1
|
Strobl F, Schmitz A, Schetelig MF, Stelzer EHK. A two-level staging system for the embryonic morphogenesis of the Mediterranean fruit fly (medfly) Ceratitis capitata. PLoS One 2024; 19:e0316391. [PMID: 39774542 PMCID: PMC11684674 DOI: 10.1371/journal.pone.0316391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Comparative studies across multiple species provide valuable insights into the evolutionary diversification of developmental strategies. While the fruit fly Drosophila melanogaster has long been the primary insect model organism for understanding molecular genetics and embryonic development, the Mediterranean fruit fly Ceratitis capitata, also known as medfly, presents a promising complementary model for studying developmental biology. With its sequenced genome and a diverse array of molecular techniques, the medfly is well-equipped for study. However, an integrative framework for studying its embryogenesis is currently lacking. In this study, we present a two-level staging system for the medfly based on nine datasets recorded using light sheet fluorescence microscopy. The upper level features of six consecutive embryogenetic events, facilitating comparisons between insect orders, while the lower level consists of seventeen stages, adapted from the fruit fly, allowing for comparisons within the Diptera. We provide detailed descriptions of all identifiable characteristics in multiple formats, including a detailed timetable, comprehensively illustrated figures for all embryogenetic events, glossary-like tables for selected structures and processes, as well as a stage-based quick lookup chart. One remarkable difference between the fruit fly and the medfly is that in the latter, the amnioserosa differentiates and unfolds already during gastrulation. Our staging system, which is based on systematically acquired fluorescence live imaging data, provides standard deviations for each developmental time point and serves as a template for future studies seeking to establish an integrative morphogenic framework for other emerging model insect species.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt–Macromolecular Complexes (CEF–MC), Goethe-Universität–Frankfurt am Main (Campus Riedberg), Frankfurt am Main, Germany
| | - Alexander Schmitz
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt–Macromolecular Complexes (CEF–MC), Goethe-Universität–Frankfurt am Main (Campus Riedberg), Frankfurt am Main, Germany
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Ernst H. K. Stelzer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt–Macromolecular Complexes (CEF–MC), Goethe-Universität–Frankfurt am Main (Campus Riedberg), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Ortolá B, Urbaneja A, Eiras M, Pérez-Hedo M, Daròs JA. RNAi-mediated silencing of Mediterranean fruit fly (Ceratitis capitata) endogenous genes using orally-supplied double-stranded RNAs produced in Escherichia coli. PEST MANAGEMENT SCIENCE 2024; 80:1087-1098. [PMID: 37851867 DOI: 10.1002/ps.7839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The Mediterranean fruit fly (medfly), Ceratitis capitata Wiedemann, is a major pest affecting fruit and vegetable production worldwide, whose control is mainly based on insecticides. Double-stranded RNA (dsRNA) able to down-regulate endogenous genes, thus affecting essential vital functions via RNA interference (RNAi) in pests and pathogens, is envisioned as a more specific and environmentally-friendly alternative to traditional insecticides. However, this strategy has not been explored in medfly yet. RESULTS Here, we screened seven candidate target genes by injecting in adult medflies gene-specific dsRNA hairpins transcribed in vitro. Several genes were significantly down-regulated, resulting in increased insect mortality compared to flies treated with a control dsRNA targeting the green fluorescent protein (GFP) complementary DNA (cDNA). Three of the dsRNAs, homologous to the beta subunit of adenosine triphosphate (ATP) synthase (ATPsynbeta), a vacuolar ATPase (V-ATPase), and the ribosomal protein S13 (RPS13), were able to halve the probability of survival in only 48 h after injection. We then produced new versions of these three dsRNAs and that of the GFP control as circular molecules in Escherichia coli using a two-self-splicing-intron-based expression system and tested them as orally-delivered insecticidal compounds against medfly adults. We observed a significant down-regulation of V-ATPase and RPS13 messenger RNAs (mRNAs) (approximately 30% and 90%, respectively) compared with the control medflies after 3 days of treatment. No significant mortality was recorded in medflies, but egg laying and hatching reduction was achieved by silencing V-ATPase and RPS13. CONCLUSION In sum, we report the potential of dsRNA molecules as oral insecticide in medfly. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Marcelo Eiras
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Laboratório de Fitovirologia e Fisiopatologia, Instituto Biológico, Sao Paulo, Brazil
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
3
|
In toto light sheet fluorescence microscopy live imaging datasets of Ceratitis capitata embryonic development. Sci Data 2022; 9:340. [PMID: 35705572 PMCID: PMC9200851 DOI: 10.1038/s41597-022-01443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an important model organism in biology and agricultural research with high economic relevance. However, information about its embryonic development is still sparse. We share nine long-term live imaging datasets acquired with light sheet fluorescence microscopy (484.5 h total recording time, 373 995 images, 256 Gb) with the scientific community. Six datasets show the embryonic development in toto for about 60 hours at 30 minutes intervals along four directions in three spatial dimensions, covering approximately 97% of the entire embryonic development period. Three datasets focus on germ cell formation and head involution. All imaged embryos hatched morphologically intact. Based on these data, we suggest a two-level staging system that functions as a morphogenetic framework for upcoming studies on medfly. Our data supports research on wild-type or aberrant morphogenesis, quantitative analyses, comparative approaches to insect development as well as studies related to pest control. Further, they can be used to test advanced image processing approaches or to train machine learning algorithms and/or neuronal networks.
Collapse
|
4
|
Pimsler ML, Hjelmen CE, Jonika MM, Sharma A, Fu S, Bala M, Sze SH, Tomberlin JK, Tarone AM. Sexual Dimorphism in Growth Rate and Gene Expression Throughout Immature Development in Wild Type Chrysomya rufifacies (Diptera: Calliphoridae) Macquart. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.696638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reliability of forensic entomology analyses to produce relevant information to a given case requires an understanding of the underlying arthropod population(s) of interest and the factors contributing to variability. Common traits for analyses are affected by a variety of genetic and environmental factors. One trait of interest in forensic investigations has been species-specific temperature-dependent growth rates. Recent work indicates sexual dimorphism may be important in the analysis of such traits and related genetic markers of age. However, studying sexual dimorphic patterns of gene expression throughout immature development in wild-type insects can be difficult due to a lack of genetic tools, and the limits of most sex-determination mechanisms. Chrysomya rufifacies, however, is a particularly tractable system to address these issues as it has a monogenic sex determination system, meaning females have only a single-sex of offspring throughout their life. Using modified breeding procedures (to ensure single-female egg clutches) and transcriptomics, we investigated sexual dimorphism in development rate and gene expression. Females develop slower than males (9 h difference from egg to eclosion respectively) even at 30°C, with an average egg-to-eclosion time of 225 h for males and 234 h for females. Given that many key genes rely on sex-specific splicing for the development and maintenance of sexually dimorphic traits, we used a transcriptomic approach to identify different expression of gene splice variants. We find that 98.4% of assembled nodes exhibited sex-specific, stage-specific, to sex-by-stage specific patterns of expression. However, the greatest signal in the expression data is differentiation by developmental stage, indicating that sexual dimorphism in gene expression during development may not be investigatively important and that markers of age may be relatively independent of sex. Subtle differences in these gene expression patterns can be detected as early as 4 h post-oviposition, and 12 of these nodes demonstrate homology with key Drosophila sex determination genes, providing clues regarding the distinct sex determination mechanism of C. rufifacies. Finally, we validated the transcriptome analyses through qPCR and have identified five genes that are developmentally informative within and between sexes.
Collapse
|
5
|
Congrains C, Zucchi RA, de Brito RA. Phylogenomic approach reveals strong signatures of introgression in the rapid diversification of neotropical true fruit flies (Anastrepha: Tephritidae). Mol Phylogenet Evol 2021; 162:107200. [PMID: 33984467 DOI: 10.1016/j.ympev.2021.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
New sequencing techniques have allowed us to explore the variation on thousands of genes and elucidate evolutionary relationships of lineages even in complex scenarios, such as when there is rapid diversification. That seems to be the case of species in the genus Anastrepha, which shows great species diversity that has been divided into 21 species groups, several of which show wide geographical distribution. The fraterculus group has several economically important species and it is also an outstanding model for speciation studies, since it includes several lineages that have diverged recently possibly in the presence of interspecific gene flow. Our main goal is to test whether we can infer phylogenetic relationships of recently diverged taxa with gene flow, such as what is expected for the fraterculus group and determine whether certain genes remain informative even in this complex scenario. An analysis of thousands of orthologous genes derived from transcriptome datasets of 10 different lineages across the genus, including some of the economically most important pests, revealed signals of incomplete lineage sorting, vestiges of ancestral introgression between more distant lineages and ongoing gene flow between closely related lineages. Though these patterns affect the phylogenetic signal, the phylogenomic inferences consistently show that the morphologically identified species here investigated are in different evolutionary lineages, with the sole exception involving Brazilian lineages of A. fraterculus, which has been suggested to be a complex assembly of cryptic species. A tree space analysis suggested that genes with greater phylogenetic resolution have evolved under similar selection pressures and are more resilient to intraspecific gene flow, which would make it more likely that these genomic regions may be useful for identifying fraterculus group lineages. Our findings help establish relationships among the most important Anastrepha species groups, as well as bring further data to indicate that the diversification of fraterculus group lineages, and even other lineages in the genus Anastrepha, has been strongly influenced by interspecific gene flow.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Roberto A Zucchi
- Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ, Universidade de São Paulo - USP, Piracicaba, SP, Brazil
| | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
6
|
Sharpe SR, Morrow JL, Brettell LE, Shearman DC, Gilchrist S, Cook JM, Riegler M. Tephritid fruit flies have a large diversity of co-occurring RNA viruses. J Invertebr Pathol 2021; 186:107569. [PMID: 33727045 DOI: 10.1016/j.jip.2021.107569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Tephritid fruit flies are amongst the most devastating pests of horticulture, and Sterile Insect Technique (SIT) programs have been developed for their control. Their interactions with viruses are still mostly unexplored, yet, viruses may negatively affect tephritid health and performance in SIT programs, and, conversely, constitute potential biological control agents. Here we analysed ten transcriptome libraries obtained from laboratory populations of nine tephritid species from Australia (six species of Bactrocera, and Zeugodacus cucumis), Asia (Bactrocera dorsalis) and Europe (Ceratitis capitata). We detected new viral diversity, including near-complete (>99%) and partially complete (>80%) genomes of 34 putative viruses belonging to eight RNA virus families. On average, transcriptome libraries included 3.7 viruses, ranging from 0 (Z. cucumis) to 9 (B. dorsalis). Most viruses belonged to the Picornavirales, represented by fourteen Dicistroviridae (DV), nine Iflaviridae (IV) and two picorna-like viruses. Others were a virus from Rhabdoviridae (RV), one from Xinmoviridae (both Mononegavirales), several unclassified Negev- and toti-like viruses, and one from Metaviridae (Ortervirales). Using diagnostic PCR primers for four viruses found in the transcriptome of the Bactrocera tryoni strain bent wings (BtDV1, BtDV2, BtIV1, and BtRV1), we tested nine Australian laboratory populations of five species (B. tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Bactrocera cacuminata, C. capitata), and one field population each of B. tryoni, B. cacuminata and Dirioxa pornia. Viruses were present in most laboratory and field populations yet their incidence differed for each virus. Prevalence and co-occurrence of viruses in B. tryoni and B. cacuminata were higher in laboratory than field populations. This raises concerns about the potential accumulation of viruses and their potential health effects in laboratory and mass-rearing environments which might affect flies used in research and control programs such as SIT.
Collapse
Affiliation(s)
- Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Deborah C Shearman
- Evolution & Ecology Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia.
| | - Stuart Gilchrist
- Evolution & Ecology Research Centre, The University of New South Wales, Kensington, NSW 2052, Australia.
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
7
|
Gutiérrez-Ramos X, Vázquez M, Dorantes-Acosta AE, Díaz-Fleischer F, Peralta-Alvarez CA, Nuñez-Martínez HN, Arzate-Mejía RG, Recillas-Targa F, Arteaga-Vázquez MA, Zurita M. Novel tephritid-specific features revealed from cytological and transcriptomic analysis of Anastrepha ludens embryonic development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103412. [PMID: 32417415 DOI: 10.1016/j.ibmb.2020.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Anastrepha ludens is a major pest of fruits including citrus and mangoes in Mexico and Central America with major economic and social impacts. Despite its importance, our knowledge on its embryonic development is scarce. Here, we report the first cytological study of embryonic development in A. ludens and provide a transcriptional landscape during key embryonic stages. We established 17 stages of A. ludens embryogenesis that closely resemble the morphological events observed in Drosophila. In addition to the extended duration of embryonic development, we observed notable differences including yolk extrusion at both poles of the embryo, distinct nuclear division waves in the syncytial blastoderm and a heterochronic change during the involution of the head. Characterization of the transcriptional dynamics during syncytial blastoderm, cellular blastoderm and gastrulation, showed that approximately 9000 different transcripts are present at each stage. Even though we identified most of the transcripts with a role during embryonic development present in Drosophila, including sex determination genes, a number of transcripts were absent not only in A. ludens but in other tephritids such as Ceratitis capitata and Bactrocera dorsalis. Intriguingly, some A. ludens embryo transcripts encode proteins present in other organisms but not in other flies. Furthermore, we developed an RNA in situ hybridization protocol that allowed us to obtain the expression patterns of genes whose functions are important in establishing the embryonic body pattern. Our results revealed novel tephritid-specific features during A. ludens embryonic development and open new avenues for strategies aiming to control this important pest.
Collapse
Affiliation(s)
- Ximena Gutiérrez-Ramos
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico; Group of Epigenetics and Developmental Biology, INBIOTECA, Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Mexico
| | - Martha Vázquez
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Ana E Dorantes-Acosta
- Group of Epigenetics and Developmental Biology, INBIOTECA, Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Mexico
| | - Francisco Díaz-Fleischer
- Group of Epigenetics and Developmental Biology, INBIOTECA, Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Mexico
| | - Carlos A Peralta-Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Hober N Nuñez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Mario A Arteaga-Vázquez
- Group of Epigenetics and Developmental Biology, INBIOTECA, Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Mexico.
| | - Mario Zurita
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
8
|
Peng W, Yu S, Handler AM, Zhang H. Transcriptome Analysis of the Oriental Fruit Fly Bactrocera dorsalis Early Embryos. INSECTS 2020; 11:insects11050323. [PMID: 32456171 PMCID: PMC7290859 DOI: 10.3390/insects11050323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/01/2022]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most devastating and highly invasive agricultural pests world-wide, resulting in severe economic loss. Thus, it is of great interest to understand the transcriptional changes that occur during the activation of its zygotic genome at the early stages of embryonic development, especially the expression of genes involved in sex determination and the cellularization processes. In this study, we applied Illumina sequencing to identify B. dorsalis sex determination genes and early zygotic genes by analyzing transcripts from three early embryonic stages at 0–1, 2–4, and 5–8 h post-oviposition, which include the initiation of sex determination and cellularization. These tests generated 13,489 unigenes with an average length of 2185 bp. In total, 1683, 3201 and 3134 unigenes had significant changes in expression levels at times after oviposition including at 2–4 h versus 0–1 h, 5–8 h versus 0–1 h, and 5–8 h versus 2–4 h, respectively. Clusters of gene orthology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed throughout embryonic development to better understand the functions of differentially expressed unigenes. We observed that the RNA binding and spliceosome pathways were highly enriched and overrepresented during the early stage of embryogenesis. Additionally, transcripts for 21 sex-determination and three cellularization genes were identified, and expression pattern analysis revealed that the majority of these genes were highly expressed during embryogenesis. This study is the first assembly performed for B. dorsalis based on Illumina next-generation sequencing technology during embryogenesis. Our data should contribute significantly to the fundamental understanding of sex determination and early embryogenesis in tephritid fruit flies, and provide gene promoter and effector gene candidates for transgenic pest-management strategies for these economically important species.
Collapse
Affiliation(s)
- Wei Peng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shuning Yu
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
| | - Alfred M. Handler
- USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA;
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
- Correspondence:
| |
Collapse
|
9
|
Wei D, Xu HQ, Chen D, Zhang SY, Li WJ, Smagghe G, Wang JJ. Genome-wide gene expression profiling of the melon fly, Zeugodacus cucurbitae, during thirteen life stages. Sci Data 2020; 7:45. [PMID: 32047161 PMCID: PMC7012831 DOI: 10.1038/s41597-020-0387-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/21/2020] [Indexed: 01/15/2023] Open
Abstract
The melon fly, Zeugodacus cucurbitae (Coquillett), is an important destructive pest worldwide. Functional studies of the genes associated with development and reproduction during different life stages are limited in Z. cucurbitae. There have yet to be comprehensive transcriptomic resources for genetic and functional genomic studies to identify the molecular mechanisms related to its development and reproduction. In this study, we comprehensively sequenced the transcriptomes of four different developmental stages: egg, larva, pupa, and adults. Using the Illumina RNA-Seq technology, we constructed 52 libraries from 13 stages with four biological replicates in each and generated 435.61 Gb clean reads. We comprehensively characterized the transcriptomes with high-coverage mapping to the reference genome. A total of 13,760 genes were mapped to the reference genome, and another 4481 genes were characterized as new genes. Finally, 14,931 genes (81.85%) were functionally annotated against six annotation databases. This study provides the first comprehensive transcriptome data of all developmental stages of Z. cucurbitae, and will serve as a valuable resource for future genetic and functional studies.
Collapse
Affiliation(s)
- Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hui-Qian Xu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Su-Yun Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Wei-Jun Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium.
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
García-Reina A, Rossi E, Galián J. Effects of lipopolysaccharide and juvenile hormone III treatments on cell growth and gene expression in the Ceratitis capitata (Diptera: Tephritidae) CCE/CC128 cell line. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21617. [PMID: 31512283 DOI: 10.1002/arch.21617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/27/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The Mediterranean fruit fly Ceratitis capitata is one of the most important insect pest species in the world. It has a high colonization capacity and population variety, giving it considerable genetic diversity. Strategies for its control have included the sterile insect technique and insect growth regulators. Many studies have analyzed the medfly transcriptome, and along with the medfly genome sequence, the sequences of multiple genes related to sex determination, mating, development, pheromone detection, immunity, or stress have been identified. In this study, the medfly CCE/CC128 cell line was used to assess cell growth variation and changes in the expression of genes covering different functions, after lipopolysaccharide (LPS) and juvenile hormone III (JHIII) treatments. No significant effects on cell growth and gene expression were observed in the cells treated with LPS. In the cells treated with JHIII, the results showed significant effects on cell growth, and an overexpression was found of the Shade gene, one of the Halloween gene members of the cytochrome p450 family, which is involved in development and the synthesis of 20-hydroxyecdysone. This study shows preliminary results on the insect cell line in combination with whole-genome sequencing, which can facilitate studies regarding growth, toxicity, immunity, and transcriptome regulations as a response to different compounds and environmental alterations.
Collapse
Affiliation(s)
- Andrés García-Reina
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | | | - José Galián
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Santana PDPB, da Silva ALDC, Ramos RTJ, Gonçalves AA, da Costa NN, Ramos PDCA, Silva TVG, Cordeiro MDS, Santos SDSD, Ohashi OM, Miranda MDS. Contributions of RNA-seq to improve in vitro embryo production (IVP). Anim Reprod 2019; 16:249-259. [PMID: 33224284 PMCID: PMC7673591 DOI: 10.21451/1984-3143-ar2017-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Vitro Embryo Production (IVP) is widely used to improve the reproductive efficiency of livestock animals, however increasing the embryo development rates and pregnancy outcomes is still a challenge for some species. Thus, the lack of biological knowledge hinders developing specie-specific IVP protocols. Therefore, the contributions of RNA-seq to generate relevant biological knowledge and improve the efficiency of IVP in livestock animals are reviewed herein.
Collapse
Affiliation(s)
| | | | | | - Arnaldo Algaranhar Gonçalves
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Nathalia Nogueira da Costa
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | | | | | - Marcela da Silva Cordeiro
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | | | - Otávio Mitio Ohashi
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Moysés Dos Santos Miranda
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
12
|
Meccariello A, Salvemini M, Primo P, Hall B, Koskinioti P, Dalíková M, Gravina A, Gucciardino MA, Forlenza F, Gregoriou ME, Ippolito D, Monti SM, Petrella V, Perrotta MM, Schmeing S, Ruggiero A, Scolari F, Giordano E, Tsoumani KT, Marec F, Windbichler N, Arunkumar KP, Bourtzis K, Mathiopoulos KD, Ragoussis J, Vitagliano L, Tu Z, Papathanos PA, Robinson MD, Saccone G. Maleness-on-the-Y ( MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science 2019; 365:1457-1460. [PMID: 31467189 DOI: 10.1126/science.aax1318] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Brantley Hall
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria.,Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Martina Dalíková
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Andrea Gravina
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | | | - Federica Forlenza
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Domenica Ippolito
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy
| | - Valeria Petrella
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | | | - Stephan Schmeing
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Ennio Giordano
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Konstantina T Tsoumani
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - František Marec
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 039, India
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Kostas D Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Jiannis Ragoussis
- Department of Human Genetics and Bioengineering, McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Philippos Aris Papathanos
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy. .,Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Mark D Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland.
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy.
| |
Collapse
|
13
|
Congrains C, Campanini EB, Torres FR, Rezende VB, Nakamura AM, de Oliveira JL, Lima ALA, Chahad-Ehlers S, Sobrinho IS, de Brito RA. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae). Genome Biol Evol 2018; 10:380-395. [PMID: 29346618 PMCID: PMC5786236 DOI: 10.1093/gbe/evy009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Emeline B Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Felipe R Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Víctor B Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Aline M Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - André L A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| |
Collapse
|
14
|
Rezende VB, Congrains C, Lima ALA, Campanini EB, Nakamura AM, Oliveira JLD, Chahad-Ehlers S, Junior IS, Alves de Brito R. Head Transcriptomes of Two Closely Related Species of Fruit Flies of the Anastrepha fraterculus Group Reveals Divergent Genes in Species with Extensive Gene Flow. G3 (BETHESDA, MD.) 2016; 6:3283-3295. [PMID: 27558666 PMCID: PMC5068948 DOI: 10.1534/g3.116.030486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
Abstract
Several fruit flies species of the Anastrepha fraterculus group are of great economic importance for the damage they cause to a variety of fleshy fruits. Some species in this group have diverged recently, with evidence of introgression, showing similar morphological attributes that render their identification difficult, reinforcing the relevance of identifying new molecular markers that may differentiate species. We investigated genes expressed in head tissues from two closely related species: A. obliqua and A. fraterculus, aiming to identify fixed single nucleotide polymorphisms (SNPs) and highly differentiated transcripts, which, considering that these species still experience some level of gene flow, could indicate potential candidate genes involved in their differentiation process. We generated multiple libraries from head tissues of these two species, at different reproductive stages, for both sexes. Our analyses indicate that the de novo transcriptome assemblies are fairly complete. We also produced a hybrid assembly to map each species' reads, and identified 67,470 SNPs in A. fraterculus, 39,252 in A. obliqua, and 6386 that were common to both species. We identified 164 highly differentiated unigenes that had a mean interspecific index ([Formula: see text]) of at least 0.94. We selected unigenes that had Ka/Ks higher than 0.5, or had at least three or more highly differentiated SNPs as potential candidate genes for species differentiation. Among these candidates, we identified proteases, regulators of redox homeostasis, and an odorant-binding protein (Obp99c), among other genes. The head transcriptomes described here enabled the identification of thousands of genes hitherto unavailable for these species, and generated a set of candidate genes that are potentially important to genetically identify species and understand the speciation process in the presence of gene flow of A. obliqua and A. fraterculus.
Collapse
Affiliation(s)
- Victor Borges Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - André Luís A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Aline Minali Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Janaína Lima de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Iderval Sobrinho Junior
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Reinaldo Alves de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
15
|
Zhu JY. Deciphering the main venom components of the ectoparasitic ant-like bethylid wasp, Scleroderma guani. Toxicon 2016; 113:32-40. [PMID: 26853496 DOI: 10.1016/j.toxicon.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/07/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
Abstract
Similar to venom found in most venomous animals, parasitoid venoms contain a complex cocktail of proteins with potential agrichemical and pharmaceutical use. Even though parasitoids are one of the largest group of venomous animals, little is known about their venom composition. Recent few studies revealed high variated venom composition existing not only in different species but also between closely related strains, impling that increasing information on the venom proteins from more greater diversity of species of different taxa is key to comprehensively uncover the complete picture of parasitoid venom. Here, we explored the major protein components of the venom of ectoparasitic ant-like bethylid wasp, Scleroderma guani by an integrative transcriptomic-proteomic approach. Illumina deep sequencing of venom apparatus cDNA produced 49,873 transcripts. By mapping the peptide spectral data derived from venom reservoir against these transcripts, mass spectrometry analysis revealed ten main venom proteins, including serine proteinase, metalloprotease, dipeptidyl peptidase IV, esterase, antithrombin-III, acid phosphatase, neural/ectodermal development factor IMP-L2 like protein, venom allergen 3, and unknown protein. Interestingly, one serine proteinase was firstly identified with rarely high molecular weight about 200 kDa in parasitoid venom. The occurrence of abundant acid phosphatase, antithrombin-III and venom allergen 3 demonstrated that S. guani venom composition is similar to that of social wasp venoms. All identified venom genes showed abundantly biased expression in venom apparatus, indicating their virulent functions involved in parasitization. This study shed light on the more better understanding of parasitoid venom evolution across species and will facilitate the further elucidation of function and toxicity of these venom proteins.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
16
|
Petrella V, Aceto S, Musacchia F, Colonna V, Robinson M, Benes V, Cicotti G, Bongiorno G, Gradoni L, Volf P, Salvemini M. De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum. BMC Genomics 2015; 16:847. [PMID: 26493315 PMCID: PMC4619268 DOI: 10.1186/s12864-015-2088-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022] Open
Abstract
Background The phlebotomine sand fly Phlebotomus perniciosus (Diptera: Psychodidae, Phlebotominae) is a major Old World vector of the protozoan Leishmania infantum, the etiological agent of visceral and cutaneous leishmaniases in humans and dogs, a worldwide re-emerging diseases of great public health concern, affecting 101 countries. Despite the growing interest in the study of this sand fly species in the last years, the development of genomic resources has been limited so far. To increase the available sequence data for P. perniciosus and to start studying the molecular basis of the sexual differentiation in sand flies, we performed whole transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females and de novo transcriptome assembly. Results We assembled 55,393 high quality transcripts, of which 29,292 were unique, starting from adult whole body male and female pools. 11,736 transcripts had at least one functional annotation, including full-length low abundance salivary transcripts, 981 transcripts were classified as putative long non-coding RNAs and 244 transcripts encoded for putative novel proteins specific of the Phlebotominae sub-family. Differential expression analysis identified 8590 transcripts significantly biased between sexes. Among them, some show relaxation of selective constraints when compared to their orthologs of the New World sand fly species Lutzomyia longipalpis. Conclusions In this paper, we present a comprehensive transcriptome resource for the sand fly species P. perniciosus built from short-read RNA-seq and we provide insights into sex-specific gene expression at adult stage. Our analysis represents a first step towards the identification of sex-specific genes and pathways and a foundation for forthcoming investigations into this important vector species, including the study of the evolution of sex-biased genes and of the sexual differentiation in phlebotomine sand flies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2088-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - S Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - F Musacchia
- Stazione Zoologica "Anton Dohrn", Naples, Italy
| | - V Colonna
- National Research Council, Institute of Genetics and Biophysics, Naples, Italy
| | - M Robinson
- Institute of Molecular Life Science, University of Zurich, Zurich, Switzerland.,SIB-Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - V Benes
- Genomics Core Facility, EMBL, Heidelberg, Germany
| | - G Cicotti
- Institute for High Performance Computing and Networking, ICAR-CNR, Naples, Italy
| | - G Bongiorno
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - L Gradoni
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - P Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - M Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|