1
|
Heger F, Schindler S, Pleininger S, Fueszl A, Blaschitz M, Lippert K, Hyden P, Hufnagl P, Mutschlechner D, Gremmel T, Hofer E, Markowicz M, Indra A. Three Cases of Tickborne Francisella tularensis Infection, Austria, 2022. Emerg Infect Dis 2023; 29:2349-2352. [PMID: 37877608 PMCID: PMC10617340 DOI: 10.3201/eid2911.230460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Tularemia is increasing in Austria. We report Francisella tularensis subspecies holarctica isolated from 3 patients who had been bitten by arthropods. Next-generation sequencing showed substantial isolate similarity. Clinicians should consider bloodstream F. tularensis infections for patients with signs/symptoms of ulceroglandular tularemia, and surveillance of potential vectors should be intensified.
Collapse
|
2
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
3
|
Francisella and tularemia in western Asia, Iran: a systematic review. New Microbes New Infect 2023; 52:101092. [PMID: 36816490 PMCID: PMC9932182 DOI: 10.1016/j.nmni.2023.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
Tularemia or rabbit fever is a transmissible disease from animals, rodents, and insects to human populations that is caused by Francisella tularensis. Epidemiological studies showed that tularemia is endemic throughout most different regions of the world. Recent evidence documented the transmission of the F. tularensis in a different part of Asia. Because there is no updated review information for tularemia in Iran, we performed this systematic review. In this study, we systematically explored biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify epidemiology, reservoirs, and carriers of Francisella in animal and human clinical specimens from 2010 to 2020, either in English or in Persian. Different studies have shown the different frequencies of F. tularensis among human and animal resources in eighteen provinces of Iran. In total, 1242 human clinical specimens, 1565 animal samples, and 355 environmental water samples were investigated to find F. tularensis in different provinces of Iran. According to the collected documents, 94 human clinical samples, 69 water samples, and 26 animal specimens were introduced as positive samples for the F. tularensis. According to studies, thirteen species of rodent and hare presented as an inter-epizootic reservoir. Only one species of tick (D. marginatus) was introduced as a vector for Francisella in Iran. According to these results, it is essential for exclusive attention to the prevalence of F. tularensis in different provinces of Iran. Furthermore, special planning should be done for prevention, control of the outbreak, and proper treatment of the tularemia.
Collapse
|
4
|
Fida M, Cunningham SA, Beisken S, Posch AE, Chia N, Jeraldo PR, Murphy MP, Zinsmaster NM, Patel R. Acinetobacter baumannii Genomic Sequence-Based Core Genome Multilocus Sequence Typing Using Ridom SeqSphere+ and Antimicrobial Susceptibility Prediction in ARESdb. J Clin Microbiol 2022; 60:e0053322. [PMID: 35862760 PMCID: PMC9383114 DOI: 10.1128/jcm.00533-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Whole-genome sequencing (WGS) is rapidly replacing traditional typing methods for the investigation of infectious disease outbreaks. Additionally, WGS data are being used to predict phenotypic antimicrobial susceptibility. Acinetobacter baumannii, which is often multidrug-resistant, is a significant culprit in outbreaks in health care settings. A well-characterized collection of A. baumannii was studied using core genome multilocus sequence typing (cgMLST). Seventy-two isolates previously typed by PCR-electrospray ionization mass spectrometry (PCR/ESI-MS) provided by the Antimicrobial Resistance Leadership Group (ARLG) were analyzed using a clinical microbiology laboratory developed workflow for cgMLST with genomic susceptibility prediction performed using the ARESdb platform. Previously performed PCR/ESI-MS correlated with cgMLST using relatedness thresholds of allelic differences of ≤9 and ≤200 allelic differences in 78 and 94% of isolates, respectively. Categorical agreement between genotypic and phenotypic antimicrobial susceptibility across a panel of 11 commonly used drugs was 89%, with minor, major, and very major error rates of 8%, 11%, and 1%, respectively.
Collapse
Affiliation(s)
- Madiha Fida
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricio R. Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Murphy
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Genomic epidemiology links Burkholderia pseudomallei from individual human cases to B. pseudomallei from targeted environmental sampling in Northern Australia. J Clin Microbiol 2022; 60:e0164821. [PMID: 35080450 DOI: 10.1128/jcm.01648-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each case of melioidosis results from a single event when a human is infected by the environmental bacterium Burkholderia pseudomallei. Darwin in tropical northern Australia has the highest incidences of melioidosis globally and the Darwin Prospective Melioidosis Study (DPMS) commenced in 1989, documenting all culture confirmed melioidosis cases. From 2000-2019 we sampled DPMS patient's environments for B. pseudomallei when a specific location was considered to have been where infection occurred. With the aim to use genomic epidemiology to understand B. pseudomallei transmission and infecting scenarios. Environmental sampling was performed at 98 DPMS patient sites, where we collected 975 environmental samples (742 soil; 233 water). Genotyping matched the clinical and epidemiologically linked environmental B. pseudomallei for 19 patients (19%), with the environmental isolates cultured from soil (n=11) or water (n=8) sources. B. pseudomallei isolates from patients and their local environments that matched on genotyping were whole genome sequenced (WGS). Of the 19 patients with a clinical-environmental genotype match, 17 pairs clustered on a Darwin core genome single-nucleotide polymorphism (SNP) phylogeny, later confirmed by single ST phylogenies and pairwise comparative genomics. When related back to patient clinical scenarios, the matched clinical and environmental B. pseudomallei pairs informed likely modes of infection: percutaneous inoculation, inhalation, and ingestion. Targeted environmental sampling for B. pseudomallei can inform infecting scenarios for melioidosis and dangerous occupational and recreational activities and identify hot spots of B. pseudomallei presence. However, WGS and careful genomics are required to avoid overcalling the relatedness between clinical and environmental isolates of B. pseudomallei.
Collapse
|
6
|
A Whole-Genome-Based Gene-by-Gene Typing System for Standardized High-Resolution Strain Typing of Bacillus anthracis. J Clin Microbiol 2021; 59:e0288920. [PMID: 33827898 PMCID: PMC8218748 DOI: 10.1128/jcm.02889-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing (WGS) has been established for bacterial subtyping and is regularly used to study pathogen transmission, to investigate outbreaks, and to perform routine surveillance. Core-genome multilocus sequence typing (cgMLST) is a bacterial subtyping method that uses WGS data to provide a high-resolution strain characterization. This study aimed at developing a novel cgMLST scheme for Bacillus anthracis, a notorious pathogen that causes anthrax in livestock and humans worldwide. The scheme comprises 3,803 genes that were conserved in 57 B. anthracis genomes spanning the whole phylogeny. The scheme has been evaluated and applied to 584 genomes from 50 countries. On average, 99.5% of the cgMLST targets were detected. The cgMLST results confirmed the classical canonical single-nucleotide-polymorphism (SNP) grouping of B. anthracis into major clades and subclades. Genetic distances calculated based on cgMLST were comparable to distances from whole-genome-based SNP analysis with similar phylogenetic topology and comparable discriminatory power. Additionally, the application of the cgMLST scheme to anthrax outbreaks from Germany and Italy led to a definition of a cutoff threshold of five allele differences to trace epidemiologically linked strains for cluster typing and transmission analysis. Finally, the association of two clusters of B. anthracis with human cases of injectional anthrax in four European countries was confirmed using cgMLST. In summary, this study presents a novel cgMLST scheme that provides high-resolution strain genotyping for B. anthracis. This scheme can be used in parallel with SNP typing methods to facilitate rapid and harmonized interlaboratory comparisons, essential for global surveillance and outbreak analysis. The scheme is publicly available for application by users, including those with little bioinformatics knowledge.
Collapse
|
7
|
Gil-Gil T, Ochoa-Sánchez LE, Baquero F, Martínez JL. Antibiotic resistance: Time of synthesis in a post-genomic age. Comput Struct Biotechnol J 2021; 19:3110-3124. [PMID: 34141134 PMCID: PMC8181582 DOI: 10.1016/j.csbj.2021.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Antibiotic resistance has been highlighted by international organizations, including World Health Organization, World Bank and United Nations, as one of the most relevant global health problems. Classical approaches to study this problem have focused in infected humans, mainly at hospitals. Nevertheless, antibiotic resistance can expand through different ecosystems and geographical allocations, hence constituting a One-Health, Global-Health problem, requiring specific integrative analytic tools. Antibiotic resistance evolution and transmission are multilayer, hierarchically organized processes with several elements (from genes to the whole microbiome) involved. However, their study has been traditionally gene-centric, each element independently studied. The development of robust-economically affordable whole genome sequencing approaches, as well as other -omic techniques as transcriptomics and proteomics, is changing this panorama. These technologies allow the description of a system, either a cell or a microbiome as a whole, overcoming the problems associated with gene-centric approaches. We are currently at the time of combining the information derived from -omic studies to have a more holistic view of the evolution and spread of antibiotic resistance. This synthesis process requires the accurate integration of -omic information into computational models that serve to analyse the causes and the consequences of acquiring AR, fed by curated databases capable of identifying the elements involved in the acquisition of resistance. In this review, we analyse the capacities and drawbacks of the tools that are currently in use for the global analysis of AR, aiming to identify the more useful targets for effective corrective interventions.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain
| | | | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | | |
Collapse
|
8
|
Shevtsov V, Kairzhanova A, Shevtsov A, Shustov A, Kalendar R, Abdrakhmanov S, Lukhnova L, Izbanova U, Ramankulov Y, Vergnaud G. Genetic diversity of Francisella tularensis subsp. holarctica in Kazakhstan. PLoS Negl Trop Dis 2021; 15:e0009419. [PMID: 33999916 PMCID: PMC8158875 DOI: 10.1371/journal.pntd.0009419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/27/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022] Open
Abstract
Tularemia is a highly dangerous zoonotic infection due to the bacteria Francisella tularensis. Low genetic diversity promoted the use of polymorphic tandem repeats (MLVA) as first-line assay for genetic description. Whole genome sequencing (WGS) is becoming increasingly accessible, opening the perspective of a time when WGS might become the universal genotyping assay. The main goal of this study was to describe F. tularensis strains circulating in Kazakhstan based on WGS data and develop a MLVA assay compatible with in vitro and in silico analysis. In vitro MLVA genotyping and WGS were performed for the vaccine strain and for 38 strains isolated in Kazakhstan from natural water bodies, ticks, rodents, carnivores, and from one migratory bird, an Isabellina wheatear captured in a rodent burrow. The two genotyping approaches were congruent and allowed to attribute all strains to two F. tularensis holarctica lineages, B.4 and B.12. The seven tandem repeats polymorphic in the investigated strain collection could be typed in a single multiplex PCR assay. Identical MLVA genotypes were produced by in vitro and in silico analysis, demonstrating full compatibility between the two approaches. The strains from Kazakhstan were compared to all publicly available WGS data of worldwide origin by whole genome SNP (wgSNP) analysis. Genotypes differing at a single SNP position were collected within a time interval of more than fifty years, from locations separated from each other by more than one thousand kilometers, supporting a role for migratory birds in the worldwide spread of the bacteria. Genotyping of Francisella tularensis has become a routine practice in epidemiology. Despite rapidly accumulating knowledge, the phylogeography of the pathogen is still poorly understood and discussions about geographic and temporal origins continue. One important reason is the poor characterization of the pathogen in many tularemia-endemic countries. This article describes the genetic diversity of Francisella tularensis subsp. holarctica in Kazakhstan using tandem repeat polymorphisms as well as whole genome sequencing. Thirty-nine strains were analyzed and two lineages were identified, namely B.4 and B.12. The study demonstrates a wider distribution of genotype B.4 in Asia, and identified a more basal branching point in this subclade. The obtained data support the Asian origin hypothesis for F. tularensis. The finding of identical genotypes in strains separated in time by decades and a thousand-kilometers geographic distance, confirms the ability of the bacteria for long-term preservation and fast long distances spread. The isolation of F. tularensis subsp. holarctica from the bird species Isabellina wheatear allows speculating about a major contribution of birds to the phylogeography of the pathogen. A genotyping protocol was developed utilizing seven polymorphic tandem repeats, two of which were identified within the framework of this work. The in vitro and in silico results are identical when using sequencing reads of 300 base-pairs or more.
Collapse
Affiliation(s)
| | - Alma Kairzhanova
- National Center for Biotechnology, Nur Sultan, Kazakhstan
- S. Seifullin Kazakh Agrotechnical University, Nur Sultan, Kazakhstan
| | - Alexandr Shevtsov
- National Center for Biotechnology, Nur Sultan, Kazakhstan
- * E-mail: (AS); (GV)
| | | | | | | | - Larissa Lukhnova
- National Scientific Center for Especially Dangerous Infections named by Masgut Aykimbayev, Almaty, Kazakhstan
| | - Uinkul Izbanova
- National Scientific Center for Especially Dangerous Infections named by Masgut Aykimbayev, Almaty, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, Nur Sultan, Kazakhstan
- School of Science and Technology Nazarbayev University, Nur Sultan, Kazakhstan
| | - Gilles Vergnaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
- * E-mail: (AS); (GV)
| |
Collapse
|
9
|
Cohen S, Rokach L, Motro Y, Moran-Gilad J, Veksler-Lublinsky I. minMLST: machine learning for optimization of bacterial strain typing. Bioinformatics 2021; 37:303-311. [PMID: 32804993 DOI: 10.1093/bioinformatics/btaa724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION High-resolution microbial strain typing is essential for various clinical purposes, including disease outbreak investigation, tracking of microbial transmission events and epidemiological surveillance of bacterial infections. The widely used approach for multilocus sequence typing (MLST) that is based on the core genome, cgMLST, has the advantage of a high level of typeability and maximal discriminatory power. Yet, the transition from a seven loci-based scheme to cgMLST involves several challenges, that include the need by some users to maintain backward compatibility, growing difficulties in the day-to-day communication within the microbiology community with respect to nomenclature and ontology, issues with typeability, especially if a more stringent approach to loci presence is used, and computational requirements concerning laboratory data management and sharing with end-users. Hence, methods for optimizing cgMLST schemes through careful reduction of the number of loci are expected to be beneficial for practical needs in different settings. RESULTS We present a new machine learning-based methodology, minMLST, for minimizing the number of genes in cgMLST schemes by identifying subsets of informative genes and analyzing the trade-off between gene reduction and typing performance. The results achieved with minMLST over eight bacterial species show that despite the reduction in the number of genes up to a factor of 10, the typing performance remains very high and significant with an Adjusted Rand Index that ranges between 0.4 and 0.93 in different species and a P-value < 10-3. The identification of such optimized MLST schemes for bacterial strain typing is expected to improve the implementation of cgMLST by improving interlaboratory agreement and communication. AVAILABILITY AND IMPLEMENTATION The python package minMLST is available at https://PyPi.org/project/minmlst/PyPI and supported on Linux and Windows. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shani Cohen
- Department of Software and Information Systems Engineering, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Lior Rokach
- Department of Software and Information Systems Engineering, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Yair Motro
- Department of Health Systems Management, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jacob Moran-Gilad
- Department of Health Systems Management, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
10
|
Bertolotti AC, Forsgren E, Schäfer MO, Sircoulomb F, Gaïani N, Ribière-Chabert M, Paris L, Lucas P, de Boisséson C, Skarin J, Rivière MP. Development and evaluation of a core genome multilocus sequence typing scheme for Paenibacillus larvae, the deadly American foulbrood pathogen of honeybees. Environ Microbiol 2021; 23:5042-5051. [PMID: 33615656 PMCID: PMC8518682 DOI: 10.1111/1462-2920.15442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Paenibacillus larvae is the causative agent of the fatal American foulbrood disease in honeybees (Apis mellifera). Strain identification is vital for preventing the spread of the disease. To date, the most accessible and robust scheme to identify strains is the multilocus sequence typing (MLST) method. However, this approach has limited resolution, especially for epidemiological studies. As the cost of whole-genome sequencing has decreased and as it becomes increasingly available to most laboratories, an extended MLST based on the core genome (cgMLST) presents a valuable tool for high-resolution investigations. In this study, we present a standardized, robust cgMLST scheme for P. larvae typing using whole-genome sequencing. A total of 333 genomes were used to identify, validate and evaluate 2419 core genes. The cgMLST allowed fine-scale differentiation between samples that had the same profile using traditional MLST and allowed for the characterization of strains impossible by MLST. The scheme was successfully used to trace a localized Swedish outbreak, where a cluster of 38 isolates was linked to a country-wide beekeeping operation. cgMLST greatly enhances the power of a traditional typing scheme, while preserving the same stability and standardization for sharing results and methods across different laboratories.
Collapse
Affiliation(s)
- Alicia C Bertolotti
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marc O Schäfer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | | | - Fabrice Sircoulomb
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Nicolas Gaïani
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Magali Ribière-Chabert
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Laurianne Paris
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| | - Pierrick Lucas
- Anses, Ploufragan-Plouzané-Niort Laboratory, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Claire de Boisséson
- Anses, Ploufragan-Plouzané-Niort Laboratory, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Joakim Skarin
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Marie-Pierre Rivière
- Anses, Sophia-Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France
| |
Collapse
|
11
|
Linde J, Homeier-Bachmann T, Dangel A, Riehm JM, Sundell D, Öhrman C, Forsman M, Tomaso H. Genotyping of Francisella tularensis subsp. holarctica from Hares in Germany. Microorganisms 2020; 8:microorganisms8121932. [PMID: 33291395 PMCID: PMC7761992 DOI: 10.3390/microorganisms8121932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 02/04/2023] Open
Abstract
Francisella tularensis is the causative agent of the zoonotic disease tularemia. In Germany, most human infections are caused by contact with infected hares. The aim of this study was to characterize Francisella tularensis subsp. holarctica strains isolated from hares in Germany and to develop bioinformatics tools to analyze their genetic relatedness. In total, 257 German isolates-obtained mainly from hares (n = 233), other vertebrate animals, and ticks, but also from humans (n = 3)-were analyzed within this study. Publically available sequence data from 49 isolates were used to put our isolates into an epidemiological context and to compare isolates from natural foci and humans. Whole-genome sequences were analyzed using core-genome Multi-Locus-Sequence-Typing, canonical Single Nucleotide Polymorphism (SNP) typing and whole-genome SNP typing. An overall conformity of genotype clustering between the typing methods was found, albeit with a lower resolution for canonical single SNP typing. The subclade distribution, both on local and national levels, among strains from humans and hares was similar, suggesting circulation of the same genotypes both in animals and humans. Whilst close to identical isolates of the same subclade were found distributed over large areas, small geographical foci often harbored members of different subclades. In conclusion, although genomic high-resolution typing was shown to be robust, reproducible and allowed the identification of highly closely related strains, genetic profiling alone is not always conclusive for epidemiological linkage of F. tularensis strains.
Collapse
Affiliation(s)
- Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-804-2320
| | - Timo Homeier-Bachmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Alexandra Dangel
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, 85764 Oberschleißheim, Germany; (A.D.); (J.M.R.)
| | - Julia M. Riehm
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, 85764 Oberschleißheim, Germany; (A.D.); (J.M.R.)
| | - David Sundell
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), SE-901 82 Umeå, Sweden; (D.S.); (C.Ö.); (M.F.)
| | - Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), SE-901 82 Umeå, Sweden; (D.S.); (C.Ö.); (M.F.)
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), SE-901 82 Umeå, Sweden; (D.S.); (C.Ö.); (M.F.)
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| |
Collapse
|
12
|
Busch A, Homeier-Bachmann T, Abdel-Glil MY, Hackbart A, Hotzel H, Tomaso H. Using affinity propagation clustering for identifying bacterial clades and subclades with whole-genome sequences of Francisella tularensis. PLoS Negl Trop Dis 2020; 14:e0008018. [PMID: 32991594 PMCID: PMC7523947 DOI: 10.1371/journal.pntd.0008018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
By combining a reference-independent SNP analysis and average nucleotide identity (ANI) with affinity propagation clustering (APC), we developed a significantly improved methodology allowing resolving phylogenetic relationships, based on objective criteria. These bioinformatics tools can be used as a general ruler to determine phylogenetic relationships and clustering of bacteria, exemplary done with Francisella (F.) tularensis. Molecular epidemiology of F. tularensis is currently assessed mostly based on laboratory methods and molecular analysis. The high evolutionary stability and the clonal nature makes Francisella ideal for subtyping with single nucleotide polymorphisms (SNPs). Sequencing and real-time PCR can be used to validate the SNP analysis. We investigate whole-genome sequences of 155 F. tularensis subsp. holarctica isolates. Phylogenetic testing was based on SNPs and average nucleotide identity (ANI) as reference independent, alignment-free methods taking small-scale and large-scale differences within the genomes into account. Especially the whole genome SNP analysis with kSNP3.0 allowed deciphering quite subtle signals of systematic differences in molecular variation. Affinity propagation clustering (APC) resulted in three clusters showing the known clades B.4, B.6, and B.12. These data correlated with the results of real-time PCR assays targeting canSNPs loci. Additionally, we detected two subtle sub-clusters. SplitsTree was used with standard-setting using the aligned SNPs from Parsnps. Together APC, HierBAPS, and SplitsTree enabled us to generate hypotheses about epidemiologic relationships between bacterial clusters and describing the distribution of isolates. Our data indicate that the choice of the typing technique can increase our understanding of the pathogenesis and transmission of diseases with the eventual for prevention. This is opening perspectives to be applied to other bacterial species. The data provide evidence that Germany might be the collision zone where the clade B.12, also known as the East European clade, overlaps with the clade B.6, also known as the Iberian clade. Described methods allow generating a new, more detailed perspective for F. tularensis subsp. holarctica phylogeny. These results may encourage to determine phylogenetic relationships and clustering of other bacteria the same way.
Collapse
Affiliation(s)
- Anne Busch
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- * E-mail:
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Mostafa Y. Abdel-Glil
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Anja Hackbart
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
13
|
Appelt S, Faber M, Köppen K, Jacob D, Grunow R, Heuner K. Francisella tularensis Subspecies holarctica and Tularemia in Germany. Microorganisms 2020; 8:microorganisms8091448. [PMID: 32971773 PMCID: PMC7564102 DOI: 10.3390/microorganisms8091448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation-noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging. By sequencing F. tularensis subsp. holarctica genomes, knowledge has been added to recent findings, completing the picture of genotypic diversity and geographical segregation of Francisella clades in Germany. Here, we also shortly summarize the current knowledge about a new Francisella species (Francisella sp. strain W12-1067) that has been recently identified in Germany. This species is the second Francisella species discovered in Germany.
Collapse
Affiliation(s)
- Sandra Appelt
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; (S.A.); (D.J.); (R.G.)
| | - Mirko Faber
- Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany;
| | - Kristin Köppen
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany;
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; (S.A.); (D.J.); (R.G.)
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; (S.A.); (D.J.); (R.G.)
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany;
- Correspondence: ; Tel.: +49-301-8754-2226
| |
Collapse
|
14
|
Fida M, Cunningham SA, Murphy MP, Bonomo RA, Hujer KM, Hujer AM, Kreiswirth BN, Chia N, Jeraldo PR, Nelson H, Zinsmaster NM, Toraskar N, Chang W, Patel R. Core genome MLST and resistome analysis of Klebsiella pneumoniae using a clinically amenable workflow. Diagn Microbiol Infect Dis 2020; 97:114996. [PMID: 32098688 DOI: 10.1016/j.diagmicrobio.2020.114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Whole genome sequencing (WGS) is replacing traditional microbiological typing methods for investigation of outbreaks in clinical settings. Here, we used a clinical microbiology laboratory core genome multilocus sequence typing (cgMLST) workflow to analyze 40 isolates of K. pneumoniae which are part of the Antimicrobial Resistance Leadership Group (ARLG) isolate collection, alongside 10 Mayo Clinic K. pneumoniae isolates, comparing results to those of pulsed-field gel electrophoresis (PFGE). Additionally, we used the WGS data to predict phenotypic antimicrobial susceptibility (AST). Thirty-one of 40 ARLG K. pneumoniae isolates belonged to the same PFGE type, all of which, alongside 3 isolates of different PFGE types, formed a large cluster by cgMLST. PFGE and cgMLST were completely concordant for the 10 Mayo Clinic K. pneumoniae isolates. For AST prediction, the overall agreement between phenotypic AST and genotypic prediction was 95.6%.
Collapse
Affiliation(s)
- Madiha Fida
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN.
| | | | | | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University, Cleveland, OH; Departments of Pharmacology, Biochemistry, Molecular Biology and Microbiology, and the Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH
| | - Kristine M Hujer
- Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Andrea M Hujer
- Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN
| | - Heidi Nelson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN
| | | | | | | | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN; Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
15
|
Appelt S, Köppen K, Radonić A, Drechsel O, Jacob D, Grunow R, Heuner K. Genetic Diversity and Spatial Segregation of Francisella tularensis Subspecies holarctica in Germany. Front Cell Infect Microbiol 2019; 9:376. [PMID: 31781515 PMCID: PMC6851236 DOI: 10.3389/fcimb.2019.00376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 01/28/2023] Open
Abstract
Francisella tularensis is an intracellular pleomorphic bacterium and the causative agent of tularemia, a zoonotic disease with a wide host range. Among the F. tularensis subspecies, especially F. tularensis subsp. holarctica is of clinical relevance for European countries. The study presented herein focuses namely on genetic diversity and spatial segregation of F. tularensis subsp. holarctica in Germany, as still limited information is available. The investigation is based on the analysis of 34 F. tularensis subsp. holarctica isolates and one draft genome from an outbreak strain. The isolates were cultured from sample material being that of primarily human patients (n = 25) and free-living animals (n = 9). For six of 25 human isolates, epidemiological links between disease onset and tick bites could be established, confirming the importance of arthropod linked transmission of tularemia in Germany. The strains were assigned to three of four major F. tularensis subsp. holarctica clades: B.4, B.6, and B.12. Thereby, B.6 and B.12 clade members were predominantly found; only one human isolate was assigned to clade B.4. Also, it turned out that eight isolates which caused pneumonia in patients clustered into the B.6 clade. Altogether, eight different final subclades were assigned to clade B.6 (biovar I, erythromycin sensitive) and six to B.12 (biovar II, erythromycin resistant) in addition to one new final B.12 subclade. Moreover, for 13 human and 3 animal isolates, final subclade subdivisions were not assigned (B.12 subdivisions B.33 and B.34, and B.6 subdivision B.45) because official nomenclatures are not available yet. This gives credit to the genetic variability of F. tularensis subsp. holarctica strains in Germany. The results clearly point out that the given genetic diversity in Germany seems to be comparably high to that found in other European countries including Scandinavian regions. A spatial segregation of B.6 and B.12 strains was found and statistically confirmed, and B.12 clade members were predominantly found in eastern parts and B.6 members more in western to southern parts of Germany. The portion of B.12 clade members in northeastern parts of Germany was 78.5% and in southwestern parts 1.9%.
Collapse
Affiliation(s)
- Sandra Appelt
- Centre for Biological Threats and Special Pathogens (ZBS2), Robert Koch Institute, Berlin, Germany
| | - Kristin Köppen
- Working Group Cellular Interactions of Bacterial Pathogens, ZBS2, Robert Koch Institute, Berlin, Germany
| | - Aleksandar Radonić
- Methodology and Research Infrastructure Genome Sequencing (MF2), Robert Koch Institute, Berlin, Germany
| | - Oliver Drechsel
- Bioinformatics (MF1), Robert Koch Institute, Berlin, Germany
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens (ZBS2), Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens (ZBS2), Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Working Group Cellular Interactions of Bacterial Pathogens, ZBS2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
16
|
de Jesus JG, Giovanetti M, Rodrigues Faria N, Alcantara LCJ. Acute Vector-Borne Viral Infection: Zika and MinION Surveillance. Microbiol Spectr 2019; 7:10.1128/microbiolspec.ame-0008-2019. [PMID: 31400093 PMCID: PMC10957199 DOI: 10.1128/microbiolspec.ame-0008-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The MinION sequencer was launched by the Oxford Nanopore Technologies start-up as a disruptive technology for genome sequencing based on single-molecule synthesis. Its characteristics as a portable device, low cost, and simple library preparation have made it a good candidate for field researchers. MinION has been used to sequence a number of microorganisms, such as bacteria, viruses, and fungi. Based on the experience that characterized the Ebola virus genetic diversity in Guinea during the 2014-2015 outbreak, the ZiBRA (Zika in Brazil Real-time Analysis) project aimed to sequence a large number of Zika virus genomes during a mobile laboratory trip in northeast Brazil to provide important epidemiological information about the spread of this disease in this country. In response to the positive and rapid results obtained by the ZiBRA project, the Brazilian Ministry of Health and many leading institutions, such as the Pan American Health Organization and WHO, have shown interest in expanding the strategy used in this project to other countries dealing with arbovirus infection. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Jaqueline Goes de Jesus
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Marta Giovanetti
- Laboratory of Cellular and Molecular Genetics, ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Laboratory of Flaviviruses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
| | | | - Luiz Carlos Junior Alcantara
- Laboratory of Cellular and Molecular Genetics, ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Laboratory of Flaviviruses, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
17
|
Khachatryan L, Kraakman MEM, Bernards AT, Laros JFJ. BacTag - a pipeline for fast and accurate gene and allele typing in bacterial sequencing data based on database preprocessing. BMC Genomics 2019; 20:338. [PMID: 31060512 PMCID: PMC6501397 DOI: 10.1186/s12864-019-5723-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/22/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bacteria carry a wide array of genes, some of which have multiple alleles. These different alleles are often responsible for distinct types of virulence and can determine the classification at the subspecies levels (e.g., housekeeping genes for Multi Locus Sequence Typing, MLST). Therefore, it is important to rapidly detect not only the gene of interest, but also the relevant allele. Current sequencing-based methods are limited to mapping reads to each of the known allele reference, which is a time-consuming procedure. RESULTS To address this limitation, we developed BacTag - a pipeline that rapidly and accurately detects which genes are present in a sequencing dataset and reports the allele of each of the identified genes. We exploit the fact that different alleles of the same gene have a high similarity. Instead of mapping the reads to each of the allele reference sequences, we preprocess the database prior to the analysis, which makes the subsequent gene and allele identification efficient. During the preprocessing, we determine a representative reference sequence for each gene and store the differences between all alleles and this chosen reference. Throughout the analysis we estimate whether the gene is present in the sequencing data by mapping the reads to this reference sequence; if the gene is found, we compare the variants to those in the preprocessed database. This allows to detect which specific allele is present in the sequencing data. Our pipeline was successfully tested on artificial WGS E. coli, S. pseudintermedius, P. gingivalis, M. bovis, Borrelia spp. and Streptomyces spp. data and real WGS E. coli and K. pneumoniae data in order to report alleles of MLST house-keeping genes. CONCLUSIONS We developed a new pipeline for fast and accurate gene and allele recognition based on database preprocessing and parallel computing and performed better or comparable to the current popular tools. We believe that our approach can be useful for a wide range of projects, including bacterial subspecies classification, clinical diagnostics of bacterial infections, and epidemiological studies.
Collapse
Affiliation(s)
- Lusine Khachatryan
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margriet E M Kraakman
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexandra T Bernards
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.,GenomeScan, Leiden, The Netherlands
| |
Collapse
|
18
|
Complete genome sequencing of sixteen Francisella noatunensis subsp. orientalis isolates: A genomic approach for molecular characterization and spread dynamics of this clonal population. Genomics 2018; 110:442-449. [PMID: 30367926 DOI: 10.1016/j.ygeno.2018.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 11/23/2022]
Abstract
Francisella noatunensis subsp. orientalis (FNO) is an important emerging pathogen associated with disease outbreaks in farm-raised Nile tilapia. FNO genetic diversity using PCR-based typing, no intra-species discrimination was achieved among isolates/strains from different countries, thus demonstrating a clonal behaviour pattern. In this study, we aimed to evaluate the population structure of FNO isolates by comparing whole-genome sequencing data. The analysis of recombination showed that Brazilian isolates group formed a clonal population; whereas other lineages are also supported by this analysis for isolates from foreign countries. The whole-genome multilocus sequence typing (wgMLST) analysis showed varying numbers of dissimilar alleles, suggesting that the Brazilian clonal population are in expansion. Each Brazilian isolate could be identified as a single node by high-resolution gene-by-gene approach, presenting slight genetic differences associated to mutational events. The common ancestry node suggests a single entry into the country before 2012, and the rapid dissemination of this infectious agent may be linked to market sales of infected fingerlings.
Collapse
|
19
|
Newly emerging ulceroglandular tularaemia in Western Austria. Ticks Tick Borne Dis 2018; 9:1331-1333. [PMID: 29903512 DOI: 10.1016/j.ttbdis.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022]
Abstract
Tularaemia is a rare zoonotic disease caused by Francisella tularensis in humans. In Europe infections of humans and animals are mainly caused by F. tularensis subspecies holarctica. We report the first three documented cases of tularaemia in humans in Western Austria.
Collapse
|
20
|
Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Genome-Wide Typing of Clostridium difficile. J Clin Microbiol 2018; 56:JCM.01987-17. [PMID: 29618503 DOI: 10.1128/jcm.01987-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/28/2018] [Indexed: 01/18/2023] Open
Abstract
Clostridium difficile, recently renamed Clostridioides difficile, is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping (n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange.
Collapse
|
21
|
Schürch A, Arredondo-Alonso S, Willems R, Goering R. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. Clin Microbiol Infect 2018; 24:350-354. [DOI: 10.1016/j.cmi.2017.12.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
|
22
|
Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme. Vet Microbiol 2018; 218:84-89. [PMID: 29685226 DOI: 10.1016/j.vetmic.2018.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/17/2022]
Abstract
Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide.
Collapse
|
23
|
Busch A, Thomas P, Zuchantke E, Brendebach H, Neubert K, Gruetzke J, Al Dahouk S, Peters M, Hotzel H, Neubauer H, Tomaso H. Revisiting Francisella tularensis subsp. holarctica, Causative Agent of Tularemia in Germany With Bioinformatics: New Insights in Genome Structure, DNA Methylation and Comparative Phylogenetic Analysis. Front Microbiol 2018; 9:344. [PMID: 29593661 PMCID: PMC5859110 DOI: 10.3389/fmicb.2018.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/30/2022] Open
Abstract
Francisella (F.) tularensis is a highly virulent, Gram-negative bacterial pathogen and the causative agent of the zoonotic disease tularemia. Here, we generated, analyzed and characterized a high quality circular genome sequence of the F. tularensis subsp. holarctica strain 12T0050 that caused fatal tularemia in a hare. Besides the genomic structure, we focused on the analysis of oriC, unique to the Francisella genus and regulating replication in and outside hosts and the first report on genomic DNA methylation of a Francisella strain. The high quality genome was used to establish and evaluate a diagnostic whole genome sequencing pipeline. A genotyping strategy for F. tularensis was developed using various bioinformatics tools for genotyping. Additionally, whole genome sequences of F. tularensis subsp. holarctica isolates isolated in the years 2008–2015 in Germany were generated. A phylogenetic analysis allowed to determine the genetic relatedness of these isolates and confirmed the highly conserved nature of F. tularensis subsp. holarctica.
Collapse
Affiliation(s)
- Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Eric Zuchantke
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Holger Brendebach
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kerstin Neubert
- Algorithmic Bioinformatics, Department of Mathematics and Computer Science, Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Josephine Gruetzke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin Peters
- Standort Arnsberg, Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
24
|
Ghanem M, Wang L, Zhang Y, Edwards S, Lu A, Ley D, El-Gazzar M. Core Genome Multilocus Sequence Typing: a Standardized Approach for Molecular Typing of Mycoplasma gallisepticum. J Clin Microbiol 2018; 56:e01145-17. [PMID: 29070657 PMCID: PMC5744223 DOI: 10.1128/jcm.01145-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/14/2017] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma gallisepticum is the most virulent and economically important Mycoplasma species for poultry worldwide. Currently, M. gallisepticum strain differentiation based on sequence analysis of 5 loci remains insufficient for accurate outbreak investigation. Recently, whole-genome sequences (WGS) of many human and animal pathogens have been successfully used for microbial outbreak investigations. However, the massive sequence data and the diverse properties of different genes within bacterial genomes results in a lack of standard reproducible methods for comparisons among M. gallisepticum whole genomes. Here, we proposed the development of a core genome multilocus sequence typing (cgMLST) scheme for M. gallisepticum strains and field isolates. For development of this scheme, a diverse collection of 37 M. gallisepticum genomes was used to identify cgMLST targets. A total of 425 M. gallisepticum conserved genes (49.85% of M. gallisepticum genome) were selected as core genome targets. A total of 81 M. gallisepticum genomes from 5 countries on 4 continents were typed using M. gallisepticum cgMLST. Analyses of phylogenetic trees generated by cgMLST displayed a high degree of agreement with geographical and temporal information. Moreover, the high discriminatory power of cgMLST allowed differentiation between M. gallisepticum strains of the same outbreak. M. gallisepticum cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation among M. gallisepticum isolates. cgMLST provides stable and expandable nomenclature, allowing for comparison and sharing of typing results among laboratories worldwide. cgMLST offers an opportunity to harness the tremendous power of next-generation sequencing technology in applied avian mycoplasma epidemiology at both local and global levels.
Collapse
Affiliation(s)
- Mostafa Ghanem
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
- Faculty of Veterinary Medicine, Alexandria University, Rasheed El-Mahmoudeya, Markaz Rasheed, El Beheira Governorate, Egypt
| | - Leyi Wang
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, Ohio, USA
| | - Yan Zhang
- Animal Disease Diagnostic Laboratory, Ohio Department of Agriculture, Reynoldsburg, Ohio, USA
| | - Scott Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Amanda Lu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David Ley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Mohamed El-Gazzar
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Ågren J, Schäfer MO, Forsgren E. Using whole genome sequencing to study American foulbrood epidemiology in honeybees. PLoS One 2017; 12:e0187924. [PMID: 29140998 PMCID: PMC5687730 DOI: 10.1371/journal.pone.0187924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
American foulbrood (AFB), caused by Paenibacillus larvae, is a devastating disease in honeybees. In most countries, the disease is controlled through compulsory burning of symptomatic colonies causing major economic losses in apiculture. The pathogen is endemic to honeybees world-wide and is readily transmitted via the movement of hive equipment or bees. Molecular epidemiology of AFB currently largely relies on placing isolates in one of four ERIC-genotypes. However, a more powerful alternative is multi-locus sequence typing (MLST) using whole-genome sequencing (WGS), which allows for high-resolution studies of disease outbreaks. To evaluate WGS as a tool for AFB-epidemiology, we applied core genome MLST (cgMLST) on isolates from a recent outbreak of AFB in Sweden. The high resolution of the cgMLST allowed different bacterial clones involved in the disease outbreak to be identified and to trace the source of infection. The source was found to be a beekeeper who had sold bees to two other beekeepers, proving the epidemiological link between them. No such conclusion could have been made using conventional MLST or ERIC-typing. This is the first time that WGS has been used to study the epidemiology of AFB. The results show that the technique is very powerful for high-resolution tracing of AFB-outbreaks.
Collapse
Affiliation(s)
- Joakim Ågren
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Marc Oliver Schäfer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
26
|
Borde JP, Zange S, Antwerpen MH, Georgi E, von Buttlar H, Kern WV, Rieg S. Five cases of vector-borne Francisella tularensis holarctica infections in south-western Germany and genetic diversity. Ticks Tick Borne Dis 2017; 8:808-812. [PMID: 28684041 DOI: 10.1016/j.ttbdis.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 11/25/2022]
Abstract
Tularemia is a rare zoonotic disease in Germany. Francisella tularensis has been isolated previously from ticks in southern Germany underscoring the importance of ticks (Ixodes ricinus) in tularemia transmission, but there have been only few reports from this region with single cases or small case series of tick-borne transmissions of tularemia. We report five cases of non-game animal associated tularemia diagnosed from 2010 to 2016 in southwestern Germany - Baden-Wuerttemberg. Our case series and molecular typing (MLVA) results add published clinical experience to this underdiagnosed disease and consolidate previous findings regarding tick-borne transmission of tularemia and phylogenetic diversity in Germany.
Collapse
Affiliation(s)
- Johannes P Borde
- Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, Am Marktplatz 8, 77704 Oberkirch, Germany; Department of Medicine II, Division of Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Sabine Zange
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Markus H Antwerpen
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Heiner von Buttlar
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Winfried V Kern
- Department of Medicine II, Division of Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Siegbert Rieg
- Department of Medicine II, Division of Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
27
|
Higgins PG, Prior K, Harmsen D, Seifert H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS One 2017; 12:e0179228. [PMID: 28594944 PMCID: PMC5464626 DOI: 10.1371/journal.pone.0179228] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
We have employed whole genome sequencing to define and evaluate a core genome multilocus sequence typing (cgMLST) scheme for Acinetobacter baumannii. To define a core genome we downloaded a total of 1,573 putative A. baumannii genomes from NCBI as well as representative isolates belonging to the eight previously described international A. baumannii clonal lineages. The core genome was then employed against a total of fifty-three carbapenem-resistant A. baumannii isolates that were previously typed by PFGE and linked to hospital outbreaks in eight German cities. We defined a core genome of 2,390 genes of which an average 98.4% were called successfully from 1,339 A. baumannii genomes, while Acinetobacter nosocomialis, Acinetobacter pittii, and Acinetobacter calcoaceticus resulted in 71.2%, 33.3%, and 23.2% good targets, respectively. When tested against the previously identified outbreak strains, we found good correlation between PFGE and cgMLST clustering, with 0–8 allelic differences within a pulsotype, and 40–2,166 differences between pulsotypes. The highest number of allelic differences was between the isolates representing the international clones. This typing scheme was highly discriminatory and identified separate A. baumannii outbreaks. Moreover, because a standardised cgMLST nomenclature is used, the system will allow inter-laboratory exchange of data.
Collapse
Affiliation(s)
- Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- * E-mail:
| | - Karola Prior
- Department for Periodontology and Restorative Dentistry, University Hospital Muenster, Muenster, Germany
| | - Dag Harmsen
- Department for Periodontology and Restorative Dentistry, University Hospital Muenster, Muenster, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
28
|
Walter MC, Zwirglmaier K, Vette P, Holowachuk SA, Stoecker K, Genzel GH, Antwerpen MH. MinION as part of a biomedical rapidly deployable laboratory. J Biotechnol 2017; 250:16-22. [DOI: 10.1016/j.jbiotec.2016.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
29
|
|
30
|
Liu YY, Chen CC, Chiou CS. Construction of a Pan-Genome Allele Database of Salmonella enterica Serovar Enteritidis for Molecular Subtyping and Disease Cluster Identification. Front Microbiol 2016; 7:2010. [PMID: 28018331 PMCID: PMC5156723 DOI: 10.3389/fmicb.2016.02010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
We built a pan-genome allele database with 395 genomes of Salmonella enterica serovar Enteritidis and developed computer tools for analysis of whole genome sequencing (WGS) data of bacterial isolates for disease cluster identification. A web server (http://wgmlst.imst.nsysu.edu.tw) was set up with the database and the tools, allowing users to upload WGS data to generate whole genome multilocus sequence typing (wgMLST) profiles and to perform cluster analysis of wgMLST profiles. The usefulness of the database in disease cluster identification was demonstrated by analyzing a panel of genomes from 55 epidemiologically well-defined S. Enteritidis isolates provided by the Minnesota Department of Health. The wgMLST-based cluster analysis revealed distinct clades that were concordant with the epidemiologically defined outbreaks. Thus, using a common pan-genome allele database, wgMLST can be a promising WGS-based subtyping approach for disease surveillance and outbreak investigation across laboratories.
Collapse
Affiliation(s)
- Yen-Yi Liu
- Central Regional Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control Taichung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen UniversityKaohsiung, Taiwan; Medical Science and Technology Center, National Sun Yat-sen UniversityKaohsiung, Taiwan
| | - Chien-Shun Chiou
- Central Regional Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control Taichung, Taiwan
| |
Collapse
|
31
|
Martínez JL, Coque TM, Lanza VF, de la Cruz F, Baquero F. Genomic and metagenomic technologies to explore the antibiotic resistance mobilome. Ann N Y Acad Sci 2016; 1388:26-41. [PMID: 27861983 DOI: 10.1111/nyas.13282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance is a relevant problem for human health that requires global approaches to establish a deep understanding of the processes of acquisition, stabilization, and spread of resistance among human bacterial pathogens. Since natural (nonclinical) ecosystems are reservoirs of resistance genes, a health-integrated study of the epidemiology of antibiotic resistance requires the exploration of such ecosystems with the aim of determining the role they may play in the selection, evolution, and spread of antibiotic resistance genes, involving the so-called resistance mobilome. High-throughput sequencing techniques allow an unprecedented opportunity to describe the genetic composition of a given microbiome without the need to subculture the organisms present inside. However, bioinformatic methods for analyzing this bulk of data, mainly with respect to binning each resistance gene with the organism hosting it, are still in their infancy. Here, we discuss how current genomic methodologies can serve to analyze the resistance mobilome and its linkage with different bacterial genomes and metagenomes. In addition, we describe the drawbacks of current methodologies for analyzing the resistance mobilome, mainly in cases of complex microbiotas, and discuss the possibility of implementing novel tools to improve our current metagenomic toolbox.
Collapse
Affiliation(s)
- José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| | - Val F Lanza
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Cantabria, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| |
Collapse
|
32
|
SCHULZE C, HEUNER K, MYRTENNÄS K, KARLSSON E, JACOB D, KUTZER P, GROßE K, FORSMAN M, GRUNOW R. High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence. Epidemiol Infect 2016; 144:3025-3036. [PMID: 27356883 PMCID: PMC9150394 DOI: 10.1017/s0950268816001175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 11/06/2022] Open
Abstract
In Germany tularemia is a re-emerging zoonotic disease. Therefore, we investigated wild animals and environmental water samples for the presence and phylogenetic diversity of Francisella tularensis in the poorly studied Berlin/Brandenburg region. The phylogenomic analysis of three isolates from wild animals revealed three new subclades within the phylogenetic tree of F. tularensis [B.71 from a raccoon dog (Nyctereutes procyonoides); B.74 from a red fox (Vulpes vulpes), and B.75 from a Eurasian beaver (Castor fiber albicus)]. The results from histological, PCR, and genomic investigations on the dead beaver showed that the animal suffered from a systemic infection. Indications were found that the bacteria were released from the beaver carcass into the surrounding environment. We demonstrated unexpectedly high and novel phylogenetic diversity of F. tularensis in Germany and the fact that the bacteria persist in the environment for at least one climatic season. These findings support a broader host species diversity than previously known regarding Germany. Our data further support the assumption derived from previous serological studies of an underestimated frequency of occurrence of the pathogen in the environment and in wild animals. F. tularensis was isolated from animal species not previously reported as natural hosts in Germany.
Collapse
Affiliation(s)
- C. SCHULZE
- Landeslabor Berlin-Brandenburg, Frankfurt (Oder), Germany
| | - K. HEUNER
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Berlin, Germany
| | - K. MYRTENNÄS
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - E. KARLSSON
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - D. JACOB
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Berlin, Germany
| | - P. KUTZER
- Landeslabor Berlin-Brandenburg, Frankfurt (Oder), Germany
| | - K. GROßE
- Stadt Brandenburg an der Havel, Veterinär- und Lebensmittelüberwachungsamt, Germany
| | - M. FORSMAN
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), Umeå, Sweden
| | - R. GRUNOW
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Berlin, Germany
| |
Collapse
|
33
|
Lai XH, Zhao LF, Chen XM, Ren Y. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques. Open Microbiol J 2016; 10:64-77. [PMID: 27335619 PMCID: PMC4899538 DOI: 10.2174/1874285801610010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022] Open
Abstract
Francisella tularensis is the causative pathogen of tularemia and a
Tier 1 bioterror agent on the CDC list. Considering the fact that some
subpopulation of the F. tularensis strains is more virulent, more
significantly associated with mortality, and therefore poses more threat to
humans, rapid identification and characterization of this subpopulation strains
is of invaluable importance. This review summarizes the up-to-date developments
of assays for mainly detecting and characterizing F. tularensis and a
touch of caveats of some of the assays.
Collapse
Affiliation(s)
- Xin-He Lai
- Institute of Inflammation & Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Long-Fei Zhao
- College of Life Sciences, Key Laboratory of Plant-Microbe Interactions of Henan, Shangqiu Normal University, Shangqiu, Henan, 476000, PR China
| | - Xiao-Ming Chen
- Institute of Inflammation & Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Ren
- Institute of Inflammation & Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
34
|
Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. THE LANCET. INFECTIOUS DISEASES 2016; 16:113-124. [PMID: 26738841 DOI: 10.1016/s1473-3099(15)00355-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
Tularaemia is a zoonotic disease caused by Francisella tularensis, a Gram-negative, facultative intracellular bacterium. Typically, human and animal infections are caused by F tularensis subspecies tularensis (type A) strains mainly in Canada and USA, and F tularensis subspecies holarctica (type B) strains throughout the northern hemisphere, including Europe. In the past, the epidemiological, clinical, therapeutic, and prognostic aspects of tularaemia reported in the English medical literature were mainly those that had been reported in the USA, where the disease was first described. Tularaemia has markedly changed in the past decade, and a large number of studies have provided novel data for the disease characteristics in Europe. In this Review we aim to emphasise the specific and variable aspects of tularaemia in different European countries. In particular, two natural lifecycles of F tularensis have been described in this continent, although not fully characterised, which are associated with different modes of transmission, clinical features, and public health burdens of tularaemia.
Collapse
Affiliation(s)
- Max Maurin
- Centre National de Référence des Francisella, Département des Agents Infectieux, Institut de Biologie et Pathologie, CHU de Grenoble, Grenoble, cedex 9, France; Université Grenoble Alpes and Centre National de la Recherche Scientifique, Laboratoire Adaptation et Pathogénie des Microorganismes, IMR 5163, Grenoble, France.
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary; OIE Reference Laboratory for Tularemia, Budapest, Country
| |
Collapse
|
35
|
Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium. J Clin Microbiol 2015; 53:3788-97. [DOI: 10.1128/jcm.01946-15] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
Enterococcus faecium
, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of
E. faecium
. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for
E. faecium
. cgMLST transfers genome-wide single nucleotide polymorphism (SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The
E. faecium
cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the
E. faecium
cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of
E. faecium
outbreaks.
Collapse
|