1
|
Laetz EMJ, Kahyaoglu C, Borgstein NM, Merkx M, van der Meij SET, Verberk WCEP. Critical thermal maxima and oxygen uptake in Elysia viridis, a sea slug that steals chloroplasts to photosynthesize. J Exp Biol 2024; 227:jeb246331. [PMID: 38629207 DOI: 10.1242/jeb.246331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/31/2024] [Indexed: 05/31/2024]
Abstract
Photosynthetic animals produce oxygen, providing an ideal lens for studying how oxygen dynamics influence thermal sensitivity. The algivorous sea slug Elysia viridis can steal and retain chloroplasts from the marine alga Bryopsis sp. for months when starved, but chloroplast retention is mere weeks when they are fed another green alga, Chaetomorpha sp. To examine plasticity in thermal tolerance and changes in net oxygen exchange when fed and starving, slugs fed each alga were acclimated to 17°C (the current maximum temperature to which they are exposed in nature) and 22°C (the increase predicted for 2100) and measured at different points during starvation. We also examined increased illumination to evaluate a potential tradeoff between increased oxygen production but faster chloroplast degradation. Following acclimation, we subjected slugs to acute thermal stress to determine their thermal tolerance. We also measured net oxygen exchange before and after acute thermal stress. Thermal tolerance improved in slugs acclimated to 22°C, indicating they can acclimate to temperatures higher than they naturally experience. All slugs exhibited net oxygen uptake, and rates were highest in recently fed slugs before exposure to acute thermal stress. Oxygen uptake was suppressed following acute thermal stress. Under brighter light, slugs exhibited improved thermal tolerance, possibly because photosynthetic oxygen production alleviated oxygen limitation. Accordingly, this advantage disappeared later in starvation when photosynthesis ceased. Thus, E. viridis can cope with heatwaves by suppressing metabolism and plastically adjusting heat tolerance; however, starvation influences a slug's thermal tolerance and oxygen uptake such that continuous access to algal food for its potential nutritive and oxygenic benefits is critical when facing thermal stress.
Collapse
Affiliation(s)
- Elise M J Laetz
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Can Kahyaoglu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Natascha M Borgstein
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Michiel Merkx
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sancia E T van der Meij
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Wilco C E P Verberk
- Department of Ecology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
2
|
Abstract
Kleptoplasty, the process by which a host organism sequesters and retains algal chloroplasts, is relatively common in protists. The origin of the plastid varies, as do the length of time it is retained in the host and the functionality of the association. In metazoa, the capacity for long-term (several weeks to months) maintenance of photosynthetically active chloroplasts is a unique characteristic of a handful of sacoglossan sea slugs. This capability has earned these slugs the epithets "crawling leaves" and "solar-powered sea slugs." This Unsolved Mystery explores the basis of chloroplast maintenance and function and attempts to clarify contradictory results in the published literature. We address some of the mysteries of this remarkable association. Why are functional chloroplasts retained? And how is the function of stolen chloroplasts maintained without the support of the algal nucleus?
Collapse
|
3
|
Barber K, Middlebrooks M, Bell S, Pierce S. The Specialist Marine Herbivore Elysia papillosa Grows Faster on a Less Utilized Algal Diet. THE BIOLOGICAL BULLETIN 2021; 241:158-167. [PMID: 34706209 DOI: 10.1086/716508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractMany small specialist herbivores utilize their food resources both for nutrition and as a structural refuge or resource. Trophic linkage cannot solely be inferred from physical association of herbivores with a potential food item, because herbivores may temporarily inhabit algae or plants on which they do not feed. Elysia papillosa, a small sacoglossan sea slug, consumes and sequesters chloroplasts from the siphonaceous, chlorophytic alga Penicillus capitatus; it also maintains moderate densities on this alga. Recently, E. papillosa was also infrequently found in association with the alga Penicillus lamourouxii, which displays density similar to that of P. capitatus. After collecting E. papillosa from each of the two algal species from a shallow-water site along the west central coast of Florida, we used DNA barcoding of the rbcL gene sequences in order to determine whether the slug was consuming both algal species. The molecular data indicated that E. papillosa consumed and sequestered chloroplasts from the same algal species from which they were collected. A laboratory feeding experiment tested whether algal diet (P. capitatus or P. lamourouxii) had an impact on slug growth rate as measured by change in body size (mm). After 3 weeks E. papillosa fed P. lamourouxii achieved a mean body length that was 1.5-2 times that recorded for slugs fed P. capitatus, but maximum growth depended on the original field host. Thus, while the highest densities of E. papillosa in the field occurred on P. capitatus, slugs grew much faster on P. lamourouxii in the laboratory. The observed association of E. papillosa with P. capitatus must be related to other factors, such as foraging efficiency, algal morphology, algal biochemistry, or algal suitability as a refuge.
Collapse
|
4
|
Cartaxana P, Rey F, LeKieffre C, Lopes D, Hubas C, Spangenberg JE, Escrig S, Jesus B, Calado G, Domingues R, Kühl M, Calado R, Meibom A, Cruz S. Photosynthesis from stolen chloroplasts can support sea slug reproductive fitness. Proc Biol Sci 2021; 288:20211779. [PMID: 34583582 PMCID: PMC8479339 DOI: 10.1098/rspb.2021.1779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Some sea slugs are able to steal functional chloroplasts (kleptoplasts) from their algal food sources, but the role and relevance of photosynthesis to the animal host remain controversial. While some researchers claim that kleptoplasts are slowly digestible 'snacks', others advocate that they enhance the overall fitness of sea slugs much more profoundly. Our analysis shows light-dependent incorporation of 13C and 15N in the albumen gland and gonadal follicles of the sea slug Elysia timida, representing translocation of photosynthates to kleptoplast-free reproductive organs. Long-chain polyunsaturated fatty acids with reported roles in reproduction were produced in the sea slug cells using labelled precursors translocated from the kleptoplasts. Finally, we report reduced fecundity of E. timida by limiting kleptoplast photosynthesis. The present study indicates that photosynthesis enhances the reproductive fitness of kleptoplast-bearing sea slugs, confirming the biological relevance of this remarkable association between a metazoan and an algal-derived organelle.
Collapse
Affiliation(s)
- Paulo Cartaxana
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Felisa Rey
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Charlotte LeKieffre
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, Grenoble Cedex, France
| | - Diana Lopes
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Cédric Hubas
- Biologie des Organismes et Écosystèmes Aquatiques (UMR BOREA 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Station Marine de Concarneau, Place de la croix, Concarneau 29900, France
| | - Jorge E. Spangenberg
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Bruno Jesus
- Laboratoire Mer Molécules Santé, Faculté des Sciences et des Techniques, Université de Nantes, Nantes 44322, France
| | - Gonçalo Calado
- Department of Life Sciences, Lusófona University, Campo Grande 376, Lisbon 1749-024, Portugal
- NOVA School of Science and Technology, MARE—Marine and Environmental Sciences Centre, Campus de Caparica, Caparica 2829-516, Portugal
| | - Rosário Domingues
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, Helsingør 3000, Denmark
| | - Ricardo Calado
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| | - Anders Meibom
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Sónia Cruz
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
5
|
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, Soondur M, Pilly SS, Beesoo R, Wijayanti DP, Bachok ZB, Monrás VC, Casareto BE, Suzuki Y, Baker AC. Chlorophyll fluorescence - A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. MARINE POLLUTION BULLETIN 2021; 165:112059. [PMID: 33677415 DOI: 10.1016/j.marpolbul.2021.112059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Chlorophyll a fluorescence is increasingly being used as a rapid, non-invasive, sensitive and convenient indicator of photosynthetic performance in marine autotrophs. This review presents the methodology, applications and limitations of chlorophyll fluorescence in marine studies. The various chlorophyll fluorescence tools such as Pulse-Amplitude-Modulated (PAM) and Fast Repetition Rate (FRR) fluorometry used in marine scientific studies are discussed. Various commonly employed chlorophyll fluorescence parameters are elaborated. The application of chlorophyll fluorescence in measuring natural variations, stress, stress tolerance and acclimation/adaptation to changing environment in primary producers such as microalgae, macroalgae, seagrasses and mangroves, and marine symbiotic invertebrates, namely symbiotic sponges, hard corals and sea anemones, kleptoplastic sea slugs and giant clams is critically assessed. Stressors include environmental, biological, physical and chemical ones. The strengths, limitations and future perspectives of the use of chlorophyll fluorescence technique as an assessment tool in symbiotic marine organisms and seaplants are discussed.
Collapse
Affiliation(s)
- Ranjeet Bhagooli
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius; The Biodiversity and Environment Institute, Réduit, Mauritius; The Society of Biology (Mauritius), Réduit, Mauritius; Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| | - Sushma Mattan-Moorgawa
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius; The Biodiversity and Environment Institute, Réduit, Mauritius
| | - Deepeeka Kaullysing
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius; The Biodiversity and Environment Institute, Réduit, Mauritius
| | - Yohan Didier Louis
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius
| | - Arvind Gopeechund
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius; The Biodiversity and Environment Institute, Réduit, Mauritius
| | - Sundy Ramah
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius
| | - Mouneshwar Soondur
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius; The Biodiversity and Environment Institute, Réduit, Mauritius
| | - Sivajyodee Sannassy Pilly
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius
| | - Rima Beesoo
- Department of Biosciences & Ocean Studies, Faculty of Science & Pole of Research Excellence, Sustainable Marine Biodiversity Research Group, University of Mauritius, Réduit 80837, Mauritius
| | | | - Zainudin Bin Bachok
- Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Víctor Cubillos Monrás
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio Costero de Recursos Acuáticos de Calfuco, Universidad Austral de Chile, Valdivia, Chile
| | | | - Yoshimi Suzuki
- Shizuoka University, 836 Oya, Suruga, Shizuoka, Shizuoka, Japan
| | - Andrew Charles Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
6
|
Shiroyama H, Mitoh S, Ida TY, Yusa Y. Adaptive significance of light and food for a kleptoplastic sea slug: implications for photosynthesis. Oecologia 2020; 194:455-463. [DOI: 10.1007/s00442-020-04779-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/08/2020] [Indexed: 01/23/2023]
|
7
|
Rey F, Melo T, Cartaxana P, Calado R, Domingues P, Cruz S, Domingues MRM. Coping with Starvation: Contrasting Lipidomic Dynamics in the Cells of Two Sacoglossan Sea Slugs Incorporating Stolen Plastids from the Same Macroalga. Integr Comp Biol 2020; 60:43-56. [PMID: 32294176 DOI: 10.1093/icb/icaa019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several species of sacoglossan sea slugs are able to sequester chloroplasts from algae and incorporate them into their cells. However, the ability to maintain functional "stolen" plastids (kleptoplasts) can vary significantly within the Sacoglossa, giving species different capacities to withstand periods of food shortage. The present study provides an insight on the comparative shifts experienced by the lipidome of two sacoglossan sea slug species, Elysia viridis (long-term retention of functional chloroplasts) and Placida dendritica (retention of non-functional chloroplasts). A hydrophilic interaction liquid chromatography-mass spectrometry approach was employed to screen the lipidome of specimens from both species feeding on the macroalga Codium tomentosum and after 1-week of starvation. The lipidome of E. viridis was generally unaffected by the absence of food, while that of P. dendritica varied significantly. The retention of functional chloroplasts by E. viridis cells allows this species to endure periods of food shortage, while in P. dendritica a significant reduction in the amount of main lipids was the consequence of the consumption of its own mass to endure starvation. The large proportion of ether phospholipids (plasmalogens) in both sea slug species suggests that these compounds may play a key role in chloroplast incorporation in sea slug cells and/or be involved in the reduction of the oxidative stress resulting from the presence of kleptoplasts.
Collapse
Affiliation(s)
- Felisa Rey
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Tânia Melo
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Paulo Cartaxana
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Sónia Cruz
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - M Rosário M Domingues
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
8
|
Donohoo SA, Wade RM, Sherwood AR. Finding the Sweet Spot: Sub-Ambient Light Increases Fitness and Kleptoplast Survival in the Sea Slug Plakobranchus cf. ianthobaptus Gould, 1852. THE BIOLOGICAL BULLETIN 2020; 238:154-166. [PMID: 32597715 DOI: 10.1086/709371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sacoglossans, or "sap-sucking" sea slugs, are primarily algivorous, with many taxa exhibiting kleptoplasty, the feeding and retaining of photosynthetically active chloroplasts from algae. The Plakobranchus species complex exhibits some of the longest kleptoplast retention and survival times under starvation conditions, but the contributions of these kleptoplasts to their survival and overall fitness have been widely debated. In this study we assessed the effects of starvation and light on the fitness of Plakobranchus cf. ianthobaptus and its kleptoplasts by placing starved individuals in eight daily average light treatments, ranging from near dark (2 µmol photon m-2 s-1) to ambient light (470 µmol photon m-2 s-1). Slug weight was used as a metric of fitness, and kleptoplast photosynthetic activity was determined via maximum quantum yield (Fv/Fm) by pulse-amplitude modulated fluorometry as a proxy for kleptoplast health. Plakobranchus individuals in near-dark and high light treatments (>160 µmol photon m-2 s-1) experienced significantly greater weight loss than those in low light (65 µmol photon m-2 s-1) and moderate light treatments (95-135 µmol photon m-2 s-1). Additionally, individuals in high light treatments experienced a rapid decline in kleptoplast photosynthetic activity, while all other treatments experienced minimal decline. This relationship between kleptoplast degradation and weight loss suggests an important link between fitness and kleptoplasty. Given the significant negative effects of ambient conditions, regular refreshment and replenishment of kleptoplasts or physiological or behavioral adjustments are likely employed for the benefits of kleptoplasty to be maintained.
Collapse
|
9
|
Updating Plakobranchus cf. ianthobapsus (Gastropoda, Sacoglossa) host use: Diverse algal-animal interactions revealed by NGS with implications for invasive species management. Mol Phylogenet Evol 2018; 128:172-181. [PMID: 30031771 DOI: 10.1016/j.ympev.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 11/21/2022]
Abstract
Sacoglossa, the "sap sucking" sea slugs, are highly specialized herbivores and the only metazoans that exhibit kleptoplasty, the sequestration and retention of chloroplasts from algae. Plakobranchus is one of the most generalistic herbivores within this order, with as many as 12 reported "algal host" (i.e. kleptoplast source) species. However, kleptoplast diversity studies conducted on Plakobranchus to date most likely underestimated the full diversity of kleptoplast sources within the studied populations due to limitations of the molecular techniques employed. Here, we apply a high throughput sequencing technique to assess kleptoplast diversity of Plakobranchus cf. ianthobapsus' from 10 sites across the Main Hawaiian Islands during winter and summer seasons. In so doing, we effectively used P. cf. ianthobapsus as a novel sampling tool to explore diminutive algal communities, including the current distribution of the invasive alga "Avrainvillea amadelpha." Our results show that P. cf. ianthobapsus sequesters chloroplasts from 23 algal species from across the siphonous green algal order Bryopsidales. We identified "Avrainvillea amadelpha" and Codium edule as new host species for P. cf. ianthobapusus, but their rarity among the data suggests they were most likely less preferential as hosts and were possibly utilized due to low abundance or unavailability of more preferable species, and therefore a response to starvation risk. Additionally, the identification of the highly invasive siphonous green alga "A. amadelpha" as a kleptoplast source provides new fine-scale range and distribution data for this problematic species. Overall kleptoplast diversity does not differ among sites, except in a coral-dominated, (i.e. not algal dominated) environment, suggesting that siphonous algal assemblages are common in algal-dominated ecosystems in the Hawaiian Islands. Diversity dissimilarity among seasons was recovered from the majority of sites sampled, supporting the need for seasonal data collection in algal diversity assessments. This case study using metabarcoding of sacoglossan kleptoplasts provides deeper insights into these plant-animal interactions with a better understanding of host use than previous studies using traditional molecular methods and illustrates how algal diversity studies on the scale of plastids can have implications for understanding algal community structure and invasive species dynamics.
Collapse
|
10
|
Laetz EMJ, Wägele H. How does temperature affect functional kleptoplasty? Comparing populations of the solar-powered sister-species Elysia timida Risso, 1818 and Elysia cornigera Nuttall, 1989 (Gastropoda: Sacoglossa). Front Zool 2018; 15:17. [PMID: 29760759 PMCID: PMC5937827 DOI: 10.1186/s12983-018-0264-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/06/2018] [Indexed: 01/03/2023] Open
Abstract
Background Despite widespread interest in solar-powered sea slugs (Sacoglossa: Gastropoda), relatively little is know about how they actually perform functional kleptoplasty. Sister-taxa Elysia timida and E. cornigera provide an ideal model system for investigating this phenomenon, since they feed on the same algal genus and only E. timida is capable of long-term kleptoplasty. Recent research has explored factors regarding functional kleptoplasty in E. timida, including their starvation longevity, digestive activity, autophagal response and photosynthetic efficiency under two different temperature conditions (18 °C and 21 °C). These studies revealed the trends E. timida displays regarding each factor during starvation as well as influences temperature has on some aspects of functional kleptoplasty. This study examines E. cornigera regarding each of these factors in an attempt to elucidate differences between each species that could explain their differing kleptoplastic abilities. Since both species naturally occur in 25 °C seawater (E. timida peak summer temperature, E. cornigera low winter temperature), each species was acclimatized to 25 °C to facilitate comparison and determine if these species exhibit physiological differences to starvation when under the same environmental conditions. Results When comparing the different E. timida temperature treatments, it becomes clear that increased temperatures compromise E. timida’s kleptoplastic abilities. Specimens acclimatized to 25 °C revealed shorter starvation longevities surviving an average 42.4 days compared to the 95.9 day average observed in specimens exposed to 18 °C. Each temperature treatment displayed a significantly different decrease throughout the starvation period in both, the rate of photosynthetic efficiency and in the decreasing functional kleptoplast abundance. Lysosomal abundances are assessed here as indicators of different aspects of metabolic activity, which could be correlated to temperature. E. cornigera, also acclimatized to 25 °C did not display significantly similar patterns as any of the E. timida temperature treatments, having fewer incorporated kleptoplasts, a higher lysosomal response to starvation, a faster decrease in photosynthetic efficiency and a lower starvation longevity. Conclusions These results confirm that each species has different physiological reactions to starvation and kleptoplast retention, even under the same conditions. While temperature affects aspects of functional kleptoplasty, it is likely not responsible for the differences in kleptoplastic abilities seen in these species. Electronic supplementary material The online version of this article (10.1186/s12983-018-0264-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elise Marie Jerschabek Laetz
- 1Zoological Research Museum Alexander Koenig, 160 Adenauerallee, 53113 Bonn, Germany.,2Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Heike Wägele
- 1Zoological Research Museum Alexander Koenig, 160 Adenauerallee, 53113 Bonn, Germany
| |
Collapse
|
11
|
Laetz EMJ, Wägele H. Chloroplast digestion and the development of functional kleptoplasty in juvenile Elysia timida (Risso, 1818) as compared to short-term and non-chloroplast-retaining sacoglossan slugs. PLoS One 2017; 12:e0182910. [PMID: 29020043 PMCID: PMC5636068 DOI: 10.1371/journal.pone.0182910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/26/2017] [Indexed: 01/13/2023] Open
Abstract
Sacoglossan sea slugs are the only metazoans known to perform functional kleptoplasty, the sequestration and retention of functional chloroplasts within their digestive gland cells. Remarkably, a few species with this ability can survive starvation periods of 3–12 months likely due to their stolen chloroplasts. There are no reports of kleptoplast transfer from mother slug to either eggs or juveniles, demonstrating that each animal must independently acquire its kleptoplasts and develop the ability to maintain them within its digestive gland. We present here an investigation into the development of functional kleptoplasty in a long-term kleptoplast retaining species, Elysia timida. Laboratory-reared juvenile slugs of different post-metamorphic ages were placed in starvation and compared to 5 known short-term retaining slug species and 5 non-retaining slug species. The subsequent results indicate that functional kleptoplasty is not performed by E. timida until after 15 days post-metamorphosis and that by 25 days, these animals outlive many of the short-term retention species. Digestive activity was also monitored using lysosomal abundance as an indicator, revealing different patterns in starving juveniles versus adults. Starved juveniles were reintroduced to food to determine any differences in digestive activity when starvation ends, resulting in an increase in the number of kleptoplasts, but no overall change in lysosomal activity. By revealing some of the changes that occur during early development in these animals, which begin as non-kleptoplast-retaining and grow into long-term retaining slugs, this investigation provides a basis for future inquiries into the origin and development of this remarkable ability.
Collapse
Affiliation(s)
- Elise Marie Jerschabek Laetz
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig Adenauerallee 160 Bonn, Germany
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1 Bonn, Germany
- * E-mail:
| | - Heike Wägele
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig Adenauerallee 160 Bonn, Germany
| |
Collapse
|
12
|
Rauch C, Jahns P, Tielens AGM, Gould SB, Martin WF. On Being the Right Size as an Animal with Plastids. FRONTIERS IN PLANT SCIENCE 2017; 8:1402. [PMID: 28861094 PMCID: PMC5562673 DOI: 10.3389/fpls.2017.01402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Plastids typically reside in plant or algal cells-with one notable exception. There is one group of multicellular animals, sea slugs in the order Sacoglossa, members of which feed on siphonaceous algae. The slugs sequester the ingested plastids in the cytosol of cells in their digestive gland, giving the animals the color of leaves. In a few species of slugs, including members of the genus Elysia, the stolen plastids (kleptoplasts) can remain morphologically intact for weeks and months, surrounded by the animal cytosol, which is separated from the plastid stroma by only the inner and outer plastid membranes. The kleptoplasts of the Sacoglossa are the only case described so far in nature where plastids interface directly with the metazoan cytosol. That makes them interesting in their own right, but it has also led to the idea that it might someday be possible to engineer photosynthetic animals. Is that really possible? And if so, how big would the photosynthetic organs of such animals need to be? Here we provide two sets of calculations: one based on a best case scenario assuming that animals with kleptoplasts can be, on a per cm2 basis, as efficient at CO2 fixation as maize leaves, and one based on 14CO2 fixation rates measured in plastid-bearing sea slugs. We also tabulate an overview of the literature going back to 1970 reporting direct measurements or indirect estimates of the CO2 fixing capabilities of Sacoglossan slugs with plastids.
Collapse
Affiliation(s)
- Cessa Rauch
- Molecular Evolution, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Aloysius G. M. Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht UniversityUtrecht, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical CenterRotterdam, Netherlands
| | - Sven B. Gould
- Molecular Evolution, Heinrich-Heine-UniversityDüsseldorf, Germany
| | | |
Collapse
|
13
|
Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis. Sci Rep 2017; 7:7714. [PMID: 28798379 PMCID: PMC5552801 DOI: 10.1038/s41598-017-08002-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/06/2017] [Indexed: 12/02/2022] Open
Abstract
Several sacoglossan sea slug species feed on macroalgae and incorporate chloroplasts into tubular cells of their digestive diverticula. We investigated the role of the “stolen” chloroplasts (kleptoplasts) in the nutrition of the sea slug Elysia viridis and assessed how their abundance, distribution and photosynthetic activity were affected by light and starvation. Elysia viridis individuals feeding on the macroalga Codium tomentosum were compared with starved specimens kept in dark and low light conditions. A combination of variable Chl a fluorescence and hyperspectral imaging, and HPLC pigment analysis was used to evaluate the spatial and temporal variability of photopigments and of the photosynthetic capacity of kleptoplasts. We show increased loss of weight and body length in dark-starved E. viridis as compared to low light-starved sea slugs. A more pronounced decrease in kleptoplast abundance and lower photosynthetic electron transport rates were observed in dark-starved sea slugs than in low light-starved animals. This study presents strong evidence of the importance of kleptoplast photosynthesis for the nutrition of E. viridis in periods of food scarcity. Deprived of photosynthates, E. viridis could accelerate the breakdown of kleptoplasts in the dark to satisfy its’ energy requirements.
Collapse
|
14
|
Wade RM, Sherwood AR. Molecular determination of kleptoplast origins from the sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) reveals cryptic bryopsidalean (Chlorophyta) diversity in the Hawaiian Islands. JOURNAL OF PHYCOLOGY 2017; 53:467-475. [PMID: 27992652 DOI: 10.1111/jpy.12503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The sacoglossan sea slug species complex Plakobranchus ocellatus is a common algivore throughout the tropical Pacific, including the Hawaiian Islands. Plakobranchus ocellatus is kleptoplastic-it sequesters and retains algal chloroplasts-a characteristic that can be exploited to molecularly characterize diminutive bryopsidalean algae that are typically difficult to locate, collect, and identify. Previous DNA barcode analyses of both P. ocellatus and its kleptoplasts have been conducted primarily in the western Pacific and have only minimally sampled the most eastern populations in the Hawaiian Islands. Using two chloroplast markers, rbcL and tufA, kleptoplast samples from an Oahu population of P. ocellatus were amplified and cloned to identify their algal sources. Plakobranchus ocellatus sequester chloroplasts from up to 11 bryopsidalean algal species, all but one being diminutive in thallus size. Notably, eight of the detected algal species were new records to the Hawaiian Islands. A sequestration preference study demonstrated that the O'ahu population of P. ocellatus preferentially sequesters chloroplasts from diminutive, epilithic taxa. Using coxI barcoding of P. ocellatus, we showed the O'ahu population to be part of a clade that includes sequences from the neighboring island Maui, Australia, and the Philippines. The use of P. ocellatus as a novel sampling tool allows the exploration of the green algal community diversity and composition at a fine scale.
Collapse
Affiliation(s)
- Rachael M Wade
- Department of Botany, University of Hawaii at Mānoa, 3190 Maile Way, Honolulu, Hawaii, 96822, USA
| | - Alison R Sherwood
- Department of Botany, University of Hawaii at Mānoa, 3190 Maile Way, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
15
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|