induced beta-cell protection, which is mediated through Txnip inhibition and activation of the Stat3-Trx2 pathway.
Collapse
|
4
|
Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int J Mol Sci 2021; 22:ijms22041509. [PMID: 33546200 PMCID: PMC7913369 DOI: 10.3390/ijms22041509] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a chronic metabolic disorder characterized by inappropriately elevated glucose levels as a result of impaired pancreatic β cell function and insulin resistance. Extensive studies have been conducted to elucidate the mechanism involved in the development of β cell failure and death under diabetic conditions such as hyperglycemia, hyperlipidemia, and inflammation. Of the plethora of proposed mechanisms, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and oxidative stress have been shown to play a central role in promoting β cell dysfunction. It has become more evident in recent years that these 3 factors are closely interrelated and importantly aggravate each other. Oxidative stress in particular is of great interest to β cell health and survival as it has been shown that β cells exhibit lower antioxidative capacity. Therefore, this review will focus on discussing factors that contribute to the development of oxidative stress in pancreatic β cells and explore the downstream effects of oxidative stress on β cell function and health. Furthermore, antioxidative capacity of β cells to counteract these effects will be discussed along with new approaches focused on preserving β cells under oxidative conditions.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
| | | | - Donald C. Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (D.C.D.)
- Correspondence: ; Tel.: +1-714-456-8590
| |
Collapse
|
5
|
Liu C, Cao B, Zhang Q, Zhang Y, Chen X, Kong X, Dong Y. Inhibition of thioredoxin 2 by intracellular methylglyoxal accumulation leads to mitochondrial dysfunction and apoptosis in INS-1 cells. Endocrine 2020; 68:103-115. [PMID: 31939094 DOI: 10.1007/s12020-020-02191-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/05/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE To investigate the role of thioredoxin 2 (Trx2) inhibition induced by intracellular methylglyoxal (MGO) in pancreatic beta-cell mitochondrial dysfunction and apoptosis. METHODS Rat pancreatic beta-cell line INS-1 cells were treated with Glo1 siRNAs or exogenous MGO to increase intracellular MGO. AGEs formation was detected by ELISA and mitochondrial ROS was detected by probe MitoSOX. Transmission electron microscopy (TEM) analysis and ATP content were measured to evaluate mitochondrial function. Trx2 expression was manipulated by overexpression with recombinant Trx2 lentivirus or knockdown with Trx2 siRNAs, and effects on apoptosis and insulin secretion were measured by flow cytometry and ELISA, respectively. RESULTS The increase of intracellular MGO by Glo1 blockage or MGO treatment led to advanced glycation end products (AGEs) overproduction, mitochondrial ROS increase, and insulin secretion paralysis. These were probably due to MGO-induced inhibition of mitochondrial Trx2. Trx2 inhibition by blockage of either Glo1 or Trx2 impaired mitochondrial integrity, inhibited cytochrome C oxidases subunit 1 and 4 (Cox1 and Cox4) expression and further reduced ATP generation, and all of these might lead to insulin paralysis; whereas Trx2 overexpression partially reversed MGO-induced oxidative stress, attenuated insulin secretion by preventing mitochondrial damage. Trx2 overexpression also retarded MGO-induced apoptosis of INS-1 cell through inhibiting ASK1 activation and downregulation of the ASK1-p38 MAPK pathway. CONCLUSIONS Our results reveal a possible mechanism for beta-cell oxidative damage upon intracellular MGO-induced Trx2 inactivation and mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
- Chongxiao Liu
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Baige Cao
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qianren Zhang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yifan Zhang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xueru Chen
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiang Kong
- Department of Endocrinology, Yijishan Hospital Affiliated Wannan Medical College, Anhui, 241000, China
| | - Yan Dong
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
| |
Collapse
|
6
|
Bulboaca AE, Boarescu PM, Porfire AS, Dogaru G, Barbalata C, Valeanu M, Munteanu C, Râjnoveanu RM, Nicula CA, Stanescu IC. The Effect of Nano-Epigallocatechin-Gallate on Oxidative Stress and Matrix Metalloproteinases in Experimental Diabetes Mellitus. Antioxidants (Basel) 2020; 9:antiox9020172. [PMID: 32093214 PMCID: PMC7070619 DOI: 10.3390/antiox9020172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The antioxidant properties of epigallocatechin-gallate (EGCG), a green tea compound, have been already studied in various diseases. Improving the bioavailability of EGCG by nanoformulation may contribute to a more effective treatment of diabetes mellitus (DM) metabolic consequences and vascular complications. The aim of this study was to test the comparative effect of liposomal EGCG with EGCG solution in experimental DM induced by streptozotocin (STZ) in rats. Method: 28 Wistar-Bratislava rats were randomly divided into four groups (7 animals/group): group 1—control group, with intraperitoneal (i.p.) administration of 1 mL saline solution (C); group 2—STZ administration by i.p. route (60 mg/100 g body weight, bw) (STZ); group 3—STZ administration as before + i.p. administration of EGCG solution (EGCG), 2.5 mg/100 g b.w. as pretreatment; group 4—STZ administration as before + i.p. administration of liposomal EGCG, 2.5 mg/100 g b.w. (L-EGCG). The comparative effects of EGCG and L-EGCG were studied on: (i) oxidative stress parameters such as malondialdehyde (MDA), indirect nitric oxide (NOx) synthesis, and total oxidative status (TOS); (ii) antioxidant status assessed by total antioxidant capacity of plasma (TAC), thiols, and catalase; (iii) matrix-metalloproteinase-2 (MMP-2) and -9 (MMP-9). Results: L-EGCG has a better efficiency regarding the improvement of oxidative stress parameters (highly statistically significant with p-values < 0.001 for MDA, NOx, and TOS) and for antioxidant capacity of plasma (highly significant p < 0.001 for thiols and significant for catalase and TAC with p < 0.05). MMP-2 and -9 were also significantly reduced in the L-EGCG-treated group compared with the EGCG group (p < 0.001). Conclusions: the liposomal nanoformulation of EGCG may serve as an adjuvant therapy in DM due to its unique modulatory effect on oxidative stress/antioxidant biomarkers and MMP-2 and -9.
Collapse
Affiliation(s)
- Adriana Elena Bulboaca
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 2-4, 400012 Cluj-Napoca, Romania
| | - Paul-Mihai Boarescu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 2-4, 400012 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 41, 400012 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, no. 46-50, 400347 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Cristina Barbalata
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 41, 400012 Cluj-Napoca, Romania
| | - Madalina Valeanu
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street, no. 6, 400349 Cluj-Napoca, Romania
| | - Constantin Munteanu
- Department of Medical Rehabilitation, “BagdasarArseni” Emergency Clinical Hospital Bucharest, Berceni Street, no. 12, 041915 Cluj-Napoca, Romania
| | - Ruxandra Mioara Râjnoveanu
- Department of Pneumology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, B.P. Hasdeu Street, no. 6, 400371 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street, no. 3-5, 400006 Cluj-Napoca, Romania
| | - Ioana Cristina Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 43, 400012 Cluj-Napoca, Romania
| |
Collapse
|
7
|
He D, Huang JH, Zhang ZY, Du Q, Peng WJ, Yu R, Zhang SF, Zhang SH, Qin YH. A Network Pharmacology-Based Strategy For Predicting Active Ingredients And Potential Targets Of LiuWei DiHuang Pill In Treating Type 2 Diabetes Mellitus. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3989-4005. [PMID: 31819371 PMCID: PMC6890936 DOI: 10.2147/dddt.s216644] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
Background Traditional Chinese medicine (TCM) formulations have proven to be advantageous in clinical treatment and prevention of disease. LiuWei DiHuang Pill (LWDH Pill) is a TCM that was employed to treat type 2 diabetes mellitus (T2DM). However, a holistic network pharmacology approach to understanding the active ingredients and the therapeutic mechanisms underlying T2DM has not been pursued. Methods A network pharmacology approach including drug-likeness evaluation, oral bioavailability prediction, virtual docking, and network analysis has been used to predict the active ingredients and potential targets of LWDH Pill in the treatment of type 2 diabetes. Results The comprehensive network pharmacology approach was successfully to identify 45 active ingredients in LWDH Pill. 45 active ingredients hit by 163 potential targets related to T2DM. Ten of the more highly predictive components (such as :quercetin, Kaempferol, Stigmasterol, beta-sitosterol, Kadsurenone, Diosgenin, hancinone C, Hederagenin, Garcinone B, Isofucosterol) are involved in anti-inflammatory, anti-oxidative stress, and the reduction of beta cell damage. LWDH Pill may play a role in the treatment of T2DM and its complications (atherosclerosis and nephropathy) through the AGE-RAGE signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway. Conclusion Based on a systematic network pharmacology approach, our works successfully predict the active ingredients and potential targets of LWDH Pill for application to T2DM and helps to illustrate mechanism of action on a comprehensive level. This study provides identify key genes and pathway associated with the prognosis and pathogenesis of T2DM from new insights, which also demonstrates a feasible method for the research of chemical basis and pharmacology in LWDH Pill.
Collapse
Affiliation(s)
- Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China.,2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410013, People's Republic of China
| | - Zhe-Yu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Wei-Jun Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Rong Yu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Si-Fang Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| | - Yu-Hui Qin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
8
|
Liposomal Curcumin is Better than Curcumin to Alleviate Complications in Experimental Diabetic Mellitus. Molecules 2019; 24:molecules24050846. [PMID: 30818888 PMCID: PMC6429477 DOI: 10.3390/molecules24050846] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/14/2023] Open
Abstract
Curcumin (CC) is known to have anti-inflammatory and anti-oxidative properties and has already been tested for its efficiency in different diseases including diabetes mellitus (DM). New formulations and route administration were designed to obtain products with higher bioavailability. Our study aimed to test the effect of intraperitoneal (i.p.) administration of liposomal curcumin (lCC) as pre-treatment in streptozotocin(STZ)-induced DM in rats on oxidative stress, liver, and pancreatic functional parameters. Forty-two Wistar-Bratislava rats were randomly divided into six groups (seven animals/group): control (no diabetes), control-STZ (STZ-induced DM —60 mg/100g body weight a single dose intraperitoneal administration, and no CC pre-treatment), two groups with DM and CC pre-treatment (1mg/100g bw—STZ + CC1, 2 mg/100g bw—STZ + CC2), and two groups with DM and lCC pre-treatment (1 mg/100g bw—STZ + lCC1, 2 mg/100g bw—STZ + lCC1). Intraperitoneal administration of Curcumin in diabetic rats showed a significant reduction of nitric oxide, malondialdehyde, total oxidative stress, and catalase for both evaluated formulations (CC and lCC) compared to control group (p < 0.005), with higher efficacy of lCC formulation compared to CC solution (p < 0.002, excepting catalase for STZ + CC2vs. STZ + lCC1when p = 0.0845). The CC and lCC showed hepatoprotective and hypoglycemic effects, a decrease in oxidative stress and improvement in anti-oxidative capacity status against STZ-induced DM in rats (p < 0.002). The lCC also proved better efficacy on MMP-2, and -9 plasma levels as compared to CC (p < 0.003, excepting STZ + CC2 vs. STZ + lCC1 comparison with p = 0.0553). The lCC demonstrated significantly better efficacy as compared to curcumin solution on all serum levels of the investigated markers, sustaining its possible use as adjuvant therapy in DM.
Collapse
|
9
|
Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G, Georgescu A. The Distinct Effects of Palmitic and Oleic Acid on Pancreatic Beta Cell Function: The Elucidation of Associated Mechanisms and Effector Molecules. Front Pharmacol 2019; 9:1554. [PMID: 30719005 PMCID: PMC6348268 DOI: 10.3389/fphar.2018.01554] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to identify the mechanisms underlying the different effects of palmitic acid and oleic acid on human pancreatic beta cell function. To address this problem, the oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis and their mediator molecules have been investigated in the insulin releasing beta cells exposed to palmitic and/or oleic acid. Herein, we have demonstrated that in cultured 1.1B4 beta cells oleic acid promotes neutral lipid accumulation and insulin secretion, whereas palmitic acid is poorly incorporated into triglyceride and it does not stimulate insulin secretion from human pancreatic islets at physiologically glucose concentrations. In addition, palmitic acid caused: (1) oxidative stress through a mechanism involving increases in ROS production and MMP-2 protein expression/gelatinolytic activity associated with down-regulation of SOD2 protein; (2) endoplasmic reticulum stress by up-regulation of chaperone BiP protein and unfolded protein response (UPR) transcription factors (eIF2α, ATF6, XBP1u proteins) and by PTP-1B down-regulation in both mRNA and protein levels; (3) inflammation through enhanced synthesis of proinflammatory cytokines (IL6, IL8 proteins); and (4) apoptosis by enforced proteic expression of CHOP multifunctional transcription factor. Oleic acid alone had opposite effects due to its different capacity of controlling these metabolic pathways, in particular by reduction of the ROS levels and MMP-2 activity, down-regulation of BiP, eIF2α, ATF6, XBP1u, CHOP, IL6, IL8 and by SOD2 and PTP-1B overexpression. The supplementation of saturated palmitic acid with the monounsaturated oleic acid reversed the negative effects of palmitic acid alone regulating insulin secretion from pancreatic beta cells through ROS, MMP-2, ATF6, XBP1u, IL8 reduction and SOD2, PTP-1B activation. Our findings have shown the protective action of oleic acid against palmitic acid on beta cell lipotoxicity through promotion of triglyceride accumulation and insulin secretion and regulation of some effector molecules involved in oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Madalina Dumitrescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| |
Collapse
|
10
|
Liu S, Yang SD, Huo XW, Yang DL, Ma L, Ding WY. 17β-Estradiol inhibits intervertebral disc degeneration by down-regulating MMP-3 and MMP-13 and up-regulating type II collagen in a rat model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:182-191. [PMID: 30056756 DOI: 10.1080/21691401.2018.1453826] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sen Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Si-Dong Yang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Wei Huo
- Department of Orthopaedic Surgery, Handan Central Hospital, Handan, China
| | - Da-Long Yang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Ma
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-Yuan Ding
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Orthopedic Biomechanics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Nishihama K, Yasuma T, Yano Y, D' Alessandro-Gabazza CN, Toda M, Hinneh JA, Baffour Tonto P, Takeshita A, Totoki T, Mifuji-Moroka R, Kobayashi T, Iwasa M, Takei Y, Morser J, Cann I, Gabazza EC. Anti-apoptotic activity of human matrix metalloproteinase-2 attenuates diabetes mellitus. Metabolism 2018; 82:88-99. [PMID: 29366755 DOI: 10.1016/j.metabol.2018.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic progression of diabetes is associated with decreased pancreatic islet mass due to apoptosis of β-cells. Patients with diabetes have increased circulating matrix metalloproteinase-2 (MMP2); however, the physiological significance has remained elusive. This study tested the hypothesis that MMP2 inhibits cell apoptosis, including islet β-cells. METHODS Samples from diabetic patients and newly developed transgenic mice overexpressing human MMP2 (hMMP2) were harnessed, and diabetes was induced with streptozotocin. RESULTS Circulating hMMP2 was significantly increased in diabetic patients compared to controls and significantly correlated with the serum C-peptide levels. The diabetic hMMP2 transgenic mice showed significant improvements in glycemia, glucose tolerance and insulin secretion compared to diabetic wild type mice. Importantly, the increased hMMP2 levels in mice correlated with significant reduction in islet β-cell apoptosis compared to wild-type counterparts, and an inhibitor of hMMP2 reversed this mitigating activity against diabetes. The increased activation of Akt and BAD induced by hMMP2 in β-cells compared to controls, links this signaling pathway to the anti-apoptotic activity of hMMP2, a property that was reversible by both an hMMP2 inhibitor and antibody against integrin-β3. CONCLUSION Overall, this study demonstrates that increased expression of hMMP2 may attenuate the severity of diabetes by protecting islet β-cells from apoptosis through an integrin-mediated activation of the Akt/BAD pathway.
Collapse
Affiliation(s)
- Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Corina N D' Alessandro-Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Microbiome Metabolic Engineering Theme, Carl R. Woese Biology Institute for Genomic Biology, Department of Animal Sciences, Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Josephine A Hinneh
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Prince Baffour Tonto
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Toshiaki Totoki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Rumi Mifuji-Moroka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - John Morser
- Division of Hematology, Stanford School of Medicine, 269 Campus Drive, CCSR 1155, Stanford, CA 94305-5156, United States
| | - Isaac Cann
- Microbiome Metabolic Engineering Theme, Carl R. Woese Biology Institute for Genomic Biology, Department of Animal Sciences, Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
12
|
Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, Speier S, Rodriguez-Diaz R, Caicedo A. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 2018; 61:182-192. [PMID: 28884198 PMCID: PMC5868749 DOI: 10.1007/s00125-017-4416-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.
Collapse
Affiliation(s)
- Jonathan R Weitz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
| | - Julia Stertmann
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kristie Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
13
|
Liu C, Huang Y, Zhang Y, Chen X, Kong X, Dong Y. Intracellular methylglyoxal induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1α-JNK and mitochondrial apoptotic pathway. Free Radic Res 2017; 51:337-350. [PMID: 28488455 DOI: 10.1080/10715762.2017.1289376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An increased intracellular methylglyoxal (MGO) under hyperglycemia led to pancreatic beta cell death. However, its mechanism in which way with MGO induced beta cell death remains unknown. We investigated both high glucose and MGO treatment significantly inclined intracellular MGO concentration and inhibited cell viability in vitro. MGO treatment also triggered intracellular advanced glycation end products (AGEs) formation, declined mitochondrial membrane potential (MMP), increased oxidative stress and the expression of ER stress mediators Grp78/Bip and p-PERK; activated mitochondrial apoptotic pathway, which could mimic by Glo1 knockdown. Aminoguanidine (AG), a MGO scavenger, however, prevented AGEs formation and MGO-induced cell death by inhibiting oxidative stress and ER stress. Furthermore, both antioxidant N-acetylcysteine (NAC) and ER stress inhibitor 4-phenylbutyrate (4-PBA) could attenuate MGO-induced cell death through ameliorating ER stress. MGO treatment down-regulated Ire1α, a key ER stress mediator, increased JNK phosphorylation and activated mitochondrial apoptosis; down-regulated Bcl-2 expression which could be attenuated by the JNK inhibitor SP600125 and further inhibited cytochrome c leakage from mitochondria and blocked the conversion of pro caspase 3 into cleaved caspase 3, all these might contribute to the inhibition of INS-1 cell apoptosis. Ire1α down-regulation by Ire1α siRNAs mimicked MGO-induced cytotoxicity by activating the JNK phosphorylation and mitochondrial apoptotic pathway. In summary, we demonstrated that increased intracellular MGO induced cytotoxicity in INS-1 cells primarily by activating oxidative stress and further triggering mitochondrial apoptotic pathway, and ER stress-mediated Ire1α-JNK pathway. These findings may have implication on new mechanism of glucotoxicity-mediated pancreatic beta-cell dysfunction.
Collapse
Affiliation(s)
- Chongxiao Liu
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yanhong Huang
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yifan Zhang
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xueru Chen
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiang Kong
- b Department of Endocrinology , Yijishan Hospital Affiliated Wannan Medical College , Anhui , China
| | - Yan Dong
- a Department of Endocrinology , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
14
|
Bandeira ACB, da Silva TP, de Araujo GR, Araujo CM, da Silva RC, Lima WG, Bezerra FS, Costa DC. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice. Chem Biol Interact 2016; 263:7-17. [PMID: 27989599 DOI: 10.1016/j.cbi.2016.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 12/28/2022]
Abstract
Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo.
Collapse
Affiliation(s)
- Ana Carla Balthar Bandeira
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Talita Prato da Silva
- Postgraduated Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | - Glaucy Rodrigues de Araujo
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | - Carolina Morais Araujo
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | | | - Wanderson Geraldo Lima
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.
| |
Collapse
|
15
|
Yang SD, Yang DL, Sun YP, Wang BL, Ma L, Feng SQ, Ding WY. 17β-estradiol protects against apoptosis induced by interleukin-1β in rat nucleus pulposus cells by down-regulating MMP-3 and MMP-13. Apoptosis 2015; 20:348-57. [PMID: 25576195 DOI: 10.1007/s10495-015-1086-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In our previous study, 17β-estradiol was proved to protect rat annulus fibrosus cells against apoptosis induced by interleukin-1β (IL-1β). However, whether 17β-estradiol has protective effect on rat nucleus pulposus cells remains unclear. The purpose of this study was to further explore the effects of 17β-estradiol on rat nucleus pulposus cells based on IL-1β-induced apoptosis. TUNEL assay and Annexin V/PI double staining were used to detect apoptosis and revealed that IL-1β induced notable apoptosis, which was reversed by 17β-estradiol. Meanwhile, cell viability and binding ability were decreased by IL-1β, but activated caspase-3 was increased. However, all of the detected effects of IL-1β were eliminated by 17β-estradiol. Furthermore, real-time quantitative RT-PCR was used to further find that IL-1β downregulated expression level of type II collagen, aggrecan, tissue inhibitor of matrix metalloproteinase (TIMP)-1, while upregulated matrix metalloproteinase (MMP)-3, MMP-13 and Bcl-2, which was further confirmed by western blot. Finally, 17β-estradiol was proved to abolish the above negative effects of IL-1β. In summary, this work presented that IL-1β maybe induced apoptosis of rat nucleus pulposus cells, which was resisted by 17β-estradiol by down-regulating MMP-3 and MMP-13 via a mitochondrial pathway. This research provides a novel insight into the anti-apoptotic effect of 17β-estradiol on IL-1β-induced cytotoxicity, and may potentially lead to a better understanding of the clinical effects of 17β-estradiol, especially in terms of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Si-Dong Yang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Kong X, Wang GD, Ma MZ, Deng RY, Guo LQ, Zhang JX, Yang JR, Su Q. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis. Nutrients 2015; 7:4689-4704. [PMID: 26066015 PMCID: PMC4488808 DOI: 10.3390/nu7064689] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 01/17/2023] Open
Abstract
Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67(phox) and p22(phox), and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China.
| | - Guo-Dong Wang
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Ming-Zhe Ma
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Ru-Yuan Deng
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Li-Qun Guo
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China.
| | - Jun-Xiu Zhang
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China.
| | - Jie-Ren Yang
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China.
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|