1
|
Ballasch I, López-Molina L, Galán-Ganga M, Sancho-Balsells A, Rodríguez-Navarro I, Borràs-Pernas S, Rabadan MA, Chen W, Pastó-Pellicer C, Flotta F, Maoyu W, Fernández-Irigoyen J, Santamaría E, Aguilar R, Dobaño C, Egri N, Hernandez C, Alfonso M, Juan M, Alberch J, Del Toro D, Arranz B, Canals JM, Giralt A. Alterations of the IKZF1-IKZF2 tandem in immune cells of schizophrenia patients regulate associated phenotypes. J Neuroinflammation 2024; 21:326. [PMID: 39695786 DOI: 10.1186/s12974-024-03320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Schizophrenia is a complex multifactorial disorder and increasing evidence suggests the involvement of immune dysregulations in its pathogenesis. We observed that IKZF1 and IKZF2, classic immune-related transcription factors (TFs), were both downregulated in patients' peripheral blood mononuclear cells (PBMCs) but not in their brain. We generated a new mutant mouse model with a reduction in Ikzf1 and Ikzf2 to study the impact of those changes. Such mice developed deficits in the three dimensions (positive-negative-cognitive) of schizophrenia-like phenotypes associated with alterations in structural synaptic plasticity. We then studied the secretomes of cultured PBMCs obtained from patients and identified potentially secreted molecules, which depended on IKZF1 and IKZF2 mRNA levels, and that in turn have an impact on neural synchrony, structural synaptic plasticity and schizophrenia-like symptoms in in vivo and in vitro models. Our results point out that IKZF1-IKZF2-dependent immune signals negatively impact on essential neural circuits involved in schizophrenia.
Collapse
Affiliation(s)
- Iván Ballasch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Laura López-Molina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Marcos Galán-Ganga
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Irene Rodríguez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Sara Borràs-Pernas
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | | | - Wanqi Chen
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Carlota Pastó-Pellicer
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Francesca Flotta
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Wang Maoyu
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra UPNA, IdiSNA, 31008, Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra UPNA, IdiSNA, 31008, Pamplona, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Barcelona, Catalonia, Spain
| | - Natalia Egri
- Servei d'Immunologia, Hospital Clinic Barcelona (HCB) - CDB, Fundació Clínic de Recerca Biomèdica - IDIBAPS, Barcelona, Spain
| | | | - Miqueu Alfonso
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Barcelona, Spain
| | - Manel Juan
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Servei d'Immunologia, Hospital Clinic Barcelona (HCB) - CDB, Fundació Clínic de Recerca Biomèdica - IDIBAPS, Barcelona, Spain
- Plataforma d'Immunoteràpia HSJD-HCB, Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Production and Validation Centre of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Belén Arranz
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Barcelona, Spain
| | - Josep M Canals
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
- Production and Validation Centre of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
- Production and Validation Centre of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
2
|
Castro-Martínez JA, Vargas E, Díaz-Beltrán L, Esteban FJ. Enhancing Transcriptomic Insights into Neurological Disorders Through the Comparative Analysis of Shapley Values. Curr Issues Mol Biol 2024; 46:13583-13606. [PMID: 39727940 PMCID: PMC11726880 DOI: 10.3390/cimb46120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset. Unlike conventional approaches, CASh is highly effective at detecting subtle but meaningful molecular patterns that are often missed. These findings highlight the potential of CASh to enhance the precision of transcriptomic analysis, providing a deeper understanding of the molecular mechanisms underlying these disorders and establishing a solid basis to improve diagnostic techniques and developing more targeted therapeutic interventions.
Collapse
Affiliation(s)
- José A. Castro-Martínez
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Eva Vargas
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Leticia Díaz-Beltrán
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
- Clinical Research Unit, Department of Medical Oncology, University Hospital of Jaén, 23007 Jaén, Spain
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| |
Collapse
|
3
|
Lee J, Huh S, Park K, Kang N, Yu HS, Park HG, Kim YS, Kang UG, Won S, Kim SH. Behavioral and transcriptional effects of repeated electroconvulsive seizures in the neonatal MK-801-treated rat model of schizophrenia. Psychopharmacology (Berl) 2024; 241:817-832. [PMID: 38081977 DOI: 10.1007/s00213-023-06511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Electroconvulsive therapy (ECT) is an effective treatment modality for schizophrenia. However, its antipsychotic-like mechanism remains unclear. OBJECTIVES To gain insight into the antipsychotic-like actions of ECT, this study investigated how repeated treatments of electroconvulsive seizure (ECS), an animal model for ECT, affect the behavioral and transcriptomic profile of a neurodevelopmental animal model of schizophrenia. METHODS Two injections of MK-801 or saline were administered to rats on postnatal day 7 (PN7), and either repeated ECS treatments (E10X) or sham shock was conducted daily from PN50 to PN59. Ultimately, the rats were divided into vehicle/sham (V/S), MK-801/sham (M/S), vehicle/ECS (V/E), and MK-801/ECS (M/E) groups. On PN59, prepulse inhibition and locomotor activity were tested. Prefrontal cortex transcriptomes were analyzed with mRNA sequencing and network and pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) analyses were subsequently conducted. RESULTS Prepulse inhibition deficit was induced by MK-801 and normalized by E10X. In M/S vs. M/E model, Egr1, Mmp9, and S100a6 were identified as center genes, and interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF) signaling pathways were identified as the three most relevant pathways. In the V/E vs. V/S model, mitophagy, NF-κB, and receptor for advanced glycation end products (RAGE) pathways were identified. qPCR analyses demonstrated that Igfbp6, Btf3, Cox6a2, and H2az1 were downregulated in M/S and upregulated in M/E. CONCLUSIONS E10X reverses the behavioral changes induced by MK-801 and produces transcriptional changes in inflammatory, insulin, and mitophagy pathways, which provide mechanistic insight into the antipsychotic-like mechanism of ECT.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seonghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Nuree Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- RexSoft Inc., Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Bristot G, Feiten JG, Pfaffenseller B, Hizo GH, Possebon GMP, Valiati FE, Pinto JV, Caldieraro MA, Fleck MPDA, Gama CS, Kauer-Sant'Anna M. Early growth response 1 (EGR1) is downregulated in peripheral blood from patients with major psychiatric disorders. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2024. [PMID: 38219212 DOI: 10.47626/2237-6089-2023-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVES To evaluate relative expression of genes with the potential to translate environmental stimuli into long-term alterations in the brain - namely Early Growth Response (EGR)1, EGR3, and Cryptochrome Circadian Regulator 2 (CRY2) - in peripheral blood from patients with Bipolar Disorder (BD), Schizophrenia (SZ), Major Depressive Disorder (MDD) and healthy controls (HC). METHODS Thirty individuals ranging from 18 to 60 years were recruited for each group (BD, SZ, MDD or HC) from a Brazilian public hospital. Therefore, individuals' peripheral blood was collected and EGR1, EGR3 and CRY2 gene expression analyzed by PCR Real Time. RESULTS EGR1 mRNA levels are significantly lower in psychiatric patients when compared to HC, but there is no difference for EGR3 and CRY2. Exploring the findings for each diagnosis, there is a significant difference between each diagnosis group only for EGR1, which was lower in BD, MDD and SZ as compared to HC. No significant correlations were found between gene expression and clinical features. CONCLUSIONS EGR1 is downregulated in psychiatric patients, regardless of the diagnosis and may be a potential common target in major psychiatric disorders. EGR1, as a transcription factor, modulates many other genes and participates in crucial neuronal and synaptic processes, such as plasticity, neurotransmitters metabolism, vesicular transport and signaling pathways. The study of EGR1 and its upstream regulators in psychiatry might lead to potential new therapeutic targets.
Collapse
Affiliation(s)
- Giovana Bristot
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jacson Gabriel Feiten
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gabriel Henrique Hizo
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Maria Pereira Possebon
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Endler Valiati
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marco Antonio Caldieraro
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Pio de Almeida Fleck
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Clarissa Severino Gama
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Kauer-Sant'Anna
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil. Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Fiorito AM, Fakra E, Sescousse G, Ibrahim EC, Rey R. Molecular mapping of a core transcriptional signature of microglia-specific genes in schizophrenia. Transl Psychiatry 2023; 13:386. [PMID: 38092734 PMCID: PMC10719376 DOI: 10.1038/s41398-023-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Besides playing a central role in neuroinflammation, microglia regulate synaptic development and is involved in plasticity. Converging lines of evidence suggest that these different processes play a critical role in schizophrenia. Furthermore, previous studies reported altered transcription of microglia genes in schizophrenia, while microglia itself seems to be involved in the etiopathology of the disease. However, the regional specificity of these brain transcriptional abnormalities remains unclear. Moreover, it is unknown whether brain and peripheral expression of microglia genes are related. Thus, we investigated the expression of a pre-registered list of 10 genes from a core signature of human microglia both at brain and peripheral levels. We included 9 independent Gene Expression Omnibus datasets (764 samples obtained from 266 individuals with schizophrenia and 237 healthy controls) from 8 different brain regions and 3 peripheral tissues. We report evidence of a widespread transcriptional alteration of microglia genes both in brain tissues (we observed a decreased expression in the cerebellum, associative striatum, hippocampus, and parietal cortex of individuals with schizophrenia compared with healthy controls) and whole blood (characterized by a mixed altered expression pattern). Our results suggest that brain underexpression of microglia genes may represent a candidate transcriptional signature for schizophrenia. Moreover, the dual brain-whole blood transcriptional alterations of microglia/macrophage genes identified support the model of schizophrenia as a whole-body disorder and lend weight to the use of blood samples as a potential source of biological peripheral biomarkers.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Romain Rey
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France.
- Centre Hospitalier Le Vinatier, Bron, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
6
|
Swilley C, Lin Y, Zheng Y, Xu X, Liu M, Jarome T, Hodes GE, Xie H. Sex linked behavioral and hippocampal transcriptomic changes in mice with cell-type specific Egr1 loss. Front Neurosci 2023; 17:1240209. [PMID: 37928724 PMCID: PMC10623684 DOI: 10.3389/fnins.2023.1240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The transcription factor EGR1 is instrumental in numerous neurological processes, encompassing learning and memory as well as the reaction to stress. Egr1 complete knockout mice demonstrate decreased depressive or anxiety-like behavior and impaired performance in spatial learning and memory. Nevertheless, the specific functions of Egr1 in distinct cell types have been largely underexplored. In this study, we cataloged the behavioral and transcriptomic character of Nestin-Cre mediated Egr1 conditional knockout (Egr1cKO) mice together with their controls. Although the conditional knockout did not change nociceptive or anxiety responses, it triggered changes in female exploratory activity during anxiety testing. Hippocampus-dependent spatial learning in the object location task was unaffected, but female Egr1cKO mice did exhibit poorer retention during testing on a contextual fear conditioning task compared to males. RNA-seq data analyses revealed that the presence of the floxed Egr1 cassette or Nestin-Cre driver alone exerts a subtle influence on hippocampal gene expression. The sex-related differences were amplified in Nestin-Cre mediated Egr1 conditional knockout mice and female mice are more sensitive to the loss of Egr1 gene. Differentially expressed genes resulted from the loss of Egr1 in neuronal cell lineage were significantly associated with the regulation of Wnt signaling pathway, extracellular matrix, and axon guidance. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in neuronal cell lineage have distinct impacts on hippocampal gene expression in a sex-specific manner.
Collapse
Affiliation(s)
- Cody Swilley
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
| | - Yuze Zheng
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Min Liu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Timothy Jarome
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Yazarlou F, Tabibian M, Azarnezhad A, Sadeghi Rad H, Lipovich L, Sanati G, Mostafavi Abdolmaleky H, Alizadeh F. Evaluating Gene Expression and Methylation Profiles of TCF4, MBP, and EGR1 in Peripheral Blood of Drug-Free Patients with Schizophrenia: Correlations with Psychopathology, Intelligence, and Cognitive Impairment. J Mol Neurosci 2023; 73:738-750. [PMID: 37668894 DOI: 10.1007/s12031-023-02150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Sadeghi Rad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, Wayne State University, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Golshid Sanati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
8
|
Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023; 28:3343-3354. [PMID: 36732588 PMCID: PMC10618101 DOI: 10.1038/s41380-023-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Psychological Sciences, Boise State University, 2133 W Cesar Chavez Ln, Boise, ID, 83725, USA
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Helfgott Research Institute, NUNM, 2201 SW First Avenue, Portland, OR, 97201, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N, Matthews Avenue, Urbana, IL 61801, USA
| | - Sydney C Nagy
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Jungers Center for Neurosciences Research, OHSU; and OHSU Parkinson Center, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Departments of Psychiatry and Radiation Medicine, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Division of Neuroscience, ONPRC, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
9
|
Liu J, Wang Y, Xia K, Wu J, Zheng D, Cai A, Yan H, Su R. Acute psilocybin increased cortical activities in rats. Front Neurosci 2023; 17:1168911. [PMID: 37287797 PMCID: PMC10243528 DOI: 10.3389/fnins.2023.1168911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Psilocybin, a naturally occurring hallucinogenic component of magic mushrooms, has significant psychoactive effects in both humans and rodents. But the underlying mechanisms are not fully understood. Blood-oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is a useful tool in many preclinical and clinical trials to investigate psilocybin-induced changes of brain activity and functional connectivity (FC) due to its noninvasive nature and widespread availability. However, fMRI effects of psilocybin on rats have not been carefully investigated. This study aimed to explore how psilocybin affects resting-state brain activity and FC, through a combination of BOLD fMRI and immunofluorescence (IF) of EGR1, an immediate early gene (IEG) closely related to depressive symptoms. Ten minutes after psilocybin hydrochloride injection (2.0 mg/kg, i.p.), positive brain activities were observed in the frontal, temporal, and parietal cortex (including the cingulate cortex and retrosplenial cortex), hippocampus, and striatum. And a region-of-interest (ROI) -wise FC analysis matrix suggested increased interconnectivity of several regions, such as the cingulate cortex, dorsal striatum, prelimbic, and limbic regions. Further seed-based analyses revealed increased FC of cingulate cortex within the cortical and striatal areas. Consistently, acute psilocybin increased the EGR1 level throughout the brain, indicating a consistent activation thought the cortical and striatal areas. In conclusion, the psilocybin-induced hyperactive state of rats is congruent to that of humans, and may be responsible for its pharmacological effects.
Collapse
Affiliation(s)
- Junhong Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Xia
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jinfeng Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Danhao Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Aoling Cai
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
10
|
Giangreco B, Dwir D, Klauser P, Jenni R, Golay P, Cleusix M, Baumann PS, Cuénod M, Conus P, Toni N, Do KQ. Characterization of early psychosis patients carrying a genetic vulnerability to redox dysregulation: a computational analysis of mechanism-based gene expression profile in fibroblasts. Mol Psychiatry 2023; 28:1983-1994. [PMID: 37002404 PMCID: PMC10575782 DOI: 10.1038/s41380-023-02034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.
Collapse
Affiliation(s)
- Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Golay
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|
11
|
Palm D, Uzoni A, Kronenberg G, Thome J, Faltraco F. Human Derived Dermal Fibroblasts as in Vitro Research Tool to Study Circadian Rhythmicity in Psychiatric Disorders. PHARMACOPSYCHIATRY 2023; 56:87-100. [PMID: 37187177 DOI: 10.1055/a-1147-1552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A number of psychiatric disorders are defined by persistent or recurrent sleep-wake disturbances alongside disruptions in circadian rhythm and altered clock gene expression. Circadian rhythms are present not only in the hypothalamic suprachiasmatic nucleus but also in peripheral tissues. In this respect, cultures of human derived dermal fibroblasts may serve as a promising new tool to investigate cellular and molecular mechanisms underlying the pathophysiology of mental illness. In this article, we discuss the advantages of fibroblast cultures to study psychiatric disease. More specifically, we provide an update on recent advances in modeling circadian rhythm disorders using human fibroblasts.
Collapse
Affiliation(s)
- Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Adriana Uzoni
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Golo Kronenberg
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
12
|
Krivosova M, Adamcakova J, Kaadt E, Mumm BH, Dvorska D, Brany D, Dankova Z, Dohal M, Samec M, Ferencova N, Tonhajzerova I, Ondrejka I, Hrtanek I, Hutka P, Oppa M, Mokry J, Elfving B. The VEGF protein levels, miR-101-3p, and miR-122-5p are dysregulated in plasma from adolescents with major depression. J Affect Disord 2023; 334:60-68. [PMID: 37127118 DOI: 10.1016/j.jad.2023.04.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Jana Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Erik Kaadt
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Birgitte Hviid Mumm
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Matus Dohal
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Peter Hutka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Miloslav Oppa
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic.
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Le GH, Gillissie ES, Rhee TG, Cao B, Alnefeesi Y, Guo Z, Di Vincenzo JD, Jawad MY, March AM, Ramachandra R, Lui LMW, McIntyre RS. Efficacy, safety, and tolerability of ulotaront (SEP-363856, a trace amine-associated receptor 1 agonist) for the treatment of schizophrenia and other mental disorders with similar pathophysiology: a systematic review of preclinical and clinical trials. Expert Opin Investig Drugs 2023:1-15. [PMID: 37096491 DOI: 10.1080/13543784.2023.2206559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Schizophrenia is a mental illness that can disrupt emotions, perceptions, cognition, and reduce quality of life. The classical approach to treat schizophrenia uses typical and atypical antipsychotics; however, limitations include low efficacy in mitigating negative symptoms and cognitive dysfunctions, and a range of adverse effects. Evidence has accumulated on trace amine-associated receptor 1 (TAAR1) as a novel therapeutic target for treating schizophrenia. This systematic review investigates the available evidence on a TAAR1 agonist, ulotaront, as a treatment for schizophrenia. METHODS A systematic search was conducted on PubMed/MEDLINE, and Ovid databases for English-published articles from inception to December 18, 2022. Literature focusing on the association between ulotaront and schizophrenia were evaluated based on an inclusion/exclusion criterion. Selected studies were assessed for risk of bias, using Cochrane Collaboration tool, and summarized in a table to generate discussion topics. RESULTS Three clinical, two comparative, and five preclinical studies examining ulotaront's pharmacology, tolerability and safety, and/or efficacy were identified. Results indicate that ulotaront has a differing adverse effects profile from other antipsychotics, may mitigate metabolic-related adverse effects commonly associated with antipsychotics, and may be effective for treating positive and negative symptoms. CONCLUSIONS Findings from available literature present ulotaront as a potential and promising alternative treatment method for schizophrenia. Despite this, our results were limited due to lack of clinical trials on ulotaront's long-term efficacy and mechanisms of action. Future research should focus on these limitations to elucidate ulotaront's efficacy and safety for the treatment of schizophrenia and other mental disorders with similar pathophysiology.
Collapse
Affiliation(s)
- Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Emily S Gillissie
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Taeho Greg Rhee
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- VA New England Mental Illness, Research, Education and Clinical Center (MIRECC), VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Public Health Sciences, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, P. R. China
| | - Yazen Alnefeesi
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ziji Guo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Muhammad Youshay Jawad
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Andrew M March
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Ranuk Ramachandra
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| |
Collapse
|
14
|
Martini P, Mingardi J, Carini G, Mattevi S, Ndoj E, La Via L, Magri C, Gennarelli M, Russo I, Popoli M, Musazzi L, Barbon A. Transcriptional Profiling of Rat Prefrontal Cortex after Acute Inescapable Footshock Stress. Genes (Basel) 2023; 14:genes14030740. [PMID: 36981011 PMCID: PMC10048409 DOI: 10.3390/genes14030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after. While no substantial changes were observed at the single gene level immediately after the stress session, gene set enrichment analysis showed alterations in neuronal pathways associated with glia development, glia-neuron networking, and synaptic function. Furthermore, we found alterations in the expression of gene sets regulated by specific transcription factors that could represent master regulators of the acute stress response. Of note, these pathways and transcriptional programs are activated during the early stress response (immediately after FS) and are already turned off after 2 h-while at 24 h, the transcriptional profile is largely unaffected. Overall, our analysis provided a transcriptional landscape of the early changes triggered by acute unavoidable FS stress in the PFC of rats, suggesting that the transcriptional wave is fast and mild, but probably enough to activate a cellular response to acute stress.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jessica Mingardi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elona Ndoj
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
15
|
Zou Z, Zhang Y, Huang Y, Wang J, Min W, Xiang M, Zhou B, Li T. Integrated genome-wide methylation and expression analyses provide predictors of diagnosis and early response to antidepressant in panic disorder. J Affect Disord 2023; 322:146-155. [PMID: 36356898 DOI: 10.1016/j.jad.2022.10.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND We investigated differentially methylated and expressed genes between panic disorder (PD) and healthy controls (HCs) to determine whether DNA methylation and expression level of candidate genes can be used as biomarkers for diagnosis and early response. METHODS Illumina infiniun Methylation EPIC (850 k) Beadchip for genome-wide methylation screening and mRNA sequencing was conducted in a discovery set (30 patients with PD and 30 matched HCs). The candidate gene loci methylation and expression were verified in an independent validation sample (101 PD patients and 107 HCs). RESULTS In the discovery set, there were 3613 differentially methylated cytosine phosphate guanosine sites and these differential methylation positions were located within 1938 unique genes, including 1758 hypermethylated genes, 150 hypomethylated genes, and the coexistence of hypermethylation and hypomethylation sites were found in 30 genes. There were 1111 differential transcripts in PD compared to normal controls (850 down-regulated and 261 up-regulated). Further, 212 differentially expressed genes were screened (40 up-regulated and 172 down-regulated). In the validation set, compared with HCs, there was no significant difference in DNA methylation level of Casitas B-lineage lymphoma (CBL) gene loci (cg07123846). The expression level of CBL gene in PD patients was lower (vs. HCs). After four weeks' treatment, the baseline expression level of CBL gene in the responders was higher than nonresponders. LIMITATIONS The sample size was limited. We only chose CBL as a candidate gene. Follow-up periods were short. CONCLUSIONS There are differences in genome-wide DNA methylation and mRNA expression between PD patients and HCs. The changes in expression level of CBL gene may be an important molecular marker for PD diagnosis and early response.
Collapse
Affiliation(s)
- Zhili Zou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Mental Health Center, West China University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yulan Huang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jinyu Wang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Wenjiao Min
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Miao Xiang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Zhou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Tao Li
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Decreased Prosaposin and Progranulin in the Cingulate Cortex Are Associated with Schizophrenia Pathophysiology. Int J Mol Sci 2022; 23:ijms231912056. [PMID: 36233357 PMCID: PMC9570388 DOI: 10.3390/ijms231912056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Prosaposin (PSAP) and progranulin (PGRN) are two lysosomal proteins that interact and modulate the metabolism of lipids, particularly sphingolipids. Alterations in sphingolipid metabolism have been found in schizophrenia. Genetic associations of PSAP and PGRN with schizophrenia have been reported. To further clarify the role of PSAP and PGRN in schizophrenia, we examined PSAP and PGRN levels in postmortem cingulate cortex tissue from healthy controls along with patients who had suffered from schizophrenia, bipolar disorder, or major depressive disorder. We found that PSAP and PGRN levels are reduced specifically in schizophrenia patients. To understand the role of PSAP in the cingulate cortex, we used an AAV strategy to knock down PSAP in neurons located in this region. Neuronal PSAP knockdown led to the downregulation of neuronal PGRN levels and behavioral abnormalities. Cingulate-PSAP-deficient mice exhibited increased anxiety-like behavior and impaired prepulse inhibition, as well as intact locomotion, working memory, and a depression-like state. The behavioral changes were accompanied by increased early growth response protein 1 (EGR-1) and activity-dependent cytoskeleton-associated protein (ARC) levels in the sensorimotor cortex and hippocampus, regions implicated in circuitry dysfunction in schizophrenia. In conclusion, PSAP and PGRN downregulation in the cingulate cortex is associated with schizophrenia pathophysiology.
Collapse
|
17
|
Li Z, Li X, Jin M, Liu Y, He Y, Jia N, Cui X, Liu Y, Hu G, Yu Q. Identification of potential biomarkers and their correlation with immune infiltration cells in schizophrenia using combinative bioinformatics strategy. Psychiatry Res 2022; 314:114658. [PMID: 35660966 DOI: 10.1016/j.psychres.2022.114658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Many studies have identified changes in gene expression in brains of schizophrenia patients and their altered molecular processes, but the findings in different datasets were inconsistent and diverse. Here we performed the most comprehensive analysis of gene expression patterns to explore the underlying mechanisms and the potential biomarkers for early diagnosis in schizophrenia. We focused on 10 gene expression datasets in post-mortem human brain samples of schizophrenia downloaded from gene expression omnibus (GEO) database using the integrated bioinformatics analyses including robust rank aggregation (RRA) algorithm, Weighted gene co-expression network analysis (WGCNA) and CIBERSORT. Machine learning algorithm was used to construct the risk prediction model for early diagnosis of schizophrenia. We identified 15 key genes (SLC1A3, AQP4, GJA1, ALDH1L1, SOX9, SLC4A4, EGR1, NOTCH2, PVALB, ID4, ABCG2, METTL7A, ARC, F3 and EMX2) in schizophrenia by performing multiple bioinformatics analysis algorithms. Moreover, the interesting part of the study is that there is a correlation between the expression of hub genes and the immune infiltrating cells estimated by CIBERSORT. Besides, the risk prediction model was constructed by using both these genes and the immune cells with a high accuracy of 0.83 in the training set, and achieved a high AUC of 0.77 for the test set. Our study identified several potential biomarkers for diagnosis of SCZ based on multiple bioinformatics algorithms, and the constructed risk prediction model using these biomarkers achieved high accuracy. The results provide evidence for an improved understanding of the molecular mechanism of schizophrenia.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Mengdi Jin
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Yang Liu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Yang He
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Xingyao Cui
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Guoyan Hu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sci 2022; 12:brainsci12060687. [PMID: 35741573 PMCID: PMC9221432 DOI: 10.3390/brainsci12060687] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.
Collapse
|
19
|
Merikangas AK, Shelly M, Knighton A, Kotler N, Tanenbaum N, Almasy L. What genes are differentially expressed in individuals with schizophrenia? A systematic review. Mol Psychiatry 2022; 27:1373-1383. [PMID: 35091668 PMCID: PMC9095490 DOI: 10.1038/s41380-021-01420-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022]
Abstract
Schizophrenia is a severe, complex mental disorder characterized by a combination of positive symptoms, negative symptoms, and impaired cognitive function. Schizophrenia is highly heritable (~80%) with multifactorial etiology and complex polygenic genetic architecture. Despite the large number of genetic variants associated with schizophrenia, few causal variants have been established. Gaining insight into the mechanistic influences of these genetic variants may facilitate our ability to apply these findings to prevention and treatment. Though there have been more than 300 studies of gene expression in schizophrenia over the past 15 years, none of the studies have yielded consistent evidence for specific genes that contribute to schizophrenia risk. The aim of this work is to conduct a systematic review and synthesis of case-control studies of genome-wide gene expression in schizophrenia. Comprehensive literature searches were completed in PubMed, EmBase, and Web of Science, and after a systematic review of the studies, data were extracted from those that met the following inclusion criteria: human case-control studies comparing the genome-wide transcriptome of individuals diagnosed with schizophrenia to healthy controls published between January 1, 2000 and June 30, 2020 in the English language. Genes differentially expressed in cases were extracted from these studies, and overlapping genes were compared to previous research findings from the genome-wide association, structural variation, and tissue-expression studies. The transcriptome-wide analysis identified different genes than those previously reported in genome-wide association, exome sequencing, and structural variation studies of schizophrenia. Only one gene, GBP2, was replicated in five studies. Previous work has shown that this gene may play a role in immune function in the etiology of schizophrenia, which in turn could have implications for risk profiling, prevention, and treatment. This review highlights the methodological inconsistencies that impede valid meta-analyses and synthesis across studies. Standardization of the use of covariates, gene nomenclature, and methods for reporting results could enhance our understanding of the potential mechanisms through which genes exert their influence on the etiology of schizophrenia. Although these results are promising, collaborative efforts with harmonization of methodology will facilitate the identification of the role of genes underlying schizophrenia.
Collapse
Affiliation(s)
- Alison K Merikangas
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew Shelly
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA, USA
| | - Alexys Knighton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Kotler
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Tanenbaum
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Tallafuss A, Stednitz SJ, Voeun M, Levichev A, Larsch J, Eisen J, Washbourne P. Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. eNeuro 2022; 9:ENEURO.0035-22.2022. [PMID: 35346959 PMCID: PMC8994534 DOI: 10.1523/eneuro.0035-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Finding the link between behaviors and their regulatory molecular pathways is a major obstacle in treating neuropsychiatric disorders. The immediate early gene (IEG) EGR1 is implicated in the etiology of neuropsychiatric disorders, and is linked to gene pathways associated with social behavior. Despite extensive knowledge of EGR1 gene regulation at the molecular level, it remains unclear how EGR1 deficits might affect the social component of these disorders. Here, we examined the social behavior of zebrafish with a mutation in the homologous gene egr1 Mutant fish exhibited reduced social approach and orienting, whereas other sensorimotor behaviors were unaffected. On a molecular level, expression of the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH), was strongly decreased in TH-positive neurons of the anterior parvocellular preoptic nucleus. These neurons are connected with basal forebrain (BF) neurons associated with social behavior. Chemogenetic ablation of around 30% of TH-positive neurons in this preoptic region reduced social attraction to a similar extent as the egr1 mutation. These results demonstrate the requirement of Egr1 and dopamine signaling during social interactions, and identify novel circuitry underlying this behavior.
Collapse
Affiliation(s)
| | | | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - Johannes Larsch
- Max Planck Institut für Neurobiologie, Martinsried, D-82152, Munich Germany
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | |
Collapse
|
21
|
Sabaie H, Gholipour M, Asadi MR, Abed S, Sharifi-Bonab M, Taheri M, Hussen BM, Brand S, Neishabouri SM, Rezazadeh M. Identification of key long non-coding RNA-associated competing endogenous RNA axes in Brodmann Area 10 brain region of schizophrenia patients. Front Psychiatry 2022; 13:1010977. [PMID: 36405929 PMCID: PMC9671706 DOI: 10.3389/fpsyt.2022.1010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental condition with an unknown cause. According to the reports, Brodmann Area 10 (BA10) is linked to the pathology and cortical dysfunction of SCZ, which demonstrates a number of replicated findings related to research on SCZ and the dysfunction in tasks requiring cognitive control in particular. Genetics' role in the pathophysiology of SCZ is still unclear. Therefore, it may be helpful to understand the effects of these changes on the onset and progression of SCZ to find novel mechanisms involved in the regulation of gene transcription. In order to determine the molecular regulatory mechanisms affecting the SCZ, the long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) axes in the BA10 area were determined using a bioinformatics approach in the present work. A microarray dataset (GSE17612) consisted of brain post-mortem tissues of the BA10 area from SCZ patients and matched healthy subjects was downloaded from the Gene Expression Omnibus (GEO) database. This dataset included probes for both lncRNAs and mRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also discovered using the DIANA-LncBase and miRTarBase databases. In the ceRNA network, positive correlations between DEmRNAs and DElncRNAs were evaluated using the Pearson correlation coefficient. Finally, lncRNA-associated ceRNA axes were built by using the co-expression and DElncRNA-miRNA-DEmRNA connections. We identified the DElncRNA-miRNA-DEmRNA axes, which included two key lncRNAs (PEG3-AS1, MIR570HG), seven key miRNAs (hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p), and eight key mRNAs (EGR1, ETV1, DUSP6, PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2). Furthermore, DEmRNAs were found to be enriched in the "AGE-RAGE signaling pathway in diabetic complications", "Amoebiasis", "Transcriptional misregulation in cancer", "Human T-cell leukemia virus 1 infection", and "MAPK signaling pathway". This study offers research targets for examining significant molecular pathways connected to the pathogenesis of SCZ, even though the function of these ceRNA axes still needs to be investigated.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics of the University of Basel, Basel, Switzerland
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Wagh VV, Vyas P, Agrawal S, Pachpor TA, Paralikar V, Khare SP. Peripheral Blood-Based Gene Expression Studies in Schizophrenia: A Systematic Review. Front Genet 2021; 12:736483. [PMID: 34721526 PMCID: PMC8548640 DOI: 10.3389/fgene.2021.736483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia is a disorder that is characterized by delusions, hallucinations, disorganized speech or behavior, and socio-occupational impairment. The duration of observation and variability in symptoms can make the accurate diagnosis difficult. Identification of biomarkers for schizophrenia (SCZ) can help in early diagnosis, ascertaining the diagnosis, and development of effective treatment strategies. Here we review peripheral blood-based gene expression studies for identification of gene expression biomarkers for SCZ. A literature search was carried out in PubMed and Web of Science databases for blood-based gene expression studies in SCZ. A list of differentially expressed genes (DEGs) was compiled and analyzed for overlap with genetic markers, differences based on drug status of the participants, functional enrichment, and for effect of antipsychotics. This literature survey identified 61 gene expression studies. Seventeen out of these studies were based on expression microarrays. A comparative analysis of the DEGs (n = 227) from microarray studies revealed differences between drug-naive and drug-treated SCZ participants. We found that of the 227 DEGs, 11 genes (ACOT7, AGO2, DISC1, LDB1, RUNX3, SIGIRR, SLC18A1, NRG1, CHRNB2, PRKAB2, and ZNF74) also showed genetic and epigenetic changes associated with SCZ. Functional enrichment analysis of the DEGs revealed dysregulation of proline and 4-hydroxyproline metabolism. Also, arginine and proline metabolism was the most functionally enriched pathway for SCZ in our analysis. Follow-up studies identified effect of antipsychotic treatment on peripheral blood gene expression. Of the 27 genes compiled from the follow-up studies AKT1, DISC1, HP, and EIF2D had no effect on their expression status as a result of antipsychotic treatment. Despite the differences in the nature of the study, ethnicity of the population, and the gene expression analysis method used, we identified several coherent observations. An overlap, though limited, of genetic, epigenetic and gene expression changes supports interplay of genetic and environmental factors in SCZ. The studies validate the use of blood as a surrogate tissue for biomarker analysis. We conclude that well-designed cohort studies across diverse populations, use of high-throughput sequencing technology, and use of artificial intelligence (AI) based computational analysis will significantly improve our understanding and diagnostic capabilities for this complex disorder.
Collapse
Affiliation(s)
- Vipul Vilas Wagh
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Parin Vyas
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Suchita Agrawal
- The Psychiatry Unit, KEM Hospital and KEM Hospital Research Centre, Pune, India
| | | | - Vasudeo Paralikar
- The Psychiatry Unit, KEM Hospital and KEM Hospital Research Centre, Pune, India
| | - Satyajeet P Khare
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
23
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
24
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Wu Y, Rong W, Jiang Q, Wang R, Huang H. Downregulation of lncRNA GAS5 Alleviates Hippocampal Neuronal Damage in Mice with Depression-Like Behaviors Via Modulation of MicroRNA-26a/EGR1 Axis. J Stroke Cerebrovasc Dis 2021; 30:105550. [PMID: 33341564 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulating evidences have demonstrated the roles of several long non-coding RNAs (lncRNAs) in depression. We aim to examine the capabilities of lncRNA growth arrest-specific transcript 5 (GAS5) on mice with depression-like behaviors and the mechanism of action. METHODS Fifty-six healthy mice were selected for model establishment. Morris water maze test and trapeze test were performed for evaluating learning and memory ability. The binding relationship between lncRNA GAS5 and microRNA-26a (miR-26a) and the target relationship between miR-26a and EGR1 were verified by dual-luciferase reporter gene assay. The apoptosis of neurons in the hippocampal CA1 region of mice was detected by TUNEL staining. The expression of inflammatory factors, lncRNA GAS5, miR-26a, early growth response gene 1 (EGR1), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway- and apoptosis-related factors in hippocampal tissues was tested by RT-qPCR and western blot analysis. RESULTS miR-26a expression was down-regulated while EGR1 and lncRNA GAS5 expression were up-regulated in hippocampal tissues of mice with depression-like behaviors. LncRNA GAS5 specifically bound to miR-26a and miR-26a targeted EGR1. Silencing of lncRNA GAS5 curtailed the release of inflammatory factors and the apoptosis of hippocampal neuron of mice with depression-like behaviors. EGR1 suppressed PI3K/AKT pathway activation to promote the release of inflammatory factors and the apoptosis of hippocampal neurons in mice with depression-like behaviors. CONCLUSION Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
Collapse
Affiliation(s)
- Yigao Wu
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Wei Rong
- Department of Clinical Medical Psychology, The Second People's Hospital of Wuhu, Wuhu 241001, Anhui, PR China.
| | - Qin Jiang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Ruiquan Wang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Huilan Huang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| |
Collapse
|
26
|
Dysregulation of miR-185, miR-193a, and miR-450a in the skin are linked to the depressive phenotype. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110052. [PMID: 32738353 DOI: 10.1016/j.pnpbp.2020.110052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dysregulated microRNAs (miRNAs) in dermal fibroblasts of depressive subjects, indicate biomarker potential and can possibly aid clinical diagnostics. To overcome methodological challenges related to human experiments and fibroblast cultures, we here validate 38 miRNAs previously observed to be dysregulated in human fibroblasts from depressed subjects, in the skin of four distinct rat models of depression. METHODS In the presented study male rats from the adrenocorticotropic hormone (ACTH) model (n = 10/group), the chronic mild stress model (n = 10/group), Wistar Kyoto/Wistar Hannover rats (n = 10/group), and Flinders Resistant/Flinders Sensitive Line rats (n = 8/group) were included. Real-time qPCR was utilized to investigate miRNA alterations in flash-frozen skin-biopsies from the ear and fibroblast cultures. RESULTS In the ACTH rat model of depression, we identified nine dysregulated miRNAs in the skin and three in the fibroblasts. As the skin presented three times the amount of dysregulated miRNAs compared to the fibroblasts, skin instead of fibroblasts were continuously used for studies with the other rat models. In the skin from the four rat models of depression, 15 out of 38 miRNAs re-exhibited significant dysregulation in at least one of the rat models of depression and 67% were regulated in the same direction as in the human study. miR-450a and miR-193a presented dysregulation across rat models and miR-193a and miR-185 exhibited very strong dysregulation (30-fold and 50-fold, respectively). Lastly, an Ingenuity Pathway Analysis indicated functional overlap between dysregulated miRNAs, and common regulated pathways. CONCLUSION Flash-frozen skin is a valid alternative to fibroblast cultures as the skin appear to retain more of the miRNA dysregulation present in vivo. A sub-population of 15 miRNAs appear to be specific for the depressive phenotype, as they are dysregulated in both human depressed patients and distinct rat models of depression. We propose miR-450a, miR-185, and miR-193a as biomarker candidates of particular interest.
Collapse
|
27
|
Widespread transcriptional disruption of the microRNA biogenesis machinery in brain and peripheral tissues of individuals with schizophrenia. Transl Psychiatry 2020; 10:376. [PMID: 33149139 PMCID: PMC7642431 DOI: 10.1038/s41398-020-01052-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
In schizophrenia, altered transcription in brain and peripheral tissues may be due to altered expression of the microRNA biogenesis machinery genes. In this study, we explore the expression of these genes both at the cerebral and peripheral levels. We used shinyGEO application to analyze gene expression from ten Gene Expression Omnibus datasets, in order to perform differential expression analyses for eight genes encoding the microRNA biogenesis machinery. First, we compared expression of the candidate genes between control subjects and individuals with schizophrenia in postmortem cerebral samples from seven different brain regions. Then, we compared the expression of the candidate genes between control subjects and individuals with schizophrenia in three peripheral tissues. In brain and peripheral tissues of individuals with schizophrenia, we report distinct altered expression patterns of the microRNA biogenesis machinery genes. In the dorsolateral prefrontal cortex, associative striatum and cerebellum of individuals with schizophrenia, we observed an overexpression pattern of some candidate genes suggesting a heightened miRNA production in these brain regions. Additionally, mixed transcriptional abnormalities were identified in the hippocampus. Moreover, in the blood and olfactory epithelium of individuals with schizophrenia, we observed distinct aberrant transcription patterns of the candidate genes. Remarkably, in individuals with schizophrenia, we report DICER1 overexpression in the dorsolateral prefrontal cortex, hippocampus and cerebellum as well as a congruent DICER1 upregulation in the blood compartment suggesting that it may represent a peripheral marker. Transcriptional disruption of the miRNA biogenesis machinery may contribute to schizophrenia pathogenesis both in brain and peripheral tissues.
Collapse
|
28
|
Rey R, Suaud-Chagny MF, Bohec AL, Dorey JM, d'Amato T, Tamouza R, Leboyer M. Overexpression of complement component C4 in the dorsolateral prefrontal cortex, parietal cortex, superior temporal gyrus and associative striatum of patients with schizophrenia. Brain Behav Immun 2020; 90:216-225. [PMID: 32827700 DOI: 10.1016/j.bbi.2020.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In schizophrenia, abnormal synaptic pruning during adolescence may be due to altered expression of the Complement component 4 (C4). Overexpression of C4 genes has been identified in the total cerebral cortex and in 6 different brain regions of schizophrenic patients compared to controls. These alterations should be replicated and extended to other brain regions relevant to schizophrenia. Moreover, it remains unknown whether cerebral and peripheral C4 expression levels are related. METHODS We explored C4 genes expression both at the cerebral and peripheral levels. Using shinyGEO application we analyzed C4 expression from eight Gene Expression Omnibus datasets obtained from 196 schizophrenic patients and 182 control subjects. First, we compared C4 expression between schizophrenic patients and controls in postmortem cerebral samples from 7 different brain regions. Then, we compared C4 expression between schizophrenic patients and controls in 4 peripheral tissues. RESULTS At the cerebral level, we provide further evidence of C4 overexpression in schizophrenic patients. Consistently with a previous report, we found C4 overexpression in the dorsolateral prefrontal cortex and in the parietal cortex of schizophrenic patients. The observation of C4 overexpression was further extended to the superior temporal cortex and the associative striatum of schizophrenic patients. Conversely, no significant alteration of C4 expression was observed in peripheral tissues. CONCLUSIONS Our results support the hypothesis of an excessive Complement activity in various brain regions of schizophrenic patients which may disrupt the synaptic pruning process occurring during adolescence. C4 overexpression may be specific to the cerebral tissue while other alterations of the Complement system may be detected at the systemic level.
Collapse
Affiliation(s)
- Romain Rey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon F-69000, France; University Lyon 1, Villeurbanne F-69000, France; Schizophrenia Expert Centre, Le Vinatier Hospital, Bron, France; Fondation FondaMental, Créteil, France.
| | - Marie-Françoise Suaud-Chagny
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon F-69000, France; University Lyon 1, Villeurbanne F-69000, France
| | - Anne-Lise Bohec
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon F-69000, France; University Lyon 1, Villeurbanne F-69000, France; Schizophrenia Expert Centre, Le Vinatier Hospital, Bron, France; Fondation FondaMental, Créteil, France
| | - Jean-Michel Dorey
- University Lyon 1, Villeurbanne F-69000, France; Department of Old Age Psychiatry, Le Vinatier Hospital, Bron, France
| | - Thierry d'Amato
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon F-69000, France; University Lyon 1, Villeurbanne F-69000, France; Schizophrenia Expert Centre, Le Vinatier Hospital, Bron, France; Fondation FondaMental, Créteil, France
| | - Ryad Tamouza
- Fondation FondaMental, Créteil, France; Department of Psychiatry and Addictology, Mondor University Hospital, AP-HP, DMU IMPACT, France; University Paris-Est-Créteil, UPEC, Créteil, France; Inserm U955, Mondor Institute for Biomedical Research, IMRB, Translational Neuropsychiatry Team, Créteil, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France; Department of Psychiatry and Addictology, Mondor University Hospital, AP-HP, DMU IMPACT, France; University Paris-Est-Créteil, UPEC, Créteil, France; Inserm U955, Mondor Institute for Biomedical Research, IMRB, Translational Neuropsychiatry Team, Créteil, France
| |
Collapse
|
29
|
Hess JL, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N, Tooney P, Schall U, Gardiner E, Beveridge NJ, Scott RJ, Yasawardene S, Perera A, Mendis J, Carr V, Kelly B, Cairns M, Tsuang MT, Glatt SJ. Transcriptomic abnormalities in peripheral blood in bipolar disorder, and discrimination of the major psychoses. Schizophr Res 2020; 217:124-135. [PMID: 31391148 PMCID: PMC6997041 DOI: 10.1016/j.schres.2019.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
We performed a transcriptome-wide meta-analysis and gene co-expression network analysis to identify genes and gene networks dysregulated in the peripheral blood of bipolar disorder (BD) cases relative to unaffected comparison subjects, and determined the specificity of the transcriptomic signatures of BD and schizophrenia (SZ). Nineteen genes and 4 gene modules were significantly differentially expressed in BD cases. Thirteen gene modules were shown to be differentially expressed in a combined case-group of BD and SZ subjects called "major psychosis", including genes biologically linked to apoptosis, reactive oxygen, chromatin remodeling, and immune signaling. No modules were differentially expressed between BD and SZ cases. Machine-learning classifiers trained to separate diagnostic classes based solely on gene expression profiles could distinguish BD cases from unaffected comparison subjects with an area under the curve (AUC) of 0.724, as well as BD cases from SZ cases with AUC = 0.677 in withheld test samples. We introduced a novel and straightforward method called "polytranscript risk scoring" that could distinguish BD cases from unaffected subjects (AUC = 0.672) and SZ cases (AUC = 0.607) significantly better than expected by chance. Taken together, our results highlighted gene expression alterations common to BD and SZ that involve biological processes of inflammation, oxidative stress, apoptosis, and chromatin regulation, and highlight disorder-specific changes in gene expression that discriminate the major psychoses.
Collapse
Affiliation(s)
- Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel S Tylee
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rahul Barve
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Simone de Jong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nishantha Kumarasinghe
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka; Faculty of Medicine, Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Paul Tooney
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Ulrich Schall
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Erin Gardiner
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Natalie Jane Beveridge
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Rodney J Scott
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Surangi Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Antionette Perera
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Jayan Mendis
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka
| | - Vaughan Carr
- School of Psychiatry, University of New South Wales, Kensington, New South Wales, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, Newcastle, Australia.; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Murray Cairns
- School of Biomedical Sciences & Pharmacy, Faculty of Health, The University of Newcastle, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, Australia; Priority Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, Newcastle, Australia
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
30
|
Transcriptome analysis of fibroblasts from schizophrenia patients reveals differential expression of schizophrenia-related genes. Sci Rep 2020; 10:630. [PMID: 31959813 PMCID: PMC6971273 DOI: 10.1038/s41598-020-57467-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia is a complex neurodevelopmental disorder with high rate of morbidity and mortality. While the heritability rate is high, the precise etiology is still unknown. Although schizophrenia is a central nervous system disorder, studies using peripheral tissues have also been established to search for patient specific biomarkers and to increase understanding of schizophrenia etiology. Among all peripheral tissues, fibroblasts stand out as they are easy to obtain and culture. Furthermore, they keep genetic stability for long period and exhibit molecular similarities to cells from nervous system. Using a unique set of fibroblast samples from a genetically isolated population in northern Sweden, we performed whole transcriptome sequencing to compare differentially expressed genes in seven controls and nine patients. We found differential fibroblast expression between cases and controls for 48 genes, including eight genes previously implicated in schizophrenia or schizophrenia related pathways; HGF, PRRT2, EGR1, EGR3, C11orf87, TLR3, PLEKHH2 and PIK3CD. Weighted gene correlation network analysis identified three differentially co-expressed networks of genes significantly-associated with schizophrenia. All three modules were significantly suppressed in patients compared to control, with one module highly enriched in genes involved in synaptic plasticity, behavior and synaptic transmission. In conclusion, our results support the use of fibroblasts for identification of differentially expressed genes in schizophrenia and highlight dysregulation of synaptic networks as an important mechanism in schizophrenia.
Collapse
|
31
|
Mesdom P, Colle R, Lebigot E, Trabado S, Deflesselle E, Fève B, Becquemont L, Corruble E, Verstuyft C. Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response. Curr Neuropharmacol 2020; 18:301-318. [PMID: 31631822 PMCID: PMC7327943 DOI: 10.2174/1570159x17666191021141057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood. OBJECTIVE The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response. METHODS The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action. RESULTS HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action. CONCLUSION The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Céline Verstuyft
- Address correspondence to this author at the Laboratoire de Pharmacologie, Salle 416, Bâtiment Université, Hôpital du Kremlin Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; Tel: +33145213588; E-mail:
| |
Collapse
|
32
|
Kumar A, Pareek V, Singh HN, Faiq MA, Narayan RK, Raza K, Kumar P. Altered Expression of a Unique Set of Genes Reveals Complex Etiology of Schizophrenia. Front Psychiatry 2019; 10:906. [PMID: 31920755 PMCID: PMC6920214 DOI: 10.3389/fpsyt.2019.00906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023] Open
Abstract
Background: The etiology of schizophrenia is extensively debated, and multiple factors have been contended to be involved. A panoramic view of the contributing factors in a genome-wide study can be an effective strategy to provide a comprehensive understanding of its causality. Materials and Methods: GSE53987 dataset downloaded from GEO-database, which comprised mRNA expression data of post-mortem brain tissue across three regions from control (C) and age-matched subjects (T) of schizophrenia (N = Hippocampus [HIP]: C-15, T-18, Prefrontal cortex [PFC]: C-15, T-19, Associative striatum [STR]: C-18, T-18). Bio-conductor-affy-package used to compute mRNA expression, and further t-test applied to investigate differential gene expression. The analysis of the derived genes performed using the PANTHER Classification System and NCBI database. Further, a protein interactome analysis of the derived gene set was performed using STRING v10 database (https://string-db.org/) Results: A set of 40 genes showed significantly altered (p < 0.01) expression across all three brain regions. The analyses unraveled genes implicated in biological processes and events, and molecular pathways relating basic neuronal functions. Conclusions: The aberrant expression of genes maintaining basic cell machinery explains compromised neuronal processing in SCZ.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre (NBRC), Manesar, India
| | - Himanshu N. Singh
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- TAGC—Theories and Approaches of Genomic Complexity, Aix Marseille University, Inserm U1090, Marseille, France
| | - Muneeb A. Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Neuroimaging and Visual Science Laboratory, New York University (NYU) Langone Health Centre, NYU Robert I. Grossman School of Medicine, New York, NY, United States
| | - Ravi K. Narayan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
| | - Pavan Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Developmental Neurogenetics Lab, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
33
|
A multimodal attempt to follow-up linkage regions using RNA expression, SNPs and CpG methylation in schizophrenia and bipolar disorder kindreds. Eur J Hum Genet 2019; 28:499-507. [PMID: 31695175 DOI: 10.1038/s41431-019-0526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
The complexity of schizophrenia (SZ) and bipolar disorder (BD) has slowed down progress in understanding their genetic roots. Alternative genomic approaches are needed to bypass these difficulties. We attempted a multimodal approach to follow-up on reported linkage findings in SZ and BD from the Eastern Quebec kindreds in chromosomes 3q21, 4p34, 6p22, 8p21, 8p11, 13q11-q14, 15q13, 16p12, and 18q21. First, in 498 subjects, we measured RNA expression (47 K Illumina chips) in SZ and BD patients that we compared with their non-affected relatives (NARs) to identify, for each chromosomal region, genes showing the most significant differences in expression. Second, we performed SNP genotyping (700 K Illumina chips) and cis-eQTN analysis. Third, we measured DNA methylation on genes with RNA expression differences or eQTNs. We found a significant overexpression of the gene ITGB5 at 3q25 in SZ and BD after multiple testing p value adjustment. SPCS3 gene at 4q34, and FZD3 gene at 8p21, contained significant eQTNs after multiple testing corrections, while ITGB5 provided suggestive results. Methylation in associated genes did not explain the expression differences between patients and NARs. Our multimodal approach involving RNA expression, dense SNP genotyping and eQTN analyses, restricted to chromosomal regions having shown linkage, lowered the multiple testing burden and allowed for a deeper examination of candidate genes in SZ or BD.
Collapse
|
34
|
Integrating genome-wide association study with regulatory SNP annotation information identified candidate genes and pathways for schizophrenia. Aging (Albany NY) 2019; 11:3704-3715. [PMID: 31175266 PMCID: PMC6594824 DOI: 10.18632/aging.102008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder. The genetic mechanism of schizophrenia remains elusive now. METHODS We conducted a large-scale integrative analysis of two genome-wide association studies of schizophrenia with functional annotation datasets of regulatory single-nucleotide polymorphism (rSNP). The significant SNPs identified by the two genome-wide association studies were first annotated to obtain schizophrenia associated rSNPs and their target genes and proteins, respectively. We then compared the integrative analysis results to identify the common rSNPs and their target regulatory genes and proteins, shared by the two genome-wide association studies of schizophrenia. Finally, DAVID tool was used to conduct gene ontology and pathway enrichment analysis of the identified targets genes and proteins. RESULTS We detected 53 schizophrenia-associated target genes for rSNP, such as FOS (P value = 2.18×10-20), ATXN1 (P value = 5.22×10-21) and HLA-DQA1 (P value = 1.98×10-10). Pathway enrichment analysis identified 24 pathways for transcription factors binding regions, chromatin interacting regions, long non-coding RNAs, topologically associated domains, circular RNAs and post-translational modifications, such as hsa05034:Alcoholism (P value = 2.57×10-7) and hsa04612:Antigen processing and presentation (P value = 6.82×10-8). CONCLUSION We detected multiple candidate genes, gene ontology terms and pathways for schizophrenia, supporting the functional importance of rSNPs, and providing novel clues for understanding the genetic architecture of schizophrenia.
Collapse
|
35
|
Hu TM, Chen SJ, Hsu SH, Cheng MC. Functional analyses and effect of DNA methylation on the EGR1 gene in patients with schizophrenia. Psychiatry Res 2019; 275:276-282. [PMID: 30952071 DOI: 10.1016/j.psychres.2019.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
Abstract
EGR1, involved in the regulation of synaptic plasticity, learning, and memory, is considered a candidate gene for schizophrenia. We resequenced the exonic regions of EGR1 in 516 patients with schizophrenia and conducted a reporter gene assay. We found two mutations including a rare mutation (c.-8C>T, rs561524195) and one common SNP (c.308-42C>T, rs11743810). The reporter gene assay showed c.-8C>T mutant did not affect promoter activity. Gene expression analyses showed that the average EGR1 mRNA and protein levels in lymphoblastoid cell lines of schizophrenia in male, but not female, were significantly higher than those in controls. We conducted in vitro DNA methylation reaction, luciferase activity assay, and pyrosequencing to assess DNA methylation of EGR1 expression underlying the pathophysiology of schizophrenia. DNA methylation of the EGR1 promoter region attenuated reporter activity, suggesting that DNA methylation regulates EGR1 expression. There were no statistically significant differences in DNA methylation levels of 17 CpG sites at the EGR1 promoter region between 64 patients with schizophrenia compared with 64 controls. These results suggest that the exonic mutations in EGR1 and DNA methylation regulating EGR1 expression might not be associated with schizophrenia. However, the gender-specific association of elevated EGR1 expression might be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien County, Taiwan; Department of Long-Term Care, University of Kang Ning, Taipei City, Taiwan
| | - Shaw-Ji Chen
- Department of Psychiatry, Mackay Medical College, New Taipei City, Taiwan; Department of Psychiatry, Mackay Memorial Hospital, Taitung Branch, Taitung County, Taiwan
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien County, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien County, Taiwan.
| |
Collapse
|
36
|
Huang J, Liu F, Wang B, Tang H, Teng Z, Li L, Qiu Y, Wu H, Chen J. Central and Peripheral Changes in FOS Expression in Schizophrenia Based on Genome-Wide Gene Expression. Front Genet 2019; 10:232. [PMID: 30967896 PMCID: PMC6439315 DOI: 10.3389/fgene.2019.00232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia is a chronic, debilitating neuropsychiatric disorder. Multiple transcriptomic gene expression profiling analysis has been used to identify schizophrenia-associated genes, unravel disease-associated biomarkers, and predict clinical outcomes. We aimed to identify gene expression regulation, underlying pathways, and their roles in schizophrenia pathogenesis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of fibroblasts, lymphoblasts, and post-mortem brains of schizophrenia patients. Our analysis demonstrated high FOS expression in non-neural peripheral samples and low FOS expression in brain tissues of schizophrenia patients compared with healthy controls. FOS exhibited predictive value for schizophrenia patients in these datasets. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that “amphetamine addiction” was among the top 10 significantly enriched KEGG pathways. FOS and FOSB, which are implicated in the amphetamine addiction pathway, were up-regulated in schizophrenia fibroblast samples. Protein–protein interaction (PPI) network analysis revealed that proteins closely interacting with FOS-encoded protein were also involved in the amphetamine addiction pathway. Pearson correlation test indicated that FOS showed positive correlation with genes in the amphetamine pathway. The results revealed that FOS was acceptable as a biomarker for schizophrenia and may be involved in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bolun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Lehua Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Qiu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center for Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
37
|
Piras IS, Manchia M, Huentelman MJ, Pinna F, Zai CC, Kennedy JL, Carpiniello B. Peripheral Biomarkers in Schizophrenia: A Meta-Analysis of Microarray Gene Expression Datasets. Int J Neuropsychopharmacol 2018; 22:186-193. [PMID: 30576541 PMCID: PMC6403089 DOI: 10.1093/ijnp/pyy103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disorder with a complex pathophysiology. Given its prevalence, high risk of mortality, early onset, and high levels of disability, researchers have attempted to develop early detection strategies for facilitating timely pharmacological and/or nonpharmacological interventions. Here, we performed a meta-analysis of publicly available gene expression datasets in peripheral tissues in schizophrenia and healthy controls to detect consistent patterns of illness-associated gene expression. We also tested whether our earlier finding of a downregulation of NPTX2 expression in the brain of schizophrenia patients replicated in peripheral tissues. METHODS We conducted a systematic search in the Gene Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/gds/) and identified 3 datasets matching our inclusion criteria: GSE62333, GSE18312, and GSE27383. After quality controls, the total sample size was: schizophrenia (n = 71) and healthy controls (n = 57) (schizophrenia range: n = 12-40; healthy controls range: n = 8-29). RESULTS The results of the meta-analysis conducted with the GeneMeta package revealed 2 genes with a false discovery rate < 0.05: atlastin GTPase 3 (ATL3) (upregulated) and arachidonate 15-lipoxygenase, type B (ALOX15B) (downregulated). The result for ATL3 was confirmed using the weighted Z test method, whereas we found a suggestive signal for ALOX15B (false discovery rate < 0.10). CONCLUSIONS These data point to alterations of peripheral expression of ATL3 in schizophrenia, but did not confirm the significant association signal found for NPTX2 in postmortem brain samples. These findings await replication in newly recruited schizophrenia samples as well as complementary analysis of their encoded peptides in blood.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomic Division, Translational Genomic Research Institute, Phoenix, Arizona
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada,Correspondence: Mirko Manchia, MD, PhD, Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Via Liguria, 13 - 09127 Cagliari, Italy ( and )
| | - Matthew J Huentelman
- Neurogenomic Division, Translational Genomic Research Institute, Phoenix, Arizona
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clement C Zai
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
38
|
Milanesi E, Zanardini R, Rosso G, Maina G, Barbon A, Mora C, Minelli A, Gennarelli M, Bocchio-Chiavetto L. Insulin-like growth factor binding protein 2 in bipolar disorder: An expression study in peripheral tissues. World J Biol Psychiatry 2018; 19:610-618. [PMID: 28090803 DOI: 10.1080/15622975.2017.1282172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Insulin-like growth factor binding protein 2 (IGFBP2) is a member of the family of high-affinity binding proteins (IGFBP1-6) and appears to play a governing role in insulin-like growth factor (IGF) regulation in the central nervous system. This study aimed to investigate the putative involvement of IGFBP2 in mood disorder pathogenesis by measuring its expression levels in patient peripheral tissues. METHODS IGFBP2 protein and mRNA levels were measured in the serum of 93 controls, 41 bipolar disorder (BD) and 43 major depressive disorder (MDD) patients and in the skin fibroblasts from 15 controls, 12 BD and 23 MDD patients. RESULTS The results indicated reduced expression of IGFBP2 in both tissues of BD patients, whereas no difference was found in MDD patients compared with controls. CONCLUSIONS Our findings in peripheral tissues are consistent with previous results in the brain and support a downregulation of IGFBP2 expression that is specific for BD, suggesting a role for this protein in the alterations in neurodevelopment and neuroprotection observed in the disorder. Further studies in independent and larger cohorts are warranted to confirm the involvement of IGFBP2 in BD.
Collapse
Affiliation(s)
- Elena Milanesi
- a Genetics Unit, IRCCS Centro S. Giovanni di Dio, Fatebenefratelli , Brescia , Italy
| | - Roberta Zanardini
- b Molecular Markers Laboratory , IRCCS Centro S. Giovanni di Dio, Fatebenefratelli , Brescia , Italy
| | - Gianluca Rosso
- c Department of Neuroscience , University of Torino , Torino , Italy
| | - Giuseppe Maina
- c Department of Neuroscience , University of Torino , Torino , Italy
| | - Alessandro Barbon
- d Department of Molecular and Translational Medicine, Biology and Genetic Division , University of Brescia , Brescia , Italy
| | - Cristina Mora
- d Department of Molecular and Translational Medicine, Biology and Genetic Division , University of Brescia , Brescia , Italy
| | - Alessandra Minelli
- d Department of Molecular and Translational Medicine, Biology and Genetic Division , University of Brescia , Brescia , Italy
| | - Massimo Gennarelli
- a Genetics Unit, IRCCS Centro S. Giovanni di Dio, Fatebenefratelli , Brescia , Italy.,d Department of Molecular and Translational Medicine, Biology and Genetic Division , University of Brescia , Brescia , Italy
| | - Luisella Bocchio-Chiavetto
- a Genetics Unit, IRCCS Centro S. Giovanni di Dio, Fatebenefratelli , Brescia , Italy.,e Faculty of Psychology , eCampus University , Novedrate (Como) , Italy
| |
Collapse
|
39
|
Golimbet VE, Kryukov AI, Kostyuk GP, Arzamasov SG, Tsarapkin GY. [Olfactory neuroepithelium as a model for the studies of molecular mechanisms of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:111-114. [PMID: 30040811 DOI: 10.17116/jnevro201811861111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Olfactory neuroepithelium (OE) is shown to be a suitable experimental model to study neuronal biomarkers of psychiatric diseases including schizophrenia. Olfactory neuronal precursors can be useful for studying neurodevelopmental stages, neuronal markers, pharmacological screening. However, a limited number of research groups have used this cell model in a small number of patients and healthy people that can be explained by several factors. Based on literature reports and own research, the authors analyze the advantages and limitations of OE-derived cell/tissue models. The main limitations of these models are decreased rate of harvesting and culturing OE-derived cell and low percentage of patients who agreed to participate in the study. Our results showed that only 10% of patients with schizophrenia signed informed consent for nasal biopsy, 80% of them underwent biopsy.
Collapse
Affiliation(s)
| | - A I Kryukov
- Sverzhevskiy Otorhinolaryngology Healthcare Research Institute, Moscow Department of Healthcare, Moscow, Russia
| | - G P Kostyuk
- Alekseev Psychiatric Clinical Hospital #1, Moscow, Russia
| | - S G Arzamasov
- Sverzhevskiy Otorhinolaryngology Healthcare Research Institute, Moscow Department of Healthcare, Moscow, Russia
| | - G Yu Tsarapkin
- Sverzhevskiy Otorhinolaryngology Healthcare Research Institute, Moscow Department of Healthcare, Moscow, Russia
| |
Collapse
|
40
|
Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 2018; 12:79. [PMID: 29755331 PMCID: PMC5932360 DOI: 10.3389/fnbeh.2018.00079] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
Many psychiatric disorders, despite their specific characteristics, share deficits in the cognitive domain including executive functions, emotional control and memory. However, memory deficits have been in many cases undervalued compared with other characteristics. The expression of Immediate Early Genes (IEGs) such as, c-fos, Egr1 and arc are selectively and promptly upregulated in learning and memory among neuronal subpopulations in regions associated with these processes. Changes in expression in these genes have been observed in recognition, working and fear related memories across the brain. Despite the enormous amount of data supporting changes in their expression during learning and memory and the importance of those cognitive processes in psychiatric conditions, there are very few studies analyzing the direct implication of the IEGs in mental illnesses. In this review, we discuss the role of some of the most relevant IEGs in relation with memory processes affected in psychiatric conditions.
Collapse
Affiliation(s)
- Francisco T Gallo
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juan F Morici
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos (UBA), Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
41
|
Jung M, Häberle BM, Tschaikowsky T, Wittmann MT, Balta EA, Stadler VC, Zweier C, Dörfler A, Gloeckner CJ, Lie DC. Analysis of the expression pattern of the schizophrenia-risk and intellectual disability gene TCF4 in the developing and adult brain suggests a role in development and plasticity of cortical and hippocampal neurons. Mol Autism 2018; 9:20. [PMID: 29588831 PMCID: PMC5863811 DOI: 10.1186/s13229-018-0200-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Haploinsufficiency of the class I bHLH transcription factor TCF4 causes Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder, while common variants in the TCF4 gene have been identified as susceptibility factors for schizophrenia. It remains largely unknown, which brain regions are dependent on TCF4 for their development and function. Methods We systematically analyzed the expression pattern of TCF4 in the developing and adult mouse brain. We used immunofluorescent staining to identify candidate regions whose development and function depend on TCF4. In addition, we determined TCF4 expression in the developing rhesus monkey brain and in the developing and adult human brain through analysis of transcriptomic datasets and compared the expression pattern between species. Finally, we morphometrically and histologically analyzed selected brain structures in Tcf4-haploinsufficient mice and compared our morphometric findings to neuroanatomical findings in PTHS patients. Results TCF4 is broadly expressed in cortical and subcortical structures in the developing and adult mouse brain. The TCF4 expression pattern was highly similar between humans, rhesus monkeys, and mice. Moreover, Tcf4 haploinsufficiency in mice replicated structural brain anomalies observed in PTHS patients. Conclusion Our data suggests that TCF4 is involved in the development and function of multiple brain regions and indicates that its regulation is evolutionary conserved. Moreover, our data validate Tcf4-haploinsufficient mice as a model to study the neurodevelopmental basis of PTHS.
Collapse
Affiliation(s)
- Matthias Jung
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin M Häberle
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tristan Tschaikowsky
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marie-Theres Wittmann
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,2Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elli-Anna Balta
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vivien-Charlott Stadler
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- 2Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Johannes Gloeckner
- 4German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany.,5Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - D Chichung Lie
- 1Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
42
|
Marballi KK, Gallitano AL. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia. Front Behav Neurosci 2018; 12:23. [PMID: 29520222 PMCID: PMC5827560 DOI: 10.3389/fnbeh.2018.00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the "Index single nucleotide polymorphism (SNP)" (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in insufficient electrophysiologic, immunologic, and neuroprotective, processes that these genes normally mediate. Continued adverse environmental experiences, over time, may thereby result in neuropathology that gives rise to the symptoms of schizophrenia. By combining multiple genes associated with schizophrenia susceptibility, in a functional cascade triggered by neuronal activity, the proposed biological pathway provides an explanation for both the polygenic and environmental influences that determine the complex etiology of this mental illness.
Collapse
Affiliation(s)
- Ketan K. Marballi
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | - Amelia L. Gallitano
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
43
|
Page SC, Hamersky GR, Gallo RA, Rannals MD, Calcaterra NE, Campbell MN, Mayfield B, Briley A, Phan BN, Jaffe AE, Maher BJ. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner. Mol Psychiatry 2018; 23:304-315. [PMID: 28289282 PMCID: PMC5599320 DOI: 10.1038/mp.2017.37] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/05/2017] [Accepted: 01/26/2017] [Indexed: 01/18/2023]
Abstract
Disruption of the laminar and columnar organization of the brain is implicated in several psychiatric disorders. Here, we show in utero gain-of-function of the psychiatric risk gene transcription factor 4 (TCF4) severely disrupts the columnar organization of medial prefrontal cortex (mPFC) in a transcription- and activity-dependent manner. This morphological phenotype was rescued by co-expression of TCF4 plus calmodulin in a calcium-dependent manner and by dampening neuronal excitability through co-expression of an inwardly rectifying potassium channel (Kir2.1). For we believe the first time, we show that N-methyl-d-aspartate (NMDA) receptor-dependent Ca2+ transients are instructive to minicolumn organization because Crispr/Cas9-mediated mutation of NMDA receptors rescued TCF4-dependent morphological phenotypes. Furthermore, we demonstrate that the transcriptional regulation by the psychiatric risk gene TCF4 enhances NMDA receptor-dependent early network oscillations. Our novel findings indicate that TCF4-dependent transcription directs the proper formation of prefrontal cortical minicolumns by regulating the expression of genes involved in early spontaneous neuronal activity, and thus our results provides insights into potential pathophysiological mechanisms of TCF4-associated psychiatric disorders.
Collapse
Affiliation(s)
| | - Gregory R. Hamersky
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Ryan A. Gallo
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Matthew D. Rannals
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | | | - Morganne N. Campbell
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Brent Mayfield
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Aaron Briley
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - BaDoi N. Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD,Department of Biostatistics and Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD,Department of Psychiatry and Behavioral Sciences and Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD,To Whom Correspondence Should Be Addressed: Brady J. Maher, Ph. D., Lieber Institute for Brain Development, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, Telephone: 410-955-0865, Fax: 410-955-1044,
| |
Collapse
|
44
|
Li Z, He Y, Han H, Zhou Y, Ma X, Wang D, Zhou J, Ren H, Yuan L, Tang J, Zong X, Hu M, Chen X. COMT, 5-HTR2A, and SLC6A4 mRNA Expressions in First-Episode Antipsychotic-Naïve Schizophrenia and Association With Treatment Outcomes. Front Psychiatry 2018; 9:577. [PMID: 30483162 PMCID: PMC6242860 DOI: 10.3389/fpsyt.2018.00577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background: Dopaminergic and serotonergic systems play crucial roles in the pathophysiology of schizophrenia and modulate response to antipsychotic treatment. However, previous studies of dopaminergic and serotonergic genes expression are sparse, and their results have been inconsistent. In this longitudinal study, we aim to investigate the expressions of Catechol-O-methyltransferase (COMT), serotonin 2A receptor (5-HTR2A), and serotonin transporter gene (SLC6A4) mRNA in first-episode antipsychotic-naïve schizophrenia and to test if these mRNA expressions are associated with cognitive deficits and treatment outcomes or not. Method: We measured COMT, 5-HTR2A, and SLC6A4 mRNA expressions in 45 drug-naive first-episode schizophrenia patients and 38 health controls at baseline, and repeated mRNA measurements in all patients at the 8-week follow up. Furthermore, we also assessed antipsychotic response and cognitive improvement after 8 weeks of risperidone monotherapy. Results: Patients were divided into responders (N = 20) and non-responders groups (N = 25) according to the Remission criteria of the Schizophrenia Working Group. Both patient groups have significantly higher COMT mRNA expression and lower SLC6A4 mRNA expression when compared with healthy controls. Interestingly, responder patients have significantly higher levels of COMT and 5-HTR2A mRNA expressions than non-responder patients at baseline. However, antipsychotic treatment has no significant effect on the expressions of COMT, 5-HTR2A, and SLC6A4 mRNA over 8-week follow up. Conclusion: Our findings suggest that dysregulated COMT and SLC6A4 mRNA expressions may implicate in the pathophysiology of schizophrenia, and that COMT and 5-HTR2A mRNA may be potential biomarkers to predict antipsychotic response.
Collapse
Affiliation(s)
- Zongchang Li
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying He
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yao Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoqian Ma
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Dong Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Jun Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Honghong Ren
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Liu Yuan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jinsong Tang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaogang Chen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,Chinese National Clinical Research Center on Mental Disorders, Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
45
|
Gassó P, Mas S, Rodríguez N, Boloc D, García-Cerro S, Bernardo M, Lafuente A, Parellada E. Microarray gene-expression study in fibroblast and lymphoblastoid cell lines from antipsychotic-naïve first-episode schizophrenia patients. J Psychiatr Res 2017; 95:91-101. [PMID: 28822801 DOI: 10.1016/j.jpsychires.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder whose onset of symptoms occurs in late adolescence and early adulthood. The etiology is complex and involves important gene-environment interactions. Microarray gene-expression studies on SZ have identified alterations in several biological processes. The heterogeneity in the results can be attributed to the use of different sample types and other important confounding factors including age, illness chronicity and antipsychotic exposure. The aim of the present microarray study was to analyze, for the first time to our knowledge, differences in gene expression profiles in 18 fibroblast (FCLs) and 14 lymphoblastoid cell lines (LCLs) from antipsychotic-naïve first-episode schizophrenia (FES) patients and healthy controls. We used an analytical approach based on protein-protein interaction network construction and functional annotation analysis to identify the biological processes that are altered in SZ. Significant differences in the expression of 32 genes were found when LCLs were assessed. The network and gene set enrichment approach revealed the involvement of similar biological processes in FCLs and LCLs, including apoptosis and related biological terms such as cell cycle, autophagy, cytoskeleton organization and response to stress and stimulus. Metabolism and other processes, including signal transduction, kinase activity and phosphorylation, were also identified. These results were replicated in two independent cohorts using the same analytical approach. This provides more evidence for altered apoptotic processes in antipsychotic-naïve FES patients and other important biological functions such as cytoskeleton organization and metabolism. The convergent results obtained in both peripheral cell models support their usefulness for transcriptome studies on SZ.
Collapse
Affiliation(s)
- Patricia Gassó
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Sergi Mas
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | | | - Daniel Boloc
- Dept. of Basic Clinical Practice, University of Barcelona, Spain
| | | | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Spain; Dept. of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Amalia Lafuente
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Eduard Parellada
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
46
|
Schizophrenia: A review of potential biomarkers. J Psychiatr Res 2017; 93:37-49. [PMID: 28578207 DOI: 10.1016/j.jpsychires.2017.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Understanding the biological process and progression of schizophrenia is the first step to developing novel approaches and new interventions. Research on new biomarkers is extremely important when the goal is an early diagnosis (prediction) and precise theranostics. The objective of this review is to understand the research on biomarkers and their effects in schizophrenia to synthesize the role of these new advances. METHODS In this review, we search and review publications in databases in accordance with established limits and specific objectives. We look at particular endpoints such as the category of biomarkers, laboratory techniques and the results/conclusions of the selected publications. RESULTS The investigation of biomarkers and their potential as a predictor, diagnosis instrument and therapeutic orientation, requires an appropriate methodological strategy. In this review, we found different laboratory techniques to identify biomarkers and their function in schizophrenia. CONCLUSION The consolidation of this information will provide a large-scale application network of schizophrenia biomarkers.
Collapse
|
47
|
Dolder PC, Grünblatt E, Müller F, Borgwardt SJ, Liechti ME. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene ( HTR2A) or Early Growth Response Genes ( EGR1-3) in Healthy Subjects. Front Pharmacol 2017; 8:423. [PMID: 28701958 PMCID: PMC5487530 DOI: 10.3389/fphar.2017.00423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/14/2017] [Indexed: 12/20/2022] Open
Abstract
Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans.
Collapse
Affiliation(s)
- Patrick C Dolder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of BaselBasel, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of ZurichZurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH ZurichZurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of ZurichZurich, Switzerland
| | - Felix Müller
- Department of Psychiatry (Universitäre Psychiatrische Kliniken Basel), University of BaselBasel, Switzerland
| | - Stefan J Borgwardt
- Department of Psychiatry (Universitäre Psychiatrische Kliniken Basel), University of BaselBasel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of BaselBasel, Switzerland
| |
Collapse
|
48
|
Hill MJ, Killick R, Navarrete K, Maruszak A, McLaughlin GM, Williams BP, Bray NJ. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex. J Psychiatry Neurosci 2017; 42:181-188. [PMID: 27689884 PMCID: PMC5403663 DOI: 10.1503/jpn.160073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Common variants in the TCF4 gene are among the most robustly supported genetic risk factors for schizophrenia. Rare TCF4 deletions and loss-of-function point mutations cause Pitt-Hopkins syndrome, a developmental disorder associated with severe intellectual disability. METHODS To explore molecular and cellular mechanisms by which TCF4 perturbation could interfere with human cortical development, we experimentally reduced the endogenous expression of TCF4 in a neural progenitor cell line derived from the developing human cerebral cortex using RNA interference. Effects on genome-wide gene expression were assessed by microarray, followed by Gene Ontology and pathway analysis of differentially expressed genes. We tested for genetic association between the set of differentially expressed genes and schizophrenia using genome-wide association study data from the Psychiatric Genomics Consortium and competitive gene set analysis (MAGMA). Effects on cell proliferation were assessed using high content imaging. RESULTS Genes that were differentially expressed following TCF4 knockdown were highly enriched for involvement in the cell cycle. There was a nonsignificant trend for genetic association between the differentially expressed gene set and schizophrenia. Consistent with the gene expression data, TCF4 knockdown was associated with reduced proliferation of cortical progenitor cells in vitro. LIMITATIONS A detailed mechanistic explanation of how TCF4 knockdown alters human neural progenitor cell proliferation is not provided by this study. CONCLUSION Our data indicate effects of TCF4 perturbation on human cortical progenitor cell proliferation, a process that could contribute to cognitive deficits in individuals with Pitt-Hopkins syndrome and risk for schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicholas J. Bray
- Correspondence to: N. Bray, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University School of Medicine, Cardiff, UK;
| |
Collapse
|
49
|
Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, Zheng D, Lachman HM. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2017; 8:11. [PMID: 28321286 PMCID: PMC5357816 DOI: 10.1186/s13229-017-0124-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND CHD8 (chromodomain helicase DNA-binding protein 8), which codes for a member of the CHD family of ATP-dependent chromatin-remodeling factors, is one of the most commonly mutated genes in autism spectrum disorders (ASD) identified in exome-sequencing studies. Loss of function mutations in the gene have also been found in schizophrenia (SZ) and intellectual disabilities and influence cancer cell proliferation. We previously reported an RNA-seq analysis carried out on neural progenitor cells (NPCs) and monolayer neurons derived from induced pluripotent stem (iPS) cells that were heterozygous for CHD8 knockout (KO) alleles generated using CRISPR-Cas9 gene editing. A significant number of ASD and SZ candidate genes were among those that were differentially expressed in a comparison of heterozygous KO lines (CHD8+/-) vs isogenic controls (CHD8+/-), including the SZ and bipolar disorder (BD) candidate gene TCF4, which was markedly upregulated in CHD8+/- neuronal cells. METHODS In the current study, RNA-seq was carried out on CHD8+/- and isogenic control (CHD8+/+) cerebral organoids, which are 3-dimensional structures derived from iPS cells that model the developing human telencephalon. RESULTS TCF4 expression was, again, significantly upregulated. Pathway analysis carried out on differentially expressed genes (DEGs) revealed an enrichment of genes involved in neurogenesis, neuronal differentiation, forebrain development, Wnt/β-catenin signaling, and axonal guidance, similar to our previous study on NPCs and monolayer neurons. There was also significant overlap in our CHD8+/- DEGs with those found in a transcriptome analysis carried out by another group using cerebral organoids derived from a family with idiopathic ASD. Remarkably, the top DEG in our respective studies was the non-coding RNA DLX6-AS1, which was markedly upregulated in both studies; DLX6-AS1 regulates the expression of members of the DLX (distal-less homeobox) gene family. DLX1 was also upregulated in both studies. DLX genes code for transcription factors that play a key role in GABAergic interneuron differentiation. Significant overlap was also found in a transcriptome study carried out by another group using iPS cell-derived neurons from patients with BD, a condition characterized by dysregulated WNT/β-catenin signaling in a subgroup of affected individuals. CONCLUSIONS Overall, the findings show that distinct ASD, SZ, and BD candidate genes converge on common molecular targets-an important consideration for developing novel therapeutics in genetically heterogeneous complex traits.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY USA
| | - Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Erciyes University School of Medicine, Kayseri, Turkey
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Erciyes University School of Medicine, Kayseri, Turkey
| | - Michael Kirschenbaum
- Department of Psychiatry and Behavioral Sciences, Erciyes University School of Medicine, Kayseri, Turkey
| | - Can Bayrak
- Erciyes University School of Medicine, Kayseri, Turkey
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY USA
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY USA
- Department of Psychiatry and Behavioral Sciences, Erciyes University School of Medicine, Kayseri, Turkey
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY USA
| |
Collapse
|
50
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|