1
|
Monfort-Ferré D, Boronat-Toscano A, Sánchez-Herrero JF, Caro A, Menacho M, Vañó-Segarra I, Martí M, Espina B, Pluvinet R, Cabrinety L, Abadia C, Ejarque M, Nuñez-Roa C, Maymo-Masip E, Sumoy L, Vendrell J, Fernández-Veledo S, Serena C. Genome-wide DNA Methylome and Transcriptome Profiling Reveals Key Genes Involved in the Dysregulation of Adipose Stem Cells in Crohn's Disease. J Crohns Colitis 2024; 18:1644-1659. [PMID: 38747506 DOI: 10.1093/ecco-jcc/jjae072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is characterised by the expansion of mesenteric adipose tissue [MAT], named creeping fat [CF], which seems to be directly related to disease activity. Adipose-stem cells [ASCs] isolated from the CF of patients with CD are extremely pro-inflammatory, which persists during disease remission. We hypothesised that the dysfunctional ASCs in CD accumulate epigenetic modifications triggered by the inflammatory environment, that could serve as molecular markers. METHODS Genome-wide DNA methylome and transcriptome profiling were performed in ASCs isolated from MAT biopsies of patients with active and inactive disease and from non-Crohn's disease patients [non-CD]. A validation cohort was used to test the main candidate genes via quantitative polymerase chain reaction in other fat depots and immune cells. RESULTS We found differences in DNA methylation and gene expression between ASCs isolated from patients with CD and from non-CD subjects, but we found no differences related to disease activity. Pathway enrichment analysis revealed that oxidative stress and immune response were significantly enriched in active CD, and integration analysis identified MAB21L2, a cell fate-determining gene, as the most affected gene in CD. Validation analysis confirmed the elevated gene expression of MAB21L2 in MAT and in adipose tissue macrophages in active CD. We also found a strong association between expression of the calcium channel subunit gene CACNA1H and disease remission, as CACNA1H expression was higher in ASCs and MAT from patients with inactive CD, and correlates negatively with C-reactive protein in peripheral blood mononuclear cells. CONCLUSION We identified a potential gene signature of CD in ASCs obtained from MAT. Integration analysis highlighted two novel genes demonstrating a negative correlation between promoter DNA methylation and transcription: one linked to ASCs in CD [MAB21L2] and the other [CACNA1H] related to disease remission.
Collapse
Affiliation(s)
- Diandra Monfort-Ferré
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Albert Boronat-Toscano
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Aleidis Caro
- Unitat de Cirurgia Colorectal, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Margarita Menacho
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Irene Vañó-Segarra
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marc Martí
- Unitat de Cirurgia Colorectal, Servei de Cirurgia General, Hospital Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Beatriz Espina
- Unitat de Cirurgia Colorectal, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Raquel Pluvinet
- Genòmica d'Alt Contingut i Bioinformàtica, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
- Unitat de Genòmica, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Lidia Cabrinety
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Carme Abadia
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Miriam Ejarque
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cati Nuñez-Roa
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Elsa Maymo-Masip
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Lauro Sumoy
- Genòmica d'Alt Contingut i Bioinformàtica, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Joan Vendrell
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Carolina Serena
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Dash M, Mahajan B, Dar GM, Sahu P, Saluja SS. An update on the cell-free DNA-derived methylome as a non-invasive biomarker for coronary artery disease. Int J Biochem Cell Biol 2024; 169:106555. [PMID: 38428633 DOI: 10.1016/j.biocel.2024.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/22/2023] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases are the foremost contributor to global mortality, presenting a complex etiology and an expanding array of risk factors. Coronary artery disease characterized by atherosclerotic plaque build-up in the coronary arteries, imposes significant mortality and financial burdens, especially in low- and middle-income nations. The pathogenesis of coronary artery disease involves a multifaceted interplay of genetic, environmental, and epigenetic factors. Epigenetic regulation contributes to the dynamic control of gene expression without altering the underlying DNA sequence. The mounting evidence that highlights the pivotal role of epigenetic regulation in coronary artery disease development and progression, offering potential avenues for the development of novel diagnostic biomarkers and therapeutic targets. Abnormal DNA methylation patterns are linked to the modulation of gene expression involved in crucial processes like lipid metabolism, inflammation, and vascular function in the context of coronary artery disease. Cell-free DNA has become invaluable in tumor biology as a liquid biopsy, while its applications in coronary artery disease are limited, but intriguing. Atherosclerotic plaque rupture causes myocardial infarction, by depriving heart muscles of oxygen, releasing cell-free DNA from dead cardiac cells, and providing a minimally invasive source to explore tissue-specific epigenetic alterations. We discussed the methodologies for studying the global methylome and hydroxy-methylome landscape, their advantages, and limitations. It explores methylome alterations in coronary artery disease, considering risk factors and their relevance in coronary artery disease genesis. The review also details the implications of MI-derived cell-free DNA for developing minimally invasive biomarkers and associated challenges.
Collapse
Affiliation(s)
- Manoswini Dash
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; School of Medicine, Center for Aging, Tulane University, LA, United States
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Parameswar Sahu
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| |
Collapse
|
3
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Waziry R, Gu Y, Williams O, Hägg S. Connections between cross-tissue and intra-tissue biomarkers of aging biology in older adults. EPIGENETICS COMMUNICATIONS 2023; 3:7. [PMID: 38037563 PMCID: PMC10688599 DOI: 10.1186/s43682-023-00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Background Saliva measures are generally more accessible than blood, especially in vulnerable populations. However, connections between aging biology biomarkers in different body tissues remain unknown. Methods The present study included individuals (N = 2406) who consented for saliva and blood draw in the Health and Retirement Telomere length study in 2008 and the Venous blood study in 2016 who had complete data for both tissues. We assessed biological aging based on telomere length in saliva and DNA methylation and physiology measures in blood. DNA methylation clocks combine information from CpGs to produce the aging measures representative of epigenetic aging in humans. We analyzed DNA methylation clocks proposed by Horvath (353 CpG sites), Hannum (71 CpG sites), Levine or PhenoAge, (513 CpG sites), GrimAge, (epigenetic surrogate markers for select plasma proteins), Horvath skin and blood (391 CpG sites), Lin (99 CpG sites), Weidner (3 CpG sites), and VidalBralo (8 CpG sites). Physiology measures (referred to as phenotypic age) included albumin, creatinine, glucose, [log] C-reactive protein, lymphocyte percent, mean cell volume, red blood cell distribution width, alkaline phosphatase, and white blood cell count. The phenotypic age algorithm is based on parametrization of Gompertz proportional hazard models. Average telomere length was assayed using quantitative PCR (qPCR) by comparing the telomere sequence copy number in each patient's sample (T) to a single-copy gene copy number (S). The resulting T/S ratio was proportional to telomere length, mean. Within individual, relationships between aging biology measures in blood and saliva and variations according to sex were assessed. Results Saliva-based telomere length showed inverse associations with both physiology-based and DNA methylation-based aging biology biomarkers in blood. Longer saliva-based telomere length was associated with 1 to 4 years slower biological aging based on blood-based biomarkers with the highest magnitude being Weidner (β = - 3.97, P = 0.005), GrimAge (β = - 3.33, P < 0.001), and Lin (β = - 3.45, P = 0.008) biomarkers of DNA methylation. Conclusions There are strong connections between aging biology biomarkers in saliva and blood in older adults. Changes in telomere length vary with changes in DNA methylation and physiology biomarkers of aging biology. We observed variations in the relationship between each body system represented by physiology biomarkers and biological aging, particularly at the DNA methylation level. These observations provide novel opportunities for integration of both blood-based and saliva-based biomarkers in clinical care of vulnerable and clinically difficult to reach populations where either or both tissues would be accessible for clinical monitoring purposes.
Collapse
Affiliation(s)
- R. Waziry
- Department of Neurology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Y. Gu
- Department of Neurology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- The Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- The Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - O. Williams
- Department of Neurology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - S. Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
5
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
6
|
Petrin AL, Zeng E, Thomas MA, Moretti-Ferreira D, Marazita ML, Xie XJ, Murray JC, Moreno-Uribe LM. DNA methylation differences in monozygotic twins with Van der Woude syndrome. FRONTIERS IN DENTAL MEDICINE 2023; 4:1120948. [PMID: 36936396 PMCID: PMC10019782 DOI: 10.3389/fdmed.2023.1120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction Van der Woude Syndrome (VWS) is an autosomal dominant disorder responsible for 2% of all syndromic orofacial clefts (OFCs) with IRF6 being the primary causal gene (70%). Cases may present with lip pits and either cleft lip, cleft lip with cleft palate, or cleft palate, with marked phenotypic discordance even among individuals carrying the same mutation. This suggests that genetic or epigenetic modifiers may play additional roles in the syndrome's etiology and variability in expression. We report the first DNA methylation profiling of 2 pairs of monozygotic twins with VWS. Our goal is to explore epigenetic contributions to VWS etiology and variable phenotypic expressivity by comparing DNAm profiles in both twin pairs. While the mutations that cause VWS in these twins are known, the additional mechanism behind their phenotypic risk and variability in expression remains unclear. Methods We generated whole genome DNAm data for both twin pairs. Differentially methylated positions (DMPs) were selected based on: (1) a coefficient of variation in DNAm levels in unaffected individuals < 20%, and (2) intra-twin pair absolute difference in DNAm levels >5% (delta beta > | 0.05|). We then divided the DMPs in two subgroups for each twin pair for further analysis: (1) higher methylation levels in twin A (Twin A > Twin B); and (2) higher methylation levels in twin B (Twin B >Twin A). Results and Discussion Gene ontology analysis revealed a list of enriched genes that showed significant differential DNAm, including clef-associated genes. Among the cleft-associated genes, TP63 was the most significant hit (p=7.82E-12). Both twin pairs presented differential DNAm levels in CpG sites in/near TP63 (Twin 1A > Twin 1B and Twin 2A < Twin 2B). The genes TP63 and IRF6 function in a biological regulatory loop to coordinate epithelial proliferation and differentiation in a process that is critical for palatal fusion. The effects of the causal mutations in IRF6 can be further impacted by epigenetic dysregulation of IRF6 itself, or genes in its pathway. Our data shows evidence that changes in DNAm is a plausible mechanism that can lead to markedly distinct phenotypes, even among individuals carrying the same mutation.
Collapse
Affiliation(s)
- A. L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - E. Zeng
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - M. A. Thomas
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D. Moretti-Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M. L. Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - X. J. Xie
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - J. C. Murray
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - L. M. Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| |
Collapse
|
7
|
Hu S, Chen L, Zeng T, Wang W, Yan Y, Qiu K, Xie Y, Liao Y. DNA methylation profiling reveals novel pathway implicated in cardiovascular diseases of diabetes. Front Endocrinol (Lausanne) 2023; 14:1108126. [PMID: 36875456 PMCID: PMC9975499 DOI: 10.3389/fendo.2023.1108126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Epigenetics was reported to mediate the effects of environmental risk factors on disease pathogenesis. We intend to unleash the role of DNA methylation modification in the pathological process of cardiovascular diseases in diabetes. METHODS We screened differentially methylated genes by methylated DNA immunoprecipitation chip (MeDIP-chip) among the enrolled participants. In addition, methylation-specific PCR (MSP) and gene expression validation in peripheral blood of participants were utilized to validate the DNA microarray findings. RESULTS Several aberrantly methylated genes have been explored, including phospholipase C beta 1 (PLCB1), cam kinase I delta (CAMK1D), and dopamine receptor D5 (DRD5), which participated in the calcium signaling pathway. Meanwhile, vascular endothelial growth factor B (VEGFB), placental growth factor (PLGF), fatty acid transport protein 3 (FATP3), coagulation factor II, thrombin receptor (F2R), and fatty acid transport protein 4 (FATP4) which participated in vascular endothelial growth factor receptor (VEGFR) signaling pathway were also found. After MSP and gene expression validation in peripheral blood of participants, PLCB1, PLGF, FATP4, and VEGFB were corroborated. CONCLUSION This study revealed that the hypomethylation of VEGFB, PLGF, PLCB1, and FATP4 might be the potential biomarkers. Besides, VEGFR signaling pathway regulated by DNA methylation might play a role in the cardiovascular diseases' pathogenesis of diabetes.
Collapse
Affiliation(s)
- Shengqing Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wenyi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yan Yan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Kangli Qiu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yajuan Xie
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
- *Correspondence: Yunfei Liao,
| |
Collapse
|
8
|
Sallam M, Mysara M, Benotmane MA, Tamarat R, Santos SCR, Crijns APG, Spoor D, Van Nieuwerburgh F, Deforce D, Baatout S, Guns PJ, Aerts A, Ramadan R. DNA Methylation Alterations in Fractionally Irradiated Rats and Breast Cancer Patients Receiving Radiotherapy. Int J Mol Sci 2022; 23:16214. [PMID: 36555856 PMCID: PMC9783664 DOI: 10.3390/ijms232416214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation-Induced CardioVascular Disease (RICVD) is an important concern in thoracic radiotherapy with complex underlying pathophysiology. Recently, we proposed DNA methylation as a possible mechanism contributing to RICVD. The current study investigates DNA methylation in heart-irradiated rats and radiotherapy-treated breast cancer (BC) patients. Rats received fractionated whole heart X-irradiation (0, 0.92, 6.9 and 27.6 Gy total doses) and blood was collected after 1.5, 3, 7 and 12 months. Global and gene-specific methylation of the samples were evaluated; and gene expression of selected differentially methylated regions (DMRs) was validated in rat and BC patient blood. In rats receiving an absorbed dose of 27.6 Gy, DNA methylation alterations were detected up to 7 months with differential expression of cardiac-relevant DMRs. Of those, SLMAP showed increased expression at 1.5 months, which correlated with hypomethylation. Furthermore, E2F6 inversely correlated with a decreased global longitudinal strain. In BC patients, E2F6 and SLMAP exhibited differential expression directly and 6 months after radiotherapy, respectively. This study describes a systemic radiation fingerprint at the DNA methylation level, elucidating a possible association of DNA methylation to RICVD pathophysiology, to be validated in future mechanistic studies.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Mohamed Mysara
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Radia Tamarat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, 92260 Fontenay-aux-Roses, France;
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine of the Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Anne P. G. Crijns
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.P.G.C.); (D.S.)
| | - Daan Spoor
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.P.G.C.); (D.S.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - An Aerts
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| | - Raghda Ramadan
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium; (M.S.); (M.M.); (M.A.B.); (S.B.); (A.A.)
| |
Collapse
|
9
|
Zaina S, Esteller M, Gonçalves I, Lund G. Dynamic epigenetic age mosaicism in the human atherosclerotic artery. PLoS One 2022; 17:e0269501. [PMID: 35657981 PMCID: PMC9165801 DOI: 10.1371/journal.pone.0269501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
Accelerated epigenetic ageing, a promising marker of disease risk, has been detected in peripheral blood cells of atherosclerotic patients, but evidence in the vascular wall is lacking. Understanding the trends of epigenetic ageing in the atheroma may provide insights into mechanisms of atherogenesis or identify targets for molecular therapy. We surveyed DNA methylation age in two human artery samples: a set of donor-matched, paired atherosclerotic and healthy aortic portions, and a set of carotid artery atheromas. The well-characterized pan-tissue Horvath epigenetic clock was used, together with the Weidner whole-blood-specific clock as validation. For the first time, we document dynamic DNA methylation age mosaicism of the vascular wall that is atherosclerosis-related, switches from acceleration to deceleration with chronological ageing, and is consistent in human aorta and carotid atheroma. At CpG level, the Horvath epigenetic clock showed modest differential methylation between atherosclerotic and healthy aortic portions, weak association with atheroma histological grade and no clear evidence for participation in atherosclerosis-related cellular pathways. Our data suggest caution when assigning a unidirectional DNA methylation age change to the atherosclerotic arterial wall. Also, the results support previous conclusions that epigenetic ageing reflects non-disease-specific cellular alterations.
Collapse
Affiliation(s)
- Silvio Zaina
- Division of Health Sciences, Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
- * E-mail:
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Isabel Gonçalves
- Skåne University Hospital, Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| |
Collapse
|
10
|
Hashemi F, Saleh-Gohari N, Mousavi A, Yari A, Afzalli A, Saeidi K. Evaluation of Sirtuin1 promoter DNA methylation in peripheral blood monocytes of patients with coronary artery disease. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Nazarenko MS, Koroleva IA, Zarubin AA, Sleptcov AA. miRNA Regulome in Different Atherosclerosis Phenotypes. Mol Biol 2022. [DOI: 10.1134/s0026893322020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Miroshnikova VV, Panteleeva AA, Pobozheva IA, Razgildina ND, Polyakova EA, Markov AV, Belyaeva OD, Berkovich OA, Baranova EI, Nazarenko MS, Puzyrev VP, Pchelina SN. ABCA1 and ABCG1 DNA methylation in epicardial adipose tissue of patients with coronary artery disease. BMC Cardiovasc Disord 2021; 21:566. [PMID: 34837967 PMCID: PMC8627066 DOI: 10.1186/s12872-021-02379-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the development of coronary artery disease (CAD). ABCA1 and ABCG1 transporters regulate cell cholesterol content and reverse cholesterol transport. We aimed to determine whether DNA methylation and mRNA levels of the ABCA1 and ABCG1 genes in EAT and subcutaneous adipose tissue (SAT) were associated with CAD. METHODS Paired EAT and SAT samples were collected from 82 patients undergoing elective cardiac surgery either for coronary artery bypass grafting (CAD group, N = 66) or valve surgery (NCAD group, N = 16). ABCA1 and ABCG1 mRNA levels in EAT and SAT samples were analyzed using real time polymerase chain reaction, ABCA1 protein levels in EAT samples were assessed by western blotting. ABCA1 and ABCG1 DNA methylation analysis was performed in 24 samples from the CAD group and 9 samples from the NCAD group via pyrosequencing. RESULTS DNA methylation levels in the ABCA1 promoter and ABCG1 cg27243685 and cg06500161 CpG sites were higher in EAT samples from patients with CAD compared with NCAD (21.92% vs 10.81%, p = 0.003; 71.51% vs 68.42%, p = 0.024; 46.11% vs 37.79%, p = 0.016, respectively). In patients with CAD, ABCA1 and ABCG1 DNA methylation levels were higher in EAT than in SAT samples (p < 0.05). ABCA1 mRNA levels in EAT samples were reduced in the subgroup of patients with CAD and concomitant carotid artery disease or peripheral artery disease compared with the NCAD group (p = 0.024). ABCA1 protein levels in EAT samples tended to be lower in CAD patients than in the NCAD group (p = 0.053). DNA methylation levels at the ABCG1 cg27243685 site positively correlated with plasma triglyceride concentration (r = 0.510, p = 0.008), body mass index (r = 0.556, p = 0.013) and waist-to-hip ratio (r = 0.504, p = 0.012) in SAT samples. CONCLUSION CAD is associated with ABCA1 and ABCG1 DNA hypermethylation in EAT. CAD with concomitant carotid artery disease or peripheral artery disease is accompanied by decreased ABCA1 gene expression in EAT. DNA methylation levels at the ABCG1 cg27243685 locus in SAT are associated with hypertriglyceridemia and obesity.
Collapse
Affiliation(s)
- Valentina V Miroshnikova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation.
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.
| | - Alexandra A Panteleeva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Irina A Pobozheva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Natalia D Razgildina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
| | - Ekaterina A Polyakova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Anton V Markov
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Olga D Belyaeva
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Olga A Berkovich
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Elena I Baranova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Maria S Nazarenko
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Valery P Puzyrev
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
13
|
Xia Y, Brewer A, Bell JT. DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin Epigenetics 2021; 13:186. [PMID: 34627379 PMCID: PMC8501606 DOI: 10.1186/s13148-021-01175-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary heart disease (CHD) is a type of cardiovascular disease (CVD) that affects the coronary arteries, which provide oxygenated blood to the heart. It is a major cause of mortality worldwide. Various prediction methods have been developed to assess the likelihood of developing CHD, including those based on clinical features and genetic variation. Recent epigenome-wide studies have identified DNA methylation signatures associated with the development of CHD, indicating that DNA methylation may play a role in predicting future CHD. This narrative review summarises recent findings from DNA methylation studies of incident CHD (iCHD) events from epigenome-wide association studies (EWASs). The results suggest that DNA methylation signatures may identify new mechanisms involved in CHD progression and could prove a useful adjunct for the prediction of future CHD.
Collapse
Affiliation(s)
- Yujing Xia
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Alison Brewer
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK.
| |
Collapse
|
14
|
Sharma AR, Shashikiran U, Uk AR, Shetty R, Satyamoorthy K, Rai PS. Aberrant DNA methylation and miRNAs in coronary artery diseases and stroke: a systematic review. Brief Funct Genomics 2021; 19:259-285. [PMID: 31950130 DOI: 10.1093/bfgp/elz043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Coronary artery disease (CAD) and ischemic stroke are the two most predominant forms of cardiovascular diseases (CVDs) caused by genetic, epigenetic and environmental risk factors. Although studies on the impact of 'epigenetics' in CVDs is not new, its effects are increasingly being realized as a key regulatory determinant that may drive predisposition, pathophysiology and therapeutic outcome. The most widely studied epigenetic risk factors are regulated by DNA methylation and miRNA expression. To keep pace with growing developments and discoveries, a comprehensive review was performed using Pubmed, Science Direct and Scopus databases to highlight the role of DNA methylation and miRNAs in CAD and stroke subjects. Network analysis was performed using ClueGO software and miRTargetLink database. We identified 32 studies of DNA methylation on CAD and stroke, of which, 6 studies showed differences in global DNA methylation, 10 studies reported the genome-wide difference in DNA methylation and 16 studies demonstrated altered DNA methylation at 14 candidate loci. The network analysis showed positive regulation of nitric oxide biosynthetic process, homocysteine metabolic process and negative regulation of lipid storage. About, 155 miRNAs were associated with CAD, stroke and related phenotypes in 83 studies. Interestingly, mir-223 hypomethylation and altered expression were associated with cerebral infarction and stroke. The target prediction for 18 common miRNAs between CAD and stroke showed strong interaction with SP3 and SP1 genes. This systematic review addresses the present knowledge on DNA methylation and miRNAs in CAD and stroke, whose abnormal regulation has been implicated in etiology or progression of the diseases.
Collapse
|
15
|
Gomaa R, Nader L, Jamal J. Application of DNA methylation-based markers in identification of mixed body fluid evidences simulating crime scene scenarios. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2021. [DOI: 10.1186/s41935-021-00226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epigenetic modifications are heritable and follow a non-mendelian inheritance pattern. They do not alter the DNA sequence but affect the gene expression at the transcriptional level. DNA methylation is one of these epigenetic changes and it is characteristic to each tissue and shows specificity with respect to developmental stage and age. Due to its specificity and reliability, it has emerged as a valuable tool in forensic investigation. Biological samples, such as blood, saliva, semen, or hair found at the crime scene can be used to isolate DNA and study the methylation pattern. Recent developments in molecular biology techniques allowed the study of the effects of methylation in specific tissues. DNA methylation specificity is very intense. These specific markers can be used to identify the tissue type such as blood, saliva, or semen at the crime scene and helps in the identification of the culprit. The present study aimed to validate the use of DNA methylation body fluid-specific markers in the identification of peripheral blood, menstrual blood, and semen. Additionally, it aimed to investigate the potential use of such DNA methylation markers for the identification of different body fluids mixtures simulating forensic science scenarios. Different DNA methylation markers were studied in different body fluid samples (peripheral blood, menstrual blood, and semen) individually and as mixtures. DNA extraction and bisulfite conversion were performed and followed by real-time PCR.
Results
The results of real-time PCR and the statistical analysis showed that the SPERM2 marker was better than SEU2 in the identification of semen DNA in mixed samples. However, in the identification of individual semen samples, the later marker showed better results than the first one, whereas BLM1 and MENS1 markers were successful in identifying the peripheral and menstrual blood samples, respectively.
Conclusions
This data can be readily used and applied on different forensic samples for tissue identification. Further sequencing studies are strongly recommended.
Collapse
|
16
|
Zhang X, Xiang Y, He D, Liang B, Wang C, Luo J, Zheng F. Identification of Potential Biomarkers for CAD Using Integrated Expression and Methylation Data. Front Genet 2020; 11:778. [PMID: 33033488 PMCID: PMC7509170 DOI: 10.3389/fgene.2020.00778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
DNA methylation plays an essential role in the pathogenesis of coronary artery disease (CAD) through regulating mRNA expressions. This study aimed to identify hub genes regulated by DNA methylation as biomarkers of CAD. Gene expression and methylation datasets of peripheral blood leukocytes (PBLs) of CAD were downloaded from the Gene Expression Omnibus (GEO) database. Subsequently, multiple computational approaches were performed to analyze the regulatory networks and to recognize hub genes. Finally, top hub genes were verified in a case-control study, based on their differential expressions and methylation levels between CAD cases and controls. In total, 535 differentially expressed-methylated genes (DEMGs) were identified and partitioned into 4 subgroups. TSS200 and 5′UTR were confirmed as high enrichment areas of differentially methylated CpGs sites (DMCs). The function of DEMGs is enriched in processes of histone H3-K27 methylation, regulation of post-transcription and DNA-directed RNA polymerase activity. Pathway enrichment showed DEMGs participated in the VEGF signaling pathway, adipocytokine signaling pathway, and PI3K-Akt signaling pathway. Besides, expressions of hub genes fibronectin 1 (FN1), phosphatase (PTEN), and tensin homolog and RNA polymerase III subunit A (POLR3A) were discordantly expressed between CAD patients and controls and related with DNA methylation levels. In conclusion, our study identified the potential biomarkers of PBLs for CAD, in which FN1, PTEN, and POLR3A were confirmed.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Xiang
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dingdong He
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Liang
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Wang
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Luo
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zheng
- Department of Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Fan J, Cai Q, Zhang D, Weinstock J, Qu X, Jiang S. PHOSPHO1 Gene DNA Methylations are Associated with a Change in HDL-C Response to Simvastatin Treatment. Curr Pharm Des 2020; 26:4944-4952. [PMID: 32693758 DOI: 10.2174/1381612826666200720234604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Our aim was to detect the effects of DNA methylations in the phosphoethanolamine/ phosphocholine phosphatase (PHOSPHO1) gene on the therapeutic efficacy of simvastatin. METHODS We used an extreme sampling approach by selecting 211 individuals from approximately the top and bottom 15% of adjusted lipid-lowering response residuals to simvastatin (n=104 for the high response group and n=107 for the low response group) from a total of 734 subjects with hyperlipidemia. They received a daily oral dose of 20 mg simvastatin for eight consecutive weeks. DNA methylation loci at the PHOSPHO1 gene were measured using high-throughput next-generation sequencing-based sequencing technology. Fasting serum lipids were measured at baseline and after eight weeks of simvastatin treatment. RESULTS Mean PHOSPHO1 DNA methylation had a significant negative correlation with high-density lipoprotein cholesterol (HDL-C) variation (β=-0.014, P=0.045) in the high response group. After stratifying by body mass index (BMI), the associations between the PHOSPHO1 DNA methylations and the change in HDL-C in response to simvastatin were more significant in obese subjects with a BMI of 25 kg/m2 or higher (β=-0.027, P=0.002). Mean PHOSPHO1 methylation and traditional predictors could explain up to 24.7% (adjusted R2) of the change in HDL-C response in obese patients. There was a statistically significant additive interaction term (P=0.028) between BMI and mean PHOSPHO1 methylation in the model of the change in HDL-C in response to simvastatin. CONCLUSION Our findings suggest that PHOSPHO1 DNA methylations are associated with a change in HDL-C in response to simvastatin treatment, and this association is especially dependent on the extent of patient obesity.
Collapse
Affiliation(s)
- Juanlin Fan
- School of Life Sciences, Anhui University, Hefei, China
| | - Qianru Cai
- School of Life Sciences, Anhui University, Hefei, China
| | - Di Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Justin Weinstock
- Department of Statistics, University of Virginia, Charlottesville, VA, United States
| | - Xiaoxiao Qu
- Center for Genetics & Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, China
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
18
|
Chen WD, Song T, Cao QH, Li R, Wang H, Chen XB, Chen ZT. Atherosclerosis prediction by microarray-based DNA methylation analysis. Exp Ther Med 2020; 20:2863-2869. [PMID: 32765783 DOI: 10.3892/etm.2020.9025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Using a series of DNA methylation analysis, pathogenesis was investigated to identify the specific DNA methylation markers for diagnosing atherosclerosis. Firstly, with the chip platform of Illumina Human Methylation 450 BeadChip, a total of 1,458 CpGs, covering 971 differential methylated genes were extracted with stringent filtering criteria. Secondly, hierarchical clustering as a heat map was used to check on the dependability of differential methylated genes. Thirdly, the related GO terms and pathways were enriched by up- and down-methylated genes, respectively, after verifying the capacity of these differential methylated genes to distinguish between atherosclerosis and healthy controls. In total, 971 differential DNA methylated genes were identified (1,458 CpGs). Several important function regions were also identified, including cell adhesion, PI3K-Akt signaling pathway and transcription from RNA polymerase II promoter. This study indicates that patients with atherosclerosis have high levels of DNA methylation, which is promising for early diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei-da Chen
- Health Care Department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Ting Song
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Qiu-Hong Cao
- Department of Anesthesiology, Jinan Center Hospital, Jinan, Shandong 250013, P.R. China
| | - Rui Li
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Hua Wang
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Xiu-Bao Chen
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Ze-Tao Chen
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
19
|
Jiang D, Wang Y, Chang G, Duan Q, You L, Sun M, Hu C, Gao L, Wu S, Tao H, Lu K, Zhang D. DNA hydroxymethylation combined with carotid plaques as a novel biomarker for coronary atherosclerosis. Aging (Albany NY) 2020; 11:3170-3181. [PMID: 31123222 PMCID: PMC6555448 DOI: 10.18632/aging.101972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
Abstract
Little is known about the diagnostic value of DNA methylation and hydroxymethylation for coronary atherosclerosis. Carotid plaque is a common marker for coronary atherosclerosis. Our aim is to determine whether DNA methylation and hydroxymethylation combined with carotid plaques can be useful to the diagnosis of coronary atherosclerosis. The 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels from peripheral blood mononuclear cells (PBMCs) were measured in 113 enrolled patients. Crouse score and Gensini score were used to evaluate the severity of carotid and coronary atherosclerosis, respectively. With the increasing of severity of carotid plaque, a stepwise upward trend was observed in 5-mC and 5-hmC levels from PBMCs, which were significantly correlated with the risk factors, Crouse score and Gensini score. Crouse score and 5-hmC, not 5-mC, were the risk factors for coronary atherosclerosis after adjustment for the risk factors (the history of diabetes, FPG and HbA1c). Receiver operating characteristic (ROC) analysis indicated that 5-hmC combined with Crouse score was the diagnostic biomarker for coronary atherosclerosis, with the highest areas under the curve (AUC) for 0.980 (0.933–0.997), valuable sensitivity for 96.23% and specificity for 91.67%. These findings suggest 5-hmC level combined with Crouse score may provide the meaningful information for coronary atherosclerosis diagnosis.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Ying Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Guanglei Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Qin Duan
- Department of Cardiology, The First Branch of the First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Linna You
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Min Sun
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Chunxiao Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Lei Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Shiyong Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.,Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Hongmei Tao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Dongying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
20
|
Ward-Caviness CK, Pu S, Martin CL, Galea S, Uddin M, Wildman DE, Koenen K, Aiello AE. Epigenetic predictors of all-cause mortality are associated with objective measures of neighborhood disadvantage in an urban population. Clin Epigenetics 2020; 12:44. [PMID: 32160902 PMCID: PMC7065313 DOI: 10.1186/s13148-020-00830-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neighborhood characteristics are robust predictors of overall health and mortality risk for residents. Though there has been some investigation of the role that molecular indicators may play in mediating neighborhood exposures, there has been little effort to incorporate newly developed epigenetic biomarkers into our understanding of neighborhood characteristics and health outcomes. METHODS Using 157 participants of the Detroit Neighborhood Health Study with detailed assessments of neighborhood characteristics and genome-wide DNA methylation profiling via the Illumina 450K methylation array, we assessed the relationship between objective neighborhood characteristics and a validated DNA methylation-based epigenetic mortality risk score (eMRS). Associations were adjusted for age, race, sex, ever smoking, ever alcohol usage, education, years spent in neighborhood, and employment. A secondary model additionally adjusted for personal neighborhood perception. We summarized 19 neighborhood quality indicators assessed for participants into 9 principal components which explained over 90% of the variance in the data and served as metrics of objective neighborhood quality exposures. RESULTS Of the nine principal components utilized for this study, one was strongly associated with the eMRS (β = 0.15; 95% confidence interval = 0.06-0.24; P = 0.002). This principal component (PC7) was most strongly driven by the presence of abandoned cars, poor streets, and non-art graffiti. Models including both PC7 and individual indicators of neighborhood perception indicated that only PC7 and not neighborhood perception impacted the eMRS. When stratified on neighborhood indicators of greenspace, we observed a potentially protective effect of large mature trees as this feature substantially attenuated the observed association. CONCLUSION Objective measures of neighborhood disadvantage are significantly associated with an epigenetic predictor of mortality risk, presenting a potential novel avenue by which neighborhood-level exposures may impact health. Associations were independent of an individual's perception of their neighborhood and attenuated by neighborhood greenspace features. More work should be done to determine molecular risk factors associated with neighborhoods, and potentially protective neighborhood features against adverse molecular effects.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| | - Shirley Pu
- University of North Carolina-Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Chantel L Martin
- Carolina Population Center, Univeristy of North Carolina-Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Epidemiology, Gillings School of Global Public Health, Univerity of North Carolina-Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Sandro Galea
- School of Public Health, Boston University, Boston, MA, 02118, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Karestan Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Allison E Aiello
- Carolina Population Center, Univeristy of North Carolina-Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Epidemiology, Gillings School of Global Public Health, Univerity of North Carolina-Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
21
|
Declerck K, Vanden Berghe W. Characterization of Blood Surrogate Immune-Methylation Biomarkers for Immune Cell Infiltration in Chronic Inflammaging Disorders. Front Genet 2019; 10:1229. [PMID: 31827492 PMCID: PMC6890858 DOI: 10.3389/fgene.2019.01229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) and atherosclerosis are both chronic age- and inflammation-dependent diseases. In addition, atherosclerosis is frequently observed in AD patients indicating common involvement of vascular components in both disease etiologies. Recently, epigenome-wide association studies have identified epigenetic alterations, and in particularly DNA methylation changes for both disorders. We hypothesized the existence of a common DNA methylation profile in atherosclerosis and AD which may be valuable as a blood-based DNA methylation inflammaging biomarker. Using publicly available 450k Illumina methylation datasets, we identified a co-methylation network associated with both atherosclerosis and AD in whole blood samples. This methylation profile appeared to indicate shifts in blood immune cell type distribution. Remarkably, similar methylation changes were also detected in disease tissues, including AD brain tissues, atherosclerotic plaques, and tumors and were found to correlate with immune cell infiltration. In addition, this immune-related methylation profile could also be detected in other inflammaging diseases, including Parkinson’s disease and obesity, but not in multiple sclerosis, schizophrenia, and osteoporosis. In conclusion, we identified a blood-based immune-related DNA methylation signature in multiple inflammaging diseases associated with changes in blood immune cell counts and predictive for immune cell infiltration in diseased tissues. In addition to epigenetic clock measurements, this immune-methylation signature may become a valuable blood-based biomarker to prevent chronic inflammatory disease development or monitor lifestyle intervention strategies which promote healthy aging.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics, and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, Antwerp University, Antwerp, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics, and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, Antwerp University, Antwerp, Belgium
| |
Collapse
|
22
|
Gao S, Han Y, Chen X, Dai L, Gao H, Lei Z, Wang X, Wang Z, Wu H. Epigenetic modulation of glycoprotein VI gene expression by DNA methylation. Life Sci 2019; 241:117103. [PMID: 31783053 DOI: 10.1016/j.lfs.2019.117103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 11/29/2022]
Abstract
AIMS Glycoprotein VI (GPVI) is an important platelet membrane receptor. The expression of GPVI on platelet membranes is increased in patients with coronary heart disease (CHD). DNA methylation is one of the most common post-replication and pre-transcriptional modifications and plays a critical role in the regulation of gene expression. Here, we aimed to reveal how methylation regulates GPVI expression. MAIN METHODS Pyrosequencing was used to determine whether the GPVI promoter region in leukocytes from CHD patients is hypomethylated. The expressions of GPVI in CHD patients were detected using qRT-PCR and Western blot. The effect of methylation of the GPVI promoter region on regulating its transcriptional activity was analyzed using in vitro luciferase assay. The expression of P-selectin in platelet-like particles was determined using flow cytometry, and SYK phosphorylation was observed using Western blot. KEY FINDINGS We found that the GPVI promoter region in leukocytes from CHD patients was hypomethylated and the expression of GPVI at the mRNA and protein level was elevated in CHD patients. We also found that the hypermethylation of GPVI promoter region inhibited the expression of GPVI in the -322 to +75, -539 to +75, and -937 to +75 regions in Dami cells. Moreover, the data showed that the methylation or demethylation regulated the GPVI expression and platelet-like particle activation in Dami cells. SIGNIFICANCE Taken together, these results indicate that DNA methylation regulates GPVI expression and that CpG methylation levels in the promoter region of the GPVI gene may be a biomarker of CHD.
Collapse
Affiliation(s)
- Shuibo Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Yongjun Han
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Xiaohui Chen
- Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liping Dai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haixia Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Zhen Lei
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Xinzhou Wang
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Zhentao Wang
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou 450002, China
| | - Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou 450002, China; Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou 450002, China.
| |
Collapse
|
23
|
DNA methylation and hydroxymethylation are associated with the degree of coronary atherosclerosis in elderly patients with coronary heart disease. Life Sci 2019; 224:241-248. [DOI: 10.1016/j.lfs.2019.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/24/2023]
|
24
|
Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics 2019; 11:62. [PMID: 30975202 PMCID: PMC6458841 DOI: 10.1186/s13148-019-0656-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ageing is one of the principal risk factors for many chronic diseases. However, there is considerable between-person variation in the rate of ageing and individual differences in their susceptibility to disease and death. Epigenetic mechanisms may play a role in human ageing, and DNA methylation age biomarkers may be good predictors of age-related diseases and mortality risk. The aims of this systematic review were to identify and synthesise the evidence for an association between peripherally measured DNA methylation age and longevity, age-related disease, and mortality risk. METHODS A systematic search was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using relevant search terms, MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and PsychINFO databases were searched to identify articles meeting the inclusion criteria. Studies were assessed for bias using Joanna Briggs Institute critical appraisal checklists. Data was extracted from studies measuring age acceleration as a predictor of age-related diseases, mortality or longevity, and the findings for similar outcomes compared. Using Review Manager 5.3 software, two meta-analyses (one per epigenetic clock) were conducted on studies measuring all-cause mortality. RESULTS Twenty-three relevant articles were identified, including a total of 41,607 participants. Four studies focused on ageing and longevity, 11 on age-related disease (cancer, cardiovascular disease, and dementia), and 11 on mortality. There was some, although inconsistent, evidence for an association between increased DNA methylation age and risk of disease. Meta-analyses indicated that each 5-year increase in DNA methylation age was associated an 8 to 15% increased risk of mortality. CONCLUSION Due to the small number of studies and heterogeneity in study design and outcomes, the association between DNA methylation age and age-related disease and longevity is inconclusive. Increased epigenetic age was associated with mortality risk, but positive publication bias needs to be considered. Further research is needed to determine the extent to which DNA methylation age can be used as a clinical biomarker.
Collapse
Affiliation(s)
- Peter D. Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
- Disease Epigenetics, Murdoch Childrens Research Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Jo Wrigglesworth
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
| | - Robyn L. Woods
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
| | - Michael E. Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy, The University of Iowa, Iowa City, IA USA
- Department of Family Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
- Disease Epigenetics, Murdoch Childrens Research Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
- INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Epidémiologique, Neuropsychiatry: Research Epidemiological and Clinic, Université Montpellier, 34000 Montpellier, France
| |
Collapse
|
25
|
Riffo-Campos AL, Fuentes-Trillo A, Tang WY, Soriano Z, De Marco G, Rentero-Garrido P, Adam-Felici V, Lendinez-Tortajada V, Francesconi K, Goessler W, Ladd-Acosta C, Leon-Latre M, Casasnovas JA, Chaves FJ, Navas-Acien A, Guallar E, Tellez-Plaza M. In silico epigenetics of metal exposure and subclinical atherosclerosis in middle aged men: pilot results from the Aragon Workers Health Study. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0084. [PMID: 29685964 DOI: 10.1098/rstb.2017.0084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
We explored the association of metal levels with subclinical atherosclerosis and epigenetic changes in relevant biological pathways. Whole blood DNA Infinium Methylation 450 K data were obtained from 23 of 73 middle age men without clinically evident cardiovascular disease (CVD) who participated in the Aragon Workers Health Study in 2009 (baseline visit) and had available baseline urinary metals and subclinical atherosclerosis measures obtained in 2010-2013 (follow-up visit). The median metal levels were 7.36 µg g-1, 0.33 µg g-1, 0.11 µg g-1 and 0.07 µg g-1, for arsenic (sum of inorganic and methylated species), cadmium, antimony and tungsten, respectively. Urine cadmium and tungsten were associated with femoral and carotid intima-media thickness, respectively (Pearson's r = 0.27; p = 0.03 in both cases). Among nearest genes to identified differentially methylated regions (DMRs), 46% of metal-DMR genes overlapped with atherosclerosis-DMR genes (p < 0.001). Pathway enrichment analysis of atherosclerosis-DMR genes showed a role in inflammatory, metabolic and transport pathways. In in silico protein-to-protein interaction networks among proteins encoded by 162 and 108 genes attributed to atherosclerosis- and metal-DMRs, respectively, with proteins known to have a role in atherosclerosis pathways, we observed hub proteins in the network associated with both atherosclerosis and metal-DMRs (e.g. SMAD3 and NOP56), and also hub proteins associated with metal-DMRs only but with relevant connections with atherosclerosis effectors (e.g. SSTR5, HDAC4, AP2A2, CXCL12 and SSTR4). Our integrative in silico analysis demonstrates the feasibility of identifying epigenomic regions linked to environmental exposures and potentially involved in relevant pathways for human diseases. While our results support the hypothesis that metal exposures can influence health due to epigenetic changes, larger studies are needed to confirm our pilot results.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Angela L Riffo-Campos
- Area of Cardiometabolic Risk, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Azahara Fuentes-Trillo
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Wan Y Tang
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zoraida Soriano
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain
| | - Griselda De Marco
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Pilar Rentero-Garrido
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Victoria Adam-Felici
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Veronica Lendinez-Tortajada
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | | | - Walter Goessler
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | | | - Montse Leon-Latre
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain.,Servicio Aragones de Salud, 50071 Zaragoza, Spain
| | - Jose A Casasnovas
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain.,Instituto Aragonés de Ciencias de Salud, 50009 Zaragoza, Spain.,Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - F Javier Chaves
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic Risk, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain .,Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Wipfler K, Cornish AS, Guda C. Comparative molecular characterization of typical and exceptional responders in glioblastoma. Oncotarget 2018; 9:28421-28433. [PMID: 29983870 PMCID: PMC6033343 DOI: 10.18632/oncotarget.25420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most common and the deadliest type of primary brain tumor, with a median survival time of only 15 months despite aggressive treatment. Although most patients have an extremely poor prognosis, a relatively small number of patients survive far beyond the median survival time. Investigation of these exceptional responders has sparked a great deal of interest and is becoming an important focus in the field of cancer research. To investigate the molecular differences between typical and exceptional responders in GBM, comparative analyses of somatic mutations, copy number, methylation, and gene expression datasets from The Cancer Genome Atlas were performed, and the results of these analyses were integrated via gene ontology and pathway analyses to assess the functional significance of the differential aberrations. Less severe copy number loss of CDKN2A, lower expression of CXCL8, and FLG mutations are all associated with an exceptional response. Typical responders are characterized by upregulation of NF-κB signaling and of pro-inflammatory cytokines, while exceptional responders are characterized by upregulation of Alzheimer's and Parkinson's disease pathways as well as of genes involved in synaptic transmission. The upregulated pathways and processes in typical responders are consistently associated with more aggressive tumor phenotypes, while those in the exceptional responders suggest a retained ability in tumor cells to undergo cell death in response to treatment. With the upcoming launch of the National Cancer Institute's Exceptional Responders Initiative, similar studies with much larger sample sizes will likely become possible, hopefully providing even more insight into the molecular differences between typical and exceptional responders.
Collapse
Affiliation(s)
- Kristin Wipfler
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam S. Cornish
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Skinkyte-Juskiene R, Kogelman LJ, Kadarmideen HN. Transcription Factor Co-expression Networks of Adipose RNA-Seq Data Reveal Regulatory Mechanisms of Obesity. Curr Genomics 2018; 19:289-299. [PMID: 29755291 PMCID: PMC5930450 DOI: 10.2174/1389202918666171005095059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/28/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Transcription Factors (TFs) control actuation of genes in the genome and are key mediators of complex processes such as obesity. Master Regulators (MRs) are the genes at the top of a regulation hierarchy which regulate other genes. OBJECTIVE To elucidate clusters of highly co-expressed TFs (modules), involved pathways, highly inter-connected TFs (hub-TFs) and MRs leading to obesity and leanness, using porcine model for human obesity. METHODS We identified 817 expressed TFs in RNA-Sequencing dataset representing extreme degrees of obesity (DO; lean, obese). We built a single Weighted Transcription Factor Co-expression Network (WTFCN) and TF sub-networks (based on the DO). Hub-TFs and MRs (using iRegulon) were identi-fied in biologically relevant WTFCNs modules. RESULTS Single WTFCN detected the Red module significantly associated with DO (P < 0.03). This module was enriched for regulation processes in the immune system, e.g.: Immune system process (Padj = 2.50E-06) and metabolic lifestyle disorders, e.g. Circadian rhythm - mammal pathway (Padj = 2.33E-11). Detected MR, hub-TF SPI1 was involved in obesity, immunity and osteoporosis. Within the obese sub-network, the Red module suggested possible associations with immunity, e.g. TGF-beta signaling pathway (Padj = 1.73E-02) and osteoporosis, e.g. Osteoclast differentiation (Padj = 1.94E-02). Within the lean sub-network, the Magenta module displayed associations with type 2 diabetes, obesity and os-teoporosis e.g. Notch signaling pathway (Padj = 2.40E-03), osteoporosis e.g. hub-TF VDR (a prime candidate gene for osteoporosis). CONCLUSION Our results provide insights into the regulatory network of TFs and biologically relevant hub TFs in obesity.
Collapse
Affiliation(s)
- Ruta Skinkyte-Juskiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
| | - Lisette J.A. Kogelman
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Haja N. Kadarmideen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Mayne BT, Leemaqz SY, Buckberry S, Rodriguez Lopez CM, Roberts CT, Bianco-Miotto T, Breen J. msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data. Sci Rep 2018; 8:2190. [PMID: 29391490 PMCID: PMC5794748 DOI: 10.1038/s41598-018-19655-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/04/2018] [Indexed: 12/02/2022] Open
Abstract
Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package (https://bioconductor.org/packages/release/bioc/html/msgbsR.html).
Collapse
Affiliation(s)
- Benjamin T Mayne
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Shalem Y Leemaqz
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,Plant Energy Biology, ARC Centre of Excellence, The University of Western Australia, Perth, WA, 6009, Australia
| | - Carlos M Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia.,Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia. .,Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
29
|
Duan L, Liu C, Hu J, Liu Y, Wang J, Chen G, Li Z, Chen H. Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med 2017; 28:311-319. [PMID: 29366539 DOI: 10.1016/j.tcm.2017.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality. CAD has both genetic and environmental causes. In the past two decades, the understanding of epigenetics has advanced swiftly and vigorously. It has been demonstrated that epigenetic modifications are associated with the onset and progression of CAD. This review aims to improve the understanding of the epigenetic mechanisms closely related to CAD and to provide a novel perspective on the onset and development of CAD. Epigenetic changes include DNA methylation, histone modification, microRNA and lncRNA, which are interrelated with critical genes and influence the expression of those genes. In addition, miRNA plays a diverse role in the pathological process of CAD. Numerous studies have found that some cardiac-specific miRNAs have potential as certain diagnostic biomarkers and treatment targets for CAD. In this review, the aberrant epigenetic mechanisms that contribute to CAD will be discussed. We will also provide novel insight into the epigenetic mechanisms that target CAD.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Chao Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China.
| | - Guang Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Zhaoling Li
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| |
Collapse
|
30
|
Li D, Yan J, Yuan Y, Wang C, Wu J, Chen Q, Song J, Wang J. Genome-wide DNA methylome alterations in acute coronary syndrome. Int J Mol Med 2017; 41:220-232. [PMID: 29115576 PMCID: PMC5746328 DOI: 10.3892/ijmm.2017.3220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023] Open
Abstract
Acute coronary syndrome (ACS) is a common disease with high mortality and morbidity rates. The methylation status of blood DNA may serve as a potential early diagnosis and prevention biomarker for numerous diseases. The present study was designed to explore novel genome-wide aberrant DNA methylation patterns associated with ACS. The Infinium HumanMethylation450 assay was used to examine genome-wide DNA methylation profiles in 3 pairs of ACS and control group samples. Epigenome-wide DNA methylation, genomic distribution, Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The results were confirmed using methylation-specific polymerase chain reaction (MSP) and Sequenom MassARRAY analyses in ACS, stable coronary artery disease (SCAD) and control samples. A total of 11,342 differentially methylated (DM) 5′-C-phosphate-G-3′ (CpG) sites were identified, including 8,865 hypomethylated and 2,477 hypermethylated CpG sites in the ACS group compared with the control samples. They varied in frequency across genomic compartments, but were particularly notable in gene bodies and shores. The results of GO term and KEGG pathway enrichment analyses revealed that the methylated genes were associated with certain biological processes and pathways. Despite the considerable variability in methylation data, the candidate selected possessed significant methylation alteration in mothers against decapentaplegic homolog 3 (SMAD3) transcription start site 155 (Chr1:67356838-Chr1:67356942). MSP analysis from 81 ACS samples, 74 SCAD samples and 53 healthy samples, and Sequenom MassARRAY analysis, confirmed that differential CpG methylation of SMAD3 was significantly corrected with the reference results of the HumanMethylation450 array. The data identified an ACS-specific DNA methylation profile with a large number of novel DM CpG sites, some of which may serve as candidate markers for the early diagnosis of ACS.
Collapse
Affiliation(s)
- Dandan Li
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Yan
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yunlong Yuan
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jia Wu
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qingwen Chen
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jiaxi Song
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
31
|
Zhong J, Chen X, Ye H, Wu N, Chen X, Duan S. CDKN2A and CDKN2B methylation in coronary heart disease cases and controls. Exp Ther Med 2017; 14:6093-6098. [PMID: 29285163 DOI: 10.3892/etm.2017.5310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 03/24/2017] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to investigate the association between cyclin-dependent kinase inhibitor 2A (CDKN2A) and cyclin-dependent kinase inhibitor 2B (CDKN2B) methylation, and coronary heart disease (CHD), and to explore the interaction between methylation status and CHD clinical characteristics in Han Chinese patients. A total of 189 CHD (96 males, 93 females) and 190 well-matched non-CHD controls (96 males, 94 females) were recruited for the study. Methylation-specific polymerase chain reaction technology was used to examine gene promoter methylation status. Comparisons of methylation frequencies between CHD and non-CHD patients were carried out using the Chi-square test. Methylation levels of CDKN2A and CDKN2B genes were not found to be associated with the risk of CHD. However, the mean age of CDKN2A-hypermethylated participants was significantly lower than CDKN2A-unmethylated participants (58.73±5.88 vs. 62.62±5.36 years, adjusted P<0.001). Conversely, the mean age of CDKN2B-hypermethylated participants was significantly higher compared with CDKN2B-unmethylated participants (62.26±5.48 vs. 58.33±7.47 years, adjusted P=0.048). In addition, CDKN2B methylation frequencies were significantly increased in female participants compared with males (99.47 vs. 11.98%, P=0.032). In conclusion, the results indicated that CDKN2A and CDKN2B promoter methylation frequencies were significantly associated with age, and there was a gender dimorphism in CDKN2B methylation.
Collapse
Affiliation(s)
- Jinyan Zhong
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China.,Department of Cardiology, Ningbo Second Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huadan Ye
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Nan Wu
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China.,Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaomin Chen
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
32
|
Wang X, Liu AH, Jia ZW, Pu K, Chen KY, Guo H. Genome-wide DNA methylation patterns in coronary heart disease. Herz 2017; 43:656-662. [PMID: 28884387 DOI: 10.1007/s00059-017-4616-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/11/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND To better understand the molecular mechanisms of atherosclerosis, we conducted a comparative analysis of DNA methylation patterns in right coronary arteries in the area of advanced atherosclerotic plaques (CAP), great saphenous vein (GSV), and internal mammary artery (IMA) of patients affected by coronary heart disease. METHODS DNA methylation data (accession number E‑GEOD-62867) were divided into three paired groups: CAP vs. IMA, CAP vs. GSV, and IMA vs. GSV. Differentially methylated genes (DMGs) were extracted to analyze the changes in the DMGs in the three different tissues. The gplots package was used for the clustering and heatmap analysis of DMGs. Subsequently, DMG-related pathways were identified using DAVID (Database for Annotation, Visualization and Integrated Discovery) and transcription factors (TFs) were predicted. RESULTS Based on the filtering criterion of p < 0.05, and a mean beta value difference of ≥0.2, there were 252, 373, and 259 DMGs, respectively, in the CAP vs. IMA, CAP vs. GSV, and IMA vs. GSV groups. Interestingly, the S100A10 gene was hypomethylated in CAP compared with IMA and GSV. Clustering and heatmap analyses suggested that DMGs were segregated into two distinct clusters. Hypermethylated genes in CAP as compared with GSV were only involved in the pathway of fat digestion and absorption, while hypomethylated genes in CAP compared with GSV mainly participated in immune response-associated pathways (cytokine-cytokine receptor interaction, MAPK signaling pathway). CONCLUSION The DNA methylation differences in vascular tissues of patients with coronary artery disease may provide new insights into the mechanisms underlying the development of atherosclerosis. The functions identified here-cytokine-cytokine receptor interaction, MAPK signaling pathway, DMG (S100A10), and TF (NF-kB)-may serve as potential targets in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- X Wang
- Department of Cardiology, No. 254 Hospital of PLA, 300142, Tianjin, China
| | - A-H Liu
- Department of Cardiology, First Affiliated Hospital of the Fourth Military Medical University, 710032, Xi-An, Shaanxi, PR, China
| | - Z-W Jia
- Department of Cardiology, No. 254 Hospital of PLA, 300142, Tianjin, China
| | - K Pu
- Department of Cardiology, No. 254 Hospital of PLA, 300142, Tianjin, China
| | - K-Y Chen
- Department of Cardiology, Second Affiliated Hospital of Medical University of Tianjin, 300000, Tianjin, Xinjiang, PR, China
| | - H Guo
- Department of Geriatric Medicine, No. 254 Hospital of PLA, No. 60 Huangwei Road, Hebei District, 300142, Tianjin, China.
| |
Collapse
|
33
|
Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget 2017; 8:88294-88307. [PMID: 29179435 PMCID: PMC5687605 DOI: 10.18632/oncotarget.18331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/21/2017] [Indexed: 12/30/2022] Open
Abstract
We performed immunofluorescent analysis of DNA hydroxymethylation and methylation in human testicular spermatogenic cells from azoospermic patients and ejaculated spermatozoa from sperm donors and patients from infertile couples. In contrast to methylation which was present throughout spermatogenesis, hydroxymethylation was either high or almost undetectable in both spermatogenic cells and ejaculated spermatozoa. On testicular cytogenetic preparations, 5-hydroxymethylcytosine was undetectable in mitotic and meiotic chromosomes, and was present exclusively in interphase spermatogonia Ad and in a minor spermatid population. The proportions of hydroxymethylated and non-hydroxymethylated diploid and haploid nuclei were similar among samples, suggesting that the observed alterations of 5-hydroxymethylcytosine patterns in differentiating spermatogenic cells are programmed. In ejaculates, a few spermatozoa had high 5-hydroxymethylcytosine level, while in the other ones hydroxymethylation was almost undetectable. The percentage of highly hydroxymethylated (5-hydroxymethylcytosine-positive) spermatozoa varied strongly among individuals. In patients from infertile couples, it was higher than in sperm donors (P<0.0001) and varied in a wider range: 0.12-21.24% versus 0.02-0.46%. The percentage of highly hydroxymethylated spermatozoa correlated strongly negatively with the indicators of good semen quality – normal morphology (r=-0.567, P<0.0001) and normal head morphology (r=-0.609, P<0.0001) – and strongly positively with the indicator of poor semen quality: sperm DNA fragmentation (r=0.46, P=0.001). Thus, the immunocytochemically detected increase of 5hmC in individual spermatozoa is associated with infertility in a couple and with deterioration of sperm parameters. We hypothesize that this increase is not programmed, but represents an induced abnormality and, therefore, it can be potentially used as a novel indicator of semen quality.
Collapse
|
34
|
Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: A systematic review. Atherosclerosis 2017; 263:325-333. [PMID: 28577936 DOI: 10.1016/j.atherosclerosis.2017.05.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 05/17/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The aim of this study was to perform a systematic review of the association between DNA methylation and coronary heart disease (CHD) or related atherosclerotic traits. METHODS A systematic review was designed. The condition of interest was DNA methylation, and the outcome was CHD or other atherosclerosis-related traits. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). A functional analysis was undertaken using the Ingenuity Pathway Analysis software. RESULTS In total, 51 articles were included in the analysis: 12 global methylation, 34 candidate-gene and 11 EWAS, with six studies using more than one approach. The results of the global methylation studies were inconsistent. The candidate-gene results were consistent for some genes, suggesting that hypermethylation in ESRα, ABCG1 and FOXP3 and hypomethylation in IL-6 were associated with CHD. The EWAS identified 84 genes showing differential methylation associated with CHD in more than one study. The probability of these findings was <1.37·10-5. One third of these genes have been related to obesity in genome-wide association studies. The functional analysis identified several diseases and functions related to these set of genes: inflammatory, metabolic and cardiovascular disease. CONCLUSIONS Global DNA methylation seems to be not associated with CHD. The evidence from candidate-gene studies was limited. The EWAS identified a set of 84 genes highlighting the relevance of obesity, inflammation, lipid and carbohydrate metabolism in CHD. This set of genes could be prioritized in future studies assessing the role of DNA methylation in CHD.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Irene R Degano
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain.
| |
Collapse
|
35
|
Barroso M, Handy DE, Castro R. The Link Between Hyperhomocysteinemia and Hypomethylation. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817698994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Madalena Barroso
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rita Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Riches K, Huntriss J, Keeble C, Wood IC, O’Regan DJ, Turner NA, Porter KE. Mapping the methylation status of the miR-145 promoter in saphenous vein smooth muscle cells from individuals with type 2 diabetes. Diab Vasc Dis Res 2017; 14:122-129. [PMID: 28185533 PMCID: PMC5305035 DOI: 10.1177/1479164116677968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus prevalence is growing globally, and the leading cause of mortality in these patients is cardiovascular disease. Epigenetic mechanisms such as microRNAs (miRs) and DNA methylation may contribute to complications of type 2 diabetes mellitus. We discovered an aberrant type 2 diabetes mellitus-smooth muscle cell phenotype driven by persistent up-regulation of miR-145. This study aimed to determine whether elevated expression was due to changes in methylation at the miR-145 promoter. Smooth muscle cells were cultured from saphenous veins of 22 non-diabetic and 22 type 2 diabetes mellitus donors. DNA was extracted, bisulphite treated and pyrosequencing used to interrogate methylation at 11 CpG sites within the miR-145 promoter. Inter-patient variation was high irrespective of type 2 diabetes mellitus. Differential methylation trends were apparent between non-diabetic and type 2 diabetes mellitus-smooth muscle cells at most sites but were not statistically significant. Methylation at CpGs -112 and -106 was consistently lower than all other sites explored in non-diabetic and type 2 diabetes mellitus-smooth muscle cells. Finally, miR-145 expression per se was not correlated with methylation levels observed at any site. The persistent up-regulation of miR-145 observed in type 2 diabetes mellitus-smooth muscle cells is not related to methylation at the miR-145 promoter. Crucially, miR-145 methylation is highly variable between patients, serving as a cautionary note for future studies of this region in primary human cell types.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Case-Control Studies
- Cells, Cultured
- CpG Islands
- DNA Methylation
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Epigenesis, Genetic
- Female
- Genetic Predisposition to Disease
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Phenotype
- Promoter Regions, Genetic
- Saphenous Vein/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Kirsten Riches
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - John Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Claire Keeble
- Division of Epidemiology & Biostatistics, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - Ian C Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David J O’Regan
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK
- Department of Cardiac Surgery, The Yorkshire Heart Centre, Leeds General Infirmary, Leeds, UK
| | - Neil A Turner
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK
| | - Karen E Porter
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK
| |
Collapse
|
37
|
Abe JI, Sandhu UG, Hoang NM, Thangam M, Quintana-Quezada RA, Fujiwara K, Le NT. Coordination of Cellular Localization-Dependent Effects of Sumoylation in Regulating Cardiovascular and Neurological Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:337-358. [PMID: 28197922 PMCID: PMC5716632 DOI: 10.1007/978-3-319-50044-7_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sumoylation, a reversible post-transcriptional modification process, of proteins are involved in cellular differentiation, growth, and even motility by regulating various protein functions. Sumoylation is not limited to cytosolic proteins as recent evidence shows that nuclear proteins, those associated with membranes, and mitochondrial proteins are also sumoylated. Moreover, it is now known that sumoylation plays an important role in the process of major human ailments such as malignant, cardiovascular and neurological diseases. In this chapter, we will highlight and discuss how the localization of SUMO protease and SUMO E3 ligase in different compartments within a cell regulates biological processes that depend on sumoylation. First, we will discuss the key role of sumoylation in the nucleus, which leads to the development of endothelial dysfunction and atherosclerosis . We will then discuss how sumoylation of plasma membrane potassium channel proteins are involved in epilepsy and arrhythmia. Mitochondrial proteins are known to be also sumoylated, and the importance of dynamic-related protein 1 (DRP1) sumoylation on mitochondrial function will be discussed. As we will emphasize throughout this review, sumoylation plays crucial roles in different cellular compartments, which is coordinately regulated by the translocation of various SUMO proteases and SUMO E3 ligase. Comprehensive approach will be necessary to understand the molecular mechanism for efficiently moving around various enzymes that regulate sumoylation within cells.
Collapse
Affiliation(s)
- Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA.
| | - Uday G Sandhu
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Nguyet Minh Hoang
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Manoj Thangam
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Raymundo A Quintana-Quezada
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Keigi Fujiwara
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| | - Nhat Tu Le
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, 2121 W. Holcombe Blvd, Unit Number: 1101, Room Number: IBT8.803E, Houston, TX, 77030, USA
| |
Collapse
|
38
|
Heo KS, Berk BC, Abe JI. Disturbed Flow-Induced Endothelial Proatherogenic Signaling Via Regulating Post-Translational Modifications and Epigenetic Events. Antioxid Redox Signal 2016; 25:435-50. [PMID: 26714841 PMCID: PMC5076483 DOI: 10.1089/ars.2015.6556] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Hemodynamic shear stress, the frictional force exerted onto the vascular endothelial cell (EC) surface, influences vascular EC functions. Atherosclerotic plaque formation in the endothelium is known to be site specific: disturbed blood flow (d-flow) formed at the lesser curvature of the aortic arch and branch points promotes plaque formation, and steady laminar flow (s-flow) at the greater curvature is atheroprotective. RECENT ADVANCES Post-translational modifications (PTMs), including phosphorylation and SUMOylation, and epigenetic events, including DNA methylation and histone modifications, provide a new perspective on the pathogenesis of atherosclerosis, elucidating how gene expression is altered by d-flow. Activation of PKCζ and p90RSK, SUMOylation of ERK5 and p53, and DNA hypermethylation are uniquely induced by d-flow, but not by s-flow. CRITICAL ISSUES Extensive cross talk has been observed among the phosphorylation, SUMOylation, acetylation, and methylation PTMs, as well as among epigenetic events along the cascade of d-flow-induced signaling, from the top (mechanosensory systems) to the bottom (epigenetic events). In addition, PKCζ activation plays a role in regulating SUMOylation-related enzymes of PIAS4, p90RSK activation plays a role in regulating SUMOylation-related enzymes of Sentrin/SUMO-specific protease (SENP)2, and DNA methyltransferase SUMOylation may play a role in d-flow signaling. FUTURE DIRECTIONS Although possible contributions of DNA events such as histone modification and the epigenetic and cytosolic events of PTMs in d-flow signaling have become clearer, determining the interplay of each PTM and epigenetic event will provide a new paradigm to elucidate the difference between d-flow and s-flow and lead to novel therapeutic interventions to inhibit plaque formation. Antioxid. Redox Signal. 25, 435-450.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradford C. Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York
| | - Jun-ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Yang X, Shao X, Gao L, Zhang S. Comparative DNA methylation analysis to decipher common and cell type-specific patterns among multiple cell types. Brief Funct Genomics 2016; 15:399-407. [DOI: 10.1093/bfgp/elw013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
40
|
Nwanaji-Enwerem JC, Colicino E, Trevisi L, Kloog I, Just AC, Shen J, Brennan K, Dereix A, Hou L, Vokonas P, Schwartz J, Baccarelli AA. Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw006. [PMID: 27453791 PMCID: PMC4957520 DOI: 10.1093/eep/dvw006] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ambient particles have been shown to exacerbate measures of biological aging; yet, no studies have examined their relationships with DNA methylation age (DNAm-age), an epigenome-wide DNA methylation based predictor of chronological age. OBJECTIVE We examined the relationship of DNAm-age with fine particulate matter (PM2.5), a measure of total inhalable particle mass, and black carbon (BC), a measure of particles from vehicular traffic. METHODS We used validated spatiotemporal models to generate 1-year PM2.5 and BC exposure levels at the addresses of 589 older men participating in the VA Normative Aging Study with 1-3 visits between 2000 and 2011 (n = 1032 observations). Blood DNAm-age was calculated using 353 CpG sites from the Illumina HumanMethylation450 BeadChip. We estimated associations of PM2.5 and BC with DNAm-age using linear mixed effects models adjusted for age, lifestyle/environmental factors, and aging-related diseases. RESULTS After adjusting for covariates, a 1-µg/m3 increase in PM2.5 (95% CI: 0.30, 0.75, P<0.0001) was significantly associated with a 0.52-year increase in DNAm-age. Adjusted BC models showed similar patterns of association (β = 3.02, 95% CI: 0.48, 5.57, P = 0.02). Only PM2.5 (β = 0.54, 95% CI: 0.24, 0.84, P = 0.0004) remained significantly associated with DNAm-age in two-particle models. Methylation levels from 20 of the 353 CpGs contributing to DNAm-age were significantly associated with PM2.5 levels in our two-particle models. Several of these CpGs mapped to genes implicated in lung pathologies including LZTFL1, PDLIM5, and ATPAF1. CONCLUSION Our results support an association of long-termambient particle levels with DNAm-age and suggest that DNAm-age is a biomarker of particle-related physiological processes.
Collapse
Affiliation(s)
| | - Elena Colicino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Letizia Trevisi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C. Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jincheng Shen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kasey Brennan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra Dereix
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Pennington KL, DeAngelis MM. Epigenetic Mechanisms of the Aging Human Retina. J Exp Neurosci 2016; 9:51-79. [PMID: 26966390 PMCID: PMC4777243 DOI: 10.4137/jen.s25513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- Katie L Pennington
- Postdoctoral Fellow, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Margaret M DeAngelis
- Associate Professor, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Tompkins JD, Jung M, Chen CY, Lin Z, Ye J, Godatha S, Lizhar E, Wu X, Hsu D, Couture LA, Riggs AD. Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation "Memories". EBioMedicine 2016; 4:74-85. [PMID: 26981572 PMCID: PMC4776252 DOI: 10.1016/j.ebiom.2016.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/05/2016] [Accepted: 01/15/2016] [Indexed: 11/17/2022] Open
Abstract
The directed differentiation of human cardiomyocytes (CMs) from pluripotent cells provides an invaluable model for understanding mechanisms of cell fate determination and offers considerable promise in cardiac regenerative medicine. Here, we utilize a human embryonic stem cell suspension bank, produced according to a good manufacturing practice, to generate CMs using a fully defined and small molecule-based differentiation strategy. Primitive and cardiac mesoderm purification was used to remove non-committing and multi-lineage populations and this significantly aided the identification of key transcription factors, lncRNAs, and essential signaling pathways that define cardiomyogenesis. Global methylation profiles reflect CM development and we report on CM exon DNA methylation "memories" persisting beyond transcription repression and marking the expression history of numerous developmentally regulated genes, especially transcription factors.
Collapse
Key Words
- Cardiomyocytes
- Cardiomyogenesis
- DNA methylation
- Differentiation
- Epigenetic
- Good manufacturing practice, GMP, epigenetic memory, WNT, hedgehog, transforming growth factor, ROR2, PDGFRα, demethylation, TET, TDG, HOX, TBOX
- Human embryonic stem cells
- Long non-coding RNA
- Mesoderm
- Methylome
- Pluripotent
- Transcriptome
- lncRNA
Collapse
Affiliation(s)
- Joshua D. Tompkins
- Department of Diabetes Complications and Metabolism, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Marc Jung
- Department of Diabetes Complications and Metabolism, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Chang-yi Chen
- Center for Biomedicine and Genetics, Duarte, CA 91010, USA
- Sylvia R. and Isador A. Deutch Center for Applied Technology Development, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ziguang Lin
- Center for Biomedicine and Genetics, Duarte, CA 91010, USA
- Sylvia R. and Isador A. Deutch Center for Applied Technology Development, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jingjing Ye
- Center for Biomedicine and Genetics, Duarte, CA 91010, USA
- Sylvia R. and Isador A. Deutch Center for Applied Technology Development, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Swetha Godatha
- Department of Diabetes Complications and Metabolism, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Elizabeth Lizhar
- Department of Diabetes Complications and Metabolism, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Biomedical Informatics Core, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - David Hsu
- Center for Biomedicine and Genetics, Duarte, CA 91010, USA
- Sylvia R. and Isador A. Deutch Center for Applied Technology Development, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Larry A. Couture
- Center for Biomedicine and Genetics, Duarte, CA 91010, USA
- Sylvia R. and Isador A. Deutch Center for Applied Technology Development, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arthur D. Riggs
- Department of Diabetes Complications and Metabolism, Duarte, CA 91010, USA
- Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
43
|
Schenkel LC, Rodenhiser DI, Ainsworth PJ, Paré G, Sadikovic B. DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome. Crit Rev Clin Lab Sci 2016; 53:147-65. [PMID: 26758403 DOI: 10.3109/10408363.2015.1113496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders.
Collapse
Affiliation(s)
| | - David I Rodenhiser
- b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Peter J Ainsworth
- a Departments of Pathology and Laboratory Medicine .,b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Guillaume Paré
- f Department of Pathology and Molecular Medicine , and.,g Department of Clinical Epidemiology and Biostatistics , McMaster University , Hamilton , ON , Canada
| | - Bekim Sadikovic
- a Departments of Pathology and Laboratory Medicine .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| |
Collapse
|