1
|
Yang F, Zhang X, Huang J, Ma Y, Guo S, Liu Y, Wang P, Wang Y. Lumbrokinase (LK) ameliorates diabetic kidney disease renal fibrosis through regulating snail via m6A RNA methyltransferase 3. Sci Rep 2024; 14:28671. [PMID: 39562622 PMCID: PMC11576886 DOI: 10.1038/s41598-024-80168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
The present study was undertaken to investigate the therapeutic effect and underlying mechanisms of lumbrokinase (LK) on diabetic kidney disease (DKD). Kidney tissue samples from DKD patients and normal controls were collected from hospitals. The type 2 diabetic nephropathy model was induced in db/db mice. The mice were then randomly divided into a model group (DM group) and an LK group. db/m mice were used as the control group (Con group). After 12 weeks of treatment with LK (234 KU/kg/day), biochemical parameters were tested, and pathological changes in the kidney were observed under a light microscope. The epithelial-to-mesenchymal transition (EMT), mRNA m6A methylation proteins, and activated TGF-β1/Smad pathway components were assessed by western blot or immunofluorescence in DKD patients, model mice, and high glucose-stimulated HK-2 cells. We found that the m6A eraser METTL3 was expressed at low levels in DKD patients, model mice, and high glucose-stimulated HK-2 cells. METTL3 overexpression reversed the high glucose-induced activation of the TGF-β1/Smad pathway and EMT through snail in vitro. However, LK can restore the expression of the m6A-modifying enzyme METTL3 in vivo and in vitro, suppressed EMT, and alleviated renal interstitial fibrosis by downregulating snail. Overall, LK ameliorated renal fibrosis through the regulation of Snail via m6A RNA METTL3.
Collapse
Affiliation(s)
- Fan Yang
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Xiaoyun Zhang
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Jiaan Huang
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Yun Ma
- Hebei University of Chinese Medicine, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Hebei, China
| | - Shuai Guo
- The Third Hospital of Hebei Medical University, Hebei, China
| | - Yan Liu
- Hebei University of Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China
| | - Peng Wang
- Hebei University of Chinese Medicine, Hebei, China.
- The Second Hospital of Hebei University of Chinese Medicine, Hebei, China.
| | - Yuehua Wang
- Hebei University of Chinese Medicine, Hebei, China.
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei, China.
| |
Collapse
|
2
|
Liu P, Wang L, Yu H. Polyploid giant cancer cells: origin, possible pathways of formation, characteristics, and mechanisms of regulation. Front Cell Dev Biol 2024; 12:1410637. [PMID: 39055650 PMCID: PMC11269155 DOI: 10.3389/fcell.2024.1410637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Polyploid giant cancer cells (PGCCs) are characterized by the presence of either a single enlarged nucleus or multiple nuclei and are closely associated with tumor progression and treatment resistance. These cells contribute significantly to cellular heterogeneity and can arise from various stressors, including radiation, chemotherapy, hypoxia, and environmental factors. The formation of PGCCs can occur through mechanisms such as endoreplication, cell fusion, cytokinesis failure, mitotic slippage, or cell cannibalism. Notably, PGCCs exhibit traits similar to cancer stem cells (CSCs) and generate highly invasive progeny through asymmetric division. The presence of PGCCs and their progeny is pivotal in conferring resistance to chemotherapy and radiation, as well as facilitating tumor recurrence and metastasis. This review provides a comprehensive analysis of the origins, potential formation mechanisms, stressors, unique characteristics, and regulatory pathways of PGCCs, alongside therapeutic strategies targeting these cells. The objective is to enhance the understanding of PGCC initiation and progression, offering novel insights into tumor biology.
Collapse
Affiliation(s)
- Pan Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Beifang Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Gariboldi MB, Marras E, Ferrario N, Vivona V, Prini P, Vignati F, Perletti G. Anti-Cancer Potential of Edible/Medicinal Mushrooms in Breast Cancer. Int J Mol Sci 2023; 24:10120. [PMID: 37373268 DOI: 10.3390/ijms241210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Edible/medicinal mushrooms have been traditionally used in Asian countries either in the cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing attention in Europe as well, due to their health and nutritional benefits. In particular, among the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative, antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially focusing on the possible bioactive compounds involved and their mechanisms of action. In particular, the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes, and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses focusing on the effects of fungal extracts on breast cancer patients.
Collapse
Affiliation(s)
- Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Francesca Vignati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
4
|
Hsieh YY, Lee KC, Cheng KC, Lee KF, Yang YL, Chu HT, Lin TW, Chen CC, Hsieh MC, Huang CY, Kuo HC, Teng CC. Antrodin C Isolated from Antrodia Cinnamomea Induced Apoptosis through ROS/AKT/ERK/P38 Signaling Pathway and Epigenetic Histone Acetylation of TNFα in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030764. [PMID: 36979011 PMCID: PMC10045953 DOI: 10.3390/antiox12030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Antrodin C, a maleimide derivative compound isolated from the ethanol extract of the mycelium of Antrodia cinnamomea, is an endemic fungus of Taiwan and a potential chemoprotective agent. However, the molecular mechanisms underlying the mode of action of antrodin C on cancer cells, especially in human colorectal cancer (CRC), remain unclear. METHODS The cell death and ROS of the antrodin-C-treated HCT-116 cells were measured by annexin V-FITC/propidium iodide staining, DCFDA, and Fluo-3 fluorescence staining assays. Moreover, signaling molecules regulating TNFα cell death pathways and ROS/AKT/ERK/P38 pathways were also detected in cells treated with antrodin C by Western blotting and chromatin immunoprecipitation. The effects of antrodin C were determined in HCT-116 cell xenograft animal models in terms of tumor volumes and histopathological evaluation. RESULTS Treatment with antrodin C triggered the activation of extrinsic apoptosis pathways (TNFα, Bax, caspase-3, and -9), and also suppressed the expression of anti-apoptotic molecules Bcl-2 in HCT-116 cells in a time-dependent manner. Antrodin C also decreased cell proliferation and growth through the inactivation of cyclin D1/cyclin for the arrest of the cell cycle at the G1 phase. The activation of the ROS/AKT/ERK/P38 pathways was involved in antrodin-C-induced transcriptional activation, which implicates the role of the histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFα promoters. Immunohistochemical analyses revealed that antrodin C treatment significantly induced TNFα levels, whereas it decreased the levels of PCNA, cyclin D1, cyclin E, and MMP-9 in an in vivo xenograft mouse model. Thus, antrodin C induces cell apoptosis via the activation of the ROS/AKT/ERK/P38 signaling modules, indicating a new mechanism for antrodin C to treat CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Yung-Yu Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Kung-Chuan Cheng
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| |
Collapse
|
5
|
Li HX, Wang JJ, Lu CL, Gao YJ, Gao L, Yang ZQ. Review of Bioactivity, Isolation, and Identification of Active Compounds from Antrodia cinnamomea. Bioengineering (Basel) 2022; 9:494. [PMID: 36290462 PMCID: PMC9598228 DOI: 10.3390/bioengineering9100494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2023] Open
Abstract
Antrodia cinnamomea is a precious and popular edible and medicinal mushroom. It has attracted increasing attention due to its various and excellent bioactivities, such as hepatoprotection, hypoglycemic, antioxidant, antitumor, anticancer, anti-inflammatory, immunomodulation, and gut microbiota regulation properties. To elucidate its bioactivities and develop novel functional foods or medicines, numerous studies have focused on the isolation and identification of the bioactive compounds of A. cinnamomea. In this review, the recent advances in bioactivity, isolation, purification, and identification methods of active compounds from A. cinnamomea were summarized. The present work is beneficial to the further isolation and discovery of new active compounds from A. cinnamomea.
Collapse
Affiliation(s)
- Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Juan-Juan Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chun-Lei Lu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Xu XY, Geng Y, Xu HX, Ren Y, Liu DY, Mao Y. Antrodia camphorata-Derived Antrodin C Inhibits Liver Fibrosis by Blocking TGF-Beta and PDGF Signaling Pathways. Front Mol Biosci 2022; 9:835508. [PMID: 35242813 PMCID: PMC8886226 DOI: 10.3389/fmolb.2022.835508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in the development of liver fibrosis. Antrodia camphorata (A. camphorata) is a medicinal fungus with hepatoprotective effect. This study investigated whether Antrodin C, an A. camphorata-fermented metabolite, could exert a protective role on liver fibrosis both in vitro and in vivo. The anti-fibrotic effect of Antrodin C was investigated in CFSC-8B cell (hepatic stellate cell) stimulated by transforming growth factor-β1 (TGF-β1) or platelet-derived growth factor-BB (PDGF-BB) in vitro and in CCl4 induced liver fibrosis in mice. Antrodin C (50 μM) inhibited TGF-β1 or PDGF-BB stimulated CFSC-8B cell activation, migration and extracellular matrix (ECM) accumulation (all p < 0.05). Antrodin C (3, 6 mg/kg/d) oral administration reduced the degree of liver fibrosis induced by CCl4 in mice. Antrodin C down-regulated the expression of α-smooth muscle actin (α-SMA) and collagen I in fibrotic livers. Furthermore, Antrodin C ameliorated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation in serum (all p < 0.05). Mechanistically, Antrodin C executes its anti-fibrotic activity through negatively modulate TGF-β1 downstream SMAD Family Member 2 (Smad2), AKT Serine/Threonine Kinase 1 (AKT), extracellular signal-regulated kinase (ERK), and P38 MAP Kinase (P38), as well as PDGF-BB downstream AKT and ERK signaling pathways. Antrodin C ameliorates the activation, migration, ECM production in HSCs and CCl4-induced liver fibrosis in mice, suggesting that Antrodin C could serve as a protective molecule against liver fibrosis.
Collapse
Affiliation(s)
- Xin-Yi Xu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
- *Correspondence: Yan Geng, ; Yong Mao,
| | - Hao-Xiang Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Deng-Yang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Yan Geng, ; Yong Mao,
| |
Collapse
|
7
|
Panda MK, Paul M, Singdevsachan SK, Tayung K, Das SK, Thatoi H. Promising Anti-cancer Therapeutics From Mushrooms: Current Findings and Future Perceptions. Curr Pharm Biotechnol 2021; 22:1164-1191. [PMID: 33032507 DOI: 10.2174/1389201021666201008164056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, medicines derived from natural sources have drawn much attention as potential therapeutic agents in the suppression and treatment of cancer because of their low toxicity and fewer side effects. OBJECTIVE The present review aims to assess the currently available knowledge on the ethnomedicinal uses and pharmacological activities of bioactive compounds obtained from medicinal mushrooms towards cancer treatment. METHODS A literature search has been conducted for the collection of research papers from universally accepted scientific databases. These research papers and published book chapters were scrutinized to retrieve information on ethnomedicinal uses of mushrooms, different factors involved in cancer cell proliferation, clinical and in silico pharmaceutical studies made for possible treatments of cancer using mushroom derived compounds. Overall, 241 articles were retrieved and reviewed from the year 1970 to 2020, out of which 98 relevant articles were finally considered for the preparation of this review. RESULTS This review presents an update on the natural bioactive substances derived from medicinal mushrooms and their role in inhibiting the factors responsible for cancer cell proliferation. Along with it, the present review also provides information on the ethnomedicinal uses, solvents used for extraction of anti-cancer metabolites, clinical trials, and in silico studies that were undertaken towards anticancer drug development from medicinal mushrooms. CONCLUSION The present review provides extensive knowledge on various anti-cancer substances obtained from medicinal mushrooms, their biological actions, and in silico drug designing approaches, which could form a basis for the development of natural anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mrunmaya K Panda
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Manish Paul
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Sameer K Singdevsachan
- Spinco Biotech Pvt. Ltd., Spinco Towers, No. 934, 5th A cross, Service Road, HRBR Layout 1st Block, Kalyan Nagar, Bengaluru-560043, Karnataka, India
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati-781014, Assam, India
| | - Swagat K Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar- 751003, Odisha, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| |
Collapse
|
8
|
Liu R, Zhang Y, Ding Y, Zhang S, Pan L. Characteristics of TGFBR1-EGFR-CTNNB1-CDH1 Signaling Axis in Wnt-Regulated Invasion and Migration in Lung Cancer. Cell Transplant 2020; 29:963689720969167. [PMID: 33231090 PMCID: PMC7784602 DOI: 10.1177/0963689720969167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study aimed to explore the characteristics of TGFBR1-epidermal growth factor receptor (EGFR)-CTNNB1-CDH1 axis in regulating the invasion and migration in lung cancer. Using the small interfering RNA technology, EGFR was silenced in H2170 and H1299 cells. Then, the colony formation, migration, and invasion abilities were detected using colony-forming assay and transwell assay. Moreover, the mRNA expression of smad2, smad3, CTNNB1, and CDH1, and the protein expression of TGFBR1, CDH1, and TCF were determined using the real-time polymerase chain reaction and western blotting. The results showed that silencing EGFR could significantly decrease the colony-forming ability in H2170 and H1299. Knocking down EGFR could significantly inhibit the invasion and migration ability of H2179 and H1299. Inhibiting the expression of EGFR could significantly decrease the expression of smad2, smad3, CDH1, and CTNNB1, with all P-values <0.05. In addition, silencing EGFR could markedly decrease the expression of TGFBR1 and CDH1 in H1299 and H2170, with all P-values <0.05. In conclusion, silencing EGFR could significantly regulate the progression of lung cancer via TGFBR1-EGFR-CTNNB1-CDH1 axis in Wnt signaling pathway.
Collapse
Affiliation(s)
- Rong Liu
- Department of Radiology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yusui Zhang
- Department of Radiology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuan Ding
- Department of Radiology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuai Zhang
- Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- Shuai Zhang, Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, No. 1 West Beijing Road, Guiyang 550004, China.
| | - Long Pan
- Department of Interventional and Vascular Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
- Long Pan, Department of Interventional and Vascular Surgery, Tenth People’s Hospital of Tongji University. No. 301 Middle Yan Chang Road, Shanghai 200072, China.
| |
Collapse
|
9
|
Lu KH, Pan YC, Sheen LY. Combination of cut-log cultivated fruiting body and solid-state cultured mycelia of Taiwanofungus camphoratus ameliorates CCl 4-induced liver injury in rats. J Tradit Complement Med 2020; 10:166-174. [PMID: 32257880 PMCID: PMC7109478 DOI: 10.1016/j.jtcme.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
Taiwanofungus camphoratus, a medicinal mushroom indigenous to Taiwan, possesses various pharmacological functions. The most recognized ethnopharmacological relevance of T. camphoratus is hepatoprotection since it was traditionally used for treating liver disorders by Taiwan aborigines. The aim of this study is to evaluate the hepatoprotective effect of the combination of fruiting body and solid-state cultured mycelia of T. camphoratus (LDAC) on carbon tetrachloride (CCl4)-induced chronic liver damage in rats. We treated Wistar rats daily with low, medium and high [87.5, 175 and 437.5 mg/kg body weight (bw), respectively] doses of LDAC for 9 weeks. After the first week of treatment, rats were administered 20% CCl4 (0.5 mL/0.3 kg bw) twice a week to induce liver damage until the treatment ended. The results showed that administration of LDAC by oral gavage significantly reduced the absolute weight of the liver and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in CCl4-treated rats. The activities of the antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GRd) and catalase (CAT) were increased by LDAC treatment. Moreover, LDAC improved CCl4-induced hepatic vacuolization, necrosis and fibrosis in a dose-dependent manner, and no adverse effects were observed in the LDAC-treated groups. Based on the results, LDAC is a promising hepatoprotective agent for preventing and ameliorating CCl4-induced chronic liver injury, and this effect might be exerted through activation of the antioxidant defense system. Combining cut-log fruiting body and solid-state mycelia of T. camphoratus is an efficient production. The HPLC fingerprint shows the index compounds in the combination (LDAC). LDAC decreases serum ALT and AST levels and elevates antioxidant activity in CCl4-treated rats. LDAC dramatically improves rat hepatic necrosis and fibrosis induced by CCl4.
Collapse
Affiliation(s)
- Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chun Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.,Department of Hospitality Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County 266, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.,Center for Food and Biomolecules, National Taiwan University, Taipei 106, Taiwan.,National Center for Food Safety Education and Research, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Hu PF, Huang J, Chen L, Ding Z, Liu L, Molnár I, Zhang BB. Oxidative Stress Induction Is a Rational Strategy to Enhance the Productivity of Antrodia cinnamomea Fermentations for the Antioxidant Secondary Metabolite Antrodin C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3995-4004. [PMID: 32133853 PMCID: PMC7351023 DOI: 10.1021/acs.jafc.9b07965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antioxidant metabolites contribute to alleviating oxidative stress caused by reactive oxygen species (ROS) in microorganisms. We utilized oxidative stressors such as hydrogen peroxide supplementation to increase the yield of the bioactive secondary metabolite antioxidant antrodin C in submerged fermentations of the medicinal mushroom Antrodia cinnamomea. Changes in the superoxide dismutase and catalase activities of the cells indicate that ROS are critical to promote antrodin C biosynthesis, while the ROS production inhibitor diphenyleneiodonium cancels the productivity-enhancing effects of H2O2. Transcriptomic analysis suggests that key enzymes in the mitochondrial electron transport chain are repressed during oxidative stress, leading to ROS accumulation and triggering the biosynthesis of antioxidants such as antrodin C. Accordingly, rotenone, an inhibitor of the electron transport chain complex I, mimics the antrodin C productivity-enhancing effects of H2O2. Delineating the steps connecting oxidative stress with increased antrodin C biosynthesis will facilitate the fine-tuning of strategies for rational fermentation process improvement.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Jing Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - István Molnár
- Southwest Center for Natural Products Research, The University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
11
|
Lin LH, Chi CH, Zhang XH, Chen YJ, Wang MF. Immunomodulatory Effects of Fruiting Body Extract and Solid-State-Cultivated Mycelia of Taiwanofungus camphoratus. Nutrients 2019; 11:nu11092256. [PMID: 31546903 PMCID: PMC6770431 DOI: 10.3390/nu11092256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/19/2023] Open
Abstract
Taiwanofungus camphoratus is a rare and valuable medicinal mushroom indigenous to Taiwan. It has traditionally been used to promote good health. This study aimed to explore the immunomodulatory effects of “Leader Deluxe Taiwanofungus camphoratus capsule” (LDAC). LDAC is a healthy food product composed of fruiting body extract and solid-state-cultivated mycelia of T. camphoratus. Two complementary studies were performed. In the first, LDAC was orally administered to BABL/c female mice for 6 weeks as part of a non-specific immune study. In the second, mice were treated with LDAC for 8 weeks and immunized with ovalbumin (OVA) in a specific immune study. LDAC increased the growth of splenic immune cells and enhanced the activity of macrophages and natural killer cells. It increased the levels of interleukin (IL)-2, interferon (IFN)-γ, serum immunoglobulin (Ig)G, and OVA-IgG, and decreased the levels of IL-4, IL-5, tumor necrosis factor (TNF)-α, serum IgE, and OVA-IgE. Thus, the findings of this study strongly supported the idea that LDAC possesses immunomodulatory activity.
Collapse
Affiliation(s)
- Liang-Hung Lin
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
- Division of Allergy, Immunology & Rheumatology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tanzi Dist., Taichung 42743, Taiwan.
| | - Ching-Hsin Chi
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Xiao-Han Zhang
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Ying-Ju Chen
- Bachelor Program in Health Care and Social Work for Indigenous Students, College of Humanities & Social Sciences, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| |
Collapse
|
12
|
Ganesan N, Baskaran R, Velmurugan BK, Thanh NC. Antrodia cinnamomea-An updated minireview of its bioactive components and biological activity. J Food Biochem 2019; 43:e12936. [PMID: 31368557 DOI: 10.1111/jfbc.12936] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022]
Abstract
Antrodia cinnamomea or Antrodia camphorata is a distinctive mushroom of Taiwan, which is being used as a traditional medicine to treat various health-related conditions. More than 78 compounds have been identified in A. cinnamomea. Large numbers of phytochemical studies have been carried out in A. cinnamomea due to the high amount of terpenoids. Besides that, the extracts and active components of A. cinnamomea were reported to have various biological activities including hepatoprotective, antihypertensive, antihyperlipidemic, anti-inflammatory, antioxidant, antitumor, and immunomodulatory activities. In this review article, we have summarized the recent findings of A. cinnamomea and its molecular mechanisms of action in various disease models. PRACTICAL APPLICATIONS: A. cinnamomea, medicinal fungus used in traditional medicine in Taiwan also possess high market value. Aim of the present review is to highlight the compounds present in A. cinnamomea and their different pharmacological activities in preventing/cure various diseases/disorders. A. cinnamomea can be potentially developed into health foods or drugs.
Collapse
Affiliation(s)
- Nagarajan Ganesan
- Basic Sciences Department, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Zhang BB, Guan YY, Hu PF, Chen L, Xu GR, Liu L, Cheung PCK. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit Rev Biotechnol 2019; 39:541-554. [DOI: 10.1080/07388551.2019.1577798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo-Bo Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yu-Yan Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Peng-Fei Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Gan-Rong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Peter C. K. Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
14
|
Hirose Y, Shirai K, Hirai Y. Membrane-tethered syntaxin-4 locally abrogates E-cadherin function and activates Smad signals, contributing to asymmetric mammary epithelial morphogenesis. J Cell Biochem 2018; 119:7525-7539. [PMID: 29767852 DOI: 10.1002/jcb.27064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Spatial and temporal epithelial-mesenchymal transition (EMT) is a critical event for the generation of asymmetric epithelial architectures. We found that only restricted cell populations in the morphogenic mammary epithelia extrude syntaxin-4, a plasmalemmal t-SNARE protein, and that epithelial cell clusters with artificial heterogenic presentation of extracellular syntaxin-4 undergo asymmetric morphogenesis. A previous study revealed that inducible expression of cell surface syntaxin-4 causes EMT-like cell behaviors in the clonal mammary epithelial cells, where laminin-mediated signals were abolished so that cells readily succumb to initiate EMT. The present study added new mechanistic insight into syntaxin-4-driven EMT-like cell behaviors. Extracellular syntaxin-4 directly perturbs E-cadherin-mediated epithelial cell-cell adhesion and activates Smad signals. We found that the epithelial cells activated Smad2/3 upon induction of expression of extracellular syntaxin-4, leading to the upregulation of certain transcriptional targets of these TGF-β signaling mediators. Intriguingly, however, mRNA expression of canonical EMT initiators, such as Snail and Slug, was unchanged. In addition, E-cadherin protein was steeply decreased, yet its transcriptional expression remained constant for a couple of days. We found that extracellular syntaxin-4 directly bound to E-cadherin and sequestered β-catenin from cell-cell contact sites, perturbing intercellular adhesive property. The functional ablation of E-cadherin by syntaxin-4 was further validated by L cells with stably expressing E-cadherin, in which cells shows intercellular adhesive property solely by E-cadherin. These results underline the role of local exportation of syntaxin-4 for onset of complex epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuina Hirose
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kota Shirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
15
|
Lin YS, Lin YY, Yang YH, Lin CL, Kuan FC, Lu CN, Chang GH, Tsai MS, Hsu CM, Yeh RA, Yang PR, Lee IY, Shu LH, Cheng YC, Liu HT, Lee KD, Chang DC, Wu CY. Antrodia cinnamomea extract inhibits the proliferation of tamoxifen-resistant breast cancer cells through apoptosis and skp2/microRNAs pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:152. [PMID: 29743060 PMCID: PMC5944021 DOI: 10.1186/s12906-018-2204-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer in women and affects 1.38 million women worldwide per year. Antiestrogens such as tamoxifen, a selective estrogen receptor (ER) modulator, are widely used in clinics to treat ER-positive breast tumors. However, remissions of breast cancer are often followed by resistance to tamoxifen and disease relapse. Despite the increasing understanding of the resistance mechanisms, effective regimens for treating tamoxifen-resistant breast cancer are limited. Antrodia cinnamomea is a traditional medicinal mushroom native only to Taiwan. In this study, we aimed to examine in vitro effect of antrodia cinnamomea in the tamoxifen-resistant cancer. METHODS Antrodia cinnamomea was studied for its biological activity against proliferation of tamoxifen-resistant breast cancer by XTT assay. Next, the underlying mechanism was studied by flow cytometry, qPCR and Western's blotting assay. RESULTS Our results revealed that the ethanol extract of antrodia cinnamomea (AC) can inhibit the growth of breast cancer cells, including MCF-7 cell and tamoxifen-resistant MCF-7 cell lines. Combination treatment with AC and 10- 6 M tamoxifen have the better inhibitory effect on the proliferation of tamoxifen-resistant MCF-7 cells than only AC did. AC can induce apoptosis in these breast cancer cells. Moreover, it can suppress the mRNA expression of skp2 (S-phase kinase-associated protein 2) by increasing the expressions of miR-21-5p, miR-26-5p, and miR-30-5p in MCF-7 and tamoxifen-resistant MCF-7 cells. CONCLUSIONS These results suggest that the ethanol extract of antrodia cinnamomea could be a novel anticancer agent in the armamentarium of tamoxifen-resistant breast cancer management. Moreover, we hope to identify additional pure compounds that could serve as promising anti-breast cancer candidates for further clinical trials.
Collapse
Affiliation(s)
- Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, No.168, Sec. 1, University Rd., Minhsiung Chiayi County, 62102, Taiwan, Republic of China
| | - Yin-Yin Lin
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Center of Excellence for Chang Gung Research Datalink, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Liang Lin
- Departments of Nephrology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and oncology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Nan Lu
- Division of Acupuncture and Chinese Traumatology, Department of TCM, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Center of Excellence for Chang Gung Research Datalink, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuan-Der Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - De-Ching Chang
- Institute of Molecular Biology, National Chung Cheng University, No.168, Sec. 1, University Rd., Minhsiung Chiayi County, 62102, Taiwan, Republic of China.
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.
- School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| |
Collapse
|
16
|
Shih YL, Wu MF, Lee CH, Yeh MY, Chou J, Liu JY, Lu HF, Huang YP, Liao NC, Chung JG. Antrodia Cinnamomea Reduces Carbon Tetrachloride-induced Hepatotoxicity In Male Wister Rats. ACTA ACUST UNITED AC 2018; 31:877-884. [PMID: 28882954 DOI: 10.21873/invivo.11142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Antrodia cinnamomea is found with polysaccharides, lipids, vitamins, fibers and ash (minerals) and is well known in Taiwan as a traditional Chinese medicine. Its biological activities have been reported to have anti-inflammatory, anti-fatigue, anti-tumor and immunomodulatory effects, but its protective effects on liver function are still unclear. MATERIALS AND METHODS We determined if Antrodia cinnamomea was hepatoprotective against carbon tetrachloride (CCl4) toxicity in Wistar rats. Six groups were used in the study: 1) control (no induction by CCl4); 2) negative control (CCl4-induction and no treatment); 3) positive control (silymarin treatment); 4) groups 4-6 were treated with CC14 and different concentrations (350 mg/kg, 1,400 mg/kg, 3,150 mg/kg) of Antrodia cinnamomea. Blood and liver samples of rats were harvested and then detected by biochemical and tissue histochemical analysis. Activity of the antioxidative enzymes glutathione peroxidase, superoxide dismutase and catalase in the liver were also monitored. RESULTS Only the high-dose treatment was able to decrease serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels and improve liver function. High and medium doses increased total liver protein and reduced hydroxyproline. It was also observed that the high dose treatment reduced lipid peroxidation. Liver sections of CC14 treated animals receiving Antrodia cinnamomea showed less fibrosis compared to the CCl4 control group. CONCLUSION This finding suggested that Antrodia cinnamomea can either enhance liver recovering from CCl4 damage or attenuate CCl4 toxicity in rats.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Ming-Fang Wu
- Animal Medicine Center, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Houlong, Miaoli County, Taiwan, R.O.C
| | - Ming-Yang Yeh
- Departments of Medical Education and Research, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jason Chou
- Departments of Anatomic Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jia-You Liu
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsu-Feng Lu
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C. .,Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - Nien-Chieh Liao
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C. .,Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
17
|
Chen YY, Lo CP, Lin CC, Hsieh YH. Effects of Taiwanofungus camphoratus on non-specific and specific immune activities in mice. Mycology 2018; 9:129-135. [PMID: 30123668 PMCID: PMC6059145 DOI: 10.1080/21501203.2018.1437837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Taiwanofungus camphoratus is a precious medicinal fungus endemic to Taiwan and has been used as traditional medicine for a long time. Many pharmacological studies have revealed that T. camphoratus possessed various biological activities, such as immunomodulatory effects, anticancer activity and liver protective function. The aim of this study is to investigate the non-specific and antigen (ovalbumin [OVA])-specific immunomodulation effects of solid-state cultivated powder of T. camphoratus (Leader Antrodia cinnamomea [LAC]) in BABL/c male mice. In non-specific and antigen-specific immune function studies, 8-week-old mice were orally administered with LAC for 6 and 8 weeks, respectively. The results have shown that the proliferation of splenic immune cells, phagocytic activity of macrophages and cytolytic activity of natural killer cells were enhanced by LAC. Additionally, LAC increased the levels of IL-2, TNF-α, INF-γ, GM-CSF and serum OVA-IgG and OVA-IgM. These findings provided evidences that LAC had the immunomodulation effects on both antigen-specific and non-specific immune responses in mice.
Collapse
Affiliation(s)
- Yun-Yu Chen
- Taiwan Leader Biotech Corp., Taipei City, Taiwan
| | - Chiu-Ping Lo
- Taiwan Leader Biotech Corp., Taipei City, Taiwan
| | | | | |
Collapse
|
18
|
Senthil KKJ, Gokila VM, Wang SY. Activation of Nrf2-mediated anti-oxidant genes by antrodin C prevents hyperglycemia-induced senescence and apoptosis in human endothelial cells. Oncotarget 2017; 8:96568-96587. [PMID: 29228553 PMCID: PMC5722505 DOI: 10.18632/oncotarget.19951] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
In the present study, we investigated the effects of antrodin C (ADC), a maleimide derivative isolated from mycelia of Antrodia cinnamomea, on high glucose (HG, 30 mM)-accelerated endothelial dysfunction in vitro. HG-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs) was significantly ameliorated by ADC. In addition, treatment with ADC significantly prevented HG-induced senescence, growth arrest at the G1-S transition phase and apoptosis in HUVECs. Moreover, the increased level of intracellular reactive oxygen species (ROS) under HG condition was significantly ameliorated by ADC. Further analysis revealed that ADC-mediated anti-oxidant effects were due to up-regulation of cellular anti-oxidant genes, such as HO-1 and NQO-1 via promotion of the transcriptional activity of Nrf2, which was further confirmed by the failure of ADC to protect HUVECs from HG-induced dysfunction under HO-1 inhibition or Nrf2 silencing. Furthermore, hyperosmotic glucose (HOG, 60 mM)-induced uncontrolled production of ROS, rapid apoptotic cell death and HUVEC injury were significantly prevented by ADC, whereas these preventive effects were barely observed in HO-1 inhibited or Nrf2 silenced cells. Taken together, these results suggest that ADC may represent a promising intervention in diabetic-associated cardiovascular diseases by activating the Nrf2-dependent cellular anti-oxidant defense system.
Collapse
Affiliation(s)
- Kumar K J Senthil
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Vani M Gokila
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan.,National Chung Hsing University/University of California at Davis, Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan.,National Chung Hsing University/University of California at Davis, Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Zhu J, Liang C, Hua Y, Miao C, Zhang J, Xu A, Zhao K, Liu S, Tian Y, Dong H, Zhang C, Li P, Su S, Qin C, Wang Z. The metastasis suppressor CD82/KAI1 regulates cell migration and invasion via inhibiting TGF-β 1/Smad signaling in renal cell carcinoma. Oncotarget 2017; 8:51559-51568. [PMID: 28881668 PMCID: PMC5584269 DOI: 10.18632/oncotarget.18086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022] Open
Abstract
The tetraspanin KAI1/CD82 was identified as a tumor metastasis suppressor that downregulated in various malignant cell types. However, the function of CD82 and its underlying anti-metastasis role in renal cell carcinoma (RCC) is still unraveled. Here, we investigated the expression of CD82 in RCC and explored its regulatory mechanism in RCC cell lines. We found that CD82 was down-regulated in RCC tissues and cells and its expression was significantly associated with histological grade(p=0.041), tumour stage (p=0.036) and tumor size(p=0.020) by analyzing tissue microarrays. After upregulation of CD82 through lentivirus, reduced ability of migration and invasion in Caki-1 cells were detected. In contrast, gene silencing of CD82 by small interfering RNA promoted metastatic and invasive potential of 786-O cells. Furthermore, Western blot was performed to identify the influence of CD82 on MMP family and TGF-β1/Smad pathway in RCC. Subsequently, upregulating protein level of TGF-β1 with the overexpression of CD82 could rescue the malignant behaviors inhibited by CD82 which indicated that CD82 played its inhibitory role in RCC partially by attenuating the expression of TGF-β1. Taken together, CD82 played a prominent role in migration and invasion of RCC cells and it might exhibit its inhibitory role in RCC metastasis via block TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jundong Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shifeng Su
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Andergassen U, Kölbl AC, Mumm JN, Mahner S, Jeschke U. Triple-negative breast cancer: New therapeutic options via signalling transduction cascades. Oncol Rep 2017; 37:3055-3060. [PMID: 28440460 DOI: 10.3892/or.2017.5512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer is a highly aggressive type of mammalian carcinoma. It is defined by a rather weak expression of estrogen-, progesterone- and Her2-receptor, and is thus difficult to treat, resulting in low disease-free and overall survival rates of the affected patients. Hence it is important to find new therapeutic options. To this aim we analysed the incidence of some molecules from different signal transduction cascades by immunohistochemistry, which are known to correlate with triple-negative breast cancer, and correlated the expression of these molecules to different tumour traits, such as size, grading, menopausal stage, histology, lymph node affection, remote metastasis formation, and to the incidence of local and lymph node recurrence and metastasis by statistical analysis. Statistically significant correlations were found for a number of tumour characteristics and signalling molecules: HIF1α is correlated to tumour grading, β-catenin to the menopausal state of the patient, and for Notch1 a relation to lymph node affection is seen. In terms of different recurrences, a correlation of β-catenin to metastasis formation and lymph node affection could be shown, as well as coherences between XBP1 and lymph node recurrence, Notch1 and metastasis formation and FOXP3 and the occurrence of local recurrence. The presented results are in accordance with formerly published studies and therefore might comprise opportunities to develop new therapeutical strategies, which could help to handle this aggressive form of breast cancer in a manner, by which side effects would be reduced and therapeutical efficiency is increased.
Collapse
Affiliation(s)
- Ulrich Andergassen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Alexandra C Kölbl
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Jan-Niclas Mumm
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| |
Collapse
|
21
|
Xia Y, Zhou X, Wang G, Zhang B, Xu G, Ai L. Induction of antroquinonol production by addition of hydrogen peroxide in the fermentation of Antrodia camphorata S-29. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:595-599. [PMID: 27098319 DOI: 10.1002/jsfa.7770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Antroquinonol have significantly anti-tumour effects on various cancer cells. There is still lack of reports on regulation of environmental factors on antroquinonol production by Antrodia camphorata. RESULTS An effective submerged fermentation method was employed to induce antroquinonol with adding H2 O2 . The production of antroquinonol was 57.81 mg L-1 after fermentation for 10 days when adding 25 mmol L-1 H2 O2 at day 4 of the fermentation process. Then, antroquinonol was further increased to 80.10 mg L-1 with cell productivity of 14.94 mg g-1 dry mycelium when the feeding rate of H2 O2 was adjusted to 0.2 mmol L-1 h-1 in the 7 L fermentation bioreactor. After inhibiting the generation of reactive oxygen species with the inhibitor diphenyleneiodoium, the synthesis of antroquinonol from A. camphorata was significantly reduced, and the yield was only 3.3 mg L-1 . CONCLUSION The results demonstrated that addition of H2 O2 was a very effective strategy to induce and regulate the synthesis of antroquinonol in submerged fermentation. Reactive oxygen species generated by H2 O2 during fermentation caused oxidative stress, which induced the synthesis of antroquinonol and other chemical compounds. Moreover, it is very beneficial process to improve production and diversity of the active compounds during liquid fermentation of A. camphorata mycelium. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjun Xia
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuan Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bobo Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ganrong Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
22
|
Sun JG, Chen XW, Zhang LP, Wang J, Diehn M. Yap1 promotes the survival and self-renewal of breast tumor initiating cells via inhibiting Smad3 signaling. Oncotarget 2016; 7:9692-706. [PMID: 26695440 PMCID: PMC4891077 DOI: 10.18632/oncotarget.6655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022] Open
Abstract
Tumor initiating cells (TICs) serve as the root of tumor growth. After identifying TICs in spontaneous breast tumors of the MMTV-Wnt1 mouse model, we confirmed the specific expression and activation of Yes-associated protein 1 (Yap1) within TICs. To investigate the role of Yap1 in the self-renewal of breast TICs and the underlying mechanism, we sorted CD49fhighEpCAMlow cells as breast TICs. Active Yap1 with ectopic expression in breast TICs promoted their colony formation in vitro (p< 0.01) and self-renewal in vivo (p< 0.01), and led to a 4-fold increase in TIC frequency (p< 0.05). A conditional knock-out mouse was reconstructed to generate Yap1 knock-out breast tumors. The loss of Yap1 led to a dramatic growth disadvantage of breast TICs in vitro (p< 0.01) and in vivo (p< 0.01), and it also led to an over 200-fold decrease in TIC frequency (p< 0.01). The expression of active Yap1 was negatively correlated with that of phosphorylated Smad3 (p-Smad3). Transforming growth factor β (TGF-β) served as a strong enhancer of Smad3 and an inhibitor of clonogenesis of TICs. The presence of SIS3, a specific inhibitor of Smad3, could rescue the TGF-β -induced growth inhibition and reverse the Smad3 inhibition by Yap1. Analysis of a database containing 2,072 human breast cancer samples showed that higher expressions of Yap1 correlated with a poorer outcome of a 15-year survival rate and median overall survival (mOS)in patients, especially in those with basal breast tumors without estrogen receptor 1 (ER) expression. The findings indicate that active Yap1 promotes the self-renewal of breast TICs by inhibiting Smad3 signaling.
Collapse
Affiliation(s)
- Jian-Guo Sun
- Cancer Institute, Stanford University School of Medicine, Stanford, California, USA.,Department of Oncology, Second Affiliated Hospital of Third Military Medical University, Chongqing, P.R. China
| | - Xie-Wan Chen
- Department of Oncology, Second Affiliated Hospital of Third Military Medical University, Chongqing, P.R. China
| | - Lu-Ping Zhang
- Department of Oncology, Second Affiliated Hospital of Third Military Medical University, Chongqing, P.R. China
| | - Jiang Wang
- Department of Oncology, Second Affiliated Hospital of Third Military Medical University, Chongqing, P.R. China
| | - Max Diehn
- Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Yi B, Chang H, Ma R, Feng X, Li W, Piazza GA, Xi Y. Inhibition of breast cancer cell motility with a non-cyclooxygenase inhibitory derivative of sulindac by suppressing TGFβ/miR-21 signaling. Oncotarget 2016; 7:7979-92. [PMID: 26769851 PMCID: PMC4884969 DOI: 10.18632/oncotarget.6888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
Abstract
Compelling efficacy on intervention of tumorigenesis by nonsteroidal anti-inflammatory drugs (NSAIDs) has been documented intensively. However, the toxicities related to cyclooxygenase (COX) inhibition resulting in suppression of physiologically important prostaglandins limit their clinical use for human cancer chemoprevention. A novel derivative of the NSAID sulindac sulfide (SS), referred as sulindac sulfide amide (SSA), was recently developed, which lacks COX inhibitory activity, yet shows greater suppressive effect than SS on growth of various cancer cells. In this study, we focus on the inhibitory activity of SSA on breast tumor cell motility, which has not been studied previously. Our results show that SSA treatment at non-cytotoxic concentrations can specifically reduce breast tumor cell motility without influencing tumor cell growth, and the mechanism of action involves the suppression of TGFβ signaling by directly blocking Smad2/3 phosphorylation. Moreover, miR-21, a well-documented oncogenic miRNA for promoting tumor cell metastasis, was also found to be involved in inhibitory activity of SSA in breast tumor cell motility through the modulation of TGFβ pathway. In conclusion, we demonstrate that a non-COX inhibitory derivative of sulindac can inhibit breast tumor metastasis by a mechanism involving the TGFβ/miR-21 signaling axis.
Collapse
Affiliation(s)
- Bin Yi
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Hong Chang
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ruixia Ma
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Xiangling Feng
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,School of Public Health, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Pharmaceutical Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gary A Piazza
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
24
|
Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2. Toxicol Lett 2016; 265:53-60. [PMID: 27856280 DOI: 10.1016/j.toxlet.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 02/07/2023]
Abstract
Increasing evidences suggest that microcystins, a kind of toxic metabolites, produced by cyanobacteria in contaminated water may contribute to the aggravation of the human colorectal carcinoma. Our previous study showed that microcystin-LR (MC-LR) exposure caused significant invasion and migration of colorectal cancer cells. However, the roles of MC-LR in regulating epithelial-mesenchymal transition (EMT) in colorectal cancer cells remain unknown. In our study, we observed that MC-LR treatment decreased epithelial marker E-cadherin expression and up-regulated the levels of mesenchymal markers Vimentin and Snail in colorectal cancer cells. Moreover, MC-LR stimulated protein expression of SMAD2 and phospho-SMAD2 by PI3-K/AKT activation. The activated PI3-K/AKT and SMAD2 signaling largely accounted for MC-LR-induced EMT, which could be reversed by SMAD2 RNA interference or PI3-K/AKT chemical inhibitor in colorectal cancer cells. Our results show that MC-LR could induce SMAD2 expression to promote colorectal cancer cells EMT, which not only provides a mechanistic insight on MC-LR promotes EMT in colorectal cancer cells, but also support to the development of therapies aimed at SMAD2 in colorectal cancer induced by MC-LR.
Collapse
|
25
|
Tsai MY, Hung YC, Chen YH, Chen YH, Huang YC, Kao CW, Su YL, Chiu HHE, Rau KM. A preliminary randomised controlled study of short-term Antrodia cinnamomea treatment combined with chemotherapy for patients with advanced cancer. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:322. [PMID: 27565426 PMCID: PMC5002173 DOI: 10.1186/s12906-016-1312-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
Abstract
Background Antrodia cinnamomea (AC) is a popular medicinal mushroom in Taiwan that has been widely used for treatment of various cancers. Few clinical studies have reported its application and efficiency in therapeutic chemotherapy strategies. We performed a double-blind, randomized clinical study to investigate whether AC given for 30 days had acceptable safety and efficacy in advanced cancer patients receiving chemotherapy. Methods Patients with advanced and/or metastatic adenocarcinoma, performance status (PS) 0–2, and adequate organ function who had previously been treated with standard chemotherapy were randomly assigned to receive routine chemotherapy regimens with AC (20 ml twice daily) orally for 30 days or placebo. The primary endpoint was 6-month overall survival (OS); the secondary endpoints were disease control rate (DCR), quality of life (QoL), adverse event (AE), and biochemical features within 30 days of treatment. Results From August 2010 to July 2012, 37 subjects with gastric, lung, liver, breast, and colorectal cancer (17 in the AC group, 20 in the placebo group) were enrolled in the study. Disease progression was the primary cause of death in 4 (33.3 %) AC and 8 (66.7 %) placebo recipients. Mean OSs were 5.4 months for the AC group and 5.0 months for the placebo group (p = 0.340), and the DCRs were 41.2 and 55 %, respectively (p = 0.33). Most hematologic, liver, or kidney functions did not differ significantly between the two groups, but platelet counts were lower in the AC group than in the placebo group (p = 0.02). QoL assessments were similar in the two groups, except that the AC group showed significant improvements in quality of sleep (p = 0.04). Conclusions Although we found a lower mortality rate and longer mean OS in the AC group than in the control group, A. cinnamomea combined with chemotherapy was not shown to improve the outcome of advanced cancer patients, possibly due to the small sample size. In fact, the combination may present a potential risk of lowered platelet counts. Adequately powered clinical trials will be necessary to address this question. Trial registration ClinicalTrials.gov NCT01287286.
Collapse
|
26
|
Ismail NS, Ali EM, Ibrahim DA, Serya RA, Abou El Ella DA. Pyrazolo[3,4-d]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
JIANG JUAN, YI BO, DING SIQING, SUN JIAN, CAO WEI, LIU MENGZI. Demethylation drug 5-Aza-2'-deoxycytidine-induced upregulation of miR-200c inhibits the migration, invasion and epithelial-mesenchymal transition of clear cell renal cell carcinoma in vitro. Oncol Lett 2016; 11:3167-3172. [PMID: 27123083 PMCID: PMC4841033 DOI: 10.3892/ol.2016.4364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
The microRNA (miR)-200 family has been found to be involved in the process of mesenchymal-epithelial transition during renal development. Deregulation of miR-200c has been suggested to be involved in clear cell renal cell carcinoma (ccRCC). However, the precise role of miR-200c in the regulation of ccRCC metastasis has not been previously reported. In the present study, it was observed that miR-200c was frequently downregulated in ccRCC tissue compared with matched adjacent normal tissue. The expression of miR-200c was additionally reduced in ccRCC cell lines when compared with levels in normal renal cells. The DNA demethylation drug 5-Aza-2'-deoxycytidine (Aza) was used to treat several ccRCC cell lines, and it was observed that the expression of miR-200c was significantly increased following Aza treatment. Furthermore, treatment with Aza markedly inhibited ccRCC cell invasion and migration, while treatment with miR-200c inhibitor significantly enhanced invasion and migration of ccRCC cells. In addition, Aza treatment significantly promoted expression of E-cadherin and inhibited the expression of N-cadherin, while the inhibition of miR-200c downregulated E-cadherin and upregulated the expression of N-cadherin, suggesting that miR-200c has a suppressive role in epithelial-mesenchymal transition (EMT) of ccRCC cells. In conclusion, it was suggested that demethylation drug Aza-induced upregulation of miR-200c may inhibit migration, invasion and EMT in ccRCC cells.
Collapse
Affiliation(s)
- JUAN JIANG
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - BO YI
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - SIQING DING
- Department of Nursing, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - JIAN SUN
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - WEI CAO
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - MENGZI LIU
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
28
|
Ha T, Lou Z, Baek SJ, Lee SH. Tolfenamic acid downregulates β-catenin in colon cancer. Int Immunopharmacol 2016; 35:287-293. [PMID: 27089389 DOI: 10.1016/j.intimp.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
Abstract
Tolfenamic acid is one of the fenamic acid-derived non-steroid anti-inflammatory drugs (NSAIDs) and has been shown to exhibit anti-cancer activities in several types of cancer. Both mutations and aberrant expression of β-catenin are highly associated with progression of cancer. Therefore, β-catenin is considered to be a promising molecular target for cancer prevention and treatment. The current study investigates the role of tolfenamic acid on β-catenin expression in colon cancer. Treatment with tolfenamic acid led to inhibition of cell growth and down-regulation of β-catenin expression in a dose- and time-dependent manner in human colon cancer cell lines. Reduction of β-catenin upon tolfenamic acid treatment was associated with ubiquitin-mediated proteasomal degradation, without affecting mRNA level and promoter activity of β-catenin. In addition, treatment with tolfenamic acid downregulated Smad2 and Smad3 expression, while overexpression of Smad2, but not Smad3, blocked tolfenamic acid-induced suppression of β-catenin expression. Tolfenamic acid also decreased expression of β-catenin target genes, including vascular endothelial growth factor (VEGF). Compared to adjacent normal tissue, intestinal tumor tissues of Apc(Min/+) mice exhibited increased expression of β-catenin, Smad2, Smad3, and VEGF, which were down-regulated with tolfenamic acid treatment at a dose of 50mg/kg body weight. In conclusion, our findings suggest that tolfenamic acid inhibits growth of colon cancer cells through downregulation of Smad2 and, subsequently, facilitating ubiquitin-proteasome-mediated β-catenin degradation in colon cancer.
Collapse
Affiliation(s)
- Taekyu Ha
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Zhiyuan Lou
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
29
|
MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy. Sci Rep 2016; 6:20475. [PMID: 26837280 PMCID: PMC4738324 DOI: 10.1038/srep20475] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
MicroRNA-130b (miR-130b) downregulation has been identified in diabetes, but the role and mechanisms for miR-130b in mediating renal tubulointerstitial fibrosis in diabetic nephropathy (DN) remain unknown. We demonstrated that plasma miR-130b downregulation exhibited clinical and biological relevance as it was linked to increased serum creatinine, β2-microglobulin and proteinuria, increased Snail expression and tubulointerstitial fibrosis in renal biopsies of DN patients. MiR-130b inhibitor caused Snail upregulation and enhanced molecular features of epithelial-to-mesenchymal transition (EMT) in high glucose (30 mM) cultured NRK-52E cells. In contrast, miR-130b mimic downregulated Snail expression and increased epithelial hallmarks. Notably, Snail was identified as an miR-130b direct target and inversely correlated with E-CADHERIN expression. Furthermore, the miR-130b-dependent effects were due to Snail suppression that in turn deregulated E-CADHERIN, VIMENTIN, COLLAGEN IV and α-smooth muscle actin (α-SMA), key mediators of EMT. These effects were reproduced in streptozotocin-induced diabetic rats. Thus, we propose a novel role of the miR-130b-SNAIL axis in fostering EMT and progression toward increased tubulointerstitial fibrosis in DN. Detection of plasma miR-130b and its association with SNAIL can be extrapolated to quantifying the severity of renal tubulointerstitial fibrosis. Targeting miR-130b could be evaluated as a potential therapeutic approach for DN.
Collapse
|
30
|
Fei F, Zhang D, Yang Z, Wang S, Wang X, Wu Z, Wu Q, Zhang S. The number of polyploid giant cancer cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis in human breast cancer. J Exp Clin Cancer Res 2015; 34:158. [PMID: 26702618 PMCID: PMC4690326 DOI: 10.1186/s13046-015-0277-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previously, we reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride (CoCl2) could have generated daughter cells with strong invasiveness and migration capabilities via asymmetric divisions. This study compared the expression of epithelial-mesenchymal transition (EMT)-related proteins, including E-cadherin, N-cadherin, and vimentin, between PGCCs and their daughter cells, and control breast cancer cell lines MCF-7 and MDA-MB-231. The clinicopathological significance of EMT-related protein expression in human breast cancer was analyzed. METHODS Western blot was used to compare the expression levels of E-cadherin, N-cadherin, and vimentin in breast cancer lines MCF-7 and MDA-MB-231, between PGCCs with budding daughter cells and control breast cancer cells. Furthermore, 167 paraffin-embedded breast tumor tissue samples were analyzed, including samples obtained from 52 patients with primary breast cancer with lymph node metastasis (group I) and their corresponding lymph node metastatic tumors (group II), 52 patients with primary breast cancer without metastasis (group III), and 11 patients with benign breast lesions (group IV). The number of PGCCs was compared among these four groups. RESULTS The number of PGCCs increased with the malignant grade of breast tumor. Group IIhad the highest number of PGCCs and the differences among group I, II, III and IV had statistically significance (P =0.000). In addition, the expression of E-cadherin (P = 0.000), N-cadherin (P = 0.000), and vimentin (P = 0.000) was significantly different among the four groups. Group II exhibited the highest expression levels of N-cadherin and vimentin and the lowest expression levels of E-cadherin. CONCLUSIONS These data suggest that the number of PGCCs and the EMT-related proteins E-cadherin, N-cadherin, and vimentin may be valuable biomarkers to assess metastasis in patients with breast cancer.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medicine Center, Tianjin, 300121, P.R China.
| | - Zhengduo Yang
- Department of Pathology, Tianjin Union Medicine Center, Tianjin, 300121, P.R China.
| | - Shujing Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Xian Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Qiang Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medicine Center, Tianjin, 300121, P.R China.
| |
Collapse
|
31
|
Li G, Yao L, Zhang J, Li X, Dang S, Zeng K, Zhou Y, Gao F. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52. Tumour Biol 2015; 37:7481-91. [PMID: 26678891 DOI: 10.1007/s13277-015-4623-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/10/2015] [Indexed: 01/27/2023] Open
Abstract
The tumor protein D52 (TPD52) is an oncogene overexpressed in breast cancer. Although the oncogenic effects of TPD52 are well recognized, how its expression and the role in migration/invasion is still not clear. This study tried to explore the regulative role of microRNA-34a (miR-34a), a tumor suppressive miRNA, on TPD52 expression in breast cancer. The expression of miR-34a was found significantly decreased in breast cancer specimens with lymph node metastases and breast cancer cell lines. The clinicopathological characteristics analyzed showed that lower expression levels of miR-34a were associated with advanced clinical stages. Moreover, TPD52 was demonstrated as one of miR-34a direct targets in human breast cancer cells. miR-34a was further found significantly repress epithelial-mesenchymal transition (EMT) and inhibit breast cancer cell migration and invasion via TPD52. These findings indicate that miR-34a inhibits breast cancer progression and metastasis through targeting TPD52. Consequently, our data strongly suggested that oncogenic TPD52 pathway regulated by miR-34a might be useful to reveal new therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Guodong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Lei Yao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.
| | - Jinning Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xinglong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Shuwei Dang
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Kai Zeng
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yuhui Zhou
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.,Bio-Bank of Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Feng Gao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China.
| |
Collapse
|
32
|
Lin CC, Chen CC, Kuo YH, Kuo JT, Senthil Kumar KJ, Wang SY. 2,3,5-Trimethoxy-4-cresol, an anti-metastatic constituent from the solid-state cultured mycelium of Antrodia cinnamomea and its mechanism. J Nat Med 2015; 69:513-21. [PMID: 25951809 DOI: 10.1007/s11418-015-0916-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Antrodia cinnamomea is a valuable and unique edible fungus originating from the forests of Taiwan. In this study, an anti-metastatic compound, 2,3,5-trimethoxy-4-cresol (TMC), was isolated from the solid-state cultured mycelium of A. cinnamomea. According to the results obtained from cell wound healing, cell migration and invasion assays, TMC effectively suppressed movement, migration and invasion of lung cancer cells at the dosage of 5-40 μM, which was non-toxic to A549 cells. In addition, TMC reduced protein expression of Akt, MMP-2 and MMP-9 and enhanced E-cadherin and TIMP-1 protein expression, which are known to regulate cell adhesion, migration and invasion. Taken together, TMC effectively suppresses movement, migration and invasion of lung cancer cells, and achieves an anti-cancer metastasis effect.
Collapse
|