1
|
Jayarathna SB, Chawla HS, Mira MM, Duncan RW, Stasolla C. Mapping of quantitative trait loci (QTL) in Brassica napus L. for tolerance to water stress. Genome 2024; 67:482-492. [PMID: 39417409 DOI: 10.1139/gen-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brassica napus L. plants are sensitive to water stress conditions throughout their life cycle from seed germination to seed setting. This study aims at identifying quantitative trait loci (QTL) linked to B. napus tolerance to water stress mimicked by applications of 10% polyethylene glycol-6000 (PEG-6000). Two doubled haploid populations, each consisting of 150 genotypes, were used for this research. Plants at the two true leaf stage of development were grown in the absence (control) or presence (stress) of PEG-6000 under controlled environmental conditions for 48 h, and the drought stress index was calculated for each genotype. All genotypes, along with their parents, were genotyped using the Brassica Infinium 90K SNP BeadChip Array. Inclusive composite interval mapping was used to identify QTL. Six QTL and 12 putative QTL associated with water stress tolerance were identified across six chromosomes (A2, A3, A4, A9, C3, and C7). Collectively, 2154 candidate genes for water stress tolerance were identified for all the identified QTL. Among them, 213 genes were identified as being directly associated with water stress (imposed by PEG-6000) tolerance based on nine functional annotations. These results can be incorporated into future breeding initiatives to select plant material with the ability to cope effectively with water stress.
Collapse
Affiliation(s)
- Samadhi B Jayarathna
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Harmeet S Chawla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Kang Y, Li CZ, Ullah A, Zhang Q, Yu XZ. The Accumulation of Abscisic Acid Increases the Innate Pool of Soluble Phenolics through Polyamine Metabolism in Rice Seedlings under Hexavalent Chromium Stress. TOXICS 2024; 12:577. [PMID: 39195679 PMCID: PMC11359078 DOI: 10.3390/toxics12080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Potential toxic element (PTE) pollution has emerged as a significant environmental and social concern in global agriculture. Chromium (Cr) occurs in different oxidation states naturally, among them Cr(VI), which is highly toxic. This study carried out biochemical and molecular tests to elucidate the accumulation of total soluble phenolics (TSPs) in rice plants exposed to Cr(VI) at 2.0, 8.0, and 16.0 mg Cr/L, emphasizing the interaction between polyamines (PAs) and abscisic acid (ABA). The results revealed significant Cr accumulation in different tissues of rice plants, which hindered their growth. Cr(VI) exposure increased the ABA concentration, with higher levels detected in the shoots than in the roots. The TSP concentration in rice tissues showed a positive relationship with the supplied concentrations of Cr(VI). The measured PAs, including spermine (Spm), putrescine (Put), and spermidine (Spd), exhibited varied responses to Cr(VI) stress, with only Spm concentration increasing with Cr(VI) concentrations. Real-time qRT-PCR showed PAs and ABA synthesis-associated genes such as OsADC1, OsAIH, OsCPA1, and OsCPA4 were significantly up-regulated in shoot of rice plants treated with Cr(VI). These genes are associated with the second pathway of Put synthesis, originating from Arg. Almost all genes activated in the Met pathway were significantly up-regulated as well. Moreover, the genes involved in the interconversion among the three species of PAs exhibited completely different responses to Cr(VI) exposure. Overall, the biochemical analysis and gene expression data indicate that the interaction between ABA and Spm is likely to enhance the TSP levels in rice plants subjected to Cr(VI) toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China; (Y.K.); (C.-Z.L.); (A.U.); (Q.Z.)
| |
Collapse
|
3
|
Chanthini KMP, Pavithra GS, Murugan P, Malarvizhi P, Deva-Andrews A, Ramasubramanian R, Thulasi-Raman N, Malafaia G, Senthil-Nathan S, Prockow J. Management of excessive soil H+ ion induced toxicities by application of organic seaweed amendment enhances photosynthesis and resource use efficiencies in rice (Oryza sativa). ENVIRONMENTAL RESEARCH 2024; 247:118179. [PMID: 38218516 DOI: 10.1016/j.envres.2024.118179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Globally, soil acidification is a serious environmental issue that reduces commercial agricultural production. Rice is subjected to nutritional stress due to acidic soil, which is a major impediment to rice production. Since acid soil threatens rice plants with soil compaction, nutrient loss, and plant stress-induced oxidative cell damage that results in affecting the photosynthetic system, restricting the availability of water, and reducing overall plant growth and productivity. Since contemporary soil acidification management strategies provide mediocre results, the use of Sargassum wightii seaweed-based biostimulants (BS) and soil amendments is sought as an environmentally friendly alternative strategy, and therefore its potential isevaluated in this study. BS was able to mediate soil quality by improving soil pH and structure along with facilitating nitrogen phytoavailability. BS also increased the activity of the antioxidant enzyme system, superoxide dismutase ((48%), peroxidase (76.6%), and ascorbate peroxidase (63.5%), aggregating the monaldehyde-mediating accumulation of osmoprotective proline in roots, that was evident from rapid initiation of root hair growth in treated seedlings. BS was also able to physiologically modulate photosynthetic activities and chlorophyll production (24.31%) in leaves, maintaining the efficiency of plant water use by regulating the stomatal conductance (0.91 mol/m/s) and the transpiration rate (13.2 mM/m/s). The BS compounds were also successful in facilitating nitrogen uptake resulting in improved plant growth (59%), tiller-panicle number, and yield (52.57%), demonstrating a resourceful nitrogen use efficiency (71.96%) previously affected by stress induced by acid soil. Therefore, the study affirms the competent potential of S. wightii-based soil amendment to be applied not only to improve soil quality, but also to increase plant production and yield.
Collapse
Affiliation(s)
- Kanagaraj Muthu-Pandian Chanthini
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India
| | - Ganesh-Subbaraja Pavithra
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India
| | - Ponnusamy Murugan
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India
| | - Pauldurai Malarvizhi
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India
| | - Arulsoosairaj Deva-Andrews
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India
| | - Ramakrishnan Ramasubramanian
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India
| | - Narayanan Thulasi-Raman
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
| | - Sengottayan Senthil-Nathan
- Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627 412, Tamil-Nadu, India.
| | - Jaroslaw Prockow
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Ul. Kożuchowska 7a, 51-631, Wrocław, Poland
| |
Collapse
|
4
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
5
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
6
|
Long Q, Qiu S, Man J, Ren D, Xu N, Luo R. OsAAI1 Increases Rice Yield and Drought Tolerance Dependent on ABA-Mediated Regulatory and ROS Scavenging Pathway. RICE (NEW YORK, N.Y.) 2023; 16:35. [PMID: 37535208 PMCID: PMC10400514 DOI: 10.1186/s12284-023-00650-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023]
Abstract
In this study, we investigated the function of OsAAI1 in yield and drought tolerance by constructing overexpression line OE-OsAAI1 and mutant line osaai1. Bioinformatics analysis showed that the AAI gene-OsAAI1- belongs to the HPS_like subfamily of the AAI_LTSS superfamily, and OsAAI1 was localized in the nucleus. The expression of OsAAI1 was significantly induced by ABA and drought stress. OsAAI1 overexpression (OE19) significantly increased, and gene mutant (osaai1-1) repressed plant height, primary root length, lateral root number, grain size and yield in rice. Moreover, physiological and biochemical analyses showed that osaai1 was sensitive to drought stress, while OE19 enhanced the drought tolerance in rice. DAB and NBT staining revealed that under drought treatment, osaai1 accumulated a large amount of ROS compared with the wild type, while OE19 accumulated the least, and CAT, APX, GPX, GR activities were higher in OE19 and lower in osaai1, suggesting that OE19 improves rice tolerance to drought stress by enhancing ROS scavenging ability. OE19 also induce the expression of ABA-mediated regulatory pathway genes and enhance accumulation of ABA content in rice seedling. Predictably, OE19 displayed enhanced sensitivity to ABA, and ROS accumulation was significantly higher than in wild type and osaai1 under 3 µM ABA treatment. Thus, these results suggest that OsAAI1 is a positive regulator of rice yield and drought tolerance dependent on the ABA-mediated regulatory and ROS scavenging pathway.
Collapse
Affiliation(s)
- Qing Long
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Shichun Qiu
- Chongqing Three Gorges Academy of Agricultural Sciences, Wanzhou, Chongqing City, 404155, China
| | - Jianmin Man
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Denghong Ren
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ning Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Rui Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
7
|
Li W, Lin M, Li J, Liu D, Tan W, Yin X, Zhai Y, Zhou Y, Xing W. Genome-wide association study of drought tolerance traits in sugar beet germplasms at the seedling stage. Front Genet 2023; 14:1198600. [PMID: 37547461 PMCID: PMC10401439 DOI: 10.3389/fgene.2023.1198600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Sugar beets are an important crop for global sugar production. Intense drought and the increasing lack of water resources pose a great threat to sugar beet cultivation. It is a priority to investigate favourable germplasms and functional genes to improve the breeding of drought tolerant plants. Methods: Thus, in this study, 328 sugar beet germplasms were used in a genome-wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers and candidate genes associated with drought tolerance. Results: The results showed that under drought stress (9% PEG-6000), there were 11 significantly associated loci on chromosomes 2, 3, 5, 7, and 9 from the 108946 SNPs filtered using a mixed linear model (MLM). Genome-wide association analysis combined with qRT-PCR identified 13 genes that were significantly differentially expressed in drought-tolerant extreme materials. Discussion: These candidate genes mainly exhibited functions such as regulating sugar metabolism, maintaining internal environmental stability and participating in photosystem repair. This study provides valuable information for exploring the molecular mechanisms of drought tolerance and improvement in sugar beet.
Collapse
Affiliation(s)
- Wangsheng Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Ming Lin
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Xilong Yin
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yan Zhai
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
8
|
Li X, Wang L, Li W, Zhang X, Zhang Y, Dong S, Song X, Zhao J, Chen M, Yuan X. Genome-Wide Identification and Expression Profiling of Cytochrome P450 Monooxygenase Superfamily in Foxtail Millet. Int J Mol Sci 2023; 24:11053. [PMID: 37446233 DOI: 10.3390/ijms241311053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cytochrome P450 monooxygenases (CYP450) are the largest enzyme family in plant metabolism and widely involved in the biosynthesis of primary and secondary metabolites. Foxtail millet (Setaria italica (L.) P. Beauv) can respond to abiotic stress through a highly complex polygene regulatory network, in which the SiCYP450 family is also involved. Although the CYP450 superfamily has been systematically studied in a few species, the research on the CYP450 superfamily in foxtail millet has not been completed. In this study, three hundred and thirty-one SiCYP450 genes were identified in the foxtail millet genome by bioinformatics methods, which were divided into four groups, including forty-six subgroups. One hundred and sixteen genes were distributed in thirty-three tandem duplicated gene clusters. Chromosome mapping showed that SiCYP450 was distributed on seven chromosomes. In the SiCYP450 family of foxtail millet, 20 conserved motifs were identified. Cis-acting elements in the promoter region of SiCYP450 genes showed that hormone response elements were found in all SiCYP450 genes. Of the three hundred and thirty-one SiCYP450 genes, nine genes were colinear with the Arabidopsis thaliana genes. Two hundred SiCYP450 genes were colinear with the Setaria viridis genes, including two hundred and forty-five gene duplication events. The expression profiles of SiCYP450 genes in different organs and developmental stages showed that SiCYP450 was preferentially expressed in specific tissues, and many tissue-specific genes were identified, such as SiCYP75B6, SiCYP96A7, SiCYP71A55, SiCYP71A61, and SiCYP71A62 in the root, SiCYP78A1 and SiCYP94D9 in leaves, and SiCYP78A6 in the ear. The RT-PCR data showed that SiCYP450 could respond to abiotic stresses, ABA, and herbicides in foxtail millet. Among them, the expression levels of SiCYP709B4, SiCYP71A11, SiCYP71A14, SiCYP78A1, SiCYP94C3, and SiCYP94C4 were significantly increased under the treatment of mesotrione, florasulam, nicosulfuron, fluroxypyr, and sethoxydim, indicating that the same gene might respond to multiple herbicides. The results of this study will help reveal the biological functions of the SiCYP450 family in development regulation and stress response and provide a basis for molecular breeding of foxtail millet.
Collapse
Affiliation(s)
- Xiaorui Li
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Linlin Wang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Weidong Li
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xin Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Yujia Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xi'e Song
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Juan Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
9
|
Đurić M, Subotić A, Prokić L, Trifunović-Momčilov M, Milošević S. Alterations in Physiological, Biochemical, and Molecular Responses of Impatiens walleriana to Drought by Methyl Jasmonate Foliar Application. Genes (Basel) 2023; 14:genes14051072. [PMID: 37239432 DOI: 10.3390/genes14051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Drought stress affects plant growth and development through several mechanisms, including the induction of oxidative stress. To cope with drought, plants have drought tolerance mechanisms at the physiological, biochemical, and molecular levels. In this study, the effects of foliar application of distilled water and methyl jasmonate (MeJA) (5 and 50 µM) on the physiological, biochemical, and molecular responses of Impatiens walleriana during two drought regimes (15 and 5% soil water content, SWC) were investigated. The results showed that plant response depended on the concentration of the elicitor and the stress intensity. The highest chlorophyll and carotenoid contents were observed at 5% SWC in plants pre-treated with 50 µM MeJA, while the MeJA did not have a significant effect on the chlorophyll a/b ratio in drought-stressed plants. Drought-induced formation of hydrogen peroxide and malondialdehyde in plants sprayed with distilled water was significantly reduced in plant leaves pretreated with MeJA. The lower total polyphenol content and antioxidant activity of secondary metabolites in MeJA-pretreated plants were observed. The foliar application of MeJA affected the proline content and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase) in plants that suffered from drought. The expression of abscisic acid (ABA) metabolic genes (IwNCED4, IwAAO2, and IwABA8ox3) was the most affected in plants sprayed with 50 µM MeJA, while of the four analyzed aquaporin genes (IwPIP1;4, IwPIP2;2, IwPIP2;7, and IwTIP4;1), the expression of IwPIP1;4 and IwPIP2;7 was strongly induced in drought-stressed plants pre-treated with 50 µM MeJA. The study's findings demonstrated the significance of MeJA in regulating the gene expression of the ABA metabolic pathway and aquaporins, as well as the considerable alterations in oxidative stress responses of drought-stressed I. walleriana foliar sprayed with MeJA. The results improved our understanding of this horticulture plant's stress physiology and the field of plant hormones' interaction network in general.
Collapse
Affiliation(s)
- Marija Đurić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Angelina Subotić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milana Trifunović-Momčilov
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Snežana Milošević
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Plant Physiology, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
10
|
Islam F, Khan MSS, Ahmed S, Abdullah M, Hannan F, Chen J. OsLPXC negatively regulates tolerance to cold stress via modulating oxidative stress, antioxidant defense and JA accumulation in rice. Free Radic Biol Med 2023; 199:2-16. [PMID: 36775108 DOI: 10.1016/j.freeradbiomed.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Exposure of crops to low temperature (LT) during emerging and reproductive stages influences their growth and development. In this study, we have isolated a cold induced, nucleus-localized lipid A gene from rice named OsLPXC, which encodes a protein of 321 amino acids. Knockout of OsLPXC resulted in enhance sensitivity to LT stress in rice, with increased accumulation of reactive oxygen species (ROS), malondialdehyde and electrolyte leakage, while expression and activities of antioxidant enzymes were significantly suppressed. The accumulation of chlorophyll content and net photosynthetic rate of knockout plants were also decreased compared with WT under LT stress. The functional analysis of differentially expressed genes (DEGs), showed that numerous genes associated with antioxidant defense, photosynthesis, cold signaling were solely expressed and downregulated in oslpxc plants compared with WT under LT. The accumulation of methyl jasmonate (MeJA) in leave and several DEGs related to the jasmonate biosynthesis pathway were significantly downregulated in OsLPXC knockout plants, which showed differential levels of MeJA regulation in WT and knockout plants in response to cold stress. These results indicated that OsLPXC positively regulates cold tolerance in rice via stabilizing the expression and activities of ROS scavenging enzymes, photosynthetic apparatus, cold signaling genes, and jasmonate biosynthesis.
Collapse
Affiliation(s)
- Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | | | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Abdullah
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Fu K, Song W, Chen C, Mou C, Huang Y, Zhang F, Hao Q, Wang P, Ma T, Chen Y, Zhu Z, Zhang M, Tong Q, Liu X, Jiang L, Wan J. Improving pre-harvest sprouting resistance in rice by editing OsABA8ox using CRISPR/Cas9. PLANT CELL REPORTS 2022; 41:2107-2110. [PMID: 35976402 DOI: 10.1007/s00299-022-02917-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Knock out OsABA8ox helps improve pre-harvest spouting resistance and do not affect rice yield. Pre-harvest sprouting(PHS) is a phenomenon that the seeds of crops germinate preharvest, which reduces the yield and quality of rice. Abscisic acid(ABA) is one of the phytohormones that promotes seed dormancy. ABA8' hydroxylase is the main enzyme that can catabolism ABA in plant. There are three genes that encode ABA8' hydroxylase in rice, named OsABA8ox1, OsABA8ox2 and OsABA8ox3. In this study, we use CRISPR/Cas9 gene editing technology to target these three genes in Ningjing6 and find that the knockout transgenic lines are all significantly strengthen in seed dormancy and have no effect on the yield. By a series of quantitative experiments, we consider that after knock out OsABA8ox, the high endogenous ABA level will influence the ABA signal which suppress the substantial and energy metabolism in the seeds, and finally led to higher dormancy.
Collapse
Affiliation(s)
- Kai Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Weihan Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Cheng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Changling Mou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Yunshuai Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Fulin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Qixian Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Yaping Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Ziyan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Min Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Qikai Tong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Research Center of Plant Gene Editing Engineering, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
12
|
Fan X, Liu J, Zhang Z, Xi Y, Li S, Xiong L, Xing Y. A long transcript mutant of the rubisco activase gene RCA upregulated by the transcription factor Ghd2 enhances drought tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:673-687. [PMID: 35106849 DOI: 10.1111/tpj.15694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The transcription factor Ghd2 increases rice yield potential under normal conditions and accelerates leaf senescence under drought stress. However, its mechanism on the regulation of leaf senescence under drought stress remains unclear. In the present study, to unveil the mechanism, one target of Ghd2, the Rubisco activase gene RCA, was identified through the combined analysis of Ghd2-CRISPR transcriptome data and Ghd2-overexpression microarray data. Ghd2 binds to the 'CACA' motif in the RCA promoter by its CCT domain and upregulates RCA expression. RCA has alternative transcripts, RCAS and RCAL, which are predominantly expressed under normal conditions and drought stress, respectively. Similar to Ghd2-overexpressing plants, RCAL-overexpressing plants were more sensitive to drought stress than the wild-type. However, the plants overexpressing RCAS showed a weak drought-sensitive phenotype. Moreover, RCAL knockdown and knockout plants did not show yield loss under normal conditions, but exhibited enhanced drought tolerance and delayed leaf senescence. The chlorophyll content, the free amino acid content and the expression of senescence-related genes in the RCAL mutant were lower than those in the wild-type plants under drought stress. In summary, Ghd2 induces leaf senescence by upregulating RCAL expression under drought stress, and the RCAL mutant has important values in breeding drought-tolerant varieties.
Collapse
Affiliation(s)
- Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juhong Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Xi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangle Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
13
|
Teng Z, Yu H, Wang G, Meng S, Liu B, Yi Y, Chen Y, Zheng Q, Liu L, Yang J, Duan M, Zhang J, Ye N. Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1457-1472. [PMID: 34921476 DOI: 10.1111/tpj.15642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Poor grain filling of inferior spikelets is becoming a severe problem in some super rice varieties with large panicles. Moderate soil drying (MD) after pollination has been proven to be a practical strategy to promote grain filling. However, the molecular mechanisms underlying this phenomenon remain largely unexplored. Here, transcriptomic analysis of the most active grain filling stage revealed that both starch metabolism and phytohormone signaling were significantly promoted by MD treatment, accompanied by increased enzyme activities of starch synthesis and elevated abscisic acid (ABA) and indole-3-acetic acid (IAA) content in the inferior spikelet. Moreover, the IAA biosynthesis genes OsYUC11 and OsTAR2 were upregulated, while OsIAA29 and OsIAA24, which encode two repressors of auxin signaling, were downregulated by MD, implying a regulation of both IAA biosynthesis and auxin signal transduction in the inferior spikelet by MD. A notable improvement in grain filling of the inferior spikelet was found in the aba8ox2 mutant, which is mutated in an ABA catabolism gene. In contrast, overexpression of OsABA8ox2 significantly reduced grain filling. Interestingly, not only the IAA content, but also the expression of IAA biosynthesis and auxin-responsive genes displayed a similar trend to that in the inferior spikelet under MD. In addition, several OsTPP genes were downregulated in the inferior spikelets of both MD/ABA-treated wild-type plants and the aba8ox2 mutant, resulting in lower trehalose content and higher levels of -6-phosphate (T6P), thereby increasing the expression of OsTAR2, a target of T6P. Taken together, our results suggest that the synergistic interaction of ABA-mediated accumulation of IAA promotes grain filling of inferior spikelets under MD.
Collapse
Affiliation(s)
- Zhenning Teng
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Huihui Yu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Shuan Meng
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Bohan Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yake Yi
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yinke Chen
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Qin Zheng
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nenghui Ye
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
14
|
Xia Q, Fu L, Tang H, Song L, Tan J, Guo Y. Sensing and classification of rice ( Oryza sativa L.) drought stress levels based on chlorophyll fluorescence. PHOTOSYNTHETICA 2022; 60:102-109. [PMID: 39649002 PMCID: PMC11559473 DOI: 10.32615/ps.2022.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/25/2022] [Indexed: 12/10/2024]
Abstract
Sensing and classification of drought stress levels are very important to agricultural production. In this work, rice drought stress levels were classified based on the commonly used chlorophyll a fluorescence (ChlF) parameter (Fv/Fm), feature data (induction features), and the whole OJIP induction (induction curve) by using a Support Vector Machine (SVM). The classification accuracies were compared with those obtained by the K-Nearest Neighbors (KNN) and the Ensemble model (Ensemble) correspondingly. The results show that the SVM can be used to classify drought stress levels of rice more accurately compared to the KNN and the Ensemble and the classification accuracy (86.7%) for the induction curve as input is higher than the accuracy (43.9%) with Fv/Fm as input and the accuracy (72.7%) with induction features as input. The results imply that the induction curve carries important information on plant physiology. This work provides a method of determining rice drought stress levels based on ChlF.
Collapse
Affiliation(s)
- Q. Xia
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - L.J. Fu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - H. Tang
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - L. Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 225009 Yangzhou, China
| | - J.L. Tan
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Y. Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Zhu M, He Y, Zhu M, Ahmad A, Xu S, He Z, Jiang S, Huang J, Li Z, Liu S, Hou X, Zhang Z. ipa1 improves rice drought tolerance at seedling stage mainly through activating abscisic acid pathway. PLANT CELL REPORTS 2022; 41:221-232. [PMID: 34694441 DOI: 10.1007/s00299-021-02804-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE: ipa1 enhances rice drought tolerance mainly through activating the ABA pathway. It endows rice seedlings with a more developed root system, smaller leaf stomata aperture, and enhanced carbon metabolism. Drought is a major abiotic stress to crop production. IPA1 (IDEAL PLANT ARCHITECTURE 1)/OsSPL14 encodes a transcription factor and has been reported to function in both rice ideal plant architecture and biotic resistance. Here, with a pair of IPA1 and ipa1-NILs (Near Iso-genic Lines), we found that ipa1 could significantly improve rice drought tolerance at seedling stage. The ipa1 plants had a better-developed root system and smaller leaf stomatal aperture. Analysis of carbon-nitrogen metabolism-associated enzyme activity, gene expression, and metabolic profile indicated that ipa1 could tip the carbon-nitrogen metabolism balance towards an increased carbon metabolism pattern. In both the control and PEG-treated conditions, ABA content in the ipa1 seedlings was significantly higher than that in the IPA1 seedlings. Expression of the ABA biosynthesis genes was detected to be up-regulated, whereas the expression of ABA catabolism genes was down-regulated in the ipa1 seedlings. In addition, based on yeast one-hybrid assay and dual-luciferase assay, IPA1 was found to directly activate the promoter activity of OsHOX12, a transcription factor promoting ABA biosynthesis, and OsNAC52, a positive regulator of the ABA pathway. The expression of OsHOX12 and OsNAC52 was significantly up-regulated in the ipa1 plants. Combined with the previous studies, our results suggested that ipa1 could improve rice seedling drought tolerance mainly through activating the ABA pathway and that regulation of the ipa1-mediated ABA pathway will be an important strategy for improving drought resistance of rice.
Collapse
Affiliation(s)
- Menghao Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China
| | - Yonggang He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China
| | - Mingqiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ayaz Ahmad
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zijun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinqiu Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaojia Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihong Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Ezhou Seed Technology Research Institute of Hubei Province, Ezhou, 436043, China.
| |
Collapse
|
16
|
Fang Y, Jiang J, Du Q, Luo L, Li X, Xie X. Cytochrome P450 Superfamily: Evolutionary and Functional Divergence in Sorghum ( Sorghum bicolor) Stress Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10952-10961. [PMID: 34495670 DOI: 10.1021/acs.jafc.1c03701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 (CYP) genes encode enzymes that catalyze various growth-, development-, and stress-related reactions. Sorghum (Sorghum bicolor) is a type of C4 plant and an important cash crop. However, systematic identification and analysis of functional differentiation and evolution of CYP genes have not been carried out in this species. In the present study, we revealed that the sorghum genome contains 351 CYP genes, which can be divided into nine classes. These genes are from ancestors and repeated segments, rather than tandem repeats. Based on collinearity results, a large number of CYPs were extended before cotyledon differentiation, during the emergence of Gramineae, suggesting that genomewide duplication events and stress adaptation processes were important for the expansion of CYP genes. Their gene structure and motifs contain conserved regions and include various changes and loci. The expression characteristics and functional annotation of CYP genes indicated tissue specificity and selective expression. Overall, we identified all CYP genes in the sorghum genome and preliminarily explored their naming, structure, evolution, expression, and functional differentiation. The results advanced our understanding of plant gene family evolution and functional differentiation.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Junmei Jiang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
17
|
He X, Han Z, Yin H, Chen F, Dong Y, Zhang L, Lu X, Zeng J, Ma W, Mu P. High-Throughput Sequencing-Based Identification of miRNAs and Their Target mRNAs in Wheat Variety Qing Mai 6 Under Salt Stress Condition. Front Genet 2021; 12:724527. [PMID: 34456980 PMCID: PMC8385717 DOI: 10.3389/fgene.2021.724527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/20/2021] [Indexed: 12/04/2022] Open
Abstract
Soil salinization is one of the major abiotic stresses that adversely affect the yield and quality of crops such as wheat, a leading cereal crop worldwide. Excavating the salt-tolerant genes and exploring the salt tolerance mechanism can help breeding salt-tolerant wheat varieties. Thus, it is essential to identify salt-tolerant wheat germplasm resources. In this study, we carried out a salt stress experiment using Qing Mai 6 (QM6), a salt-tolerant wheat variety, and sequenced the miRNAs and mRNAs. The differentially expressed miRNAs and mRNAs in salt stress conditions were compared with the control. As results, a total of eight salt-tolerance-related miRNAs and their corresponding 11 target mRNAs were identified. Further analysis revealed that QM6 enhances salt tolerance through increasing the expression level of genes related to stress resistance, antioxidation, nutrient absorption, and lipid metabolism balance, and the expression of these genes was regulated by the identified miRNAs. The resulting data provides a theoretical basis for future research studies on miRNAs and novel genes related to salt tolerance in wheat in order to develop genetically improved salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zhen Han
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Huayan Yin
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Fan Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yihuan Dong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Lufei Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaoqing Lu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China.,State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Ping Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Abdellatef E, Kamal NM, Tsujimoto H. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms22147687. [PMID: 34299307 PMCID: PMC8306419 DOI: 10.3390/ijms22147687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.
Collapse
Affiliation(s)
- Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, P.O. Box 2404, Khartoum 11111, Sudan;
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya
| | - Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Agricultural Research Corporation, P.O. Box 30, Khartoum North 11111, Sudan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
- Correspondence:
| |
Collapse
|
19
|
Chen K, Du K, Shi Y, Yin L, Shen WH, Yu Y, Liu B, Dong A. H3K36 methyltransferase SDG708 enhances drought tolerance by promoting abscisic acid biosynthesis in rice. THE NEW PHYTOLOGIST 2021; 230:1967-1984. [PMID: 33606283 DOI: 10.1111/nph.17290] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Chromatin modifications play important roles in plant adaptation to abiotic stresses, but the precise function of histone H3 lysine 36 (H3K36) methylation in drought tolerance remains poorly evaluated. Here, we report that SDG708, a specific H3K36 methyltransferase, functions as a positive regulator of drought tolerance in rice. SDG708 promoted abscisic acid (ABA) biosynthesis by directly targeting and activating the crucial ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (OsNCED3) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 5 (OsNCED5). Additionally, SDG708 induced hydrogen peroxide accumulation in the guard cells and promoted stomatal closure to reduce water loss. Overexpression of SDG708 concomitantly enhanced rice drought tolerance and increased grain yield under normal and drought stress conditions. Thus, SDG708 is potentially useful as an epigenetic regulator in breeding for grain yield improvement.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yichen Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
20
|
Li L, He Y, Zhang Z, Shi Y, Zhang X, Xu X, Wu JL, Tang S. OsNAC109 regulates senescence, growth and development by altering the expression of senescence- and phytohormone-associated genes in rice. PLANT MOLECULAR BIOLOGY 2021; 105:637-654. [PMID: 33543390 PMCID: PMC7985107 DOI: 10.1007/s11103-021-01118-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
We demonstrate that OsNAC109 regulates senescence, growth and development via binding to the cis-element CNTCSSNNSCAVG and altering the expression of multiple senescence- and hormone-associated genes in rice. The NAC family is one of the largest transcripton factor families in plants and plays an essential role in plant development, leaf senescence and responses to biotic/abiotic stresses through modulating the expression of numerous genes. Here, we isolated and characterized a novel yellow leaf 3 (yl3) mutant exhibiting arrested-growth, increased accumulation of reactive oxygen species (ROS), decreased level of soluble proteins, increased level of malondialdehyde (MDA), reduced activities of ROS scavenging enzymes, altered expression of photosynthesis and senescence/hormone-associated genes. The yellow leaf and arrested-growth trait was controlled by a single recessive gene located to chromosome 9. A single nucleotide substitution was detected in the mutant allele leading to premature termination of its coding protein. Genetic complementation could rescue the mutant phenotype while the YL3 knockout lines displayed similar phenotype to WT. YL3 was expressed in all tissues tested and predicted to encode a transcriptional factor OsNAC109 which localizes to the nucleus. It was confirmed that OsNAC109 could directly regulate the expression of OsNAP, OsNYC3, OsEATB, OsAMTR1, OsZFP185, OsMPS and OsGA2ox3 by targeting to the highly conserved cis-element CNTCSSNNSCAVG except OsSAMS1. Our results demonstrated that OsNAC109 is essential to rice leaf senescence, growth and development through regulating the expression of senescence- and phytohormone-associated genes in rice.
Collapse
Affiliation(s)
- Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Zhihong Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| |
Collapse
|
21
|
Li Q, Ma C, Tai H, Qiu H, Yang A. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress. PLoS One 2020; 15:e0243112. [PMID: 33259539 PMCID: PMC7707490 DOI: 10.1371/journal.pone.0243112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/14/2020] [Indexed: 11/18/2022] Open
Abstract
Saline-alkaline stress is an abiotic stress that suppresses rice plant growth and reduces yield. However, few studies have investigated the mechanism by which rice plants respond to saline-alkaline stress at a global transcriptional level. Dongdao-4 and Jigeng-88, which differ in their tolerance to saline-alkaline stress, were used to explore gene expression differences under saline-alkaline stress by RNA-seq technology. In seedlings of Dongdao-4 and Jigeng-88, 3523 and 4066 genes with differential levels of expression were detected, respectively. A total of 799 genes were upregulated in the shoots of both Dongdao-4 and Jigeng-88, while 411 genes were upregulated in the roots of both genotypes. Among the downregulated genes in Dongdao-4 and Jigeng-88, a total of 453 and 372 genes were found in shoots and roots, respectively. Gene ontology (GO) analysis showed that upregulated genes were enriched in several GO terms such as response to stress, response to jasmonic acid, organic acid metabolic process, nicotianamine biosynthetic process, and iron homeostasis. The downregulated genes were enriched in several GO terms, such as photosynthesis and response to reactive oxygen species. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that Dongdao-4 seedlings were specifically enriched in the biosynthesis of secondary metabolites such as diterpenoids and phenylpropanoids. The upregulated genes that were involved in secondary metabolite biosynthesis, amino acid biosynthesis, betalain biosynthesis, organic acid metabolic process, and iron homeostasis pathways may be central to saline-alkaline tolerance in both rice genotypes. In contrast, the genes involved in the diterpenoid and phenylpropanoid biosynthesis pathways may contribute to the greater tolerance to saline-alkaline stress in Dongdao-4 seedlings than in Jigeng-88. These results suggest that Dongdao-4 was equipped with a more efficient mechanism involved in multiple biological processes to adapt to saline-alkaline stress.
Collapse
Affiliation(s)
- Qian Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (AY); (QL)
| | - Changkun Ma
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an, China
| | - Huanhuan Tai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Huan Qiu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- * E-mail: (AY); (QL)
| |
Collapse
|
22
|
Đurić M, Subotić A, Prokić L, Trifunović-Momčilov M, Cingel A, Vujičić M, Milošević S. Morpho-Physiological and Molecular Evaluation of Drought and Recovery in Impatiens walleriana Grown Ex Vitro. PLANTS 2020; 9:plants9111559. [PMID: 33202704 PMCID: PMC7697770 DOI: 10.3390/plants9111559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
This study was carried out to examine the drought effect on development, physiological, biochemical and molecular parameters in Impatiens walleriana grown ex vitro. Experiment design included three treatments: Control plants—grown under optimal watering (35%–37% of soil moisture content), drought-stressed plants—non-irrigated to reach 15% and 5% of soil moisture content and recovery plants—rehydrated for four days to reach optimal soil moisture content. Drought reduced fresh weight, total leaf area, as well as dry weight of I. walleriana shoots. Drought up-regulated expression of abscisic acid (ABA) biosynthesis genes 9-cis-epoxycarotenoid dioxygenase 4 (NCED4) and abscisic aldehyde oxidase 2 (AAO2) and catabolic gene ABA 8′-hydroxylase 3 (ABA8ox3) which was followed by increased ABA content in the leaves. Decrement in water potential of shoots during the drought was not accompanied with increased amino acid proline content. We detected an increase in chlorophyll, carotenoid, total polyphenols and flavonols content under drought conditions, as well as malondialdehyde, hydrogen peroxide and DPPH (1,1′-diphenyl-2-picrylhydrazyl) activity. Increased antioxidant enzyme activities (superoxide dismutase, peroxidase and catalase) throughout drought were also determined. Recovery treatment was significant for neutralizing drought effect on growth parameters, shoot water potential, proline content and genes expression.
Collapse
Affiliation(s)
- Marija Đurić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
- Correspondence: ; Tel.: +381-11-207-8425
| | - Angelina Subotić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| | - Ljiljana Prokić
- Department for Agrochemistry and Physiology of Plants, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| | - Aleksandar Cingel
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| | - Milorad Vujičić
- Department of Plant Physiology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Snežana Milošević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; (A.S.); (M.T.-M.); (A.C.); (S.M.)
| |
Collapse
|
23
|
Alamar MC, Anastasiadi M, Lopez-Cobollo R, Bennett MH, Thompson AJ, Turnbull CG, Mohareb F, Terry LA. Transcriptome and phytohormone changes associated with ethylene-induced onion bulb dormancy. POSTHARVEST BIOLOGY AND TECHNOLOGY 2020; 168:111267. [PMID: 33012993 PMCID: PMC7398043 DOI: 10.1016/j.postharvbio.2020.111267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Control of dormancy and sprouting in onion bulbs is commercially important for postharvest management. Although ethylene application is sometimes used to extend dormancy, the underlying mechanisms regulating dormancy transition remain unclear. Since the sprout leaves emerge from the bulb baseplate, we used this tissue to assess the impact of ethylene treatment and storage time on the hormone profile and the transcriptome. Reads from 30 libraries were assembled and annotated, with 94,840 unigenes retained after filtering. The de novo transcriptome assembly was of high quality and continuity (N50: 1809 bp, GC content: 36.21 %), and was used to analyse differential expression and Gene Onotologies. Across two years, applied ethylene resulted in delayed dormancy break and reduced post-dormancy sprout vigour. Ethylene supplementation enhanced endogenous ethylene production and caused a transient climacteric-like increase in respiration. Significant changes in hormone and associated transcript profiles occurred through storage and in response to ethylene. In particular, abscisic acid (ABA) and its metabolite phaseic acid (PA) increased under ethylene during the longer dormancy period; however, cytokinin increases observed during storage appeared largely independent of ethylene treatment. Several hormone-related transcripts showed differential expression over time and/or in response to ethylene. Expression of ethylene biosynthesis (ACO), receptor (EIN4) and transcription factor (EIL3) genes were modified by ethylene, as were ABA biosynthesis genes such NCED, and cytokinin biosynthesis genes such as LOG and CKX. We conclude that ethylene substantially modifies expression of genes in several phytohormone pathways, and some of these changes may underlie the dormancy-extending effects of exogenous ethylene.
Collapse
Affiliation(s)
| | | | - Rosa Lopez-Cobollo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Mark H. Bennett
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Fady Mohareb
- Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Leon A. Terry
- Cranfield University, Bedfordshire, MK43 0AL, UK
- Corresponding author.
| |
Collapse
|
24
|
Sun L, Di DW, Li G, Kronzucker HJ, Wu X, Shi W. Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4562-4577. [PMID: 32064504 PMCID: PMC7475098 DOI: 10.1093/jxb/eraa076] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Ammonium (NH4+) is one of the principal nitrogen (N) sources in soils, but is typically toxic already at intermediate concentrations. The phytohormone abscisic acid (ABA) plays a pivotal role in responses to environmental stresses. However, the role of ABA under high-NH4+ stress in rice (Oryza sativa L.) is only marginally understood. Here, we report that elevated NH4+ can significantly accelerate tissue ABA accumulation. Mutants with high (Osaba8ox) and low levels of ABA (Osphs3-1) exhibit elevated tolerance or sensitivity to high-NH4+ stress, respectively. Furthermore, ABA can decrease NH4+-induced oxidative damage and tissue NH4+ accumulation by enhancing antioxidant and glutamine synthetase (GS)/glutamate synthetasae (GOGAT) enzyme activities. Using RNA sequencing and quantitative real-time PCR approaches, we ascertain that two genes, OsSAPK9 and OsbZIP20, are induced both by high NH4+ and by ABA. Our data indicate that OsSAPK9 interacts with OsbZIP20, and can phosphorylate OsbZIP20 and activate its function. When OsSAPK9 or OsbZIP20 are knocked out in rice, ABA-mediated antioxidant and GS/GOGAT activity enhancement under high-NH4+ stress disappear, and the two mutants are more sensitive to high-NH4+ stress compared with their wild types. Taken together, our results suggest that ABA plays a positive role in regulating the OsSAPK9-OsbZIP20 pathway in rice to increase tolerance to high-NH4+ stress.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, China
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Herbert J Kronzucker
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Xiangyu Wu
- Key Lab of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Li Y, Wei K. Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize. BMC PLANT BIOLOGY 2020; 20:93. [PMID: 32122306 PMCID: PMC7052972 DOI: 10.1186/s12870-020-2288-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/12/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND The cytochrome P450s (CYP450s) as the largest enzyme family of plant metabolism participate in various physiological processes, whereas no study has demonstrated interest in comprehensive comparison of the genes in wheat and maize. Genome-wide survey, characterization and comparison of wheat and maize CYP450 gene superfamily are useful for genetic manipulation of the Gramineae crops. RESULTS In total, 1285 and 263 full-length CYP450s were identified in wheat and maize, respectively. According to standard nomenclature, wheat CYP450s (TaCYP450s) were categorized into 45 families, while maize CYP450s (ZmCYP450s) into 43 families. A comprehensive analysis of wheat and maize CYP450s, involved in functional domains, conserved motifs, phylogeny, gene structures, chromosome locations and duplicated events was performed. The result showed that each family/subfamily in both species exhibited characteristic features, suggesting their phylogenetic relationship and the potential divergence in their functions. Functional divergence analysis at the amino acid level of representative clans CYP51, CYP74 and CYP97 in wheat, maize and rice identified some critical amino acid sites that are responsible for functional divergence of a gene family. Expression profiles of Ta-, ZmCYP450s were investigated using RNA-seq data, which contribute to infer the potential functions of the genes during development and stress responses. We found in both species CYP450s had preferential expression in specific tissues, and many tissue-specific genes were identified. Under water-deficit condition, 82 and 39 significantly differentially expressed CYP450s were respectively detected in wheat and maize. These genes may have some roles in protecting plants against drought damage. Thereinto, fourteen CYP450s were selected to validate their expression level through qRT-PCR. To further elucidating molecular mechanisms of CYP450 action, gene co-expression network was constructed. In total, 477 TaCYP450s were distributed in 22 co-expression modules, and some co-expressed genes that likely take part in the same biochemical pathway were identified. For instance, the expression of TaCYP74A98_4D was highly correlated with TaLOX9, TaLOX36, TaLOX39, TaLOX44 and TaOPR8, and all of them may be involved in jasmonate (JA) biosynthesis. TaCYP73A201_3A showed coexpression with TaPAL1.25, TaCCoAOMT1.2, TaCOMT.1, TaCCR1.6 and TaLAC5, which probably act in the wheat stem and/or root lignin synthesis pathway. CONCLUSION Our study first established systematic information about evolutionary relationship, expression pattern and function characterization of CYP450s in wheat and maize.
Collapse
Affiliation(s)
- Yixuan Li
- School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000, Fujian, China
| | - Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
26
|
Jiu S, Xu Y, Wang J, Wang L, Liu X, Sun W, Sabir IA, Ma C, Xu W, Wang S, Abdullah M, Zhang C. The Cytochrome P450 Monooxygenase Inventory of Grapevine ( Vitis vinifera L.): Genome-Wide Identification, Evolutionary Characterization and Expression Analysis. Front Genet 2020; 11:44. [PMID: 32133027 PMCID: PMC7040366 DOI: 10.3389/fgene.2020.00044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
The cytochrome P450 (CYP) monooxygenase superfamily, belonging to heme-thiolate protein products, plays a vital role in metabolizing physiologically valuable compounds in plants. To date, CYP superfamily genes have not yet been characterized in grapevine (V. vinifera L.), and their functions remain unclear. In this study, a sum of 236 VvCYPs, divided into 46 families and clustered into nine clans, have been identified based on bioinformatics analyses in grapevine genome. The characteristics of both exon-intron organizations and motif structures further supported the close evolutionary relationships of VvCYP superfamily as well as the reliability of phylogenetic analysis. The gene number-based hierarchical cluster of CYP subfamilies of different plants demonstrated that the loss of CYP families seems to be limited to single species or single taxa. Promoter analysis elucidated various cis-regulatory elements related to phytohormone signaling, plant growth and development, as well as abiotic/biotic stress responses. The tandem duplication mainly contributed to the expansion of the VvCYP superfamily, followed by singleton duplication in grapevine. Global RNA-sequencing data of grapevine showed functional divergence of VvCYPs as diverse expression patterns of VvCYPs in various organs, tissues, and developmental phases, which were confirmed by quantitative real-time reverse transcription PCR (qRT-PCR). Taken together, our results provided valuable inventory for understanding the classification and biological functions of the VvCYPs and paved the way for further functional verification of these VvCYPs and are helpful to grapevine molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN. Phytohormones Producing Fungal Communities: Metabolic Engineering for Abiotic Stress Tolerance in Crops. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Huang Y, Jiao Y, Xie N, Guo Y, Zhang F, Xiang Z, Wang R, Wang F, Gao Q, Tian L, Li D, Chen L, Liang M. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110188. [PMID: 31481229 DOI: 10.1016/j.plantsci.2019.110188] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 05/08/2023]
Abstract
9-cis-epoxycarotenoid dioxygenase (NCED) is a rate-limiting enzyme for abscisic acid (ABA) biosynthesis. However, the molecular mechanisms of NCED5 that modulate plant development and abiotic stress tolerance are still unclear, particular in rice. Here, we demonstrate that a rice NCED gene, OsNCED5, was expressed in all tissues we tested, and was induced by exposure to salt stress, water stress, and darkness. Mutational analysis showed that nced5 mutants reduced ABA level and decreased tolerance to salt and water stress and delayed leaf senescence. However, OsNCED5 overexpression increased ABA level, enhanced tolerance to the stresses, and accelerated leaf senescence. Transcript analysis showed that OsNCED5 regulated ABA-dependent abiotic stress and senescence-related gene expression. Additionally, ectopic expression of OsNCED5 tested in Arabidopsis thaliana altered plant size and leaf morphology and delayed seed germination and flowering time. Thus, OsNCED5 may regulate plant development and stress resistance through control of ABA biosynthesis. These findings contribute to our understanding of the molecular mechanisms by which NCED regulates plant development and responses to abiotic stress in different crop species.
Collapse
Affiliation(s)
- Yuan Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Yang Jiao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Ningkun Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Yiming Guo
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Feng Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Zhipan Xiang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Rong Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Feng Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Qinmei Gao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China.
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
29
|
Bashir W, Anwar S, Zhao Q, Hussain I, Xie F. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:90-101. [PMID: 30889404 DOI: 10.1016/j.ecoenv.2019.03.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 05/02/2023]
Abstract
Recent climatic changes and low water availability due to unpredictable precipitation have reduced the productivity of soybean (Glycine max [L.] Merr.) cultivars. Limited information is available on how drought affects the accumulation and translocation of cadmium (Cd) by affecting soybean root. In this study, we investigated the effect of polyethylene glycol (PEG; 5% and 10%)-induced drought and Cd (0.2 and 0.5 mg L-1) stresses on soybean root morphology, Cd uptake and gene expression; plants not exposed to these stress (0% PEG and 0 mg L-1 Cd) served as a control. The results showed that drought affected roots morphology and Cd uptake. The reduction in root length, root area and root diameter and increase in catalase activity was less prominent in drought tolerant cultivars (Shennong20 and Liaodou32) than in drought sensitive cultivars (Liaodou3 and Liaodou10). Genes involved in abscisic acid (ABA) degradation, gibberellin and salicylic acid biosynthesis, hydrogen peroxide (H2O2) production and Cd transport were up-regulated, while those involved in zeatinriboside (ZR), indole 3-acetic acid (IAA) and methyl jasmonate (MeJA) biosynthesis were down-regulated under Cd and drought stress. Biosynthesis genes of gibberellin (Glyma03G019800.1), IAA (Glyma02G037600), ZR (XM_003550461.3) and MeJA (Glyma11G007600) were expressed to higher levels in drought tolerant cultivars than in drought sensitive cultivars. These genes represent potential candidates for the development of drought and Cd tolerant soybean cultivars.
Collapse
Affiliation(s)
- Waseem Bashir
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sumera Anwar
- Yantai High-tech International Science and Technology Cooperation, Yantai, Shandong, China
| | - Qiang Zhao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
30
|
Gómez R, Vicino P, Carrillo N, Lodeyro AF. Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Crit Rev Biotechnol 2019; 39:693-708. [PMID: 30991845 DOI: 10.1080/07388551.2019.1597829] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plants exposed to hostile environmental conditions such as drought or extreme temperatures usually undergo oxidative stress, which has long been assumed to significantly contribute to the damage suffered by the organism. Reactive oxygen species (ROS) overproduced under stress conditions were proposed to destroy membrane lipids and to inactivate proteins and photosystems, ultimately leading to cell death. Accordingly, considerable effort has been devoted, over the years, to improve stress tolerance by strengthening antioxidant and dissipative mechanisms. Although the notion that ROS cause indiscriminate damage in vivo has been progressively replaced by the alternate concept that they act as signaling molecules directing critical plant developmental and environmental responses including cell death, the induction of genes encoding antioxidant activities is commonplace under many environmental stresses, suggesting that their manipulation still offers promise. The features and consequences of ROS effects depend on the balance between various interacting pathways including ROS synthesis and scavenging, energy dissipation, conjugative reactions, and eventually reductive repair. They represent many possibilities for genetic manipulation. We report, herein, a comprehensive survey of transgenic plants in which components of the ROS-associated pathways were overexpressed, and of the stress phenotypes displayed by the corresponding transformants. Genetic engineering of different stages of ROS metabolism such as synthesis, scavenging, and reductive repair revealed a strong correlation between down-regulation of ROS levels and increased stress tolerance in plants grown under controlled conditions. Field assays are scarce, and are eagerly required to assess the possible application of this strategy to agriculture.
Collapse
Affiliation(s)
- Rodrigo Gómez
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| | - Paula Vicino
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| | - Néstor Carrillo
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| | - Anabella F Lodeyro
- a Facultad de Ciencias Bioquímicas y Farmacéuticas, Biología del Estrés en Plantas, Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET) , Universidad Nacional de Rosario (UNR) , Rosario , Argentina
| |
Collapse
|
31
|
Ding X, Huang X, Sun L, Wu J, Liu J. Influence of Abscisic Acid-Biosynthesis Inhibitor Fluridone on the Feeding Behavior and Fecundity of Nilaparvata lugens. INSECTS 2019; 10:insects10020057. [PMID: 30791475 PMCID: PMC6409642 DOI: 10.3390/insects10020057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Fluridone (FLU) was a pyrrolidone herbicide that was used for selective weeding in wheat, rice, corn and pasture and was also a biosynthesis inhibitor of abscisic acid (ABA), a significant plant hormone. ABA-promoted callose deposition facilitates rice resistance to pests but whether FLU had the opposite influence was unknown. The effects of FLU on the feeding behavior of the brown planthopper (Nilaparvata lugens Stål; BPH), after feeding with rice plants treated with FLU, were studied, using an electrical penetration graph (EPG). For susceptible rice cultivar (TN1), the duration for which BPH sucked phloem sap (N4 wave duration) after 15 μmol/L of FLU treatment was longer than that of the control but decreased after 30 and 60 μmol/L FLU treatments. Fecundity of BPH treated with 15 μmol/L FLU had no significant change, while the deposition area of callose was significantly decreased. For moderately-resistant rice cultivar (IR42), no differences in BPH feeding behavior and fecundity were observed but the deposition area of callose declined after treated with 15 μmol/L of FLU. These findings suggested that a low concentration of FLU (15 μmol/L) promoted BPH feeding behavior in TN1 but not in IR42 and the response in IR42 appeared to be more complicated, which provided supplementary evidence that ABA promoted plant resistance to BPH.
Collapse
Affiliation(s)
- Xu Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | |
Collapse
|
32
|
Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F, Jiang N, Feng H, Huang C, Yang P, Zhao H, Chen G, Liu H, Luo L, Hu H, Liu Q, Xiong L. Genome-Wide Association Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice. MOLECULAR PLANT 2018; 11:789-805. [PMID: 29614319 DOI: 10.1016/j.molp.2018.03.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 05/19/2023]
Abstract
Understanding how plants respond to drought can benefit drought resistance (DR) breeding. Using a non-destructive phenotyping facility, 51 image-based traits (i-traits) for 507 rice accessions were extracted. These i-traits can be used to monitor drought responses and evaluate DR. High heritability and large variation of these traits was observed under drought stress in the natural population. A genome-wide association study (GWAS) of i-traits and traditional DR traits identified 470 association loci, some containing known DR-related genes. Of these 470 loci, 443 loci (94%) were identified using i-traits, 437 loci (93%) co-localized with previously reported DR-related quantitative trait loci, and 313 loci (66.6%) were reproducibly identified by GWAS in different years. Association networks, established based on GWAS results, revealed hub i-traits and hub loci. This demonstrates the feasibility and necessity of dissecting the complex DR trait into heritable and simple i-traits. As proof of principle, we illustrated the power of this integrated approach to identify previously unreported DR-related genes. OsPP15 was associated with a hub i-trait, and its role in DR was confirmed by genetic transformation experiments. Furthermore, i-traits can be used for DR linkage analyses, and 69 i-trait locus associations were identified by both GWAS and linkage analysis of a recombinant inbred line population. Finally, we confirmed the relevance of i-traits to DR in the field. Our study provides a promising novel approach for the genetic dissection and discovery of causal genes for DR.
Collapse
Affiliation(s)
- Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Feng
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenglong Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Yang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guoxing Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
33
|
Wei K, Chen H. Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics 2018; 19:35. [PMID: 29320982 PMCID: PMC5764023 DOI: 10.1186/s12864-017-4425-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cytochrome P450 monooxygenases (CYP450, CYP, P450) catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways. Although CYP superfamily has been systematically studied in a few species, the genome-scale research about it in rice has not been done. RESULTS In this study, a total of 355 CYPs encoded by 326 genes were identified in japonica genome. The OsCYP genes are classified into 10 clans including 45 families according to phylogenetic analysis. More than half of the genes are distributed in 53 tandem duplicated gene clusters. Intron-exon structure of OsCYPs exhibits highly conserved and specificity within a family, and divergences of duplicate genes in gene structure result in non-functionalization, neo-functionalization or sub-functionalization. Selection pressure analysis showed that rice CYPs are under purifying selection. The microarray data analysis shows that some genes are tissue-specific expression, such as OsCYP710A5 and OsCYP71X14 in endosperm, OsCYP99A3 and OsCYP78A16 in root and OsCYP93G2 and OsCYP97D7 in leaf. Analysis of RNA-seq data derived from rice leaf developmental gradient indicates that some OsCYPs exhibit zone-specific expression patterns. OsCYP87C2, OsCYP96B5, OsCYP96B8 and OsCYP84A5 were specifically expressed in leaf base and transitional zone. The transcripts of lineages II and IV-1 members were highly abundant in maturing zone. Eighty three OsCYPs are differentially expressed in response to drought stress, of which OsCYP51G3, OsCYP709C9, OsCYP709C5, OsCYP81A6, OsCYP72A18 and OsCYP704A5 are strongly induced and OsCYP78A16, OsCYP89C9 and OsCYP704A5 are down-regulated significantly, and some of the results were validated by qPCR. And 23 up-regulated and 17 down-regulated genes are specific to Osbhlh148 mutation under drought stress. Compared to those in wild type, the changes in transcript levels of several genes are slight in the mutant, such as OsCYP51G3, OsCYP94C2, OsCYP709C9 and OsCYP709C5. CONCLUSION The whole-genomic analysis of rice P450 superfamily provides a clue to understanding biological function of OsCYPs in development regulation and drought stress response, and is helpful to rice molecular breeding.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, Fujian, 363000, China.
| | - Huiqin Chen
- School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, Fujian, 363000, China.
| |
Collapse
|
34
|
Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L. 9- cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:162. [PMID: 29559982 PMCID: PMC5845534 DOI: 10.3389/fpls.2018.00162] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/29/2018] [Indexed: 05/20/2023]
Abstract
Although abscisic acid (ABA) is an important hormone that regulates seed dormancy, stomatal closure, plant development, as well as responses to environmental stimuli, the physiological mechanisms of ABA response to multiple stress in rice remain poorly understood. In the ABA biosynthetic pathway, 9-cis-epoxycarotenoid dioxygenase (NCED) is the key rate-limiting enzyme. Here, we report important functions of OsNCED3 in multi-abiotic stress tolerance in rice. The OsNCED3 is constitutively expressed in various tissues under normal condition, Its expression is highly induced by NaCl, PEG, and H2O2 stress, suggesting the roles for OsNCED3 in response to the multi-abiotic stress tolerance in rice. Compared with wild-type plants, nced3 mutants had earlier seed germination, longer post-germination seedling growth, increased sensitivity to water stress and H2O2 stress and increased stomata aperture under water stress and delayed leaf senescence. Further analysis found that nced3 mutants contained lower ABA content compared with wild-type plants, overexpression of OsNCED3 in transgenic plants could enhance water stress tolerance, promote leaf senescence and increase ABA content. We conclude that OsNCED3 mediates seed dormancy, plant growth, abiotic stress tolerance, and leaf senescence by regulating ABA biosynthesis in rice; and may provide a new strategy for improving the quality of crop.
Collapse
|
35
|
Brugière N, Zhang W, Xu Q, Scolaro EJ, Lu C, Kahsay RY, Kise R, Trecker L, Williams RW, Hakimi S, Niu X, Lafitte R, Habben JE. Overexpression of RING Domain E3 Ligase ZmXerico1 Confers Drought Tolerance through Regulation of ABA Homeostasis. PLANT PHYSIOLOGY 2017; 175:1350-1369. [PMID: 28899960 PMCID: PMC5664481 DOI: 10.1104/pp.17.01072] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Drought stress is one of the main environmental problems encountered by crop growers. Reduction in arable land area and reduced water availability make it paramount to identify and develop strategies to allow crops to be more resilient in water-limiting environments. The plant hormone abscisic acid (ABA) plays an important role in the plants' response to drought stress through its control of stomatal aperture and water transpiration, and transgenic modulation of ABA levels therefore represents an attractive avenue to improve the drought tolerance of crops. Several steps in the ABA-signaling pathway are controlled by ubiquitination involving really interesting new genes (RING) domain-containing proteins. We characterized the maize (Zea mays) RING protein family and identified two novel RING-H2 genes called ZmXerico1 and ZmXerico2 Expression of ZmXerico genes is induced by drought stress, and we show that overexpression of ZmXerico1 and ZmXerico2 in Arabidopsis and maize confers ABA hypersensitivity and improved water use efficiency, which can lead to enhanced maize yield performance in a controlled drought-stress environment. Overexpression of ZmXerico1 and ZmXerico2 in maize results in increased ABA levels and decreased levels of ABA degradation products diphaseic acid and phaseic acid. We show that ZmXerico1 is localized in the endoplasmic reticulum, where ABA 8'-hydroxylases have been shown to be localized, and that it functions as an E3 ubiquitin ligase. We demonstrate that ZmXerico1 plays a role in the control of ABA homeostasis through regulation of ABA 8'-hydroxylase protein stability, representing a novel control point in the regulation of the ABA pathway.
Collapse
Affiliation(s)
- Norbert Brugière
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Wenjing Zhang
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Qingzhang Xu
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Eric J Scolaro
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Cheng Lu
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Robel Y Kahsay
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Rie Kise
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Libby Trecker
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Robert W Williams
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Salim Hakimi
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Xiping Niu
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Renee Lafitte
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Jeffrey E Habben
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| |
Collapse
|
36
|
Arango J, Beltrán J, Nuñez J, Chavarriaga P. Evidence of Epigenetic Mechanisms Affecting Carotenoids. Subcell Biochem 2017; 79:295-307. [PMID: 27485227 DOI: 10.1007/978-3-319-39126-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic mechanisms are able to regulate plant development by generating non-Mendelian allelic interactions. An example of these are the responses to environmenal stimuli that result in phenotypic variability and transgression amongst important crop traits. The need to predict phenotypes from genotypes to understand the molecular basis of the genotype-by-environment interaction is a research priority. Today, with the recent discoveries in the field of epigenetics, this challenge goes beyond analyzing how DNA sequences change. Here we review examples of epigenetic regulation of genes involved in carotenoid synthesis and degradation, cases in which histone- and/or DNA-methylation, and RNA silencing at the posttranscriptional level affect carotenoids in plants.
Collapse
Affiliation(s)
- Jacobo Arango
- International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia.
| | - Jesús Beltrán
- Agronomy and Horticulture Department, University of Nebraska-Lincoln, Beadle Center 1901 Vine Street, Lincoln, NE, 68588-0660, USA
| | - Jonathan Nuñez
- International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Paul Chavarriaga
- International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|
37
|
Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S. An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2017; 8:1657. [PMID: 28993786 PMCID: PMC5622203 DOI: 10.3389/fpls.2017.01657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according to information about the cotton genome sequences, it was located on scaffold42.1, containing three exons and two introns. Promoter analysis indicated that the GhNAC79 promoter contained both basic and stress-related elements, and it was especially expressed in the cotyledon of Arabidopsis. A transactivation assay in yeast demonstrated that GhNAC79 was a transcription activator, and its activation domain was located at its C-terminus. The results of qRT-PCR proved that GhNAC79 was preferentially expressed at later stages of cotyledon and fiber development, and it showed high sensitivity to ethylene and meJA treatments. Overexpression of GhNAC79 resulted in an early flowering phenotype in Arabidopsis, and it also improved drought tolerance in both Arabidopsis and cotton. Furthermore, VIGS-induced silencing of GhNAC79 in cotton led to a drought-sensitive phenotype. In summary, GhNAC79 positively regulates drought stress, and it also responds to ethylene and meJA treatments, making it a candidate gene for stress studies in cotton.
Collapse
Affiliation(s)
- Yaning Guo
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- School of Life Science, Yulin UniversityYulin, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Xiaoyun Jia
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lingling Dou
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Fengli Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- *Correspondence: Shuxun Yu,
| |
Collapse
|
38
|
Huang L, Hong Y, Zhang H, Li D, Song F. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC PLANT BIOLOGY 2016; 16:203. [PMID: 27646344 PMCID: PMC5029094 DOI: 10.1186/s12870-016-0897-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/13/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND The NAC (NAM, ATAF and CUC) transcriptional factors constitute a large family with more than 150 members in rice and some of them have been demonstrated to play crucial roles in plant abiotic stress response. Here, we report the characterization of a rice stress-responsive NAC gene, ONAC095, and the exploration of its function in drought and cold stress tolerance. RESULTS Expression of ONAC095 was up-regulated by drought stress and abscisic acid (ABA) but down-regulated by cold stress. ONAC095 protein had transactivation activity and the C2 domain in C-terminal was found to be critical for transactivation activity. Transgenic rice lines with overexpression of ONAC095 (ONAC095-OE) and dominant chimeric repressor-mediated suppression of ONAC095 (ONAC095-SRDX) were generated. The ONAC095-OE plants showed comparable phenotype to wild type under drought and cold stress conditions. However, the ONAC095-SRDX plants displayed an improved drought tolerance but exhibited an attenuated cold tolerance. The ONAC095-SRDX plants had decreased water loss rate, increased proline and soluble sugar contents, and up-regulated expression of drought-responsive genes under drought condition, whereas the ONAC095-SRDX plants accumulated excess reactive oxygen species, increased malondialdehyde content and down-regulated expression of cold-responsive genes under cold condition. Furthermore, ONAC095-SRDX plants showed an increased ABA sensitivity, contained an elevated ABA level, and displayed altered expression of ABA biosynthetic and metabolic genes as well as some ABA signaling-related genes. CONCLUSION Functional analyses through dominant chimeric repressor-mediated suppression of ONAC095 demonstrate that ONAC095 plays opposite roles in drought and cold stress tolerance, acting as a negative regulator of drought response but as a positive regulator of cold response in rice.
Collapse
Affiliation(s)
- Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
39
|
Chung PJ, Jung H, Jeong DH, Ha SH, Choi YD, Kim JK. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics 2016; 17:563. [PMID: 27501838 PMCID: PMC4977689 DOI: 10.1186/s12864-016-2997-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plant transcriptome profiling has provided a tool for understanding the mechanisms by which plants respond to stress conditions. Analysis of genome-wide transcriptome will provides a useful dataset of drought responsive noncoding RNAs and their candidate target genes that may be involved in drought stress responses. RESULTS Here RNA-seq analyses of leaves from drought stressed rice plants was performed, producing differential expression profiles of noncoding RNAs. We found that the transcript levels of 66 miRNAs changed significantly in response to drought conditions and that they were negatively correlated with putative target genes during the treatments. The negative correlations were further validated by qRT-PCR using total RNAs from both drought-treated leaves and various tissues at different developmental stages. The drought responsive miRNA/target pairs were confirmed by the presence of decay intermediates generated by miRNA-guided cleavages in Parallel Analysis of RNA Ends (PARE) libraries. We observed that the precursor miR171f produced two different mature miRNAs, miR171f-5p and miR171f-3p with 4 candidate target genes, the former of which was responsive to drought conditions. We found that the expression levels of the miR171f precursor negatively correlated with those of one candidate target gene, but not with the others, suggesting that miR171f-5p was drought-responsive, with Os03g0828701-00 being a likely target. Pre-miRNA expression profiling indicated that miR171f is involved in the progression of rice root development and growth, as well as the response to drought stress. Ninety-eight lncRNAs were also identified, together with their corresponding antisense transcripts, some of which were responsive to drought conditions. CONCLUSIONS We identified rice noncoding RNAs (66 miRNAs and 98 lncRNAs), whose expression was highly regulated by drought stress conditions, and whose transcript levels negatively correlated with putative target genes.
Collapse
Affiliation(s)
- Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea
| | - Dong-Hoon Jeong
- Department of Life Science, Hallym University, Chuncheon, 24252, Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Yang Do Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
40
|
Abstract
Plants in their natural habitats adapt to drought stress in the environment through a variety of mechanisms, ranging from transient responses to low soil moisture to major survival mechanisms of escape by early flowering in absence of seasonal rainfall. However, crop plants selected by humans to yield products such as grain, vegetable, or fruit in favorable environments with high inputs of water and fertilizer are expected to yield an economic product in response to inputs. Crop plants selected for their economic yield need to survive drought stress through mechanisms that maintain crop yield. Studies on model plants for their survival under stress do not, therefore, always translate to yield of crop plants under stress, and different aspects of drought stress response need to be emphasized. The crop plant model rice ( Oryza sativa) is used here as an example to highlight mechanisms and genes for adaptation of crop plants to drought stress.
Collapse
Affiliation(s)
- Supratim Basu
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Venkategowda Ramegowda
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Anuj Kumar
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Andy Pereira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| |
Collapse
|
41
|
Zang G, Zou H, Zhang Y, Xiang Z, Huang J, Luo L, Wang C, Lei K, Li X, Song D, Din AU, Wang G. The De-Etiolated 1 Homolog of Arabidopsis Modulates the ABA Signaling Pathway and ABA Biosynthesis in Rice. PLANT PHYSIOLOGY 2016; 171:1259-76. [PMID: 27208292 PMCID: PMC4902595 DOI: 10.1104/pp.16.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/27/2016] [Indexed: 05/20/2023]
Abstract
DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1 Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice.
Collapse
Affiliation(s)
- Guangchao Zang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Hanyan Zou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Yuchan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Zheng Xiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Li Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Chunping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Kairong Lei
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Xianyong Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Deming Song
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Ahmad Ud Din
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China (G.Z., H.Z., Z.X., J.H., L.L., A.U.D., G.W.);Institute of Life Science, Chongqing Medical University, Chongqing 400016, China (Y.Z.);Chongqing Key Laboratory of Adversity Agriculture, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China (C.W., K.L., X.L.); andShuzhou Rice Research Institute, Chongzhou 611200, China (D.S.)
| |
Collapse
|
42
|
Involvement of CmWRKY10 in Drought Tolerance of Chrysanthemum through the ABA-Signaling Pathway. Int J Mol Sci 2016; 17:ijms17050693. [PMID: 27187353 PMCID: PMC4881519 DOI: 10.3390/ijms17050693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022] Open
Abstract
Drought is one of the important abiotic factors that adversely affects plant growth and production. The WRKY transcription factor plays a pivotal role in plant growth and development, as well as in the elevation of many abiotic stresses. Among three major groups of the WRKY family, the group IIe WRKY has been the least studied in floral crops. Here, we report functional aspects of group IIe WRKY member, i.e., CmWRKY10 in chrysanthemum involved in drought tolerance. The transactivation assay showed that CmWRKY10 had transcriptional activity in yeast cells and subcellular localization demonstrated that it was localized in nucleus. Our previous study showed that CmWRKY10 could be induced by drought in chrysanthemum. Moreover, the overexpression of CmWRKY10 in transgenic chrysanthemum plants improved tolerance to drought stress compared to wild-type (WT). High expression of DREB1A, DREB2A, CuZnSOD, NCED3A, and NCED3B transcripts in overexpressed plants provided strong evidence that drought tolerance mechanism was associated with abscisic acid (ABA) pathway. In addition, lower accumulation of reactive oxygen species (ROS) and higher enzymatic activity of peroxidase, superoxide dismutase and catalase in CmWRKY10 overexpressed lines than that of WT demonstrates its role in drought tolerance. Together, these findings reveal that CmWRKY10 works as a positive regulator in drought stress by regulating stress-related genes.
Collapse
|
43
|
Hosseini SA, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N. A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:206. [PMID: 26955376 PMCID: PMC4768371 DOI: 10.3389/fpls.2016.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid (PA) and dehydro-PA. Under K deficiency this went along with higher transcript levels of ABA8'-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars.
Collapse
Affiliation(s)
- Seyed A. Hosseini
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad R. Hajirezaei
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Christiane Seiler
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nese Sreenivasulu
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
44
|
Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:4. [PMID: 26834774 PMCID: PMC4722120 DOI: 10.3389/fpls.2016.00004] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/06/2016] [Indexed: 05/02/2023]
Abstract
The NAC transcription factors play critical roles in regulating stress responses in plants. However, the functions for many of the NAC family members in rice are yet to be identified. In the present study, a novel stress-responsive rice NAC gene, ONAC022, was identified. Expression of ONAC022 was induced by drought, high salinity, and abscisic acid (ABA). The ONAC022 protein was found to bind specifically to a canonical NAC recognition cis-element sequence and showed transactivation activity at its C-terminus in yeast. The ONAC022 protein was localized to nucleus when transiently expressed in Nicotiana benthamiana. Three independent transgenic rice lines with overexpression of ONAC022 were generated and used to explore the function of ONAC022 in drought and salt stress tolerance. Under drought stress condition in greenhouse, soil-grown ONAC022-overexpressing (N22oe) transgenic rice plants showed an increased drought tolerance, leading to higher survival ratios and better growth than wild-type (WT) plants. When grown hydroponically in Hogland solution supplemented with 150 mM NaCl, the N22oe plants displayed an enhanced salt tolerance and accumulated less Na(+) in roots and shoots as compared to WT plants. Under drought stress condition, the N22oe plants exhibited decreased rates of water loss and transpiration, reduced percentage of open stomata and increased contents of proline and soluble sugars. However, the N22oe lines showed increased sensitivity to exogenous ABA at seed germination and seedling growth stages but contained higher level of endogenous ABA. Expression of some ABA biosynthetic genes (OsNCEDs and OsPSY), signaling and regulatory genes (OsPP2C02, OsPP2C49, OsPP2C68, OsbZIP23, OsAP37, OsDREB2a, and OsMYB2), and late stress-responsive genes (OsRAB21, OsLEA3, and OsP5CS1) was upregulated in N22oe plants. Our data demonstrate that ONAC022 functions as a stress-responsive NAC with transcriptional activator activity and plays a positive role in drought and salt stress tolerance through modulating an ABA-mediated pathway.
Collapse
|
45
|
Sun X, Sun M, Jia B, Chen C, Qin Z, Yang K, Shen Y, Meiping Z, Mingyang C, Zhu Y. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis. PLoS One 2015; 10:e0146163. [PMID: 26717241 PMCID: PMC4696740 DOI: 10.1371/journal.pone.0146163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Zhiwei Qin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Kejun Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Zhang Meiping
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Cong Mingyang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
46
|
You J, Chan Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1092. [PMID: 26697045 PMCID: PMC4672674 DOI: 10.3389/fpls.2015.01092] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2 (•-)), hydroxyl radical (OH•) and singlet oxygen ((1)O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.
Collapse
|
47
|
Pradhan A, Naik N, Kumar Sahoo K. RNAi Mediated Drought and Salinity Stress Tolerance in Plants. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.612200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|