1
|
Zhang H, Lv J, Ma Z, Ma J, Chen J. Advances in Antimicrobial Peptides: Mechanisms, Design Innovations, and Biomedical Potential. Molecules 2025; 30:1529. [PMID: 40286095 PMCID: PMC11990784 DOI: 10.3390/molecules30071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review explores the advancements in the study of antimicrobial peptides (AMPs), highlighting their potential as promising alternatives to conventional antibiotics in the context of growing antibiotic resistance. AMPs are small molecular proteins found ubiquitously in nature, exhibiting broad-spectrum antimicrobial activity, including antibacterial, antiviral, and antifungal effects, and are vital components of the innate immune system. Due to their non-specific membrane-disrupting mechanism, AMPs are emerging as effective candidates for novel anti-infective agents. The integration of AMPs with biomaterials, such as nanoparticles, liposomes, polymers, and hydrogels, enhances their stability and efficacy while offering multifunctional therapeutic benefits. These combinations promote diverse antibacterial mechanisms, including membrane disruption, intracellular metabolic interference, cell wall modulation, and immune system activation. Despite challenges, such as toxicity, stability, and resistance, innovative strategies including computer-aided design and structural modification show promise in optimizing AMPs' activity, targeting precision, and biocompatibility. The potential for AMPs in clinical applications remains highly promising, with significant opportunities for overcoming antimicrobial resistance through novel AMP-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Junfeng Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| | - Jing Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| |
Collapse
|
2
|
Gupta S, Puttaiahgowda YM, Kulal A. Development and evaluation of antimicrobial PVC-grafted polymer for enhanced paint applications. RSC Adv 2024; 14:25669-25677. [PMID: 39176034 PMCID: PMC11340678 DOI: 10.1039/d4ra04173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Demand for antimicrobial paints is increasing globally due to the rising need to control microbial growth and reduce infection risks in various environments. This increased demand underscores the crucial role of advanced antimicrobial coatings in promoting health and safety. In this context, an innovative poly(vinyl chloride) (PVC) grafted polymer with 1-(2-aminoethyl piperazine) (AEP) was prepared and studied in detail. In this study, the prepared polymer was characterized using FTIR and NMR spectroscopy to examine the polymer's chemical structure and employed TGA and DSC for thermal stability analysis. The antimicrobial activity of the grafted polymer was evaluated through the agar diffusion method and showed a significant inhibition zone of 21.6 mm for S. aureus, 16.3 mm for E. coli, 18.3 mm for M. smegmatis, and 20.3 mm for C. albicans at a lowest concentration of 12.5 μg mL-1. To assess surface characteristics, the PVC-g-AEP polymer was mixed with commercial paint and applied to a glass surface. SEM and AFM analysis showed a 5-times increase in porosity while maintaining visual aesthetics. Additionally, the paint displayed excellent stability against water, retaining around 90% of its antimicrobial activity even after 15 washes. This advanced polymer not only exhibits superior antimicrobial properties but also improves paint durability, setting a new benchmark for high-performance antimicrobial coatings and significantly advancing protective paint technology.
Collapse
Affiliation(s)
- Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Ananda Kulal
- Biological Sciences Division, Poornaprajna Institute of Scientific Research Devanahalli Bengaluru 562164 Karnataka India
| |
Collapse
|
3
|
Wang Y, Zhang Y, Su R, Wang Y, Qi W. Antimicrobial therapy based on self-assembling peptides. J Mater Chem B 2024; 12:5061-5075. [PMID: 38726712 DOI: 10.1039/d4tb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The emergence of drug-resistant microorganisms has threatened global health, and microbial infections have severely limited the use of medical materials. For example, the attachment and colonization of pathogenic bacteria to medical implant materials can lead to wound infections, inflammation and complications, as well as implant failure, shortening their lifespan and even resulting in patient death. In the era of antibiotic resistance, antimicrobial drug discovery needs to prioritize unconventional therapies that act on new targets or adopt new mechanisms. In this regard, supramolecular antimicrobial peptides have emerged as attractive therapeutic platforms, both as bactericides for combination antibiotics and as delivery vehicles. By taking advantage of their programmable intermolecular and intramolecular interactions, peptides can be modified to form higher-order structures (including nanofibers and nanoparticles) with unique functionality. This paper begins with an analysis of the relationship between peptide self-assembly and antimicrobial activity, describes in detail the research and development of various self-assembled antimicrobial peptides in recent years, and finally explores different combinatorial strategies for self-assembling antimicrobial peptides.
Collapse
Affiliation(s)
- Yuqi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yexi Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
5
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
6
|
Mutreja I, Lan C, Li Q, Aparicio C. Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants. Pharmaceutics 2023; 15:2418. [PMID: 37896178 PMCID: PMC10609907 DOI: 10.3390/pharmaceutics15102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Dental implant-associated infection is a clinical challenge which poses a significant healthcare and socio-economic burden. To overcome this issue, developing antimicrobial surfaces, including antimicrobial peptide coatings, has gained great attention. Different physical and chemical routes have been used to obtain these biofunctional coatings, which in turn might have a direct influence on their bioactivity and functionality. In this study, we present a silane-based, fast, and efficient chemoselective conjugation of antimicrobial peptides (Cys-GL13K) to coat titanium implant surfaces. Comprehensive surface analysis was performed to confirm the surface functionalization of as-prepared and mechanically challenged coatings. The antibacterial potency of the evaluated surfaces was confirmed against both Streptococcus gordonii and Streptococcus mutans, the primary colonizers and pathogens of dental surfaces, as demonstrated by reduced bacteria viability. Additionally, human dental pulp stem cells demonstrated long-term viability when cultured on Cys-GL13K-grafted titanium surfaces. Cell functionality and antimicrobial capability against multi-species need to be studied further; however, our results confirmed that the proposed chemistry for chemoselective peptide anchoring is a valid alternative to traditional site-unspecific anchoring methods and offers opportunities to modify varying biomaterial surfaces to form potent bioactive coatings with multiple functionalities to prevent infection.
Collapse
Affiliation(s)
- Isha Mutreja
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
| | - Caixia Lan
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
| | - Qishun Li
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
- The Affiliated Stomatological Hospital of Nanchang University, Nanchang 330000, China
| | - Conrado Aparicio
- MDRCBB−Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, MN 55455, USA; (I.M.); (Q.L.)
- Faculty of Odontology, UIC Barcelona−International University of Catalonia, 08198 Sant Cugat del Vallès, Spain
- IBEC Institute for Bioengineering of Catalonia, 08170 Barcelona, Spain
| |
Collapse
|
7
|
Lu Q, Regan DP, Barlow DE, Fears KP. Antimicrobial efficacy of cyclic α- and β-peptides incorporated in polyurethane coatings. Biointerphases 2023; 18:031008. [PMID: 37289032 DOI: 10.1116/6.0002515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Microbial growth on surfaces poses health concerns and can accelerate the biodegradation of engineered materials and coatings. Cyclic peptides are promising agents to combat biofouling because they are more resistant to enzymatic degradation than their linear counterparts. They can also be designed to interact with extracellular targets and intracellular targets and/or self-assemble into transmembrane pores. Here, we determine the antimicrobial efficacy of two pore-forming cyclic peptides, α-K3W3 and β-K3W3, against bacterial and fungal liquid cultures and their capacity to inhibit biofilm formation on coated surfaces. These peptides display identical sequences, but the additional methylene group in the peptide backbone of β-amino acids results in a larger diameter and an enhancement in the dipole moment. In liquid cultures, β-K3W3 exhibited lower minimum inhibitory concentration values and greater microbicidal power in reducing the number of colony forming units (CFUs) when exposed to a gram-positive bacterium, Staphylococcus aureus, and two fungal strains, Naganishia albida and Papiliotrema laurentii. To evaluate the efficacy against the formation of fungal biofilms on painted surfaces, cyclic peptides were incorporated into polyester-based thermoplastic polyurethane. The formation of N. albida and P. laurentii microcolonies (105 per inoculation) for cells extracted from coatings containing either peptide could not be detected after a 7-day exposure. Moreover, very few CFUs (∼5) formed after 35 days of repeated depositions of freshly cultured P. laurentii every 7 days. In contrast, the number of CFUs for cells extracted from the coating without cyclic peptides was >8 log CFU.
Collapse
Affiliation(s)
- Qin Lu
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| | - Daniel P Regan
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| | - Daniel E Barlow
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| | - Kenan P Fears
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| |
Collapse
|
8
|
Agüero-Chapin G, Antunes A, Mora JR, Pérez N, Contreras-Torres E, Valdes-Martini JR, Martinez-Rios F, Zambrano CH, Marrero-Ponce Y. Complex Networks Analyses of Antibiofilm Peptides: An Emerging Tool for Next-Generation Antimicrobials' Discovery. Antibiotics (Basel) 2023; 12:antibiotics12040747. [PMID: 37107109 PMCID: PMC10135022 DOI: 10.3390/antibiotics12040747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial biofilms cause several environmental and industrial issues, even affecting human health. Although they have long represented a threat due to their resistance to antibiotics, there are currently no approved antibiofilm agents for clinical treatments. The multi-functionality of antimicrobial peptides (AMPs), including their antibiofilm activity and their potential to target multiple microbes, has motivated the synthesis of AMPs and their relatives for developing antibiofilm agents for clinical purposes. Antibiofilm peptides (ABFPs) have been organized in databases that have allowed the building of prediction tools which have assisted in the discovery/design of new antibiofilm agents. However, the complex network approach has not yet been explored as an assistant tool for this aim. Herein, a kind of similarity network called the half-space proximal network (HSPN) is applied to represent/analyze the chemical space of ABFPs, aiming to identify privileged scaffolds for the development of next-generation antimicrobials that are able to target both planktonic and biofilm microbial forms. Such analyses also considered the metadata associated with the ABFPs, such as origin, other activities, targets, etc., in which the relationships were projected by multilayer networks called metadata networks (METNs). From the complex networks' mining, a reduced but informative set of 66 ABFPs was extracted, representing the original antibiofilm space. This subset contained the most central to atypical ABFPs, some of them having the desired properties for developing next-generation antimicrobials. Therefore, this subset is advisable for assisting the search for/design of both new antibiofilms and antimicrobial agents. The provided ABFP motifs list, discovered within the HSPN communities, is also useful for the same purpose.
Collapse
Affiliation(s)
- Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José R Mora
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Noel Pérez
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Ernesto Contreras-Torres
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | | | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico
| | - Cesar H Zambrano
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| |
Collapse
|
9
|
Antimicrobial Performance of Innovative Functionalized Surfaces Based on Enamel Coatings: The Effect of Silver-Based Additives on the Antibacterial and Antifungal Activity. Int J Mol Sci 2023; 24:ijms24032364. [PMID: 36768684 PMCID: PMC9916675 DOI: 10.3390/ijms24032364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Frequently touched surfaces (FTS) that are contaminated with pathogens are one of the main sources of nosocomial infections, which commonly include hospital-acquired and healthcare-associated infections (HAIs). HAIs are considered the most common adverse event that has a significant burden on the public's health worldwide currently. The persistence of pathogens on contaminated surfaces and the transmission of multi-drug resistant (MDR) pathogens by way of healthcare surfaces, which are frequently touched by healthcare workers, visitors, and patients increase the risk of acquiring infectious agents in hospital environments. Moreover, not only in hospitals but also in high-traffic public places, FTS play a major role in the spreading of pathogens. Consequently, attention has been devoted to developing novel and alternative methods to tackle this problem. This study planned to produce and characterize innovative functionalized enameled coated surfaces supplemented with 1% AgNO3 and 2% AgNO3. Thus, the antimicrobial properties of the enamels against relevant nosocomial pathogens including the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli and the yeast Candida albicans were assessed using the ISO:22196:2011 norm.
Collapse
|
10
|
The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review. Antibiotics (Basel) 2023; 12:antibiotics12020211. [PMID: 36830122 PMCID: PMC9952162 DOI: 10.3390/antibiotics12020211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Due to the well-known phenomenon of antibiotic resistance, there is a constant need for antibiotics with novel mechanisms and different targets respect to those currently in use. In this regard, the antimicrobial peptides (AMPs) seem very promising by virtue of their bactericidal action, based on membrane permeabilization of susceptible microbes. Thanks to this feature, AMPs have a broad activity spectrum, including antibiotic-resistant strains, and microbial biofilms. Additionally, several AMPs display properties that can help tissue regeneration. A possible interesting field of application for AMPs is the development of antimicrobial coatings for implantable medical devices (e.g., orthopaedic prostheses) to prevent device-related infection. In this review, we will take note of the state of the art of AMP-based coatings for orthopaedic prostheses. We will review the most recent studies by focusing on covalently linked AMPs to titanium, their antimicrobial efficacy and plausible mode of action, and cytocompatibility. We will try to extrapolate some general rules for structure-activity (orientation, density) relationships, in order to identify the most suitable physical and chemical features of peptide candidates, and to optimize the coupling strategies to obtain antimicrobial surfaces with improved biological performance.
Collapse
|
11
|
Zhang X, Wang W, Chen J, Lai M. yPeptide GL13K releasing hydrogel functionalized micro/nanostructured titanium enhances its osteogenic and antibacterial activity. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1036-1052. [DOI: 10.1080/09205063.2022.2155780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaojing Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Weina Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jia Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
12
|
Functionalized Self-Assembled Monolayers: Versatile Strategies to Combat Bacterial Biofilm Formation. Pharmaceutics 2022; 14:pharmaceutics14081613. [PMID: 36015238 PMCID: PMC9415113 DOI: 10.3390/pharmaceutics14081613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections due to biofilms account for up to 80% of bacterial infections in humans. With the increased use of antibiotic treatments, indwelling medical devices, disinfectants, and longer hospital stays, antibiotic resistant infections are sharply increasing. Annual deaths are predicted to outpace cancer and diabetes combined by 2050. In the past two decades, both chemical and physical strategies have arisen to combat biofilm formation on surfaces. One such promising chemical strategy is the formation of a self-assembled monolayer (SAM), due to its small layer thickness, strong covalent bonds, typically facile synthesis, and versatility. With the goal of combating biofilm formation, the SAM could be used to tether an antibacterial agent such as a small-molecule antibiotic, nanoparticle, peptide, or polymer to the surface, and limit the agent’s release into its environment. This review focuses on the use of SAMs to inhibit biofilm formation, both on their own and by covalent grafting of a biocidal agent, with the potential to be used in indwelling medical devices. We conclude with our perspectives on ongoing challenges and future directions for this field.
Collapse
|
13
|
Zhang H, Shen X, Fei Z, Fan X, Ma L, Wang H, Tian C, Zhang B, Luo R, Wang Y, Huang S. Ag-Incorporated Polydopamine/Tannic Acid Coating on Titanium With Enhanced Cytocompatible and Antibacterial Properties. Front Bioeng Biotechnol 2022; 10:877738. [PMID: 35392410 PMCID: PMC8980918 DOI: 10.3389/fbioe.2022.877738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
Titanium (Ti) and its alloys are the most commonly used materials for bone implants. However, implant failure often happens due to bacterial infection. Developing antibacterial coatings on Ti implants is an effective strategy. Dopamine and tannic acid were cross-linked to form coating on Ti through Michael addition and Schiff base reaction. In addition, the Ag ions were grafted on the coating by the redox reaction of phenolic hydroxyl groups. Thus, an Ag-incorporated polydopamine/tannic acid coating was prepared on Ti substrate. SEM, EDS, water contact angle, FTIR, and XRD results demonstrated that the coating was formed on Ti successfully. The antibacterial activity of the coating against Gram-negative E. coli was examined, and the cytotoxicity of the coating was investigated by mouse fibroblast cells. The improvement of hydrophilicity, good cytocompatibility, and antibacterial effectiveness indicates that the coating has potential to surface modification of Ti implants.
Collapse
Affiliation(s)
- Hao Zhang
- School of Vanadium and Titanium, School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Xiaolong Shen
- School of Vanadium and Titanium, School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Zhikui Fei
- School of Vanadium and Titanium, School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Xingping Fan
- School of Vanadium and Titanium, School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Lan Ma
- School of Vanadium and Titanium, School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
- *Correspondence: Lan Ma, ; Yunbing Wang,
| | - Haibo Wang
- School of Vanadium and Titanium, School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Congxue Tian
- School of Vanadium and Titanium, School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- *Correspondence: Lan Ma, ; Yunbing Wang,
| | - Shengtian Huang
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
14
|
Li Y, Chen R, Wang F, Cai X, Wang Y. Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA). RSC Adv 2022; 12:6918-6929. [PMID: 35424597 PMCID: PMC8981691 DOI: 10.1039/d1ra04974g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/22/2022] [Indexed: 02/03/2023] Open
Abstract
Infection is the main reason for implant failure, and the incidence of drug-resistant bacterial infection has increased in recent years. Further, methicillin-resistant Staphylococcus aureus (MRSA)-related implant infection has become a serious worldwide threat. New strategies, other than antibiotics, to tackle drug-resistance, are of high clinical significance. Antimicrobial peptides show clear superiority over conventional antibiotics in inhibiting drug-resistant bacteria. In the present study, we combined the antimicrobial peptide, GL13K, with sandblasting and acid-etching (SLA)-treated titanium using a silane coupling agent. Field emission scanning electron microscopy images showed the morphology of the coating. Attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results confirmed loading of GL13K, and the hydrophilicity of the SLA-GL13K coating was evaluated by water contact angle analysis. The releasing study of samples showed that the coating has a sustained releasing profile. SLA-GL13K coating exhibited strong contact- and release-killing abilities against MRSA, E. coli, and S. aureus. Meanwhile, Cell Counting Kit 8 analysis and examination of cell morphology demonstrated that the SLA-GL13K coating had good cytocompatibility at antibacterial concentrations. Overall, all these results suggest that SLA-GL13K coating can be successfully fabricated using silanization, and is a promising candidate for controlling MRSA-induced implant-related infection.
Collapse
Affiliation(s)
- Yusang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
| | - Ruiying Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Department of Implant Dentistry Shanghai China
| | - Fushi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Cariology and Endodontics Wuhan China
| | - Xinjie Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Prosthodontics Wuhan China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Prosthodontics Wuhan China
| |
Collapse
|
15
|
Ye Z, Aparicio C. Interactions of two enantiomers of a designer antimicrobial peptide with structural components of the bacterial cell envelope. J Pept Sci 2022; 28:e3299. [PMID: 33496073 PMCID: PMC8310526 DOI: 10.1002/psc.3299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/03/2023]
Abstract
Antimicrobial peptides (AMPs) have great potential in treating multi-drug resistant bacterial infections. The antimicrobial activity of d-enantiomers is significantly higher than l-enantiomers and sometimes selectively enhanced against Gram-positive bacteria. Unlike phospholipids in the bacterial plasma membrane, the role of other bacterial cell envelop components is often overlooked in the mode of action of AMPs. In this work, we explored the structural interactions between the main different structural components in Gram-negative/Gram-positive bacteria and the two enantiomers of a designer AMP, GL13K. We observed that both l-GL13K and d-GL13K formed self-assembled amyloid-like nanofibrils when the peptides interacted with lipopolysaccharide and lipoteichoic acid, components of the outer membrane of Gram-negative bacteria and cell wall of Gram-positive bacteria, respectively. Another cell wall component, peptidoglycan, showed strong interactions exclusively with d-GL13K and formed distinct laminar structures. This specific interaction between peptidoglycans and d-GL13K might contribute to the enhanced activity of d-GL13K against Gram-positive bacteria as they have a much thicker peptidoglycan layer than Gram-negative bacteria. A better understanding of the specific role of bacterial cell envelop components in the AMPs mechanism of action can guide the design of more effective Gram-selective AMPs.
Collapse
|
16
|
Hu CC, Kumar SR, Vi TTT, Huang YT, Chen DW, Lue SJ. Facilitating GL13K Peptide Grafting on Polyetheretherketone via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide: Surface Properties and Antibacterial Activity. Int J Mol Sci 2021; 23:ijms23010359. [PMID: 35008782 PMCID: PMC8745129 DOI: 10.3390/ijms23010359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
In the present work, the antimicrobial peptide (AMP) of GL13K was successfully coated onto a polyetheretherketone (PEEK) substrate to investigate its antibacterial activities against Staphylococcus aureus (S. aureus) bacteria. To improve the coating efficiency, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was mixed with a GL13K solution and coated on the PEEK surface for comparison. Both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) data confirmed 30% greater peptide coating on PEEK/GL13K-EDC than PEEK without EDC treatment. The GL13K graft levels are depicted in the micrograms per square centimeter range. The PEEK/GL13K-EDC sample showed a smoother and lower roughness (Rq of 0.530 µm) than the PEEK/GL13K (0.634 µm) and PEEK (0.697 µm) samples. The surface of the PEEK/GL13K-EDC was more hydrophilic (with a water contact angle of 24°) than the PEEK/GL13K (40°) and pure PEEK (89°) samples. The pure PEEK disc did not exhibit any inhibition zone against S. aureus. After peptide coating, the samples demonstrated significant zones of inhibition: 28 mm and 25 mm for the PEEK/GL13K-EDC and PEEK/GL13K samples, respectively. The bacteria-challenged PEEK sample showed numerous bacteria clusters, whereas PEEK/GL13K contained a little bacteria and PEEK/GL13K-EDC had no bacterial attachment. The results confirm that the GL13K peptide coating was able to induce antibacterial and biofilm-inhibitory effects. To the best of our knowledge, this is the first report of successful GL13K peptide grafting on a PEEK substrate via EDC coupling. The present work illustrates a facile and promising coating technique for a polymeric surface to provide bactericidal activity and biofilm resistance to medical implantable devices.
Collapse
Affiliation(s)
- Chih-Chien Hu
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Guishan District, Taoyuan City 333, Taiwan;
| | - Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
| | - Truong Thi Tuong Vi
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Guishan District, Taoyuan City 333, Taiwan;
| | - Yu-Tzu Huang
- Department of Chemical Engineering, Chung Yuan Christian University, Zhongli, Taoyuan City 320, Taiwan;
- R&D Center for Membrane Technology and Research Center for Circular Economy, Chung Yuan Christian University, Zhongli, Taoyuan City 320, Taiwan
| | - Dave W. Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan;
| | - Shingjiang Jessie Lue
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Guishan District, Taoyuan City 333, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 243, Taiwan
- Correspondence: ; Tel.: +88-63-2118800 (ext. 5489); Fax: +88-63-2118700
| |
Collapse
|
17
|
Gupta S, Puttaiahgowda YM, Nagaraja A, Jalageri MD. Antimicrobial polymeric paints: An up‐to‐date review. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | | | - Akshatha Nagaraja
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | - Manohara Dhulappa Jalageri
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| |
Collapse
|
18
|
Costa B, Martínez-de-Tejada G, Gomes PAC, L. Martins MC, Costa F. Antimicrobial Peptides in the Battle against Orthopedic Implant-Related Infections: A Review. Pharmaceutics 2021; 13:1918. [PMID: 34834333 PMCID: PMC8625235 DOI: 10.3390/pharmaceutics13111918] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
Prevention of orthopedic implant-related infections is a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current therapies, based on antibiotic administration, have proven to be insufficient, and infection prevalence may rise due to the dissemination of antibiotic resistance. Antimicrobial peptides (AMPs) have attracted attention as promising substitutes of conventional antibiotics, owing to their broad-spectrum of activity, high efficacy at very low concentrations, and, importantly, low propensity for inducing resistance. The aim of this review is to offer an updated perspective of the development of AMPs-based preventive strategies for orthopedic and dental implant-related infections. In this regard, two major research strategies are herein addressed, namely (i) AMP-releasing systems from titanium-modified surfaces and from bone cements or beads; and (ii) AMP immobilization strategies used to graft AMPs onto titanium or other model surfaces with potential translation as coatings. In overview, releasing strategies have evolved to guarantee higher loadings, prolonged and targeted delivery periods upon infection. In addition, avant-garde self-assembling strategies or polymer brushes allowed higher immobilized peptide surface densities, overcoming bioavailability issues. Future research efforts should focus on the regulatory demands for pre-clinical and clinical validation towards clinical translation.
Collapse
Affiliation(s)
- Bruna Costa
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (B.C.); (F.C.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP–Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Paula A. C. Gomes
- CIQ-UP e Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - M. Cristina L. Martins
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (B.C.); (F.C.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fabíola Costa
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (B.C.); (F.C.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Dhaliwal JS, Abd Rahman NA, Ming LC, Dhaliwal SKS, Knights J, Albuquerque Junior RF. Microbial Biofilm Decontamination on Dental Implant Surfaces: A Mini Review. Front Cell Infect Microbiol 2021; 11:736186. [PMID: 34692562 PMCID: PMC8531646 DOI: 10.3389/fcimb.2021.736186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction After insertion into the bone, implants osseointegrate, which is required for their long-term success. However, inflammation and infection around the implants may lead to implant failure leading to peri-implantitis and loss of supporting bone, which may eventually lead to failure of implant. Surface chemistry of the implant and lack of cleanliness on the part of the patient are related to peri-implantitis. The only way to get rid of this infection is decontamination of dental implants. Objective This systematic review intended to study decontamination of microbial biofilm methods on titanium implant surfaces used in dentistry. Methods The electronic databases Springer Link, Science Direct, and PubMed were explored from their inception until December 2020 to identify relevant studies. Studies included had to evaluate the efficiency of new strategies either to prevent formation of biofilm or to treat matured biofilm on dental implant surfaces. Results and Discussion In this systematic review, 17 different groups of decontamination methods were summarized from 116 studies. The decontamination methods included coating materials, mechanical cleaning, laser treatment, photodynamic therapy, air polishing, anodizing treatment, radiation, sonication, thermal treatment, ultrasound treatment, chemical treatment, electrochemical treatment, antimicrobial drugs, argon treatment, and probiotics. Conclusion The findings suggest that most of the decontamination methods were effective in preventing the formation of biofilm and in decontaminating established biofilm on dental implants. This narrative review provides a summary of methods for future research in the development of new dental implants and decontamination techniques.
Collapse
Affiliation(s)
- Jagjit Singh Dhaliwal
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei, Darussalam, Gadong, Brunei
| | - Nurul Adhwa Abd Rahman
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei, Darussalam, Gadong, Brunei
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei, Darussalam, Gadong, Brunei
| | - Sachinjeet Kaur Sodhi Dhaliwal
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei, Darussalam, Gadong, Brunei
| | - Joe Knights
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei, Darussalam, Gadong, Brunei
| | | |
Collapse
|
20
|
Tamayo JA, Riascos M, Vargas CA, Baena LM. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021; 7:e06892. [PMID: 34027149 PMCID: PMC8120950 DOI: 10.1016/j.heliyon.2021.e06892] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Additive Manufacturing (AM) or rapid prototyping technologies are presented as one of the best options to produce customized prostheses and implants with high-level requirements in terms of complex geometries, mechanical properties, and short production times. The AM method that has been more investigated to obtain metallic implants for medical and biomedical use is Electron Beam Melting (EBM), which is based on the powder bed fusion technique. One of the most common metals employed to manufacture medical implants is titanium. Although discovered in 1790, titanium and its alloys only started to be used as engineering materials for biomedical prostheses after the 1950s. In the biomedical field, these materials have been mainly employed to facilitate bone adhesion and fixation, as well as for joint replacement surgeries, thanks to their good chemical, mechanical, and biocompatibility properties. Therefore, this study aims to collect relevant and up-to-date information from an exhaustive literature review on EBM and its applications in the medical and biomedical fields. This AM method has become increasingly popular in the manufacturing sector due to its great versatility and geometry control.
Collapse
Affiliation(s)
- José A. Tamayo
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Mateo Riascos
- Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Carlos A. Vargas
- Grupo Materiales Avanzados y Energía (Matyer), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Libia M. Baena
- Grupo de Química Básica, Aplicada y Ambiente (Alquimia), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| |
Collapse
|
21
|
Fischer NG, Chen X, Astleford-Hopper K, He J, Mullikin AF, Mansky KC, Aparicio C. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112108. [PMID: 33965114 DOI: 10.1016/j.msec.2021.112108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 04/10/2021] [Indexed: 12/21/2022]
Abstract
Functionalization of dental and orthopedic implants with multiple bioactivities is desirable to obtain surfaces with improved biological performance and reduced infection rates. While many approaches have been explored to date, nearly all functionalized surfaces are static, i.e., non-responsive to biological cues. However, tissue remodeling necessary for implant integration features an ever-changing milieu of cells that demands a responsive biomaterial surface for temporal synchronization of interactions between biomaterial and tissue. Here, we successfully synthesized a multi-functional, dynamic coating on titanium by co-immobilizing GL13K antimicrobial peptide and an MMP-9 - a matrix metalloproteinase secreted by bone-remodeling osteoclasts - responsive peptide. Our co-immobilized peptide surface showed potent anti-biofilm activity, enabled effective osteoblast and fibroblast proliferation, and demonstrated stability against a mechanical challenge. Finally, we showed peptide release was triggered for up to seven days when the multi-peptide coatings were cultured with MMP-9-secreting osteoclasts. Our MMP-9 cleavable peptide can be conjugated with osteogenic or immunomodulatory motifs for enhanced bone formation in future work. Overall, we envisage our multifunctional, dynamic surface to reduce infection rates of percutaneous bone-anchored devices via strong anti-microbial activity and enhanced tissue regeneration via temporal synchronization between biomaterial cues and tissue responses.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Xi Chen
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Kristina Astleford-Hopper
- Department of Diagnostic and Biological Sciences, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Alex F Mullikin
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Kim C Mansky
- Department of Diagnostic and Biological Sciences, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Niu JY, Yin IX, Mei ML, Wu WKK, Li QL, Chu CH. The multifaceted roles of antimicrobial peptides in oral diseases. Mol Oral Microbiol 2021; 36:159-171. [PMID: 33721398 DOI: 10.1111/omi.12333] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides are naturally occurring protein molecules with antibacterial, antiviral and/or antifungal activity. Some antimicrobial peptides kill microorganisms through direct binding with negatively charged microbial surfaces. This action disrupts the cytoplasmic membrane and leads to the leakage of the cytoplasm. In addition, they are involved in the innate immune response. Antimicrobial peptides play an important role in oral health, as natural antimicrobial peptides are the first line of host defence in response to microbial infection. The level of natural antimicrobial peptides increases during severe disease conditions and play a role in promoting the healing of oral tissues. However, they are insufficient for eliminating pathogenic micro-organisms. The variability of the oral environment can markedly reduce the effect of natural antimicrobial peptides. Thus, researchers are developing synthetic antimicrobial peptides with promising stability and biocompatibility. Synthetic antimicrobial peptides are a potential alternative to traditional antimicrobial therapy. Pertinent to oral diseases, the deregulation of antimicrobial peptides is involved in the pathogenesis of dental caries, periodontal disease, mucosal disease and oral cancer, where they can kill pathogenic microorganisms, promote tissue healing, serve as biomarkers and inhibit tumor cells. This narrative review provides an overview of the multifaceted roles of antimicrobial peptides in oral diseases.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Acosta S, Ibañez-Fonseca A, Aparicio C, Rodríguez-Cabello JC. Antibiofilm coatings based on protein-engineered polymers and antimicrobial peptides for preventing implant-associated infections. Biomater Sci 2021; 8:2866-2877. [PMID: 32342076 DOI: 10.1039/d0bm00155d] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implant-associated infections (IAIs) are one of the leading concerns in orthopedics and dentistry as they commonly lead to implant failure. The presence of biofilms and, increasingly frequently, drug-resistant bacteria further impairs the efficacy of conventional antibiotics. Immobilization of antimicrobial peptides (AMPs) on implant surfaces is a promising alternative to antibiotics for prevention of IAIs. In addition, the use of functional linkers for the AMP tethering enables to increase the antimicrobial potential and the bioactivities of the coating. In this study, an extracellular-matrix-mimicking system based on elastin-like recombinamers (ELRs) has been developed for the covalent anchoring of AMPs and investigated for use as a hybrid antibiofilm coating. A drip-flow biofilm reactor was used to simulate in vivo environmental dynamic conditions, thus showing that the presence of the AMPs in the hybrid coatings provided strong antibiofilm activity against monospecies and microcosm biofilm models of clinical relevance. These results, together with an excellent cytocompatibility towards primary gingival fibroblasts, encourage the use of ELRs as multivalent platforms for AMPs and open up a wide range of possibilities in the biofabrication of advanced coatings combining the antibiofilm potential of AMPs and the outstanding tunability and biomechanical properties of the ELRs.
Collapse
Affiliation(s)
- Sergio Acosta
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain.
| | - Arturo Ibañez-Fonseca
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain.
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware Street Southeast, Minneapolis, Minnesota 55455, USA.
| | - J Carlos Rodríguez-Cabello
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain.
| |
Collapse
|
24
|
Ye Z, Zhu X, Mutreja I, Boda SK, Fischer NG, Zhang A, Lui C, Qi Y, Aparicio C. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater 2021; 6:2250-2260. [PMID: 33553813 PMCID: PMC7829078 DOI: 10.1016/j.bioactmat.2020.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Infection in hard tissue regeneration is a clinically-relevant challenge. Development of scaffolds with dual function for promoting bone/dental tissue growth and preventing bacterial infections is a critical need in the field. Here we fabricated hybrid scaffolds by intrafibrillar-mineralization of collagen using a biomimetic process and subsequently coating the scaffold with an antimicrobial designer peptide with cationic and amphipathic properties. The highly hydrophilic mineralized collagen scaffolds provided an ideal substrate to form a dense and stable coating of the antimicrobial peptides. The amount of hydroxyapatite in the mineralized fibers modulated the rheological behavior of the scaffolds with no influence on the amount of recruited peptides and the resulting increase in hydrophobicity. The developed scaffolds were potent by contact killing of Gram-negative Escherichia coli and Gram-positive Streptococcus gordonii as well as cytocompatible to human bone marrow-derived mesenchymal stromal cells. The process of scaffold fabrication is versatile and can be used to control mineral load and/or intrafibrillar-mineralized scaffolds made of other biopolymers. A biomimetic intrafibrillar-mineralized scaffold was prepared using a non-classical pathway for mineralization. The mineralized scaffold was stably coated with designer antimicrobial peptide GL13K. The hybrid scaffold was cytocompatible and potent against biofilms of model Gram-positive and Gram-negative bacteria. The mineral content affected the rheological properties of the scaffolds, but not the loading of antimicrobial peptides.
Collapse
Affiliation(s)
- Zhou Ye
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Xiao Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Sunil Kumar Boda
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Anqi Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Christine Lui
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| | - Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, MN, 55455, USA
| |
Collapse
|
25
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
26
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|
27
|
Ye Z, Kobe AC, Sang T, Aparicio C. Unraveling dominant surface physicochemistry to build antimicrobial peptide coatings with supramolecular amphiphiles. NANOSCALE 2020; 12:20767-20775. [PMID: 33030163 PMCID: PMC7581556 DOI: 10.1039/d0nr04526h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
With the increasing threat from antibiotic-resistant bacteria, surface modification with antimicrobial peptides (AMP) has been promisingly explored for preventing bacterial infections. Little is known about the critical factors that govern AMP-surface interactions to obtain stable and active coatings. Here, we systematically monitored the adsorption of a designer amphipathic AMP, GL13K, on model surfaces. Self-assembly of the GL13K peptides formed supramolecular amphiphiles that highly adsorbed on negatively charged, polar hydroxyapatite-coated sensors. We further tuned surface charge and/or surface polarity with self-assembled monolayers (SAMs) on Au sensors and studied their interactions with adsorbed GL13K. We determined that the surface polarity of the SAM-coated sensors instead of their surface charge was the dominant factor governing AMP/substrate interactions via hydrogen bonding. Our findings will instruct the universal design of efficient self-assembled AMP coatings on biomaterials, biomedical devices and/or natural tissues.
Collapse
Affiliation(s)
- Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Alexandra C Kobe
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Ting Sang
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA. and The Affiliated Stomatological Hospital of Nanchang University & The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province 330006, China
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
28
|
Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A. Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 2020; 41:94-120. [PMID: 33070659 DOI: 10.1080/07388551.2020.1828810] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indwelling and implanted medical devices are subject to contamination by microbial pathogens during surgery, insertion or injection, and ongoing use, often resulting in severe nosocomial infections. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics to reduce the incidence of such infections, as they exhibit broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, microbial biofilms, fungi, and viruses. In this review-perspective, we first provide an overview of the progress made in this field over the past decade with an emphasis on the local release of AMPs from implant surfaces and immobilization strategies for incorporating these agents into a wide range of medical device materials. We then provide a regulatory science perspective addressing the characterization and testing of AMP coatings based on the type of immobilization strategy used with a focus on the US market regulatory niche. Our goal is to help narrow the gulf between academic studies and preclinical testing, as well as to support a future literature base in order to develop the regulatory science of antimicrobial coatings.
Collapse
Affiliation(s)
- Mehdi Kazemzadeh-Narbat
- Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hao Cheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rosa Chabok
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Microsystems Technologies Laboratories, MIT, Cambridge, MA, USA.,Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, México
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - K Scott Phillips
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
30
|
Fischer NG, Moussa DG, Skoe EP, De Jong DA, Aparicio C. Keratinocyte-Specific Peptide-Based Surfaces for Hemidesmosome Upregulation and Prevention of Bacterial Colonization. ACS Biomater Sci Eng 2020; 6:4929-4939. [PMID: 32953986 PMCID: PMC7494210 DOI: 10.1021/acsbiomaterials.0c00845] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Percutaneous devices like orthopedic prosthetic implants for amputees, catheters, and dental implants suffer from high infection rates. A critical aspect mediating peri-implant infection of dental implants is the lack of a structural barrier between the soft tissue and the implant surface which could impede bacteria access and colonization of exposed implant surfaces. Parafunctional soft tissue regeneration around dental implants is marked by a lack of hemidesmosome formation and thereby weakened mechanical attachment. In response to this healthcare burden, a simultaneously hemidesmosome-inducing, antimicrobial, multifunctional implant surface was engineered. A designer antimicrobial peptide, GL13K, and a laminin-derived peptide, LamLG3, were coimmobilized with two different surface fractional areas. The coimmobilized peptide surfaces showed antibiofilm activity against Streptococcus gordonii while enhancing proliferation, hemidesmosome formation, and mechanical attachment of orally derived keratinocytes. Notably, the coatings demonstrated specific activation of keratinocytes: the coatings showed no effects on gingival fibroblasts which are known to impede the quality of soft tissue attachment to dental implants. These coatings demonstrated stability and retained activity against mechanical and thermochemical challenges, suggesting their intraoral durability. Overall, these multifunctional surfaces may be able to reduce peri-implantitis rates and enhance the success rates of all percutaneous devices via strong antimicrobial activity and enhanced soft tissue attachment to implants.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dina G Moussa
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erik P Skoe
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David A De Jong
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United State
| |
Collapse
|
31
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
32
|
Divyashree M, Mani MK, Reddy D, Kumavath R, Ghosh P, Azevedo V, Barh D. Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now? Protein Pept Lett 2020; 27:120-134. [PMID: 31553285 DOI: 10.2174/0929866526666190925152957] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/24/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022]
Abstract
In this era of multi-drug resistance (MDR), antimicrobial peptides (AMPs) are one of the most promising classes of potential drug candidates to combat communicable as well as noncommunicable diseases such as cancers and diabetes. AMPs show a wide spectrum of biological activities which include antiviral, antifungal, anti-mitogenic, anticancer, and anti-inflammatory properties. Apart from these prospective therapeutic potentials, the AMPs can act as food preservatives and immune modulators. Therefore, AMPs have the potential to replace conventional drugs and may gain a significant global drug market share. Although several AMPs have shown therapeutic potential in vitro or in vivo, in most cases they have failed the clinical trial owing to various issues. In this review, we discuss in brief (i) molecular mechanisms of AMPs in various diseases, (ii) importance of AMPs in pharmaceutical industries, (iii) the challenges in using AMPs as therapeutics and how to overcome, (iv) available AMP therapeutics in market, and (v) AMPs under clinical trials. Here, we specifically focus on the therapeutic AMPs in the areas of dermatology, surgery, oncology and metabolic diseases.
Collapse
Affiliation(s)
- Mithoor Divyashree
- Nitte University Centre for Science Education & Research (NUCSER), NITTE (Deemed to be University), Paneer campus, Deralakatte, Mangalore - 575018, Karnataka,India
| | - Madhu K Mani
- Nitte University Centre for Science Education & Research (NUCSER), NITTE (Deemed to be University), Paneer campus, Deralakatte, Mangalore - 575018, Karnataka,India
| | - Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala-671316,India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala-671316,India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284,United States
| | - Vasco Azevedo
- Laboratório de GenéticaCelular e Molecular, Programa de Pós-graduaçãoemBioinformática, Instituto de CiênciasBiológicas (ICB), Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha, Belo Horizonte, CEP 31270-901,Brazil
| | - Debmalya Barh
- Nitte University Centre for Science Education & Research (NUCSER), NITTE (Deemed to be University), Paneer campus, Deralakatte, Mangalore - 575018, Karnataka,India.,Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, PurbaMedinipur, West Bengal, India
| |
Collapse
|
33
|
Liang J, Peng X, Zhou X, Zou J, Cheng L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020; 25:E516. [PMID: 31991678 PMCID: PMC7038021 DOI: 10.3390/molecules25030516] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
Abstract
The oral cavity is a unique complex ecosystem colonized with huge numbers of microorganism species. Oral cavities are closely associated with oral health and sequentially with systemic health. Many factors might cause the shift of composition of oral microbiota, thus leading to the dysbiosis of oral micro-environment and oral infectious diseases. Local therapies and dental hygiene procedures are the main kinds of treatment. Currently, oral drug delivery systems (DDS) have drawn great attention, and are considered as important adjuvant therapy for oral infectious diseases. DDS are devices that could transport and release the therapeutic drugs or bioactive agents to a certain site and a certain rate in vivo. They could significantly increase the therapeutic effect and reduce the side effect compared with traditional medicine. In the review, emerging recent applications of DDS in the treatment for oral infectious diseases have been summarized, including dental caries, periodontitis, peri-implantitis and oral candidiasis. Furthermore, oral stimuli-responsive DDS, also known as "smart" DDS, have been reported recently, which could react to oral environment and provide more accurate drug delivery or release. In this article, oral smart DDS have also been reviewed. The limits have been discussed, and the research potential demonstrates good prospects.
Collapse
Affiliation(s)
| | | | | | - Jing Zou
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| |
Collapse
|
34
|
Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth. ENGINEERED ANTIMICROBIAL SURFACES 2020. [DOI: 10.1007/978-981-15-4630-3_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Ye Z, Aparicio C. Modulation of supramolecular self-assembly of an antimicrobial designer peptide by single amino acid substitution: Implications on peptide activity. NANOSCALE ADVANCES 2019; 1:4679-4682. [PMID: 31844837 PMCID: PMC6913536 DOI: 10.1039/c9na00498j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hydrophobicity and charge are key properties of antimicrobial peptides (AMPs). We compared the self-assembly performance and its correlation with antimicrobial activity of a designer AMP and analogues with substitution of hydrophobic or cationic residues by alanine. Peptides that formed supramolecular self-assemblies under the studied conditions were those that have higher antimicrobial potency.
Collapse
Affiliation(s)
- Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of MinnesotaMinneapolisMinnesota 55455USA
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of MinnesotaMinneapolisMinnesota 55455USA
| |
Collapse
|
36
|
New Engineered Fusion Peptide with Dual Functionality: Antibacterial and Strong Binding to Hydroxyapatite. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 2019; 11:28. [PMID: 31570700 PMCID: PMC6802668 DOI: 10.1038/s41368-019-0062-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Effective control of oral biofilm infectious diseases represents a major global challenge. Microorganisms in biofilms exhibit increased drug tolerance compared with planktonic cells. The present review covers innovative antimicrobial strategies for controlling oral biofilm-related infections published predominantly over the past 5 years. Antimicrobial dental materials based on antimicrobial agent release, contact-killing and multi-functional strategies have been designed and synthesized for the prevention of initial bacterial attachment and subsequent biofilm formation on the tooth and material surface. Among the therapeutic approaches for managing biofilms in clinical practice, antimicrobial photodynamic therapy has emerged as an alternative to antimicrobial regimes and mechanical removal of biofilms, and cold atmospheric plasma shows significant advantages over conventional antimicrobial approaches. Nevertheless, more preclinical studies and appropriately designed and well-structured multi-center clinical trials are critically needed to obtain reliable comparative data. The acquired information will be helpful in identifying the most effective antibacterial solutions and the most optimal circumstances to utilize these strategies.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center of PLA General Hospital, Beijing, PR China
| | - Franklin R Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
38
|
Wisdom EC, Zhou Y, Chen C, Tamerler C, Snead ML. Mitigation of peri-implantitis by rational design of bifunctional peptides with antimicrobial properties. ACS Biomater Sci Eng 2019; 6:2682-2695. [PMID: 32467858 DOI: 10.1021/acsbiomaterials.9b01213] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The integration of molecular and cell biology with materials science has led to strategies to improve the interface between dental implants with the surrounding soft and hard tissues in order to replace missing teeth and restore mastication. More than 3 million implants have been placed in the US alone and this number is rising by 500,000/year. Peri-implantitis, an inflammatory response to oral pathogens growing on the implant surface threatens to reduce service life leading to eventual implant failure, and such an outcome will have adverse impact on public health and create significant health care costs. Here we report a predictive approach to peptide design, which enabled us to engineer a bifunctional peptide to combat bacterial colonization and biofilm formation, reducing the adverse host inflammatory immune response that destroys the tissue surrounding implants and shortens their lifespans. This bifunctional peptide contains a titanium-binding domain that recognizes and binds with high affinity to titanium implant surfaces, fused through a rigid spacer domain with an antimicrobial domain. By varying the antimicrobial peptide domain, we were able to predict the properties of the resulting bifunctional peptides in their entirety by analyzing the sequence-structure-function relationship. These bifunctional peptides achieve: 1) nearly 100% surface coverage within minutes, a timeframe suitable for their clinical application to existing implants; 2) nearly 100% binding to a titanium surface even in the presence of contaminating serum protein; 3) durability to brushing with a commercially available electric toothbrush; and 4) retention of antimicrobial activity on the implant surface following bacterial challenge. A bifunctional peptide film can be applied to both new implants and/or repeatedly applied to previously placed implants to control bacterial colonization mitigating peri-implant disease that threatens dental implant longevity.
Collapse
Affiliation(s)
- E Cate Wisdom
- Bioengineering Program, Institute for Bioengineering Research, University of Kansas, Lawrence, USA
| | - Yan Zhou
- Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Casey Chen
- Herman Ostrow School of Dentistry of USC, Division of Periodontology, Diagnostic Services, & Dental Hygiene University of Southern California, Los Angeles, USA
| | - Candan Tamerler
- Bioengineering Program, Institute for Bioengineering Research, University of Kansas, Lawrence, USA.,Mechanical Engineering Department, University of Kansas, Lawrence, USA
| | - Malcolm L Snead
- Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
39
|
Moussa DG, Kirihara JA, Ye Z, Fischer NG, Khot J, Witthuhn BA, Aparicio C. Dentin Priming with Amphipathic Antimicrobial Peptides. J Dent Res 2019; 98:1112-1121. [PMID: 31313946 DOI: 10.1177/0022034519863772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The evolution of bonded restorations has undergone great progress over several decades. Nonetheless, life spans of bonded restorations are limited mainly because of the eventual incidence of recurrent caries. Over time, water and waterborne agents (acids, enzymes) degrade the components of the dentin/restoration interface, allowing bacterial colonization and dentin reinfection at the margins of the restoration. We developed a 2-tier protective technology consisting of priming/coating dentin with amphipathic and antimicrobial peptides (AAMPs) to obtain hydrophobic/water-repellent and antibiofilm dentin-resisting recurrent caries around bonded restorations. We tested a series of AAMPs to assess their structure-function relationships as well as the effects of different dentin-conditioning methods on the structural features of AAMP-coated dentin. We found relation between the secondary structure of AAMPs (high portion of β-sheet), the antimicrobial potency of AAMPs, and the AAMPs' ability to form hydrophobic coatings on dentin. We also determined that AAMPs had preferential adsorption on the mineral phase of dentin, which suggested that peptides arrange their cationic and hydrophilic motifs in direct contact with the negatively charged minerals in the hydrophilic dentin. These results led us to explore different dentin-conditioning methods that would increase the mineral/collagen ratio and their effect on AAMP immobilization. We innovatively imaged the spatial distribution of the AAMPs in relation to the dentinal tubules and collagen network using a minimally invasive multimodal imaging technique: multiphoton-second harmonic generation. Using multiphoton-second harmonic generation imaging, we determined that partial deproteinization of dentin increased the amount of immobilized AAMPs as compared with the total etched dentin at the dentin surface and extended deeply around dentinal tubules. Last, we analyzed the release rate of AAMPs from dentin coatings in artificial saliva to predict their stability in the clinical setting. In conclusion, priming dentin with AAMPs is a versatile new approach with potential to fortify the otherwise vulnerable adhesive-based interfaces.
Collapse
Affiliation(s)
- D G Moussa
- 1 MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - J A Kirihara
- 2 Center for Mass Spectrometry and Proteomics, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Z Ye
- 1 MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - N G Fischer
- 1 MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - J Khot
- 1 MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - B A Witthuhn
- 2 Center for Mass Spectrometry and Proteomics, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - C Aparicio
- 1 MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
40
|
Acosta S, Quintanilla L, Alonso M, Aparicio C, Rodríguez-Cabello JC. Recombinant AMP/Polypeptide Self-Assembled Monolayers with Synergistic Antimicrobial Properties for Bacterial Strains of Medical Relevance. ACS Biomater Sci Eng 2019; 5:4708-4716. [DOI: 10.1021/acsbiomaterials.9b00247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sergio Acosta
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Luis Quintanilla
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Matilde Alonso
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware Street Southeast, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
41
|
Malhotra N. Bioreactors Design, Types, Influencing Factors and Potential Application in Dentistry. A Literature Review. Curr Stem Cell Res Ther 2019; 14:351-366. [DOI: 10.2174/1574888x14666190111105504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Objectives:A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.Methods:Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.Results:Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.Conclusions:Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.
Collapse
|
42
|
Singh S, Hussain A, Shakeel F, Ahsan MJ, Alshehri S, Webster TJ, Lal UR. Recent insights on nanomedicine for augmented infection control. Int J Nanomedicine 2019; 14:2301-2325. [PMID: 31114188 PMCID: PMC6497429 DOI: 10.2147/ijn.s170280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial agents have been widely investigated for protecting against microbial infections in modern health. Drug-related limitations, poor bioavailability, toxicity to mammalian cells, and frequent bacteria drug resistance are major challenges faced when exploited in nanomedicine forms. Specific attention has been paid to control nanomaterial-based infection against numerous challenging pathogens in addition to improved drug delivery, targeting, and pharmacokinetic (PK) profiles, and thus, efficient antimicrobials have been fabricated using diverse components (metals, metal oxides, synthetic and semisynthetic polymers, natural or biodegradable polymers, etc). The present review covers several nanocarriers delivered through various routes of administration, highlighting major findings to control microbial infection as compared to using the free drug. Results over the past decade support the consistent development of various nanomedicines capable of improving biological significance and therapeutic benefits against an array of microbial strains. Depending on the intended application of nanomedicine, infection control will be challenged by various factors such as weighing the risk-benefits in healthcare settings, nanomaterial-induced (eco)toxicological hazards, frequent development of antibiotic resistance, scarcity of in vivo toxicity data, and a poor understanding of microbial interactions with nanomedicine at the molecular level. This review summarizes well-established informative data for nanomaterials used for infection control and safety concerns of nanomedicines to healthcare sectors followed by the significance of a unique "safe-by-design" approach.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, 302023, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,
| | - Uma Ranjan Lal
- School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himacahal Pradesh, India
| |
Collapse
|
43
|
Moussa DG, Fok A, Aparicio C. Hydrophobic and antimicrobial dentin: A peptide-based 2-tier protective system for dental resin composite restorations. Acta Biomater 2019; 88:251-265. [PMID: 30753942 PMCID: PMC6474255 DOI: 10.1016/j.actbio.2019.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/09/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Dental caries, i.e., tooth decay mediated by bacterial activity, is the most widespread chronic disease worldwide. Carious lesions are commonly treated using dental resin composite restorations. However, resin composite restorations are prone to recurrent caries, i.e., reinfection of the surrounding dental hard tissues. Recurrent caries is mainly a consequence of waterborne and/or biofilm-mediated degradation of the tooth-restoration interface through hydrolytic, acidic and/or enzymatic challenges. Here we use amphipathic antimicrobial peptides to directly coat dentin to provide resin composite restorations with a 2-tier protective system, simultaneously exploiting the physicochemical and biological properties of these peptides. Our peptide coatings modulate dentin's hydrophobicity, impermeabilize it, and are active against multispecies biofilms derived from caries-active individuals. Therefore, the coatings hinder water penetration along the otherwise vulnerable dentin/restoration interface, even after in vitro aging, and increase its resistance against degradation by water, acids, and saliva. Moreover, they do not weaken the resin composite restorations mechanically. The peptide-coated highly-hydrophobic dentin is expected to notably improve the service life of resin composite restorations and to enable the development of entirely hydrophobic restorative systems. The peptide coatings were also antimicrobial and thus, they provide a second tier of protection preventing re-infection of tissues in contact with restorations. STATEMENT OF SIGNIFICANCE: We present a technology using designer peptides to treat the most prevalent chronic disease worldwide; dental caries. Specifically, we used antimicrobial amphipathic peptides to coat dentin with the goal of increasing the service life of the restorative materials used to treat dental caries, which is nowadays 5 years on average. Water and waterborne agents (enzymes, acids) degrade restorative materials and enable re-infection at the dentin/restoration interface. Our peptide coatings will hinder degradation of the restoration as they produced highly hydrophobic and antimicrobial dentin/material interfaces. We anticipate a high technological and economic impact of our technology as it can notably reduce the lifelong dental bill of patients worldwide. Our findings can enable the development of restorations with all-hydrophobic and so, more protective components.
Collapse
Affiliation(s)
- Dina G Moussa
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Alex Fok
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
44
|
Rosenberg M, Ilić K, Juganson K, Ivask A, Ahonen M, Vinković Vrček I, Kahru A. Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ 2019; 7:e6315. [PMID: 30775167 PMCID: PMC6375256 DOI: 10.7717/peerj.6315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023] Open
Abstract
This review was initiated by the COST action CA15114 AMICI "Anti-Microbial Coating Innovations to prevent infectious diseases," where one important aspect is to analyze ecotoxicological impacts of antimicrobial coatings (AMCs) to ensure their sustainable use. Scopus database was used to collect scientific literature on the types and uses of AMCs, while market reports were used to collect data on production volumes. Special attention was paid on data obtained for the release of the most prevalent ingredients of AMCs into the aqueous phase that was used as the proxy for their possible ecotoxicological effects. Based on the critical analysis of 2,720 papers, it can be concluded that silver-based AMCs are by far the most studied and used coatings followed by those based on titanium, copper, zinc, chitosan and quaternary ammonium compounds. The literature analysis pointed to biomedicine, followed by marine industry, construction industry (paints), food industry and textiles as the main fields of application of AMCs. The published data on ecotoxicological effects of AMCs was scarce, and also only a small number of the papers provided information on release of antimicrobial ingredients from AMCs. The available release data allowed to conclude that silver, copper and zinc are often released in substantial amounts (up to 100%) from the coatings to the aqueous environment. Chitosan and titanium were mostly not used as active released ingredients in AMCs, but rather as carriers for other release-based antimicrobial ingredients (e.g., conventional antibiotics). While minimizing the prevalence of healthcare-associated infections appeared to be the most prosperous field of AMCs application, the release of environmentally hazardous ingredients of AMCs into hospital wastewaters and thus, also the environmental risks associated with AMCs, comprise currently only a fraction of the release and risks of traditional disinfectants. However, being proactive, while the use of antimicrobial/antifouling coatings could currently pose ecotoxicological effects mainly in marine applications, the broad use of AMCs in other applications like medicine, food packaging and textiles should be postponed until reaching evidences on the (i) profound efficiency of these materials in controlling the spread of pathogenic microbes and (ii) safety of AMCs for the human and ecosystems.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Merja Ahonen
- Faculty of Technology, Satakunta University of Applied Sciences, Rauma, Finland
| | | | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
45
|
Chen Z, Yang G, Lu S, Chen D, Fan S, Xu J, Wu B, He J. Design and antimicrobial activities of LL-37 derivatives inhibiting the formation of Streptococcus mutans
biofilm. Chem Biol Drug Des 2019; 93:1175-1185. [PMID: 30635992 DOI: 10.1111/cbdd.13419] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Zhao Chen
- Department of Stomatology; Nanfang Hospital; Southern Medical University; Guangzhou China
- Group of Peptides and Natural Products Research; School of Pharmaceutical Sciences; Southern Medical University; Guangzhou China
| | - Guang Yang
- Group of Peptides and Natural Products Research; School of Pharmaceutical Sciences; Southern Medical University; Guangzhou China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research; School of Pharmaceutical Sciences; Southern Medical University; Guangzhou China
| | - Daiwei Chen
- Group of Peptides and Natural Products Research; School of Pharmaceutical Sciences; Southern Medical University; Guangzhou China
| | - Sheng Fan
- Group of Peptides and Natural Products Research; School of Pharmaceutical Sciences; Southern Medical University; Guangzhou China
| | - Junyang Xu
- Department of Stomatology; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Buling Wu
- Department of Stomatology; Nanfang Hospital; Southern Medical University; Guangzhou China
| | - Jian He
- Group of Peptides and Natural Products Research; School of Pharmaceutical Sciences; Southern Medical University; Guangzhou China
| |
Collapse
|
46
|
Shahrour H, Ferrer-Espada R, Dandache I, Bárcena-Varela S, Sánchez-Gómez S, Chokr A, Martinez-de-Tejada G. AMPs as Anti-biofilm Agents for Human Therapy and Prophylaxis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:257-279. [PMID: 30980362 DOI: 10.1007/978-981-13-3588-4_14] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbial cells show a strong natural tendency to adhere to surfaces and to colonize them by forming complex communities called biofilms. In this growth mode, biofilm-forming cells encase themselves inside a dense matrix which efficiently protects them against antimicrobial agents and effectors of the immune system. Moreover, at the physiological level, biofilms contain a very heterogeneous cell population including metabolically inactive organisms and persisters, which are highly tolerant to antibiotics. The majority of human infectious diseases are caused by biofilm-forming microorganisms which are responsible for pathologies such as cystic fibrosis, infective endocarditis, pneumonia, wound infections, dental caries, infections of indwelling devices, etc. AMPs are well suited to combat biofilms because of their potent bactericidal activity of broad spectrum (including resting cells and persisters) and their ability to first penetrate and then to disorganize these structures. In addition, AMPs frequently synergize with antimicrobial compounds and were recently reported to repress the molecular pathways leading to biofilm formation. Finally, there is a very active research to develop AMP-containing coatings that can prevent biofilm formation by killing microbial cells on contact or by locally releasing their active principle. In this chapter we will describe these strategies and discuss the perspectives of the use of AMPs as anti-biofilm agents for human therapy and prophylaxis.
Collapse
Affiliation(s)
- Hawraa Shahrour
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain.,Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon.,Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Raquel Ferrer-Espada
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Israa Dandache
- Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon.,Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | | | | | - Ali Chokr
- Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon.,Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | | |
Collapse
|
47
|
Ye Z, Zhu X, Acosta S, Kumar D, Sang T, Aparicio C. Self-assembly dynamics and antimicrobial activity of all l- and d-amino acid enantiomers of a designer peptide. NANOSCALE 2018; 11:266-275. [PMID: 30534763 PMCID: PMC6319268 DOI: 10.1039/c8nr07334a] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent studies have shown that antimicrobial peptides (AMPs) can self-assemble into supramolecular structures, but this has been overlooked as causative of their antimicrobial activity. Also, the higher antimicrobial potency of d-enantiomers compared to l-enantiomers of AMPs cannot always be attributed to their different resistance to protease degradation. Here, we tested all l- and d-amino acid versions of GL13K, an AMP derived from a human protein, to study structural links between the AMP secondary structure, supramolecular self-assembly dynamics, and antimicrobial activity. pH dependence and the evolution of secondary structures were related to a self-assembly process with differences among these AMPs. The two GL13K enantiomers formed analogous self-assembled twisted nanoribbon structures, but d-GL13K initiated self-assembly faster and had notably higher antimicrobial potency than l-GL13K. A non-antimicrobial scrambled amino acid version of l-GL13K assembled at a much higher pH to form distinctively different self-assembled structures than l-GL13K. Our results support a functional relationship between the AMP self-assembly and their antimicrobial activity.
Collapse
Affiliation(s)
- Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med 2018; 13:58-75. [PMID: 30376696 DOI: 10.1002/term.2769] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/16/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
More than two thirds of the global population suffers from tooth decay, which results in cavities with various levels of lesion severity. Clinical interventions to treat tooth decay range from simple coronal fillings to invasive root canal treatment. Pulp capping is the only available clinical option to maintain the pulp vitality in deep lesions, but irreversible pulp inflammation and reinfection are frequent outcomes for this treatment. When affected pulp involvement is beyond repair, the dentist has to perform endodontic therapy leaving the tooth non-vital and brittle. On-going research strategies have failed to overcome the limitations of existing pulp capping materials so that healthy and progressive regeneration of the injured tissues is attained. Preserving pulp vitality is crucial for tooth homeostasis and durability, and thus, there is a critical need for clinical interventions that enable regeneration of the dentin-pulp complex to rescue millions of teeth annually. The identification and development of appropriate biomaterials for dentin-pulp scaffolds are necessary to optimize clinical approaches to regenerate these hybrid dental tissues. Likewise, a deep understanding of the interactions between the micro-environment, growth factors, and progenitor cells will provide design basis for the most fitting scaffolds for this purpose. In this review, we first introduce the long-lasting clinical dental problem of rescuing diseased tooth vitality, the limitations of current clinical therapies and interventions to restore the damaged tissues, and the need for new strategies to fully revitalize the tooth. Then, we comprehensively report on the characteristics of the main materials of naturally-derived and synthetically-engineered polymers, ceramics, and composite scaffolds as well as their use in dentin-pulp complex regeneration strategies. Finally, we present a series of innovative smart polymeric biomaterials with potential to overcome dentin-pulp complex regeneration challenges.
Collapse
Affiliation(s)
- Dina G Moussa
- Minnesota Dental Research Centre for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota.,Department of Conservative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Conrado Aparicio
- Minnesota Dental Research Centre for Biomaterials and Biomechanics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
49
|
Zaccaria S, van Gaal RC, Riool M, Zaat SAJ, Dankers PYW. Antimicrobial peptide modification of biomaterials using supramolecular additives. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2018; 56:1926-1934. [PMID: 30344368 PMCID: PMC6175361 DOI: 10.1002/pola.29078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
Biomaterials based on non-active polymers functionalized with antimicrobial agents by covalent modification or mixing are currently regarded as high potential solutions to prevent biomaterial associated infections that are major causes of biomedical device failure. Herewith a strategy is proposed in which antimicrobial materials are prepared by simply mixing-and-matching of ureido-pyrimidinone (UPy) based supramolecular polymers with antimicrobial peptides (AMPs) modified with the same UPy-moiety. The N-terminus of the AMPs was coupled in solution to an UPy-carboxylic acid synthon resulting in formation of a new amidic bond. The UPy-functionalization of the AMPs did not affect their secondary structure, as proved by circular dichroism spectroscopy. The antimicrobial activity of the UPy-AMPs in solution was also retained. In addition, the incorporation of UPy-AMPs into an UPy-polymer was stable and the final material was biocompatible. The addition of 4 mol % of UPy-AMPs in the UPy-polymer material protected against colonization by Escherichia coli, and methicillin-sensitive and -resistant strains of Staphylococcus aureus. This modular approach enables a stable but dynamic incorporation of the antimicrobial agents, allowing at the same time for the possibility to change the nature of the polymer, as well as the use of AMPs with different activity spectra. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1926-1934.
Collapse
Affiliation(s)
- Sabrina Zaccaria
- Laboratory for Chemical BiologyEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
| | - Ronald C. van Gaal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Laboratory for Cell and Tissue EngineeringEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
| | - Martijn Riool
- Department of Medical MicrobiologyAmsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Meibergdreef 15Amsterdam 1105 AZThe Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical MicrobiologyAmsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Meibergdreef 15Amsterdam 1105 AZThe Netherlands
| | - Patricia Y. W. Dankers
- Laboratory for Chemical BiologyEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
- Laboratory for Cell and Tissue EngineeringEindhoven University of Technology, P.O. Box 513, 5600 MBEindhovenThe Netherlands
| |
Collapse
|
50
|
Karunanidhi A, Ghaznavi-Rad E, Hamat RA, Pichika MR, Lung LTT, Mohd Fauzi F, Chigurupati S, van Belkum A, Neela V. Antibacterial and Antibiofilm Activities of Nonpolar Extracts of Allium stipitatum Regel. against Multidrug Resistant Bacteria. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9845075. [PMID: 30105271 PMCID: PMC6076948 DOI: 10.1155/2018/9845075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
The present study assessed the in vitro antibacterial and antibiofilm potential of hexane (ASHE) and dichloromethane (ASDE) extracts of Allium stipitatum (Persian shallot) against planktonic cells and biofilm structures of clinically significant antibiotic resistant pathogens, with a special emphasis on methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and emerging pathogens, Acinetobacter baumannii and Stenotrophomonas maltophilia. Antibacterial activities were determined through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill kinetics, and electron microscopy. Antibiofilm activity was assessed by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay and by confocal laser scanning microscopy (CLSM). The zone of inhibition ranged from 13 to 33 mm, while the MICs and MBCs ranged from 16 to 1024 μg mL-1. Both ASHE and ASDE completely eradicated overnight cultures of the test microorganisms, including antibiotic resistant strains. Time-kill studies showed that the extracts were strongly bactericidal against planktonic cultures of S. aureus, MRSA, Acinetobacter baumannii, and S. maltophilia as early as 4 hours postinoculation (hpi). ASHE and ASDE were shown to inhibit preformed biofilms of the four biofilm phenotypes tested. Our results demonstrate the potential therapeutic application of ASHE and ASDE to inhibit the growth of gram-positive and gram-negative biofilms of clinical significance and warrant further investigation of the potential of A. stipitatum bulbs against biofilm-related drug resistance.
Collapse
Affiliation(s)
- Arunkumar Karunanidhi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Basij Square, Arak 38481-7-6941, Iran
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Leslie Than Thian Lung
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Fazlin Mohd Fauzi
- Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Alex van Belkum
- La Balme Microbiology Unit, BioMerieux, 3 route de Port Michaud, 38390 La Balme-les-Grottes, France
| | - Vasanthakumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|