1
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
2
|
Yu XF, Teng B, Li JF, Zhang JV, Su Z, Ren PG. Novel Function of Osteocalcin in Chondrocyte Differentiation and Endochondral Ossification Revealed on a CRISPR/Cas9 bglap-bglap2 Deficiency Mouse Model. Int J Mol Sci 2024; 25:9945. [PMID: 39337434 PMCID: PMC11431882 DOI: 10.3390/ijms25189945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Endochondral ossification is the process by which cartilage is mineralized into bone, and is essential for the development of long bones. Osteocalcin (OCN), a protein abundant in bone matrix, also exhibits high expression in chondrocytes, especially hypertrophic chondrocytes, while its role in endochondral ossification remains unclear. Utilizing a new CRISPR/Cas9-mediated bglap-bglap2 deficiency (OCNem) mouse model generated in our laboratory, we provide the first evidence of OCN's regulatory function in chondrocyte differentiation and endochondral ossification. The OCNem mice exhibited significant delays in primary and secondary ossification centers compared to wild-type mice, along with increased cartilage length in growth plates and hypertrophic zones during neonatal and adolescent stages. These anomalies indicated that OCN deficiency disturbed endochondral ossification during embryonic and postnatal periods. Mechanism wise, OCN deficiency was found to increase chondrocyte differentiation and postpone vascularization process. Furthermore, bone marrow mesenchymal stromal cells (BMSCs) from OCNem mice demonstrated an increased capacity for chondrogenic differentiation. Transcriptional network analysis implicated that BMP and TGF-β signaling pathways were highly affected in OCNem BMSCs, which is closely associated with cartilage development and maintenance. This elucidation of OCN's function in chondrocyte differentiation and endochondral ossification contributes to a more comprehensive understanding of its impact on skeletal development and homeostasis.
Collapse
Affiliation(s)
- Xiang-Fang Yu
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518026, China;
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
| | - Bin Teng
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
| | - Jun-Feng Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (B.T.); (J.-F.L.); (J.V.Z.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children’s Hospital, Shenzhen 518026, China;
| | - Pei-Gen Ren
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Houck CA, Koopmans M, Nikkels PGJ. The Radiological and Histological Phenotype of Skeletal Abnormalities in Fetal ARCN1-Related Syndrome. Pediatr Dev Pathol 2024; 27:176-180. [PMID: 38044464 PMCID: PMC11015707 DOI: 10.1177/10935266231213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Mutations in ARCN1 give rise to a syndromic disorder with rhizomelic short stature with microretrognathia and developmental delay. ARCN1 encodes the delta subunit of the coat protein I complex, which is required for intracellular trafficking of collagen 1 and which may also be involved in the endoplasmic reticulum (ER) stress response. In this paper we describe for the first time the skeletal histological abnormalities in an 18-week-old fetus with an ARCN1 mutation, and we suggest that the skeletal phenotype in ARCN1-related syndrome has more resemblance with ER stress than with a defect in collagen 1 metabolism.
Collapse
Affiliation(s)
- Charlotte A. Houck
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marije Koopmans
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter G. J. Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Posey KL. Curcumin and Resveratrol: Nutraceuticals with so Much Potential for Pseudoachondroplasia and Other ER-Stress Conditions. Biomolecules 2024; 14:154. [PMID: 38397390 PMCID: PMC10886985 DOI: 10.3390/biom14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Natural products with health benefits, nutraceuticals, have shown considerable promise in many studies; however, this potential has yet to translate into widespread clinical use for any condition. Notably, many drugs currently on the market, including the first analgesic aspirin, are derived from plant extracts, emphasizing the historical significance of natural products in drug development. Curcumin and resveratrol, well-studied nutraceuticals, have excellent safety profiles with relatively mild side effects. Their long history of safe use and the natural origins of numerous drugs contrast with the unfavorable reputation associated with nutraceuticals. This review aims to explore the nutraceutical potential for treating pseudoachondroplasia, a rare dwarfing condition, by relating the mechanisms of action of curcumin and resveratrol to molecular pathology. Specifically, we will examine the curcumin and resveratrol mechanisms of action related to endoplasmic reticulum stress, inflammation, oxidative stress, cartilage health, and pain. Additionally, the barriers to the effective use of nutraceuticals will be discussed. These challenges include poor bioavailability, variations in content and purity that lead to inconsistent results in clinical trials, as well as prevailing perceptions among both the public and medical professionals. Addressing these hurdles is crucial to realizing the full therapeutic potential of nutraceuticals in the context of pseudoachondroplasia and other health conditions that might benefit.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| |
Collapse
|
5
|
Hecht JT, Veerisetty AC, Patra D, Hossain MG, Chiu F, Mobed C, Gannon FH, Posey KL. Early Resveratrol Treatment Mitigates Joint Degeneration and Dampens Pain in a Mouse Model of Pseudoachondroplasia (PSACH). Biomolecules 2023; 13:1553. [PMID: 37892235 PMCID: PMC10605626 DOI: 10.3390/biom13101553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudoachondroplasia (PSACH), a severe dwarfing condition associated with early-onset joint degeneration and lifelong joint pain, is caused by mutations in cartilage oligomeric matrix protein (COMP). The mechanisms underlying the mutant-COMP pathology have been defined using the MT-COMP mouse model of PSACH that has the common D469del mutation. Mutant-COMP protein does not fold properly, and it is retained in the rough endoplasmic reticulum (rER) of chondrocytes rather than being exported to the extracellular matrix (ECM), driving ER stress that stimulates oxidative stress and inflammation, driving a self-perpetuating cycle. CHOP (ER stress signaling protein) and TNFα inflammation drive high levels of mTORC1 signaling, shutting down autophagy and blocking ER clearance, resulting in premature loss of chondrocytes that negatively impacts linear growth and causes early joint degeneration in MT-COMP mice and PSACH. Previously, we have shown that resveratrol treatment from birth to 20 weeks prevents joint degeneration and decreases the pathological processes in articular chondrocytes. Resveratrol's therapeutic mechanism of action in the mutant-COMP pathology was shown to act by primarily stimulating autophagy and reducing inflammation. Importantly, we demonstrated that MT-COMP mice experience pain consistent with PSACH joint pain. Here, we show, in the MT-COMP mouse, that resveratrol treatment must begin within 4 weeks to preserve joint health and reduce pain. Resveratrol treatment started at 6 or 8 weeks (to 20 weeks) was not effective in preventing joint degeneration. Collectively, our findings in MT-COMP mice show that there is a postnatal resveratrol treatment window wherein the inevitable mutant-COMP joint degeneration and pain can be prevented.
Collapse
Affiliation(s)
- Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Alka C. Veerisetty
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Mohammad G. Hossain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Claire Mobed
- Department of Biology, Rice University, Houston, TX 77005, USA;
| | - Francis H. Gannon
- Departments of Pathology and Immunology and Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Karen L. Posey
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| |
Collapse
|
6
|
The natural product salicin alleviates osteoarthritis progression by binding to IRE1α and inhibiting endoplasmic reticulum stress through the IRE1α-IκBα-p65 signaling pathway. Exp Mol Med 2022; 54:1927-1939. [PMID: 36357568 PMCID: PMC9722708 DOI: 10.1038/s12276-022-00879-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022] Open
Abstract
Despite the high prevalence of osteoarthritis (OA) in older populations, disease-modifying OA drugs (DMOADs) are still lacking. This study was performed to investigate the effects and mechanisms of the small molecular drug salicin (SA) on OA progression. Primary rat chondrocytes were stimulated with TNF-α and treated with or without SA. Inflammatory factors, cartilage matrix degeneration markers, and cell proliferation and apoptosis markers were detected at the mRNA and protein levels. Cell proliferation and apoptosis were evaluated by EdU assays or flow cytometric analysis. RNA sequencing, molecular docking and drug affinity-responsive target stability analyses were used to clarify the mechanisms. The rat OA model was used to evaluate the effect of intra-articular injection of SA on OA progression. We found that SA rescued TNF-α-induced degeneration of the cartilage matrix, inhibition of chondrocyte proliferation, and promotion of chondrocyte apoptosis. Mechanistically, SA directly binds to IRE1α and occupies the IRE1α phosphorylation site, preventing IRE1α phosphorylation and regulating IRE1α-mediated endoplasmic reticulum (ER) stress by IRE1α-IκBα-p65 signaling. Finally, intra-articular injection of SA-loaded lactic-co-glycolic acid (PLGA) ameliorated OA progression by inhibiting IRE1α-mediated ER stress in the OA model. In conclusion, SA alleviates OA by directly binding to the ER stress regulator IRE1α and inhibits IRE1α-mediated ER stress via IRE1α-IκBα-p65 signaling. Topical use of the small molecular drug SA shows potential to modify OA progression.
Collapse
|
7
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Hellewell AL, Heesom KJ, Jepson MA, Adams JC. PDIA3/ERp57 promotes a matrix-rich secretome that stimulates fibroblast adhesion through CCN2. Am J Physiol Cell Physiol 2022; 322:C624-C644. [PMID: 35196163 PMCID: PMC8977143 DOI: 10.1152/ajpcell.00258.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matricellular glycoprotein thrombospondin1 (TSP1) has complex roles in the extracellular matrix and at cell surfaces, but relatively little is known about its intracellular associations prior to secretion. To search for novel intracellular interactions of TSP1 in situ, we carried out a biotin ligase-based TSP1 interactome screen and identified protein disulphide isomerase A3 (PDIA3/ERp57) as a novel candidate binding protein. In validation, TSP1 and PDIA3 were established to bind in vitro and to colocalise in the endoplasmic reticulum of human dermal fibroblasts (HDF). Loss of PDIA3 function, either by pharmacological inhibition in HDF or in Pdia3-/- mouse embryo fibroblasts (Pdia3-/-MEF), led to alterations in the composition of cell-derived ECM, involving changed abundance of fibronectin and TSP1, and was correlated with reduced cell spreading, altered organisation of F-actin and reduced focal adhesions. These cellular phenotypes of Pdia3-/-MEF were normalised by exposure to conditioned medium (WTCM) or extracellular matrix (WTECM) from wild-type (WT)-MEF. Rescue depended on PDIA3 activity in WT-MEF, and was not prevented by immunodepletion of fibronectin. Heparin-binding proteins in WTCM were found to be necessary for rescue. Comparative quantitative tandem-mass-tag proteomics and functional assays on the heparin-binding secretomes of WT-MEF and Pdia3-/- MEF identified multiple ECM and growth factor proteins to be down-regulated in the CM of Pdia3-/- MEF. Of these, CCN2 was identified to be necessary for the adhesion-promoting activity of WTCM on Pdia3-/- MEF and to bind TSP1. Thus, PDIA3 coordinates fibroblast production of an ECM-rich, pro-adhesive microenvironment, with implications for PDIA3 as a translational target.
Collapse
Affiliation(s)
| | - Kate J Heesom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Mark A Jepson
- Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Jacob P, Bhavani GSL, Shah H, Galada C, Nampoothiri S, Kamath N, Phadke SR, Muranjan M, Datar CA, Shukla A, Girisha KM. Pseudoachondroplasia: Phenotype and genotype in 11 Indian patients. Am J Med Genet A 2021; 188:751-759. [PMID: 34750995 DOI: 10.1002/ajmg.a.62566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/12/2022]
Abstract
Pseudoachondroplasia (PSACH) is an autosomal dominant disorder characterized by rhizomelic short-limbed skeletal dysplasia. The primary clinical and radiographic features include disproportionate dwarfism, joint laxity and hyperextensibility, exaggerated lumbar lordosis, and late ossification of the epiphyses. Identification of disease-causing variants in heterozygous state in COMP establishes the molecular diagnosis of PSACH. We examined 11 families with clinical features suggestive of PSACH. In nine families, we used Sanger sequencing of exons 8-19 of COMP (NM_000095.2) and in two families exome sequencing was used for confirming the diagnosis. We identified 10 de novo variants, including five known variants (c.925G>A, c.976G>A, c.1201G>T, c.1417_1419del, and c.1511G>A) and five variants (c.874T>C, c.1201G>C, c.1309G>A, c.1416_1421delCGACAA, and c.1445A>T) which are not reported outside Indian ethnicity. We hereby report the largest series of individuals with molecular diagnosis of PSACH from India and reiterate the well-known genotype-phenotype corelation in PSACH.
Collapse
Affiliation(s)
- Prince Jacob
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Gandham Sri Lakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Chelna Galada
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kochi, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Mangalore, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Chaitanya A Datar
- Sahyadri Medical Genetics & Tissue Engineering Facility, KEM Hospital, Pune, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
10
|
Shepherd RF, Kerns JG, Ranganath LR, Gallagher JA, Taylor AM. "Lessons from Rare Forms of Osteoarthritis". Calcif Tissue Int 2021; 109:291-302. [PMID: 34417863 PMCID: PMC8403118 DOI: 10.1007/s00223-021-00896-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is one of the most prevalent conditions in the world, particularly in the developed world with a significant increase in cases and their predicted impact as we move through the twenty-first century and this will be exacerbated by the covid pandemic. The degeneration of cartilage and bone as part of this condition is becoming better understood but there are still significant challenges in painting a complete picture to recognise all aspects of the condition and what treatment(s) are most appropriate in individual causes. OA encompasses many different types and this causes some of the challenges in fully understanding the condition. There have been examples through history where much has been learnt about common disease(s) from the study of rare or extreme phenotypes, particularly where Mendelian disorders are involved. The often early onset of symptoms combined with the rapid and aggressive pathogenesis of these diseases and their predictable outcomes give an often-under-explored resource. It is these "rarer forms of disease" that William Harvey referred to that offer novel insights into more common conditions through their more extreme presentations. In the case of OA, GWAS analyses demonstrate the multiple genes that are implicated in OA in the general population. In some of these rarer forms, single defective genes are responsible. The extreme phenotypes seen in conditions such as Camptodactyly Arthropathy-Coxa Vara-pericarditis Syndrome, Chondrodysplasias and Alkaptonuria all present potential opportunities for greater understanding of disease pathogenesis, novel therapeutic interventions and diagnostic imaging. This review examines some of the rarer presenting forms of OA and linked conditions, some of the novel discoveries made whilst studying them, and findings on imaging and treatment strategies.
Collapse
Affiliation(s)
- Rebecca F Shepherd
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, UK
| | - Jemma G Kerns
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, UK
| | - Lakshminarayan R Ranganath
- Departments of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - James A Gallagher
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8T, UK
| | - Adam M Taylor
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, UK.
| |
Collapse
|
11
|
Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal 2020; 78:109880. [PMID: 33307190 DOI: 10.1016/j.cellsig.2020.109880] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.
Collapse
Affiliation(s)
- Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Elco Eidhof
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany.
| |
Collapse
|
12
|
El-Lababidi N, Zikánová M, Baxová A, Nosková L, Leiská A, Lambert L, Honzík T, Zeman J. Age Dependent Progression of Multiple Epiphyseal Dysplasia and Pseudoachondroplasia Due to Heterozygous Mutations in COMP Gene. Prague Med Rep 2020; 121:153-162. [PMID: 33030144 DOI: 10.14712/23362936.2020.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Dominantly inherited mutations in COMP gene encoding cartilage oligomeric matrix protein may cause two dwarfing skeletal dysplasias, milder multiple epiphyseal dysplasia (MED) and more severe pseudoachondroplasia (PSACH). We studied the phenotype and X-rays of 11 patients from 5 unrelated families with different COMP mutations. Whole exome and/or Sangers sequencing were used for molecular analyses. Four to ten X-ray images of hands hips, knees or spine were available for each patient for retrospective analyses. Eight patients with MED have mutation c.1220G>A and 3 children with PSACH mutations c.1359C>A, c.1336G>A, or the novel mutation c.1126G>T in COMP. Progressive failure in growth developed in all patients from early childhood and resulted in short stature < 3rd percentile in 7 patients and very short stature < 1st percentile in four. Most patients had joint pain since childhood, severe stiffness in shoulders and elbows but increased mobility in wrists. Six children had bowlegs and two had knock knees. In all patients, X-rays of hands, hips and knees showed progressive, age-dependent skeletal involvement more pronounced in the epiphyses of long rather than short tubular bones. Anterior elongation and biconvex configuration of vertebral bodies were more conspicuous for kids. Six children had correction of knees and two adults had hip replacement. Skeletal and joint impairment in patients with MED and PSACH due to COMP mutation start in early childhood. Although the clinical severity is mutation and age dependent, many symptoms represent a continuous phenotypic spectrum between both diseases. Most patients may benefit from orthopaedic surgeries.
Collapse
Affiliation(s)
- Nabil El-Lababidi
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marie Zikánová
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Alice Baxová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lenka Nosková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Alena Leiská
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lukáš Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Zeman
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
13
|
Impaired chondrocyte U3 snoRNA expression in osteoarthritis impacts the chondrocyte protein translation apparatus. Sci Rep 2020; 10:13426. [PMID: 32778764 PMCID: PMC7417995 DOI: 10.1038/s41598-020-70453-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Although pathways controlling ribosome activity have been described to regulate chondrocyte homeostasis in osteoarthritis, ribosome biogenesis in osteoarthritis is unexplored. We hypothesized that U3 snoRNA, a non-coding RNA involved in ribosomal RNA maturation, is critical for chondrocyte protein translation capacity in osteoarthritis. U3 snoRNA was one of a number of snoRNAs with decreased expression in osteoarthritic cartilage and osteoarthritic chondrocytes. OA synovial fluid impacted U3 snoRNA expression by affecting U3 snoRNA gene promoter activity, while BMP7 was able to increase its expression. Altering U3 snoRNA expression resulted in changes in chondrocyte phenotype. Interference with U3 snoRNA expression led to reduction of rRNA levels and translational capacity, whilst induced expression of U3 snoRNA was accompanied by increased 18S and 28S rRNA levels and elevated protein translation. Whole proteome analysis revealed a global impact of reduced U3 snoRNA expression on protein translational processes and inflammatory pathways. For the first time we demonstrate implications of a snoRNA in osteoarthritis chondrocyte biology and investigated its role in the chondrocyte differentiation status, rRNA levels and protein translational capacity.
Collapse
|
14
|
Abstract
Cartilage comprises a single cell type, the chondrocyte, embedded in a highly complex extracellular matrix. Disruption to the cartilage growth plate leads to reduced bone growth and results in a clinically diverse group of conditions known as genetic skeletal diseases (GSDs). Similarly, long-term degradation of articular cartilage can lead to osteoarthritis (OA), a disease characterised by joint pain and stiffness. As professionally secreting cells, chondrocytes are particularly susceptible to endoplasmic reticulum (ER) stress and this has been identified as a core disease mechanism in a group of clinically and pathologically related GSDs. If unresolved, ER stress can lead to chondrocyte cell death. Recent interest has focused on ER stress as a druggable target for GSDs and this has led to the first clinical trial for a GSD by repurposing an antiepileptic drug. Interestingly, ER stress markers have also been associated with OA in multiple cell and animal models and there is increasing interest in it as a possible therapeutic target for treatment. In summary, chondrocyte ER stress has been identified as a core disease mechanism in GSDs and as a contributory factor in OA. Thus, chondrocyte ER stress is a unifying factor for both common and rare cartilage-related diseases and holds promise as a novel therapeutic target.
Collapse
Affiliation(s)
- Michael D Briggs
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ella P Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Helen F Dietmar
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
15
|
Nenna R, Turchetti A, Mastrogiorgio G, Midulla F. COL2A1 Gene Mutations: Mechanisms of Spondyloepiphyseal Dysplasia Congenita. Appl Clin Genet 2019; 12:235-238. [PMID: 31824186 PMCID: PMC6900288 DOI: 10.2147/tacg.s197205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022] Open
Abstract
The COL2A1 gene consists of 54 exons spanning over 31.5 kb and encodes for type II collagen. Type II collagen is the main component of hyaline cartilage extracellular matrix, nucleus pulposus of intervertebral discus, vitreous humor of the eye and inner ear structure. Molecular defects in COL2A1 gene cause a wide variety of rare autosomal-dominant conditions known as type II collagenopathies. A clear genotype-phenotype relationship is not yet known. However, some correlations are described. Spondyloephyseal dysplasia congenita was suggested for a short-trunk dwarfing condition affecting primarily the vertebrae and the proximal epiphyses of the long bones.
Collapse
Affiliation(s)
| | | | - Gerarda Mastrogiorgio
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Midulla
- Department of Paediatrics, Sapienza University, Rome, Italy
| |
Collapse
|
16
|
Kung LHW, Mullan L, Soul J, Wang P, Mori K, Bateman JF, Briggs MD, Boot-Handford RP. Cartilage endoplasmic reticulum stress may influence the onset but not the progression of experimental osteoarthritis. Arthritis Res Ther 2019; 21:206. [PMID: 31511053 PMCID: PMC6737683 DOI: 10.1186/s13075-019-1988-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoarthritis has been associated with a plethora of pathological factors and one which has recently emerged is chondrocyte endoplasmic reticulum (ER) stress. ER stress is sensed by key ER-resident stress sensors, one of which is activating transcription factor 6 (ATF6). The purpose of this study is to determine whether increased ER stress plays a role in OA. METHODS OA was induced in male wild-type (+/+), ColIITgcog (c/c) and Atf6α-/- mice by destabilisation of the medial meniscus (DMM). c/c mice have increased ER stress in chondrocytes via the collagen II promoter-driven expression of ER stress-inducing Tgcog. Knee joints were scored histologically for OA severity. RNA-seq was performed on laser-micro-dissected RNA from cartilage of +/+ and c/c DMM-operated mice. RESULTS In situ hybridisation demonstrated a correlation between the upregulation of ER stress marker, BiP, and early signs of proteoglycan loss and cartilage damage in DMM-operated +/+ mice. Histological analysis revealed a significant reduction in OA severity in c/c mice compared with +/+ at 2 weeks post-DMM. This chondroprotective effect in c/c mice was associated with a higher ambient level of BiP protein prior to DMM and a delay in chondrocyte apoptosis. RNA-seq analysis suggested Xbp1-regulated networks to be significantly enriched in c/c mice at 2 weeks post-DMM. Compromising the ER through genetically ablating Atf6α, a key ER stress sensor, had no effect on DMM-induced OA severity. CONCLUSION Our studies indicate that an increased capacity to effectively manage increases in ER stress in articular cartilage due either to pre-conditioning as a result of prior exposure to ER stress or to genetic pre-disposition may be beneficial in delaying the onset of OA, but once established, ER stress plays no significant role in disease progression.
Collapse
Affiliation(s)
- Louise H. W. Kung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
- Murdoch Children’s Research Institute, Parkville, VIC 3052 Australia
| | - Lorna Mullan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Jamie Soul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Ping Wang
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8502 Japan
| | - John F. Bateman
- Murdoch Children’s Research Institute, Parkville, VIC 3052 Australia
| | - Michael D. Briggs
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|
17
|
Forouhan M, Sonntag S, Boot-Handford RP. Carbamazepine reduces disease severity in a mouse model of metaphyseal chondrodysplasia type Schmid caused by a premature stop codon (Y632X) in the Col10a1 gene. Hum Mol Genet 2019; 27:3840-3853. [PMID: 30010889 PMCID: PMC6216233 DOI: 10.1093/hmg/ddy253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations, mostly in the region of the COL10A1 gene encoding the C-terminal non-collagenous domain, cause the dwarfism metaphyseal chondrodysplasia type Schmid (MCDS). In most cases, the disease mechanism involves the misfolding of the mutant protein causing increased endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). However, in an iliac crest biopsy, the COL10A1 p.Y632X mutation was found to produce instability of the mutant mRNA such that little mutant protein may be produced. To investigate the disease mechanism further, a gene-targeted mouse model of the Col10a1 p.Y632X mutation was generated. In this model, the mutant mRNA showed no instability, and in mice heterozygous for the mutation, mutant and wild-type mRNAs were present at equal concentrations. The protein was translated from the mutant allele and retained within the cell, triggering increased ER stress and a UPR. The mutation produced a relatively severe form of MCDS. Nevertheless, treatment of the mice with carbamazepine (CBZ), a drug which stimulates intracellular proteolysis and alleviates ER stress, effectively reduced the disease severity in this model of MCDS caused by a premature stop codon in the Col10a1 gene. Specifically, the drug reduced ER stress in the growth plate, restored growth plate architecture toward the wild-type state, significantly increased bone growth and within 2 weeks of treatment corrected the MCDS-induced hip distortion. These results indicate that CBZ is likely to be effective in ongoing clinical trials against all forms of MCDS whether caused by premature stop codons or substitutions.
Collapse
Affiliation(s)
- Mitra Forouhan
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Raymond P Boot-Handford
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Zhang M, Li S, Pang K, Zhou Z. Endoplasmic reticulum stress affected chondrocyte apoptosis in femoral head necrosis induced by glucocorticoid in broilers. Poult Sci 2019; 98:1111-1120. [DOI: 10.3382/ps/pey474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023] Open
|
19
|
Different Forms of ER Stress in Chondrocytes Result in Short Stature Disorders and Degenerative Cartilage Diseases: New Insights by Cartilage-Specific ERp57 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8421394. [PMID: 30647818 PMCID: PMC6311764 DOI: 10.1155/2018/8421394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Cartilage is essential for skeletal development by endochondral ossification. The only cell type within the tissue, the chondrocyte, is responsible for the production of macromolecules for the extracellular matrix (ECM). Before proteins and proteoglycans are secreted, they undergo posttranslational modification and folding in the endoplasmic reticulum (ER). However, the ER folding capacity in the chondrocytes has to be balanced with physiological parameters like energy and oxygen levels. Specific cellular conditions, e.g., a high protein demand, or pathologic situations disrupt ER homeostasis and lead to the accumulation of poorly folded or misfolded proteins. This state is called ER stress and induces a cellular quality control system, the unfolded protein response (UPR), to restore homeostasis. Different mouse models with ER stress in chondrocytes display comparable skeletal phenotypes representing chondrodysplasias. Therefore, ER stress itself seems to be involved in the pathogenesis of these diseases. It is remarkable that chondrodysplasias with a comparable phenotype arise independent from the sources of ER stress, which are as follows: (1) mutations in ECM proteins leading to aggregation, (2) deficiencies in ER chaperones, (3) mutations in UPR signaling factors, or (4) deficiencies in the degradation of aggregated proteins. In any case, the resulting UPR substantially impairs ECM protein synthesis, chondrocyte proliferation, and/or differentiation or regulation of autophagy and apoptosis. Notably, chondrodysplasias arise no matter if single or multiple events are affected. We analyzed cartilage-specific ERp57 knockout mice and demonstrated that the deficiency of this single protein disulfide isomerase, which is responsible for formation of disulfide bridges in ECM glycoproteins, is sufficient to induce ER stress and to cause an ER stress-related bone phenotype. These mice therefore qualify as a novel model for the analysis of ER stress in chondrocytes. They give new insights in ER stress-related short stature disorders and enable the analysis of ER stress in other cartilage diseases, such as osteoarthritis.
Collapse
|
20
|
Forouhan M, Mori K, Boot-Handford RP. Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X. Matrix Biol 2018; 70:50-71. [PMID: 29522813 PMCID: PMC6090092 DOI: 10.1016/j.matbio.2018.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 01/05/2023]
Abstract
Whilst the role of ATF6α in modulating the unfolded protein response (UPR) has been well documented, the function of its paralogue ATF6β is less well understood. Using knockdown in cell culture and gene ablation in mice we have directly compared the roles of ATF6α & β in responding to the increased ER stress induced by mutant forms of type X collagen that cause the ER stress-associated metaphyseal chondrodysplasia type Schmid (MCDS). ATF6α more efficiently deals with the disease-associated ER stress in the absence of ATF6β and conversely, ATF6β is less effective in the absence of ATF6α. Furthermore, disease severity in vivo is increased by ATF6α ablation and decreased by ATF6β ablation. In addition, novel functions for each paralogue are described including an ATF6β-specific role in controlling growth plate chondrocyte proliferation. The clear demonstration of the intimate relationship of the two ATF6 isoforms and how ATF6β can moderate the activity of ATF6α and vice versa is of great significance for understanding the UPR mechanism. The activities of both ATF6 isoforms and their separate roles need consideration when deciding how to target increased ER stress as a means of treating MCDS and other ER stress-associated diseases.
Collapse
Affiliation(s)
- M Forouhan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK
| | - K Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - R P Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
21
|
A novel mutation in exon 11 of COMP gene in a Chinese family with pseudoachondroplasia. Genes Dis 2018; 6:47-55. [PMID: 30906833 PMCID: PMC6411627 DOI: 10.1016/j.gendis.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/18/2018] [Indexed: 12/14/2022] Open
Abstract
Pseudoachondroplasia (PSACH) is a relatively common skeletal dysplasia characterized by disproportionate short stature, joint laxity, early-onset osteoarthrosis, and dysplasia of the spine, epiphysis, and metaphysis. It is known as an autosomal dominant disease which results exclusively from mutations in the gene for Cartilage Oligomeric Matrix Protein (COMP). We have identified a five year old Chinese boy who was diagnosed as pseudoachondroplasia according to clinical manifestations and X-ray symptoms. His mother seems like another effected individual because of the apparent short stature. Genomic DNA was extracted from peripheral blood lymphocytes. DNA sequencing analysis of the COMP gene revealed a heterozygous mutation (c.1219 T > C,p.Cys407Arg) in the patient. His mother was also affected with the same genetic change. Mutations in COMP gene is proved to change the Cartilage Oligomeric Matrix Protein. This missense mutation (c.1219 T > C) has not been reported before and it is not belongs to polymorphism sites. Our results extend the spectrum of mutations in COMP gene leading to pseudoachondroplasia.
Collapse
|
22
|
Zhang M, Shi C, Zhou Z, Hou J. Bone characteristics, histopathology, and chondrocyte apoptosis in femoral head necrosis induced by glucocorticoid in broilers. Poult Sci 2017; 96:1609-1614. [DOI: 10.3382/ps/pew466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/03/2016] [Indexed: 12/17/2022] Open
|
23
|
Trindade-da-Silva CA, Bettaieb A, Napimoga MH, Lee KSS, Inceoglu B, Ueira-Vieira C, Bruun D, Goswami SK, Haj FG, Hammock BD. Soluble Epoxide Hydrolase Pharmacological Inhibition Decreases Alveolar Bone Loss by Modulating Host Inflammatory Response, RANK-Related Signaling, Endoplasmic Reticulum Stress, and Apoptosis. J Pharmacol Exp Ther 2017; 361:408-416. [PMID: 28356494 PMCID: PMC5443319 DOI: 10.1124/jpet.116.238113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid derived from the cytochrome P450 enzymes, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties, and inhibition of sEH might provide protective effects against inflammatory bone loss. Thus, in the present study, we tested the selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in a mouse model of periodontitis induced by infection with Aggregatibacter actinomycetemcomitans Oral treatment of wild-type mice with TPPU and sEH knockout (KO) animals showed reduced bone loss induced by A. actinomycetemcomitans This was associated with decreased expression of key osteoclastogenic molecules, receptor activator of nuclear factor-κB/RANK ligand/osteoprotegerin, and the chemokine monocyte chemotactic protein 1 in the gingival tissue without affecting bacterial counts. In addition, downstream kinases p38 and c-Jun N-terminal kinase known to be activated in response to inflammatory signals were abrogated after TPPU treatment or in sEH KO mice. Moreover, endoplasmic reticulum stress was elevated in periodontal disease but was abrogated after TPPU treatment and in sEH knockout mice. Together, these results demonstrated that sEH pharmacological inhibition may be of therapeutic value in periodontitis.
Collapse
Affiliation(s)
- Carlos Antonio Trindade-da-Silva
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Ahmed Bettaieb
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Marcelo Henrique Napimoga
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Bora Inceoglu
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Carlos Ueira-Vieira
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Donald Bruun
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Sumanta Kumar Goswami
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Fawaz G Haj
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| | - Bruce D Hammock
- Department of Entomology and Nematology and University of California, Davis Comprehensive Cancer Center (C.A.T.-S., K.S.S.L., B.I., S.K.G., B.D.H.), Nutrition Department (F.G.H.), and Department of Molecular Biosciences, School of Veterinary Medicine (D.B.), University of California, Davis, California; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil (C.A.T.-d.-S., C.U.-V.); Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil (M.H.N.); and Department of Nutrition, University of Tennessee-Knoxville, Knoxville, Tennessee (A.B.)
| |
Collapse
|
24
|
Hughes A, Oxford AE, Tawara K, Jorcyk CL, Oxford JT. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis. Int J Mol Sci 2017; 18:ijms18030665. [PMID: 28335520 PMCID: PMC5372677 DOI: 10.3390/ijms18030665] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/11/2022] Open
Abstract
Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.
Collapse
Affiliation(s)
- Alexandria Hughes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Alexandra E Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Ken Tawara
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
25
|
Shi S, Zheng S, Li XF, Liu ZD. The Effect of Estradiol on the Growth Plate Chondrocytes of Limb and Spine from Postnatal Mice in vitro: The Role of Estrogen-Receptor and Estradiol Concentration. Int J Biol Sci 2017; 13:100-109. [PMID: 28123350 PMCID: PMC5264265 DOI: 10.7150/ijbs.17696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/08/2016] [Indexed: 01/04/2023] Open
Abstract
Objectives: Skeletal development is a complex process. Little is known about the different response of limb or spine growth plate chondrocytes (LGP or SGP) to the estrogen level and the role of estrogen receptor (ER) during postnatal stage. Methods: LGP and SGP chondrocytes were isolated from 50 one-week mice and treated with different concentrations of 17β-estradiol. Cell viability was measured by cell counting kit-8 (CCK-8). The expression of collagen II and X were evaluated by real-time PCR and Western blotting. Then, the response of LGP or SGP chondrocyte after with or without estradiol and specific ER antagonists to block the effect of ERs were also measured by Western blotting and immunofluorescence. Results: Estradiol promoted the chondrogensis of the chondrocytes in vitro and achieved the maximal expression of type II collagen at the dose of 10-7 M. Additionally, the regulatory effect of estradiol on the chondrogenesis can be mainly relied on ERα. The LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the expression of type II collagen. Conclusions: Estrogen at a pharmacological concentration (10-7 M) could stimulate the maximal production of type II collagen in the growth plate chondrocytes in vitro, which exerts its activity mainly through ERα in the chondrogenesis. Furthermore, the LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the chondrogenesis.
Collapse
Affiliation(s)
- Sheng Shi
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| | - Shuang Zheng
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| | - Zu-De Liu
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| |
Collapse
|
26
|
Horiuchi K, Tohmonda T, Morioka H. The unfolded protein response in skeletal development and homeostasis. Cell Mol Life Sci 2016; 73:2851-69. [PMID: 27002737 PMCID: PMC11108572 DOI: 10.1007/s00018-016-2178-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Osteoblasts and chondrocytes produce a large number of extracellular matrix proteins to generate and maintain the skeletal system. To cope with their functions as secretory cells, these cells must acquire a considerable capacity for protein synthesis and also the machinery for the quality-control and transport of newly synthesized secreted proteins. The unfolded protein response (UPR) plays a crucial role during the differentiation of these cells to achieve this goal. Unexpectedly, however, studies in the past several years have revealed that the UPR has more extensive functions in skeletal development than was initially assumed, and the UPR critically orchestrates many facets of skeletal development and homeostasis. This review focuses on recent findings on the functions of the UPR in the differentiation of osteoblasts, chondrocytes, and osteoclasts. These findings may have a substantial impact on our understanding of bone metabolism and also on establishing treatments for congenital and acquired skeletal disorders.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takahide Tohmonda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
27
|
Cartilage oligomeric matrix protein contributes to the development and metastasis of breast cancer. Oncogene 2016; 35:5585-5596. [PMID: 27065333 DOI: 10.1038/onc.2016.98] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/20/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022]
Abstract
Cartilage oligomeric matrix protein (COMP) is a soluble pentameric protein expressed in cartilage and involved in collagen organization. Tissue microarrays derived from two cohorts of patients with breast cancer (n=122 and n=498) were immunostained, revealing varying expression of COMP, both in the tumor cells and surrounding stroma. High levels of COMP in tumor cells correlated, independently of other variables, with poor survival and decreased recurrence-free survival. Breast cancer cells, MDA-MB-231, stably expressing COMP were injected into the mammary fat pad of SCID (CB-17/Icr-Prkdcscid/Rj) mice. Tumors expressing COMP were significantly larger and were more prone to metastasize as compared with control, mock-transfected, tumors. In vitro experiments confirmed that COMP-expressing cells had a more invasive phenotype, which could in part be attributed to an upregulation of matrix metalloprotease-9. Furthermore, microarray analyses of gene expression in tumors formed in vivo showed that COMP expression induced higher expression of genes protecting against endoplasmic reticulum stress. This observation was confirmed in vitro as COMP-expressing cells showed better survival as well as a higher rate of protein synthesis when treated with brefeldin A, compared with control cells. Further, COMP-expressing cells appeared to undergo a metabolic switch, that is, a Warburg effect. Thus, in vitro measurement of cell respiration indicated decreased mitochondrial metabolism. In conclusion, COMP is a novel biomarker in breast cancer, which contributes to the severity of the disease by metabolic switching and increasing invasiveness and tumor cell viability, leading to reduced survival in animal models and human patients.
Collapse
|
28
|
Zhu M, Zhou S, Huang Z, Wen J, Li H. Ca2+-Dependent Endoplasmic Reticulum Stress Regulates Mechanical Stress-Mediated Cartilage Thinning. J Dent Res 2016; 95:889-96. [PMID: 27053115 DOI: 10.1177/0022034516640206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our previous study identified that endoplasmic reticulum stress (ERS) plays a critical role in chondrocyte apoptosis and mandibular cartilage thinning in response to compressive mechanical force, although the underlying mechanisms remain elusive. Because the endoplasmic reticulum (ER) is a primary site of intracellular Ca(2+) storage, we hypothesized that Ca(2+)-dependent ERS might be involved in mechanical stress-mediated mandibular cartilage thinning. In this study, we used in vitro and in vivo models to determine Ca(2+) concentrations, histological changes, subcellular changes, apoptosis, and the expression of ERS markers in mandibular cartilage and chondrocytes. The results showed that in chondrocytes, cytosolic Ca(2+) ([Ca(2+)]i) was dramatically increased by compressive mechanical force. Interestingly, the inhibition of Ca(2+) channels by ryanodine and 2-aminoethoxydiphenyl borate, inhibitors of ryanodine receptors and inositol trisphosphate receptors, respectively, partially rescued mechanical force-mediated mandibular cartilage thinning. Furthermore, chondrocyte apoptosis was also compromised by inhibiting the increase in [Ca(2+)]i that occurred in response to compressive mechanical force. Mechanistically, the ERS induced by compressive mechanical force was also repressed by [Ca(2+)]i inhibition, as demonstrated by a decrease in the expression of the ER stress markers 78 kDa glucose-regulated protein (GRP78) and 94 kDa glucose-regulated protein (GRP94) at both the mRNA and protein levels. Collectively, these data identified [Ca(2+)]i as a critical mediator of the pathological changes that occur in mandibular cartilage under compressive mechanical force and shed light on the treatment of mechanical stress-mediated cartilage degradation.
Collapse
Affiliation(s)
- M Zhu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - S Zhou
- Department of Stomatology, Central Hospital of Taian, Taian, China
| | - Z Huang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - J Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - H Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Hellewell AL, Adams JC. Insider trading: Extracellular matrix proteins and their non-canonical intracellular roles. Bioessays 2015; 38:77-88. [PMID: 26735930 DOI: 10.1002/bies.201500103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous microenvironment that has important supportive and instructive roles. Although the primary site of action of ECM proteins is extracellular, evidence is emerging for non-canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF-binding protein 3 and biglycan, and relate to roles in transcription, cell-stress responses, autophagy and cancer. These findings pose conceptual problems on how proteins signalled for secretion can be routed to the cytosol or nucleus, or can function in environments with diverse redox, pH and ionic conditions. We review evidence for intracellular locations and functions of ECM proteins, and current knowledge of the mechanisms by which they may enter intracellular compartments. We evaluate the experimental methods that are appropriate to obtain rigorous evidence for intracellular localisation and function. Better insight into this under-researched topic is needed to decipher the complete spectrum of physiological and pathological roles of ECM proteins.
Collapse
|
30
|
Abstract
Introduction: Genetic skeletal diseases (GSDs) are a diverse and complex group of rare genetic conditions that affect the development and homeostasis of the skeleton. Although individually rare, as a group of related diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. There are currently very few specific therapeutic interventions to prevent, halt or modify skeletal disease progression and therefore the generation of new and effective treatments requires novel and innovative research that can identify tractable therapeutic targets and biomarkers of these diseases. Areas covered: Remarkable progress has been made in identifying the genetic basis of the majority of GSDs and in developing relevant model systems that have delivered new knowledge on disease mechanisms and are now starting to identify novel therapeutic targets. This review will provide an overview of disease mechanisms that are shared amongst groups of different GSDs and describe potential therapeutic approaches that are under investigation. Expert opinion: The extensive clinical variability and genetic heterogeneity of GSDs renders this broad group of rare diseases a bench to bedside challenge. However, the evolving hypothesis that clinically different diseases might share common disease mechanisms is a powerful concept that will generate critical mass for the identification and validation of novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Michael D Briggs
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Peter A Bell
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Michael J Wright
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Newcastle University, Institute of Genetic Medicine, International Centre for Life , Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
31
|
BRIGGS MICHAELD, BELL PETERA, PIROG KATARZYNAA. The utility of mouse models to provide information regarding the pathomolecular mechanisms in human genetic skeletal diseases: The emerging role of endoplasmic reticulum stress (Review). Int J Mol Med 2015; 35:1483-92. [PMID: 25824717 PMCID: PMC4432922 DOI: 10.3892/ijmm.2015.2158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/30/2015] [Indexed: 11/22/2022] Open
Abstract
Genetic skeletal diseases (GSDs) are an extremely diverse and complex group of rare genetic diseases that primarily affect the development and homeostasis of the osseous skeleton. There are more than 450 unique and well-characterised phenotypes that range in severity from relatively mild to severe and lethal forms. Although individually rare, as a group of related genetic diseases, GSDs have an overall prevalence of at least 1 per 4,000 children. Qualitative defects in cartilage structural proteins result in a broad spectrum of both recessive and dominant GSDs. This review focused on a disease spectrum resulting from mutations in the non-collagenous glycoproteins, cartilage oligomeric matrix protein (COMP) and matrilin-3, which together cause a continuum of phenotypes that are amongst the most common autosomal dominant GSDs. Pseudoachondroplasia (PSACH) and autosomal dominant multiple epiphyseal dysplasia (MED) comprise a disease spectrum characterised by varying degrees of disproportionate short stature, joint pain and stiffness and early-onset osteoarthritis. Over the past decade, the generation and deep phenotyping of a range of genetic mouse models of the PSACH and MED disease spectrum has allowed the disease mechanisms to be characterised in detail. Moreover, the generation of novel phenocopies to model specific disease mechanisms has confirmed the importance of endoplasmic reticulum (ER) stress and reduced chondrocyte proliferation as key modulators of growth plate dysplasia and reduced bone growth. Finally, new insight into related musculoskeletal complications (such as myopathy and tendinopathy) has also been gained through the in-depth analysis of targeted mouse models of the PSACH-MED disease spectrum.
Collapse
Affiliation(s)
- MICHAEL D. BRIGGS
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - PETER A. BELL
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - KATARZYNA A. PIROG
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
32
|
Lessons from rare diseases of cartilage and bone. Curr Opin Pharmacol 2015; 22:107-14. [PMID: 25978274 DOI: 10.1016/j.coph.2015.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/16/2015] [Indexed: 01/09/2023]
Abstract
Studying severe phenotypes of rare syndromes can elucidate disease mechanisms of more common disorders and identify potential therapeutic targets. Lessons from rare bone diseases contributed to the development of the most successful class of bone active agents, the bisphosphonates. More recent research on rare bone diseases has helped elucidate key pathways and identify new targets in bone resorption and bone formation including cathepsin K and sclerostin, for which drugs are now in clinical trials. By contrast, there has been much less focus on rare cartilage diseases and osteoarthritis (OA) remains a common disease with no effective therapy. Investigation of rare cartilage syndromes is identifying new potential targets in OA including GDF5 and lubricin. Research on the arthropathy of the ultra-rare disease alkaptonuria has identified several new features of the OA phenotype, including high density mineralized protrusions (HDMPs) which constitute a newly identified mechanism of joint destruction.
Collapse
|