1
|
Zhang Z, Li X, Qi M, Anwar S, Wang B, Ge Y. Comprehensive Analysis of CaFAD Genes Involved in Fatty Acid Accumulation in Coffea arabica and Functional Characterization of CaFAD8 in Transgenic Arabidopsis thaliana. Int J Mol Sci 2025; 26:1023. [PMID: 39940792 PMCID: PMC11816918 DOI: 10.3390/ijms26031023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The quality of Coffee arabica L. beans, particularly the aroma, is a key determinant of commercial value. Fatty acids, as precursors of volatile aroma compounds, play a crucial role in this quality. Screening and identification of their related genes are of particular significance. This study identified 21 members of the CaFAD gene family in the C. arabica genome using bioinformatics tools. Gene duplication events observed in the CaFAD gene family were likely driven by natural selection and mutation pressure, with natural selection being more prominent. Transcriptome sequencing, qRT-PCR, and fatty acid profiling across four fruit developmental stages revealed that CaFAD8 was closely associated with fatty acid synthesis regulation. Fatty acid content was initially high but decreased during the later stages, while CaFAD8 expression showed an inverse pattern. Subcellular localization indicated that CaFAD8 functions primarily on the inner membrane. CaFAD8-OE heterologous expression experiment in Arabidopsis thaliana reduced the total fatty acid content in seeds but increased unsaturated fatty acids, including oleic, linoleic, and linolenic acids. These findings suggest that CaFAD8 promotes fatty acid unsaturation and provides insights into fatty acid metabolism in C. arabica. This study offers a foundation for understanding CaFAD gene regulation and supports breeding strategies for high-oil C. arabica varieties.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Xuejun Li
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Meijun Qi
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan;
| | - Butian Wang
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Yu Ge
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| |
Collapse
|
2
|
Gong D, Cong H, Liu S, Zhang L, Wei T, Shi X, Wang Z, Wu X, Song J. Transcriptome Identification and Analysis of Fatty Acid Desaturase Gene Expression at Different Temperatures in Tausonia pullulans 6A7. Microorganisms 2023; 11:2916. [PMID: 38138060 PMCID: PMC10745852 DOI: 10.3390/microorganisms11122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Tausonia pullulans 6A7 is a low-temperature yeast strain that can produce lipases. Yeast, which is made up of chassis cells, is an important part of synthetic biology, and the use of the lipase-producing properties of T. pullulans 6A7 for the production of fatty acids provides a new pathway for targeted synthesis in yeast cell factories. In this study, we performed RNA-seq on lipase-producing T. pullulans 6A7 at different temperatures (15 °C, 20 °C, 20 °C without corn oil, and 25 °C). Therefore, a total of 8455 differentially expressed genes were screened, and 16 of them were FAD candidate genes. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of group A (15 °C) vs. group D (25 °C) showed that the pathways of fatty acid biosynthesis (map00061) and the biosynthesis of unsaturated fatty acids (map01040) were significantly enriched. In the proposed temporal analysis of differentially expressed genes among the four temperature modulations, we found differentially expressed genes in nine clusters that had the same expression trends; these genes may be jointly involved in multiple biological processes in T. pullulans 6A7. In addition, we found 16 FAD candidate genes involved in fatty acid biosynthesis, and the expression of these genes had similar expression in the transcriptome trends with the different temperature treatments. These findings will help in future in-depth studies of the function and molecular mechanisms of these important FAD genes involved in fatty acid metabolism in yeast, and they could also be conducive to the establishment of a cellular factory for targeted fatty acid production by using yeast.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (D.G.); (H.C.); (S.L.); (L.Z.); (T.W.); (X.S.); (Z.W.); (X.W.)
| |
Collapse
|
3
|
Xi R, Liu H, Chen Y, Zhuang H, Han H, Wang H, Wang Q, Li N. Genome-Wide Characterization of Tomato FAD Gene Family and Expression Analysis under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3818. [PMID: 38005715 PMCID: PMC10675527 DOI: 10.3390/plants12223818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The fatty acid desaturase (FAD) gene family plays a crucial regulatory role in the resistance process of plant biomembranes. To understand the role of FADs in tomato growth and development, this study identified and analyzed the tomato FAD gene family based on bioinformatics analysis methods. In this study, 26 SlFADs were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the SlFAD gene family was divided into six branches, and the exon-intron composition and conserved motifs of SlFADs clustered in the same branch were quite conservative. Several hormone and stress response elements in the SlFAD promoter suggest that the expression of SlFAD members is subject to complex regulation; the construction of a tomato FAD protein interaction network found that SlFAD proteins have apparent synergistic effects with SPA and GPAT proteins. qRT-PCR verification results show that SlFAD participates in the expression of tomato root, stem, and leaf tissues; SlFAD8 is mainly highly expressed in leaves; SlFAD9 plays a vital role in response to salt stress; and SlFAB5 regulates all stages of fruit development under the action of exogenous hormones. In summary, this study provides a basis for a systematic understanding of the SlFAD gene family. It provides a theoretical basis for in-depth research on the functional characteristics of tomato SlFAD genes.
Collapse
Affiliation(s)
- Rui Xi
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Huifang Liu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
| | - Yijia Chen
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hongmei Zhuang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
| | - Hongwei Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
| | - Hao Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
| | - Qiang Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences/Xingjiang Engineering Research Center for Vegetables, Urumqi 830091, China; (R.X.); (H.L.); (Y.C.); (H.Z.); (H.H.); (H.W.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
4
|
Shaheen N, Khan UM, Farooq A, Zafar UB, Khan SH, Ahmad S, Azhar MT, Atif RM, Rana IA, Seo H. Comparative transcriptomic and evolutionary analysis of FAD-like genes of Brassica species revealed their role in fatty acid biosynthesis and stress tolerance. BMC PLANT BIOLOGY 2023; 23:250. [PMID: 37173631 PMCID: PMC10176799 DOI: 10.1186/s12870-023-04232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Fatty acid desaturases (FADs) are involved in regulating plant fatty acid composition by adding double bonds to growing hydrocarbon chain. Apart from regulating fatty acid composition FADs are of great importance, and are involved in stress responsiveness, plant development, and defense mechanisms. FADs have been extensively studied in crop plants, and are broadly classed into soluble and non-soluble fatty acids. However, FADs have not yet been characterized in Brassica carinata and its progenitors. RESULTS Here we have performed comparative genome-wide identification of FADs and have identified 131 soluble and 28 non-soluble FADs in allotetraploid B. carinata and its diploid parents. Most soluble FAD proteins are predicted to be resided in endomembrane system, whereas FAB proteins were found to be localized in chloroplast. Phylogenetic analysis classed the soluble and non-soluble FAD proteins into seven and four clusters, respectively. Positive type of selection seemed to be dominant in both FADs suggesting the impact of evolution on these gene families. Upstream regions of both FADs were enriched in stress related cis-regulatory elements and among them ABRE type of elements were in abundance. Comparative transcriptomic data analysis output highlighted that FADs expression reduced gradually in mature seed and embryonic tissues. Moreover, under heat stress during seed and embryo development seven genes remained up-regulated regardless of external stress. Three FADs were only induced under elevated temperature whereas five genes were upregulated under Xanthomonas campestris stress suggesting their involvement in abiotic and biotic stress response. CONCLUSIONS The current study provides insights into the evolution of FADs and their role in B. carinata under stress conditions. Moreover, the functional characterization of stress-related genes would exploit their utilization in future breeding programs of B. carinata and its progenitors.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ayesha Farooq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ummul Buneen Zafar
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Precision Agriculture and Analytics Lab, National Center in Big Data and Cloud Computing (NCBC), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan.
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| | - Hyojin Seo
- Korea Soybean Research Institute, Jinju, 52840, Korea.
| |
Collapse
|
5
|
Phytohormones regulate the non-redundant response of ω-3 fatty acid desaturases to low temperatures in Chorispora bungeana. Sci Rep 2023; 13:2799. [PMID: 36797352 PMCID: PMC9935925 DOI: 10.1038/s41598-023-29910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
To explore the contributions of ω-3 fatty acid desaturases (FADs) to cold stress response in a special cryophyte, Chorispora bungeana, two plastidial ω-3 desaturase genes (CbFAD7, CbFAD8) were cloned and verified in an Arabidopsis fad7fad8 mutant, before being compared with the microsomal ω-3 desaturase gene (CbFAD3). Though these genes were expressed in all tested tissues of C. bungeana, CbFAD7 and CbFAD8 have the highest expression in leaves, while CbFAD3 was mostly expressed in suspension-cultured cells. Low temperatures resulted in significant increases in trienoic fatty acids (TAs), corresponding to the cooperation of CbFAD3 and CbFAD8 in cultured cells, and the coordination of CbFAD7 and CbFAD8 in leaves. Furthermore, the cold induction of CbFAD8 in the two systems were increased with decreasing temperature and independently contributed to TAs accumulation at subfreezing temperature. A series of experiments revealed that jasmonie acid and brassinosteroids participated in the cold-responsive expression of ω-3 CbFAD genes in both C. bungeana cells and leaves, while the phytohormone regulation in leaves was complex with the participation of abscisic acid and gibberellin. These results point to the hormone-regulated non-redundant contributions of ω-3 CbFADs to maintain appropriate level of TAs under low temperatures, which help C. bungeana survive in cold environments.
Collapse
|
6
|
Dhaliwal LK, Angeles-Shim RB. Cell Membrane Features as Potential Breeding Targets to Improve Cold Germination Ability of Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:3400. [PMID: 36501439 PMCID: PMC9738148 DOI: 10.3390/plants11233400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 05/13/2023]
Abstract
Cold stress breeding that focuses on the improvement of chilling tolerance at the germination stage is constrained by the complexities of the trait which involves integrated cellular, biochemical, hormonal and molecular responses. Biological membrane serves as the first line of plant defense under stress. Membranes receive cold stress signals and transduce them into intracellular responses. Low temperature stress, in particular, primarily and effectively affects the structure, composition and properties of cell membranes, which ultimately disturbs cellular homeostasis. Under cold stress, maintenance of membrane integrity through the alteration of membrane lipid composition is of prime importance to cope with the stress. This review describes the critical role of cell membranes in cold stress responses as well as the physiological and biochemical manifestations of cold stress in plants. The potential of cell membrane properties as breeding targets in developing strategies to improve cold germination ability is discussed using cotton (Gossypium hirsutum L.) as a model.
Collapse
Affiliation(s)
- Lakhvir Kaur Dhaliwal
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409-2122, USA
| | - Rosalyn B Angeles-Shim
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409-2122, USA
| |
Collapse
|
7
|
Cerone M, Smith TK. Desaturases: Structural and mechanistic insights into the biosynthesis of unsaturated fatty acids. IUBMB Life 2022; 74:1036-1051. [PMID: 36017969 PMCID: PMC9825965 DOI: 10.1002/iub.2671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
This review highlights the key role of fatty acid desaturases in the synthesis of naturally occurring, more common and not unsaturated fatty acids. The three major classes of fatty acid desaturases, such as acyl-lipid, acyl-acyl carrier protein and acyl-coenzyme A, are described in detail, with particular attention to the cellular localisation, the structure, the substrate and product specificity and the expression and regulation of desaturase genes. The review also gives an insight into the biocatalytic reaction of fatty acid desaturation by covering the general and more class-specific mechanistic studies around the synthesis of unsaturated fatty acids Finally, we conclude the review by looking at the numerous novel applications for desaturases in order to meet the very high demand for polyunsaturated fatty acids, taking into account the opportunity for the development of new, more efficient, easily reproducible, sustainable bioengineering advances in the field.
Collapse
Affiliation(s)
- Michela Cerone
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| | - Terry K. Smith
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| |
Collapse
|
8
|
Wei H, Movahedi A, Xu S, Zhang Y, Liu G, Aghaei-Dargiri S, Ghaderi Zefrehei M, Zhu S, Yu C, Chen Y, Zhong F, Zhang J. Genome-Wide Characterization and Expression Analysis of Fatty acid Desaturase Gene Family in Poplar. Int J Mol Sci 2022; 23:ijms231911109. [PMID: 36232411 PMCID: PMC9570219 DOI: 10.3390/ijms231911109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid desaturases (FADs) modulate carbon–carbon single bonds to form carbon–carbon double bonds in acyl chains, leading to unsaturated fatty acids (UFAs) that have vital roles in plant growth and development and their response to environmental stresses. In this study, a total of 23 Populus trichocarpaFAD (PtFAD) candidates were identified from the poplar genome and clustered into seven clades, including FAB2, FAD2, FAD3/7/8, FAD5, FAD6, DSD, and SLD. The exon–intron compositions and conserved motifs of the PtFADs, clustered into the same clade, were considerably conserved. It was found that segmental duplication events are predominantly attributable to the PtFAD gene family expansion. Several hormone- and stress-responsive elements in the PtFAD promoters implied that the expression of the PtFAD members was complicatedly regulated. A gene expression pattern analysis revealed that some PtFAD mRNA levels were significantly induced by abiotic stress. An interaction proteins and gene ontology (GO) analysis indicated that the PtFADs are closely associated with the UFAs biosynthesis. In addition, the UFA contents in poplars were significantly changed under drought and salt stresses, especially the ratio of linoleic and linolenic acids. The integration of the PtFAD expression patterns and UFA contents showed that the abiotic stress-induced PtFAD3/7/8 members mediating the conversion of linoleic and linolenic acids play vital roles in response to osmotic stress. This study highlights the profiles and functions of the PtFADs and identifies some valuable genes for forest improvements.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA
- Correspondence: (A.M.); (J.Z.)
| | - Songzhi Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Soheila Aghaei-Dargiri
- Department of Horticulture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Mostafa Ghaderi Zefrehei
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj 7591874831, Iran
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
- Correspondence: (A.M.); (J.Z.)
| |
Collapse
|
9
|
Xiao R, Zou Y, Guo X, Li H, Lu H. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol Biol Rep 2022; 49:9997-10011. [PMID: 35819557 DOI: 10.1007/s11033-022-07568-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biological and abiotic stresses such as salt, extreme temperatures, and pests and diseases place major constraints on plant growth and crop yields. Fatty acids (FAs) and FA- derivatives are unique biologically active substance that show a wide range of functions in biological systems. They are not only participated in the regulation of energy storage substances and cell membrane plasm composition, but also extensively participate in the regulation of plant basic immunity, effector induced resistance and systemic resistance and other defense pathways, thereby improving plant resistance to adversity stress. Fatty acid desaturases (FADs) is involved in the desaturation of fatty acids, where desaturated fatty acids can be used as substrates for FA-derivatives. OBJECTIVE In this paper, the role of omega-FADs (ω-3 FADs and ω-6 FADs) in the prokaryotic and eukaryotic pathways of fatty acid biosynthesis in plant defense against stress (biological and abiotic stress) and the latest research progress were summarized. Moreover' the existing problems in related research and future research directions were also discussed. RESULTS Fatty acid desaturases are involved in various responses of plants during biotic and abiotic stress. For example, it is involved in regulating the stability and fluidity of cell membranes, reactive oxygen species signaling pathways, etc. In this review, we have collected several experimental studies to represent the differential effects of fatty acid desaturases on biotic and abiotic species. CONCLUSION Fatty acid desaturases play an important role in regulating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ruixue Xiao
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Yirong Zou
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Xiaorui Guo
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hai Lu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
10
|
Otyama PI, Chamberlin K, Ozias-Akins P, Graham MA, Cannon EKS, Cannon SB, MacDonald GE, Anglin NL. Genome-wide approaches delineate the additive, epistatic, and pleiotropic nature of variants controlling fatty acid composition in peanut (Arachis hypogaea L.). G3 (BETHESDA, MD.) 2022; 12:jkab382. [PMID: 34751378 PMCID: PMC8728033 DOI: 10.1093/g3journal/jkab382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022]
Abstract
The fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here, we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils. Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect-increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes. With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanuts, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (P-value < 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.
Collapse
Affiliation(s)
- Paul I Otyama
- Interdepartmental Genetics and Genomics, Iowa State University, Ames, IA 50011, USA
- Agronomy Department, Iowa State University, Ames, IA 50011, USA
| | - Kelly Chamberlin
- USDA—Agricultural Research Service, Stillwater, OK 740752714, USA
| | - Peggy Ozias-Akins
- Genetics, and Genomics and Department of Horticulture, Institute of Plant Breeding, University of Georgia, Tifton, GA 31793-5766, USA
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | - Ethalinda K S Cannon
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | | | - Noelle L Anglin
- USDA-ARS Small Grains and Potato Research Laboratory, Aberdeen, ID 83210, USA
| |
Collapse
|
11
|
In Silico Analysis of Fatty Acid Desaturases Structures in Camelina sativa, and Functional Evaluation of Csafad7 and Csafad8 on Seed Oil Formation and Seed Morphology. Int J Mol Sci 2021; 22:ijms221910857. [PMID: 34639198 PMCID: PMC8532002 DOI: 10.3390/ijms221910857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil.
Collapse
|
12
|
Laureano G, Cavaco AR, Matos AR, Figueiredo A. Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence against Downy Mildew. Int J Mol Sci 2021; 22:ijms22115473. [PMID: 34067363 PMCID: PMC8196838 DOI: 10.3390/ijms22115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid's (FA) desaturation, a fundamental process in lipid remodelling and signalling. Previously, we have provided evidence that lipid signalling is essential in the establishment of the incompatible interaction between grapevine and Plasmopara viticola. In the first hours after pathogen challenge, jasmonic acid (JA) accumulation, activation of its biosynthetic pathway and an accumulation of its precursor, the polyunsaturated α-linolenic acid (C18:3), were observed in the leaves of the tolerant genotype, Regent. This work was aimed at a better comprehension of the desaturation processes occurring after inoculation. We characterised, for the first time in Vitis vinifera, the gene family of the FA desaturases and evaluated their involvement in Regent response to Plasmopara viticola. Upon pathogen challenge, an up-regulation of the expression of plastidial FA desaturases genes was observed, resulting in a higher content of polyunsaturated fatty acids (PUFAs) of chloroplast lipids. This study highlights FA desaturases as key players in membrane remodelling and signalling in grapevine defence towards biotrophic pathogens.
Collapse
|
13
|
Ahmadizadeh M, Rezaee S, Heidari P. Genome-wide characterization and expression analysis of fatty acid desaturase gene family in Camelina sativa. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Characterization and Stress Response of the JmjC Domain-Containing Histone Demethylase Gene Family in the Allotetraploid Cotton Species Gossypium hirsutum. PLANTS 2020; 9:plants9111617. [PMID: 33233854 PMCID: PMC7709011 DOI: 10.3390/plants9111617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure by changing the methylation state of the lysine residue site and plays an important role in plant growth and development. In this study, we carried out genome-wide identification and comprehensive analysis of JmjC genes in the allotetraploid cotton species Gossypium hirsutum. In total, 50 JmjC genes were identified and in G. hirsutum, and 25 JmjC genes were identified in its two diploid progenitors, G. arboreum and G. raimondii, respectively. Phylogenetic analysis divided these JmjC genes into five subfamilies. A collinearity analysis of the two subgenomes of G. hirsutum and the genomes of G. arboreum and G. raimondii uncovered a one-to-one relationship between homologous genes of the JmjC gene family. Most homologs in the JmjC gene family between A and D subgenomes of G. hirsutum have similar exon-intron structures, which indicated that JmjC family genes were conserved after the polyploidization. All G. hirsutumJmjC genes were found to have a typical JmjC domain, and some genes also possess other special domains important for their function. Analysis of promoter regions revealed that cis-acting elements, such as those related to hormone and abiotic stress response, were enriched in G. hirsutum JmjC genes. According to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, most G. hirsutumJmjC genes had high abundance expression at developmental stages of fibers, suggesting that they might participate in cotton fiber development. In addition, some G. hirsutumJmjC genes were found to have different degrees of response to cold or osmotic stress, thus indicating their potential role in these types of abiotic stress response. Our results provide useful information for understanding the evolutionary history and biological function of JmjC genes in cotton.
Collapse
|
15
|
Hajiahmadi Z, Abedi A, Wei H, Sun W, Ruan H, Zhuge Q, Movahedi A. Identification, evolution, expression, and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.). BMC Genomics 2020; 21:778. [PMID: 33167859 PMCID: PMC7653692 DOI: 10.1186/s12864-020-07199-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Backgrounds Fatty acid desaturases (FADs) introduce a double bond into the fatty acids acyl chain resulting in unsaturated fatty acids that have essential roles in plant development and response to biotic and abiotic stresses. Wheat germ oil, one of the important by-products of wheat, can be a good alternative for edible oils with clinical advantages due to the high amount of unsaturated fatty acids. Therefore, we performed a genome-wide analysis of the wheat FAD gene family (TaFADs). Results 68 FAD genes were identified from the wheat genome. Based on the phylogenetic analysis, wheat FADs clustered into five subfamilies, including FAB2, FAD2/FAD6, FAD4, DES/SLD, and FAD3/FAD7/FAD8. The TaFADs were distributed on chromosomes 2A-7B with 0 to 10 introns. The Ka/Ks ratio was less than one for most of the duplicated pair genes revealed that the function of the genes had been maintained during the evolution. Several cis-acting elements related to hormones and stresses in the TaFADs promoters indicated the role of these genes in plant development and responses to environmental stresses. Likewise, 72 SSRs and 91 miRNAs in 36 and 47 TaFADs have been identified. According to RNA-seq data analysis, the highest expression in all developmental stages and tissues was related to TaFAB2.5, TaFAB2.12, TaFAB2.15, TaFAB2.17, TaFAB2.20, TaFAD2.1, TaFAD2.6, and TaFAD2.8 genes while the highest expression in response to temperature stress was related to TaFAD2.6, TaFAD2.8, TaFAB2.15, TaFAB2.17, and TaFAB2.20. Furthermore, docking simulations revealed several residues in the active site of TaFAD2.6 and TaFAD2.8 in close contact with the docked oleic acid that could be useful in future site-directed mutagenesis studies to increase the catalytic efficiency of them and subsequently improve agronomic quality and tolerance of wheat against environmental stresses. Conclusions This study provides comprehensive information that can lead to the detection of candidate genes for wheat genetic modification. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07199-1.
Collapse
Affiliation(s)
- Zahra Hajiahmadi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, 4199613776, Iran
| | - Amin Abedi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, 4199613776, Iran
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Honghua Ruan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
16
|
Anwar A, Kim JK. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int J Mol Sci 2020; 21:E2695. [PMID: 32295026 PMCID: PMC7216248 DOI: 10.3390/ijms21082695] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The recent rapid climate changes and increasing global population have led to an increased incidence of abiotic stress and decreased crop productivity. Environmental stresses, such as temperature, drought, nutrient deficiency, salinity, and heavy metal stresses, are major challenges for agriculture, and they lead to a significant reduction in crop growth and productivity. Abiotic stress is a very complex phenomenon, involving a variety of physiological and biochemical changes in plant cells. Plants exposed to abiotic stress exhibit enhanced levels of ROS (reactive oxygen species), which are highly reactive and toxic and affect the biosynthesis of chlorophyll, photosynthetic capacity, and carbohydrate, protein, lipid, and antioxidant enzyme activities. Transgenic breeding offers a suitable alternative to conventional breeding to achieve plant genetic improvements. Over the last two decades, genetic engineering/transgenic breeding techniques demonstrated remarkable developments in manipulations of the genes for the induction of desired characteristics into transgenic plants. Transgenic approaches provide us with access to identify the candidate genes, miRNAs, and transcription factors (TFs) that are involved in specific plant processes, thus enabling an integrated knowledge of the molecular and physiological mechanisms influencing the plant tolerance and productivity. The accuracy and precision of this phenomenon assures great success in the future of plant improvements. Hence, transgenic breeding has proven to be a promising tool for abiotic stress improvement in crops. This review focuses on the potential and successful applications, recent progress, and future perspectives of transgenic breeding for improving abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea;
| |
Collapse
|
17
|
Berestovoy MA, Pavlenko OS, Goldenkova-Pavlova IV. Plant Fatty Acid Desaturases: Role in the Life of Plants and Biotechnological Potential. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086420020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Zhang Z, Liu W, Ma Z, Zhu W, Jia L. Transcriptional characterization and response to defense elicitors of mevalonate pathway genes in cotton ( Gossypium arboreum L.). PeerJ 2019; 7:e8123. [PMID: 31768304 PMCID: PMC6874856 DOI: 10.7717/peerj.8123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 01/21/2023] Open
Abstract
The mevalonate (MVA) pathway is responsible for the biosynthesis of cytosolic terpenes including gossypol and its derivatives, which play an important role in the cotton plant’s defense against pathogens and herbivores. In this study, we identified and cloned 17 potentially functional genes encoding enzymes that catalyze the six steps of the MVA pathway in Gossypium arboreum. Expression pattern analysis by qRT-PCR demonstrated that these genes had tissue-specific expression profiles and were most prevalently expressed in roots. Moreover, these genes were up-regulated in response to several elicitors, including methyl jasmonate and salicylic acid, as well as Verticillium dahliae infection and Helicoverpa armigera infestation. This indicates that the MVA pathway genes are involved in the signaling pathway regulated by exogenous hormones and the resistance of cotton plants to pathogens and herbivores. Our results improve the understanding of cytosolic terpene biosynthesis in Gossypium species and lay the foundation for further research on gossypol biosynthesis.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lin Jia
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Chen M, Guo H, Chen S, Li T, Li M, Rashid A, Xu C, Wang K. Methyl Jasmonate Promotes Phospholipid Remodeling and Jasmonic Acid Signaling To Alleviate Chilling Injury in Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9958-9966. [PMID: 31419123 DOI: 10.1021/acs.jafc.9b03853] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chilling injury (CI) is a physiological disorder induced by cold, which heavily limit crop production and postharvest preservation worldwide. Methyl jasmonate (MeJA) can alleviate CI in various fruit species, including peach; however, the underlying molecular mechanism is poorly understood. Here, changes in contents of phenolics, lipids, and jasmonic acid (JA) and gene expressions are compared between MeJA and control fruit. Exogenous MeJA inhibited expressions of PpPAL1, PpPPO1, and PpPOD1/2 but did not affect the phenolic content. Furthermore, MeJA fruit showed lower relative electrolyte leakage, indicating less membrane damage. Meanwhile, the enrichment of linoleic acid in the potential lipid biomarkers, especially phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol, coincided with lower expressions of PpFAD8.1 but higher PpLOX3.1 and JA content. In the JA signaling pathway, MeJA significantly upregulated expressions of PpMYC2.2 and PpCBF3 but downregulated PpMYC2.1. In conclusion, adjustments of fatty acids in phospholipids contribute to MeJA-induced alleviation of CI in peach fruit via induction of the JA-mediated C-repeat-binding factor pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changjie Xu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology , Zhejiang University , Zijingang Campus, Hangzhou , Zhejiang 310058 , People's Republic of China
| | | |
Collapse
|
20
|
Zhao X, Wei J, He L, Zhang Y, Zhao Y, Xu X, Wei Y, Ge S, Ding D, Liu M, Gao S, Xu J. Identification of Fatty Acid Desaturases in Maize and Their Differential Responses to Low and High Temperature. Genes (Basel) 2019; 10:genes10060445. [PMID: 31210171 PMCID: PMC6627218 DOI: 10.3390/genes10060445] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Plant fatty acid desaturases (FADs) catalyze the desaturation of fatty acids in various forms and play important roles in regulating fatty acid composition and maintaining membrane fluidity under temperature stress. A total of 30 FADs were identified from a maize genome, including 13 soluble and 17 membrane-bound FADs, which were further classified into two and five sub-groups, respectively, via phylogenetic analysis. Although there is no evolutionary relationship between the soluble and the membrane-bound FADs, they all harbor a highly conserved FA_desaturase domain, and the types and the distributions of conserved motifs are similar within each sub-group. The transcriptome analysis revealed that genes encoding FADs exhibited different expression profiles under cold and heat stresses. The expression of ZmFAD2.1&2.2, ZmFAD7, and ZmSLD1&3 were significantly up-regulated under cold stress; moreover, the expression of ZmFAD2.1&2.3 and ZmSLD1&3 were obviously down-regulated under heat stress. The co-expression analysis demonstrated close correlation among the transcription factors and the significant responsive FAD genes under cold or heat stress. This study helps to understand the roles of plant FADs in temperature stress responses.
Collapse
Affiliation(s)
- Xunchao Zhao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Jinpeng Wei
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Lin He
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yifei Zhang
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Ying Zhao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Xiaoxuan Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yulei Wei
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Shengnan Ge
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong Ding
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Meng Liu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Shuren Gao
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Jingyu Xu
- Key Lab of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
21
|
Liu W, Zhang Z, Zhu W, Ren Z, Jia L, Li W, Ma Z. Evolutionary Conservation and Divergence of Genes Encoding 3-Hydroxy-3-methylglutaryl Coenzyme A Synthase in the Allotetraploid Cotton Species Gossypium hirsutum. Cells 2019; 8:cells8050412. [PMID: 31058869 PMCID: PMC6562921 DOI: 10.3390/cells8050412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 11/16/2022] Open
Abstract
Polyploidization is important for the speciation and subsequent evolution of many plant species. Analyses of the duplicated genes produced via polyploidization events may clarify the origin and evolution of gene families. During terpene biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) functions as a key enzyme in the mevalonate pathway. In this study, we first identified a total of 53 HMGS genes in 23 land plant species, while no HMGS genes were detected in three green algae species. The phylogenetic analysis suggested that plant HMGS genes may have originated from a common ancestral gene before clustering in different branches during the divergence of plant lineages. Then, we detected six HMGS genes in the allotetraploid cotton species (Gossypium hirsutum), which was twice that of the two diploid cotton species (Gossypium raimondii and Gossypium arboreum). The comparison of gene structures and phylogenetic analysis of HMGS genes revealed conserved evolution during polyploidization in Gossypium. Moreover, the expression patterns indicated that six GhHMGS genes were expressed in all tested tissues, with most genes considerably expressed in the roots, and they were responsive to various phytohormone treatments and abiotic stresses. The sequence and expression divergence of duplicated genes in G. hirsutum implied the sub-functionalization of GhHMGS1A and GhHMGS1D as well as GhHMGS3A and GhHMGS3D, whereas it implied the pseudogenization of GhHMGS2A and GhHMGS2D. Collectively, our study unraveled the evolutionary history of HMGS genes in green plants and from diploid to allotetraploid in cotton and illustrated the different evolutionary fates of duplicated HMGS genes resulting from polyploidization.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhiqiang Zhang
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Zhu
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Lin Jia
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Li
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zongbin Ma
- Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
22
|
Yan F, Li H, Zhao P. Genome-Wide Identification and Transcriptional Expression of the PAL Gene Family in Common Walnut ( Juglans Regia L.). Genes (Basel) 2019; 10:E46. [PMID: 30650597 PMCID: PMC6357058 DOI: 10.3390/genes10010046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Juglans regia L. is an economically important crop cultivated worldwide for its high quality and quantity of wood and nuts. Phenylalanine ammonia-lyase (PAL) is the first enzyme in the phenylpropanoid pathway that plays a critical role in plant growth, development, and adaptation, but there have been few reports of the PAL gene family in common walnut. Here, we report a genome-wide study of J. regiaPAL genes and analyze their phylogeny, duplication, microRNA, and transcriptional expression. A total of 12 PAL genes were identified in the common walnut and clustered into two subfamilies based on phylogenetic analysis. These common walnut PALs are distributed on eight different pseudo-chromosomes. Seven of the 12 PALs (JrPAL2-3, JrPAL4-2, JrPAL2-1, JrPAL4-1, JrPAL8, JrPAL9, and JrPAL6) were specific found in J. regia, and JrPAL3, JrPAL5, JrPAL1-2, JrPAL7, and JrPAL2-2 were found to be closely associated with the woody plant Populus trichocarpa. Additionally, the expression patterns of JrPAL3, JrPAL7, JrPAL9, and JrPAL2-1 showed that they had high expression in female and male flowers. The miRNA ath-miR830-5p regulates two genes, JrPAL5 and JrPAL1, such that they have low expression in the male and female flowers of the common walnut. Our research provides useful information for further research into the function of PAL genes in common walnut and Juglans.
Collapse
Affiliation(s)
- Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China.
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
23
|
Tang W, Ouyang C, Liu L, Li H, Zeng C, Wang J, Fu L, Wu Q, Zeng B, He B. Genome-wide identification of the fatty acid desaturases gene family in four Aspergillus species and their expression profile in Aspergillus oryzae. AMB Express 2018; 8:169. [PMID: 30324529 PMCID: PMC6188973 DOI: 10.1186/s13568-018-0697-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023] Open
Abstract
Fatty acid desaturases play a key role in producing polyunsaturated fatty acids by converting single bonds to double bonds. In the present study, a total of 13, 12, 8 and 8 candidate fatty acid desaturases genes were identified in the Aspergillus oryzae, Aspergillus flavus, Aspergillus fumigatus and Aspergillus nidulans genomes through database searches, which were classified into five different subfamilies based on phylogenetic analysis. Furthermore, a comprehensive analysis was performed to characterize conserved motifs and gene structures, which could provide an intuitive comprehension to learn the relationship between structure and functions of the fatty acid desaturases genes in different Aspergillus species. In addition, the expression pattern of 13 fatty acid desaturases genes of A. oryzae was tested in different growth stages and under salt stress treatment. The results revealed that the fatty acid desaturases genes in A. oryzae were highly expressed in adaptive phase growth and up-regulated under salt stress treatment. This study provided a better understanding of the evolution and functions of the fatty acid desaturases gene family in the four Aspergillus species, and would be useful for seeking methods to improve the production of unsaturated fatty acids and enhance efforts for the genetic improvement of strains to adapt to the complex surrounding environment.
Collapse
|
24
|
Li W, Ren Z, Wang Z, Sun K, Pei X, Liu Y, He K, Zhang F, Song C, Zhou X, Zhang W, Ma X, Yang D. Evolution and Stress Responses of Gossypium hirsutum SWEET Genes. Int J Mol Sci 2018; 19:E769. [PMID: 29517986 PMCID: PMC5877630 DOI: 10.3390/ijms19030769] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum, which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutumSWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum, Gossypium raimondii, and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis-acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhenyu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kuan Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Chengxiang Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaojian Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wensheng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
25
|
Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, Lee BKB, Mat Isa MN, Mat-Sharani S, Sulaiman S, Tay LJ, Zolkefli R, Muhammad Noor Y, Law DSN, Abdul Rahman SH, Md-Illias R, Abu Bakar FD, Najimudin N, Abdul Murad AM, Mahadi NM. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS One 2018; 13:e0189947. [PMID: 29385175 PMCID: PMC5791967 DOI: 10.1371/journal.pone.0189947] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.
Collapse
Affiliation(s)
- Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail:
| | - Noor Haza Fazlin Hashim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Izwan Bharudin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faizal Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Kie Kyon Huang
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Bernard K. B. Lee
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Shuhaila Mat-Sharani
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
| | - Suhaila Sulaiman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Lih Jinq Tay
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Radziah Zolkefli
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Yusuf Muhammad Noor
- Malaysia Genome Institute, Jalan Bangi Lama, Kajang, Selangor, Malaysia
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Douglas Sie Nguong Law
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Siti Hamidah Abdul Rahman
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rosli Md-Illias
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | |
Collapse
|
26
|
Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Gossypium. Molecules 2018; 23:molecules23020193. [PMID: 29364830 PMCID: PMC6017885 DOI: 10.3390/molecules23020193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/25/2022] Open
Abstract
Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.
Collapse
|
27
|
Chi X, Zhang Z, Chen N, Zhang X, Wang M, Chen M, Wang T, Pan L, Chen J, Yang Z, Guan X, Yu S. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One 2017; 12:e0189759. [PMID: 29244878 PMCID: PMC5731756 DOI: 10.1371/journal.pone.0189759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/01/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains. Extensive studies of fatty acid desaturases have been done in many plants. However, less is known about the diversity of this gene family in peanut (Arachis hypogaea L.), an important oilseed crop that is cultivated worldwide. RESULTS In this study, twelve novel AhFADs genes were identified and isolated from peanut. Quantitative real-time PCR analysis indicated that the transcript abundances of AhFAB2-2 and AhFAD3-1 were higher in seeds than in other tissues examined, whereas the AhADS and AhFAD7-1 transcripts were more abundant in leaves. AhFAB2-3, AhFAD3-2, AhFAD4, AhSLD-4, and AhDES genes were highly expressed in flowers, whereas AhFAD7-2, AhSLD-2, and AhSLD-3 were expressed most strongly in stems. During seed development, the expressions of AhFAB2-2, AhFAD3-1, AhFAD7-1, and AhSLD-3 gradually increased in abundance, reached a maximum expression level, and then decreased. The AhFAB2-3, AhFAD3-2, AhFAD4, AhADS, and AhDES transcript levels remained relatively high at the initial stage of seed development, but decreased thereafter. The AhSLD-4 transcript level remained relatively low at the initial stage of seed development, but showed a dramatic increase in abundance at the final stage. The AhFAD7-2 and AhSLD-2 transcript levels remained relatively high at the initial stage of seed development, but then decreased, and finally increased again. The AhFAD transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. Moreover, the functions of one AhFAD6 and four AhSLD genes were confirmed by heterologous expression in Synechococcus elongates or Saccharomyces cerevisiae. CONCLUSIONS The present study provides valuable information that improves understanding of the biological roles of FAD genes in fatty acid synthesis, and will help peanut breeders improve the quality of peanut oil via molecular design breeding.
Collapse
Affiliation(s)
- Xiaoyuan Chi
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Na Chen
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, P. R. China
| | - Mian Wang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Mingna Chen
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Tong Wang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, P. R. China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Qingdao, Shandong, P. R. China
| |
Collapse
|
28
|
Genome-Wide Survey and Characterization of Fatty Acid Desaturase Gene Family in Brassica napus and Its Parental Species. Appl Biochem Biotechnol 2017; 184:582-598. [DOI: 10.1007/s12010-017-2563-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022]
|
29
|
Díaz ML, Cuppari S, Soresi D, Carrera A. In Silico Analysis of Fatty Acid Desaturase Genes and Proteins in Grasses. Appl Biochem Biotechnol 2017; 184:484-499. [PMID: 28755245 DOI: 10.1007/s12010-017-2556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Fatty acid desaturases (FADs) catalyze the introduction of a double bond into acyl chains. Two FAD groups have been identified in plants: acyl-acyl carrier proteins (ACPs) and acyl-lipid or membrane-bound FAD. The former catalyze the conversion of 18:0 to 18:1 and to date have only been identified in plants. The latter are found in eukaryotes and bacteria and are responsible for multiple desaturations. In this study, we identified 82 desaturase gene and protein sequences from 10 grass species deposited in GenBank that were analyzed using bioinformatic approaches. Subcellular localization predictions of desaturase family revealed their localization in plasma membranes, chloroplasts, endoplasmic reticula, and mitochondria. The in silico mapping showed multiple chromosomal locations in most species. Furthermore, the presence of the characteristic histidine domains, the predicted motifs, and the finding of transmembrane regions strongly support the protein functionality. The identification of putative regulatory sites in the promotor and the expression profiles revealed the wide range of pathways in which fatty acid desaturases are involved. This study is an updated survey on desaturases of grasses that provides a comprehensive insight into diversity and evolution. This characterization is a necessary first step before considering these genes as candidates for new biotechnological approaches.
Collapse
Affiliation(s)
- Marina Lucía Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina.
- Comisión de Investigaciones Científicas, Buenos Aires, Argentina.
| | - Selva Cuppari
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Daniela Soresi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
| | - Alicia Carrera
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, San Andrés 800, Bahía Blanca, Argentina
| |
Collapse
|
30
|
Cui Y, Zhao Y, Wang Y, Liu Z, Ijaz B, Huang Y, Hua J. Genome-Wide Identification and Expression Analysis of the Biotin Carboxyl Carrier Subunits of Heteromeric Acetyl-CoA Carboxylase in Gossypium. FRONTIERS IN PLANT SCIENCE 2017; 8:624. [PMID: 28507552 PMCID: PMC5410604 DOI: 10.3389/fpls.2017.00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/06/2017] [Indexed: 05/27/2023]
Abstract
Acetyl-CoA carboxylase is an important enzyme, which catalyzes acetyl-CoA's carboxylation to produce malonyl-CoA and to serve as a committed step for de novo fatty acid biosynthesis in plastids. In this study, 24 putative cotton BCCP genes were identified based on the lately published genome data in Gossypium. Among them, 4, 4, 8, and 8 BCCP homologs were identified in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. These genes were divided into two classes based on a phylogenetic analysis. In each class, these homologs were relatively conserved in gene structure and motifs. The chromosomal distribution pattern revealed that all the BCCP genes were distributed equally on corresponding chromosomes or scaffold in the four cotton species. Segmental duplication was a predominant duplication event in both of G. hirsutum and G. barbadense. The analysis of the expression profile showed that 8 GhBCCP genes expressed in all the tested tissues with changed expression levels, and GhBCCP genes belonging to class II were predominantly expressed in developing ovules. Meanwhile, the expression analysis for the 16 cotton BCCP genes from G. raimondii, G. arboreum and G. hirsutum showed that they were induced or suppressed by cold or salt stress, and their expression patterns varied among different tissues. These findings will help to determine the functional and evolutionary characteristics of the BCCP genes in Gossypium species.
Collapse
Affiliation(s)
- Yupeng Cui
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| | - Yanpeng Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| | - Yumei Wang
- Research Institute of Cash Crop, Hubei Academy of Agricultural SciencesWuhan, China
| | - Zhengjie Liu
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| | - Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| |
Collapse
|
31
|
Feng J, Dong Y, Liu W, He Q, Daud MK, Chen J, Zhu S. Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress. Sci Rep 2017; 7:45711. [PMID: 28374822 PMCID: PMC5379561 DOI: 10.1038/srep45711] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/03/2017] [Indexed: 01/12/2023] Open
Abstract
Membrane-bound fatty acid desaturases (FADs) are of great importance and play multiple roles in plant growth and development. In the present study, 39 full-length FAD genes, based on database searches, were identified in tetraploid upland cotton (Gossypium hirsutum L.) and were phylogenetically clustered into four subfamilies. Genomic localization revealed that 34 genes were mapped on 22 chromosomes, and five genes were positioned on the scaffold sequences. The FAD genes of G. hirsutum in the same subfamily had similar gene structures. The structures of paralogous genes were considerably conserved in exons number and introns length. It was suggested that the FAD gene families in G. hirsutum might be duplicated mainly by segmental duplication. Moreover, the FAD genes were differentially expressed in different G. hirsutum tissues in response to different levels of salt and cold stresses, as determined by qRT-PCR analysis. The identification and functional analysis of FAD genes in G. hirsutum may provide more candidate genes for genetic modification.
Collapse
Affiliation(s)
- Jiyu Feng
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Yating Dong
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Wei Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuling He
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - M. K. Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Jinhong Chen
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Dong CJ, Cao N, Zhang ZG, Shang QM. Characterization of the Fatty Acid Desaturase Genes in Cucumber: Structure, Phylogeny, and Expression Patterns. PLoS One 2016; 11:e0149917. [PMID: 26938877 PMCID: PMC4777478 DOI: 10.1371/journal.pone.0149917] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Fatty acid desaturases (FADs) introduce double bonds into the hydrocarbon chains of fatty acids to produce unsaturated fatty acids, and therefore play a critical role in plant development and acclimation to environmental stresses. In this study, 23 full-length FAD genes in cucumber (Cucumis sativus L.) were identified through database searches, including three CsFAB2 genes, two CsFAD2 genes, fourteen CsFAD5 genes, and one gene each for CsFAD3, CsFAD4, CsFAD6 and CsFAD7. These cucumber FAD genes were distributed on all seven chromosomes and two additional scaffolds. Based on a phylogenetic analysis, the cucumber FAD proteins were clustered into five subfamilies with their counterparts from other plants. Gene structures and protein sequences were considerably conserved in each subfamily. All three CsFAB2 proteins shared conserved structure with the known plant soluble FAD proteins. The other cucumber FADs belonged to the membrane-bound FADs and contained three highly conserved histidine boxes. Additionally, the putative endoplasmic reticulum retention signal was found at the C-termini of the CsFAD2 and CsFAD3 proteins, while the N-termini of CsFAD4, CsFAD5, CsFAD6, CsFAD7 and three CsFAB2s contained a predicted chloroplast signal peptide, which was consistent with their associated metabolic pathways. Furthermore, a gene expression analysis showed that CsFAD2 and CsFAD3 were universally expressed in all tested tissues, whereas the other cucumber FAD genes were preferentially expressed in the cotyledons or leaves. The tissue-specific expression patterns of cucumber FAD genes were correlated well with the differences in the fatty acid compositions ofroots and leaves. Finally, the cucumber FAD genes showed a cold-induced and heat-repressed expression pattern, although with distinct regulatory time courses among the different CsFAD members, which indicates the potential roles of the FADs in temperature stress resistance in cucumber.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, People’s Republic of China
- * E-mail: (CJD); (QMS)
| | - Ning Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, People’s Republic of China
| | - Zhi-Gang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, People’s Republic of China
| | - Qing-Mao Shang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Beijing, People’s Republic of China
- * E-mail: (CJD); (QMS)
| |
Collapse
|