1
|
Ren S, Chai J, Zhang L, Li J, Long X, Zhang T. The role of microRNAs in dexamethasone-induced skeletal muscle atrophy. Exp Gerontol 2025; 205:112749. [PMID: 40250741 DOI: 10.1016/j.exger.2025.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Muscle atrophy is characterized by a decrease in muscle mass, strength, and activity. Recently, it was determined that microRNAs (miRNAs) can regulate muscle atrophy and that dexamethasone (Dex), an allergy and autoimmune disorder treatment that can induce muscle atrophy. Therefore, this study was designed to identify miRNAs expressed in Dex-induced muscle atrophy in mice using small RNA sequencing. A total of 820 miRNAs were identified, with 58 miRNAs expressed explicitly in atrophic muscles. Dex-induced muscle atrophy miRNAs clustered separately from the differential miRNAs in aging, disuse, and cancer-induced muscle atrophy models. The target genes of Dex-induced muscle atrophy miRNAs were independently enriched in inositol phosphate metabolism, hypoxia-inducible factor-1 signaling pathway, etc. Of note, there was a significant increase in the volume of fat cells and adipose weight in the Dex group, suggesting that fat deposition during Dex-induced skeletal muscle atrophy is a unique and typical feature. SIMPLE SUMMARY: Dexamethasone (Dex) is a glucocorticoid used to treat allergic and autoimmune diseases, but excessive use can lead to skeletal muscle atrophy. We used dexamethasone (Dex) to build a muscle atrophy model in mice, and obvious changes had taken place in mouse body weight, muscle tissue morphology and related genes. A large number of microRNAs were found to be differentially expressed, and their functions were enriched in pathways related to muscle development. At the same time, we compared the similarities and differences of microRNAs and their functions between Dex induced muscle atrophy model and other muscle atrophy models. Finally, we were surprised to find that Dex induced muscle atrophy is specifically accompanied by the accumulation of body fat.
Collapse
Affiliation(s)
- Subi Ren
- Chongqing Academy of Animal Science, Rongchang, Chongqing 4024602, China
| | - Jie Chai
- Chongqing Academy of Animal Science, Rongchang, Chongqing 4024602, China; National Center of Technology Innovation for Pigs, Chongqing 4024602, China
| | - Lijuan Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 4024602, China; National Center of Technology Innovation for Pigs, Chongqing 4024602, China
| | - JiGang Li
- Chongqing Academy of Animal Science, Rongchang, Chongqing 4024602, China
| | - Xi Long
- Chongqing Academy of Animal Science, Rongchang, Chongqing 4024602, China; National Center of Technology Innovation for Pigs, Chongqing 4024602, China
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 4024602, China; National Center of Technology Innovation for Pigs, Chongqing 4024602, China.
| |
Collapse
|
2
|
Wang Y, Zhang D, Yu S, Zhang W, Tang Y, Yin L, Lin Z, Zhou R, Zhang Y, Lu L, Liu Y. miR-196-5p regulates myogenesis and induces slow-switch fibers formation by targeting PBX1. Int J Biol Macromol 2025; 305:141137. [PMID: 39965688 DOI: 10.1016/j.ijbiomac.2025.141137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Skeletal muscle, which is crucial for meat production, color, and quality is regulated by complex genetic mechanisms. MicroRNAs (miRNA), serve a crucial part in regulating skeletal muscle myogenesis together with the switching of muscle fiber types, but the identification of key miRNAs and their underlying molecular mechanism has been hindered. In the present study, miRNA sequencing was utilized to identify the differentially expressed miRNAs (DEMs) in different skeletal muscles, among which miR-196-5p was found notably upregulated in chicken soleus (SOL) muscles, suggesting the potential role of miR-196-5p in slow-switch fiber formation. Next, the gain- and loss-of-function experiments confirmed the inhibitory role and stimulatory effects of miR-196-5p on myoblast expansion, myotube maturation, and slow-switch myofibers formation, respectively. Through integrated bioinformatics and experimental analysis, the interaction between miR-196-5p and PBX1 was additionally clarified. PBX1 exhibits a promotive role in skeletal muscle myogenesis, while it exerts an inhibitory effect during the formation of slow-switch myofibers. In conclusion, we propose that miR-196-5p has an important involvement in modulating of skeletal muscle structural composition and function.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Songhang Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Weijie Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yupei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Department of Pig Production, Chongqing Academy of Animal Science, Chongqing 402460, China; College of Animal Science and Technology, Southwest University, Chongqing 402460, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and In-novation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Pareek CS, Sachajko M, Kalra G, Sultana S, Szostak A, Chalaskiewicz K, Kepka-Borkowska K, Poławska E, Ogłuszka M, Pierzchała D, Starzyński R, Taniguchi H, Juszczuk-Kubiak E, Lepczyński A, Ślaska B, Kozera W, Czarnik U, Wysocki P, Kadarmideen HN, Te Pas MFW, Szyda J, Pierzchała M. Identification of trait-associated microRNA modules in liver transcriptome of pig fed with PUFAs-enriched supplementary diet. J Appl Genet 2025; 66:389-407. [PMID: 39546271 PMCID: PMC12000271 DOI: 10.1007/s13353-024-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Dietary lipids provide energy, are cellular structural components, and are involved in physiological processes. Lipids are the dietary source in supplementary diet experiments in pigs. This study aims to investigate the dietary effects of PUFAs on the hepatic transcriptome and physiological pathways of two diets on two pig breeds. Polish Landrace (PL: n = 6) and six PLxDuroc (PLxD: n = 6) pigs were fed with a normal diet (n = 3) or PUFAs-enriched healthy diet (n = 3), and the hepatic miRNA profiles were studied for weighted gene co-expression network analysis biological interactions between gene networks and metabolic pathways of DE miRNA genes. The study identified trait-associated modules that were significantly associated with four phenotypic traits in the dietary groups of PL and PLxD: meat colour (a*), shoulder subcutaneous fat thickness, conductivity 24 h post-mortem (PE24), and ashes. Trait-wise, a large set of co-expressed miRNAs of porcine liver were identified in these trait-associated significant modules (9, 7, 2, and 8) in PL and PLxD. Each module is represented by a module eigengene (ME). Forty-four miRNAs out of 94 miRNAs interacted with 6719 statistically significant target genes with a target score > 90. The GO/pathway analysis showed association with pathways including regulation of metallopeptidase activity, sebaceous gland development, collagen fibril organization, WNT signalling, epithelial tube morphogenesis, etc. The study showed the differences in miRNA expression between the dietary groups of PL and PLxD breeds. Hub genes of discovered miRNA clusters can be considered predicted miRNA genes associated with PE24, meat colour, shoulder subcutaneous fat thickness, and ashes. Discovered target genes for miRNA clusters play significant roles in biological functions such as (i) muscle and body growth development, (ii) different cellular processes and developments, (iii) system development, and (iv) metabolic processes.
Collapse
Affiliation(s)
- C S Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - M Sachajko
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - G Kalra
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - S Sultana
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - A Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - K Chalaskiewicz
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - K Kepka-Borkowska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - E Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - M Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - D Pierzchała
- Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5 Str, 02-781, Warsaw, Poland
| | - R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
| | - H Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, UM6P, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
| | - E Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology Prof. Wacław, Dąbrowski Institute of Agriculture and Food Biotechnology - State Research Institute (IBPRS-PIB), Rakowiecka 36 Str, 02-532, Warsaw, Poland
| | - A Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str, 71-270, Szczecin, Poland
| | - B Ślaska
- Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 Str, 20-950, Lublin, Poland
| | - W Kozera
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - U Czarnik
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - P Wysocki
- Department of Pig Breeding, Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, Ul. M. Oczapowskiego 5 Str, 10-719, Olsztyn, Poland
| | - H N Kadarmideen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| | - M F W Te Pas
- Wageningen Livestock Research, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - J Szyda
- Biostatistics Group, Department of Genetics, Wrocław University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wrocław, Poland
| | - M Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A Str, 05-552, Jastrzebiec, Magdalenka, Poland.
| |
Collapse
|
4
|
Tan W, Liu C, Liu J, Wen S, Chen Y, Ren R, Gao N, Ding X, He J, Zhang Y. Integrative Analysis of ATAC-Seq and RNA-Seq Identifies Key Genes Affecting Muscle Development in Ningxiang Pigs. Int J Mol Sci 2025; 26:2634. [PMID: 40141276 PMCID: PMC11941884 DOI: 10.3390/ijms26062634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Meat production traits in pigs are critical economic characteristics, primarily influenced by the formation and development of skeletal muscle. Skeletal muscle development is regulated by a complex transcriptional network, which partly relies on chromatin accessibility for initiation. Ningxiang pigs, a renowned Chinese indigenous breed, are highly valued for their tender meat. However, studies focusing on skeletal muscle development in Ningxiang pigs, particularly from the perspective of chromatin accessibility, have not yet been reported. Based on this, the present study selected several key time points in the skeletal muscle development of Ningxiang pigs to perform Transposase-Accessible Chromatin Sequencing (ATAC-seq) and RNA sequencing (RNA-seq). This was carried out to identify key open chromatin regions and genes during different growth stages, which could influence skeletal muscle development in Ningxiang pigs. We collected longissimus dorsi muscle samples at postnatal days 14 (D14), 28 (D28), 85 (D85), 165 (D165), and 250 (D250). For each age, three individuals were collected for ATAC-seq and RNA-seq. After initial differential analysis among different ages, we identified 6412 differentially accessible chromatin peaks and 1464 differentially expressed genes. To clarify the key candidate transcription factors affecting the development of skeletal muscle in Ningxiang pigs, motif analysis of differential peaks revealed potential cis-regulatory elements with binding sites for transcription factors, including Fosl2 and JunB. Correlation analysis identified 56 overlapping genes and a significant positive correlation (r = 0.73, p = 1 × 10-14) between gene expression and chromatin accessibility. Key candidate genes such as HOXA10, closely related to skeletal muscle development, were specifically examined. These results enhance our understanding of the genetic and epigenetic regulatory mechanisms of porcine skeletal muscle development, providing a robust foundation for future molecular studies.
Collapse
Affiliation(s)
- Wenhua Tan
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Chenxi Liu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Juan Liu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Sheng Wen
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yantong Chen
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ruimin Ren
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ning Gao
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Jun He
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yuebo Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (W.T.); (C.L.); (J.L.); (S.W.); (Y.C.); (R.R.); (N.G.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
5
|
Xiang W, Yang F, Pu X, Zhao S, Wang P. A New Perspective on Pig Genetics and Breeding: microRNA. Reprod Domest Anim 2024; 59:e14751. [PMID: 39639849 DOI: 10.1111/rda.14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
microRNA (miRNA) is a class of small non-coding RNA molecules that are widely expressed in organisms and play an important role in the regulation of gene expression at the post-transcriptional level. In recent years, researchers have begun to explore its effects on the development of domestic animals and have begun to think about its potential role in modern molecular breeding. Increasing evidence shows that miRNA play a central role in the regulation of pig fertility, pork product quality and disease resistance. Understanding the physiological mechanism of miRNA will be able to better guide future breeding work. In this paper, we will review the research progress of the function and mechanism of miRNA in combination with the above economic characteristics of pigs. The reported miRNA and their target genes were sorted out to evaluate their potential role in improving economic traits such as pig fertility, meat quality and disease resistance, to provide a reference for modern pig molecular breeding.
Collapse
Affiliation(s)
- Wei Xiang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Fan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiufen Pu
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuang Zhao
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
7
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
8
|
Hong JH, Zhang HG. Transcription Factors Involved in the Development and Prognosis of Cardiac Remodeling. Front Pharmacol 2022; 13:828549. [PMID: 35185581 PMCID: PMC8849252 DOI: 10.3389/fphar.2022.828549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
To compensate increasing workload, heart must work harder with structural changes, indicated by increasing size and changing shape, causing cardiac remodeling. However, pathological and unlimited compensated cardiac remodeling will ultimately lead to decompensation and heart failure. In the past decade, numerous studies have explored many signaling pathways involved in cardiac remodeling, but the complete mechanism of cardiac remodeling is still unrecognized, which hinders effective treatment and drug development. As gene transcriptional regulators, transcription factors control multiple cellular activities and play a critical role in cardiac remodeling. This review summarizes the regulation of fetal gene reprogramming, energy metabolism, apoptosis, autophagy in cardiomyocytes and myofibroblast activation of cardiac fibroblasts by transcription factors, with an emphasis on their potential roles in the development and prognosis of cardiac remodeling.
Collapse
|
9
|
Archacka K, Ciemerych MA, Florkowska A, Romanczuk K. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration. Int J Mol Sci 2021; 22:ijms222111568. [PMID: 34768999 PMCID: PMC8583994 DOI: 10.3390/ijms222111568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022] Open
Abstract
miRNAs and lncRNAs do not encode proteins, but they play an important role in the regulation of gene expression. They differ in length, biogenesis, and mode of action. In this work, we focus on the selected miRNAs and lncRNAs involved in the regulation of myogenesis and muscle regeneration. We present selected miRNAs and lncRNAs that have been shown to control myogenic differentiation and show that manipulation of their levels could be used to improve myogenic differentiation of various types of stem and progenitor cells. Finally, we discuss how physical activity affects miRNA and lncRNA expression and how it affects muscle well-being.
Collapse
|
10
|
Xu X, Leng J, Zhang X, Capellini TD, Chen Y, Yang L, Chen Z, Zheng S, Zhang X, Zhan S, Wang L, Zhong T, Guo J, Niu L, Wang Y, Dai D, Zhang H, Li L, Cao J. Identification of IGF2BP1-related lncRNA-miRNA-mRNA network in goat skeletal muscle satellite cells. Anim Sci J 2021; 92:e13631. [PMID: 34545661 DOI: 10.1111/asj.13631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) plays essential roles in the proliferation of skeletal muscle satellite cells (MuSCs). Increasing evidence has shown that IGF2BP1 regulates the expression of noncoding RNAs and mRNAs. However, the related molecular network remains to be fully understood. Therefore, we performed RNA sequencing and analyzed the microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and mRNAs differentially expressed in goat MuSCs treated with IGF2BP1 overexpressing and empty vectors. A total of 36 miRNAs, 59 lncRNAs, and 44 mRNAs were differentially expressed caused by IGF2BP1. Expectedly, they were enriched in muscle development-related Rap1, PI3K-AKT, and FoxO signaling pathways. Finally, we constructed a lncRNA-miRNA-mRNA interaction network containing 30 lncRNAs, 15 miRNAs, and 34 mRNAs, in which several miRNAs, including miR-133a-3p, miR-204-5p, miR-125a-3p, miR-145-3p, and miR-423-5p, relate with cell growth and participate in muscle development. Overall, we constructed an IGF2BP1-related network, which provides new insight into the myogenic proliferation of goat.
Collapse
Affiliation(s)
- Xiaoli Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Junchen Leng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zitong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuailong Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xujia Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Tewari RS, Ala U, Accornero P, Baratta M, Miretti S. Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age. Sci Rep 2021; 11:15815. [PMID: 34349188 PMCID: PMC8339070 DOI: 10.1038/s41598-021-95137-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection.
Collapse
Affiliation(s)
- Rupal S Tewari
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
12
|
Wang X, Yan P, Feng S, Luo Y, Liang J, Zhao L, Liu H, Tang Q, Long K, Jin L, Ma J, Jiang A, Shuai S, Li M. Identification and expression pattern analysis of miRNAs in pectoral muscle during pigeon ( Columba livia) development. PeerJ 2021; 9:e11438. [PMID: 34221709 PMCID: PMC8234919 DOI: 10.7717/peerj.11438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of crucial regulators in the process of animal growth and development. However, little is known about the expression and function of miRNAs in pigeon muscles. To identify the miRNAs participating in the rapid development of pigeon pectoral muscles and quantitate their expression levels of pectoral muscles in different age stages, we performed miRNA transcriptome analysis in pigeon pectoral muscles by sequencing small RNAs over three different age stages (1-day old, 28 days old, and 2 years old). Dual-luciferase reporter assay was applied to validate the interaction between miRNA and its target gene. We identified 304 known miRNAs, 201 conserved miRNAs, and 86 novel miRNAs in pigeon pectoral muscles. 189 differentially expressed (DE) miRNAs were screened out during pigeon development. A short time-series expression miner (STEM) analysis indicated 89 DE miRNAs were significantly clustered in a progressively decreasing expression profile, and mainly enriched in biosynthesis-related GO categories and signaling pathways for MAPK and TGF-β. Dual-luciferase reporter assay indicated that a progressively down-regulated miRNA (miR-20b-5p) could directly target Krüppel-like factor 3 (KLF3) gene. To sum-up, our data expand the repertoire of pigeon miRNAs and enhance understanding of the mechanisms underlying rapid development in squabs.
Collapse
Affiliation(s)
- Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peiqi Yan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siyuan Feng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Luo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiyuan Liang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anan Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Surong Shuai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
14
|
Bonilauri B, Dallagiovanna B. Long Non-coding RNAs Are Differentially Expressed After Different Exercise Training Programs. Front Physiol 2020; 11:567614. [PMID: 33071823 PMCID: PMC7533564 DOI: 10.3389/fphys.2020.567614] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
Background Molecular regulation related to the health benefits of different exercise modes remains unclear. Long non-coding RNAs (lncRNAs) have emerged as an RNA class with regulatory functions in health and diseases. Here, we analyzed the expression of lncRNAs after different exercise training programs and their possible modes of action related to physical exercise adaptations. Methods Public high-throughput RNA-seq data (skeletal muscle biopsies) were downloaded, and bioinformatics analysis was performed. We primarily analyzed data reports of 12 weeks of resistance training (RT), high-intensity interval training (HIIT), and combined (CT) exercise training. In addition, we analyzed data from 8 weeks of endurance training (ET). Differential expression analysis of lncRNAs was performed, and an adjusted P-value < 0.1 and log2 (fold change) ≥0.5 or ≤-0.5 were set as the cutoff values to identify differentially expressed lncRNAs (DELs). Results We identified 204 DELs after 12 weeks of HIIT, 43 DELs after RT, and 15 DELs after CT. Moreover, 52 lncRNAs were differentially expressed after 8 weeks of ET. The lncRNA expression pattern after physical exercise was very specific, with distinct expression profiles for the different training programs, where few lncRNAs were common among the exercise types. LncRNAs may regulate molecular responses to exercise, such as collagen fibril organization, extracellular matrix organization, myoblast and plasma membrane fusion, skeletal muscle contraction, synaptic transmission, PI3K and TORC regulation, autophagy, and angiogenesis. Conclusion For the first time, we show that lncRNAs are differentially expressed in skeletal muscle after different physical exercise programs, and these lncRNAs may act in various biological processes related to physical activity adaptations.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute - FIOCRUZ-PR, Curitiba, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute - FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
15
|
Analysis of Transcriptome and miRNAome in the Muscle of Bamei Pigs at Different Developmental Stages. Animals (Basel) 2020; 10:ani10071198. [PMID: 32679676 PMCID: PMC7401622 DOI: 10.3390/ani10071198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The pigs is the most popular agricultural animal in the world. Muscle growth—which has the highest economic value in pigs—can be regulated by multiple genes and involves complex regulatory mechanisms. It is necessary to understand the dynamics of muscle transcriptome during development to understand the muscle development mechanism. However, the genes and miRNAs that play regulatory roles underlying differences in the meat quality of pigs remain unclear. In the current study, qRT-PCR, miRNA-Seq, and RNA-Seq were applied to analyze and verify muscle tissues of pigs from three different developmental stages and screened genes, miRNAs and pathways related to pig muscle development. This study focused on analyzing the mechanisms of muscle development and uncover the development differences in muscle from embryo to adult. Abstract The growth of skeletal muscle involves complex developmental processes that play an important part in the determinization of pork quality. The investigation of skeletal muscle mRNA or miRNA profiles is especially important for finding molecular approaches to improve meat quality in pig breeding. Therefore, we studied the transcriptome (mRNA and miRNA) profiles of skeletal muscle with RNA-Seq in three developmental stages of pigs: 65-day embryonic (E65), postnatal 0 days (natal) and 10 months (adult). We found 10,035, 9050 and 4841 differentially expressed (DE) genes for natal vs. E65, adult vs. E65 and adult vs. natal, 55, 101 and 85 DE miRNA for natal vs. E65, adult vs. E65 and adult vs. natal, respectively. In addition, the target genes of DE miRNA that was in a negative correlation with the corresponding miRNA in the same comparison group were selected for enrichment analysis. Gene Ontology terms were mainly classified into developmental processes. Pathway analysis revealed enrichment in the Rap1 signaling pathway, citrate cycle and oxidative phosphorylation and carbon. Finally, RT-PCR was employed for validating the level of expression of 11 DE miRNA and 14 DEGs. The transcriptome profiles of skeletal muscle from the different developmental stages of the Bamei pigs were obtained. From these data, hundreds of DE miRNA and mRNA, and the miRNA–mRNA regulatory network can provide valuable insights into further understanding of key molecular mechanisms and improving the meat quality in pig breeding.
Collapse
|
16
|
miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Sci Rep 2020; 10:10619. [PMID: 32606372 PMCID: PMC7326969 DOI: 10.1038/s41598-020-67482-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 down-regulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 down-regulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens.
Collapse
|
17
|
Altered expression of miRNAs and mRNAs reveals the potential regulatory role of miRNAs in the developmental process of early weaned goats. PLoS One 2019; 14:e0220907. [PMID: 31393969 PMCID: PMC6687162 DOI: 10.1371/journal.pone.0220907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) play pivotal roles in growth, development, and stress responses. However, the regulatory function of miRNAs in early weaned goats remains unclear. Deep sequencing comparison of mRNA and miRNA expression profiles showed that 18 miRNAs and 373 genes were differentially expressed in pre- and post-weaning Chongming white goats. Bioinformatics analysis indicated that these differentially expressed genes are involved in cellular processes, developmental processes, and growth in terms of biological process analysis. KEGG analysis showed that downregulated genes were enriched in salivary secretion, bile secretion, vascular smooth muscle contraction, and calcium signaling pathways. Additionally, a miRNA-mRNA co-expression network of the 18 dysregulated miRNAs and their 107 target mRNAs was constructed using a combination of Pearson’s correlation analysis and prediction by miRanda software. Among the downregulated miRNAs, two (chi-miR-206 and chi-miR-133a/b) were muscle development-related and the others were cell proliferation associated. Further RT-qPCR analysis confirmed that downregulated miRNAs (chi-miR-99b-3p, chi-miR-224, and chi-miR-10b-5p) were highly expressed in muscle tissues (heart, spleen, or kidney) of the rapid growth period (7-month old) in Chongming white goats. The results of the present study suggested that weaning induced cell proliferation repression in post-weaning goats, providing new insight into the mechanism of muscle development of goats, although additional details remain to be elucidated in the future.
Collapse
|
18
|
Cui F, Ji Y, Wang M, Gao F, Li Y, Li X. miR-143 inhibits proliferation and metastasis of nasopharyngeal carcinoma cells via targeting FMNL1 based on clinical and radiologic findings. J Cell Biochem 2019; 120:16427-16434. [PMID: 31001854 DOI: 10.1002/jcb.28709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
Mounting evidence has reported that microRNA-143 (miR-143) is involved in the development of multiple cancers. To investigate the underlying mechanisms of miR-143 regulating proliferation and metastasis in nasopharyngeal carcinoma (NPC) cells, we evaluated the levels of miR-143 and formin-like protein 1 (FMNL1) in NPC tissues. The results of qRT-PCR and Western blot analysis showed that the expression of miR-143 was decreased, while FMNL1 was increased in NPC tissues. The expression of miR-143 was significantly elevated in NPC cells compared with that of human nasopharyngeal epithelial cells. The results of MiRcode prediction, dual-luciferase reporter, and Western blot analysis assays indicated that miR-143 negatively regulated the expression of FMNL1 (r2 = 0.4365P = 0.0001). Overexperssion of miR-143 or FMNL1 knockdown inhibited cell proliferation, migration, and invasion in NPC cells (P < 0.05). Ectopic expression of FMNL1 undermined the inhibition effect of miR-143 on proliferation, migration, and invasion in NPC cells. The findings of this study revealed that miR-143 functioned as a tumor suppressor and inhibited the NPC progression by targeting FMNL1.
Collapse
Affiliation(s)
- Fusheng Cui
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| | - Yuqing Ji
- Ear-Nose-Throat Department, Xingtai People's Hospital, Hebei, China
| | - Man Wang
- Ear-Nose-Throat Department, Xingtai People's Hospital, Hebei, China
| | - Fengxiao Gao
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| | - Yongcai Li
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| | - Xueshen Li
- CT/MRI Department, Xingtai People's Hospital, Hebei, China
| |
Collapse
|
19
|
Teodori L, Costa A, Campanella L, Albertini MC. Skeletal Muscle Atrophy in Simulated Microgravity Might Be Triggered by Immune-Related microRNAs. Front Physiol 2019; 9:1926. [PMID: 30687129 PMCID: PMC6335973 DOI: 10.3389/fphys.2018.01926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/21/2018] [Indexed: 02/01/2023] Open
Abstract
Exposure to microgravity induces skeletal muscle disorders including atrophy, muscle force decrease, fiber-type shift. Microgravity also contributes to immune-function alterations and modifies microRNAs (miRs) expression. To understand the link between microgravity-induced skeletal muscle atrophy and immune function deregulation, a bioinformatics study was performed. The web platform MiRNet was used for miRs-targets interaction analysis from previous proteomic studies on human soleus (SOL) and vastus lateralis (VL) muscles. We predicted miRs targeting deregulated gene expression following bed rest as a model of microgravity exposure; namely, let-7a-5p, miR-125b-5p for over-expressed genes in SOL and VL; miR-1-3p, miR-125b-5p and miR-1-3p, miR-95-5p for down-expressed genes in VL and SOL. The predicted miRs have important immune functions, exhibiting a significant role on both inflammation and atrophy. Let-7a down-expression leads to proliferation pathways promotion and differentiation pathway inhibition, whereas miR-1-3p over-expression yields anti-proliferative effect, promoting early differentiation. Such conflicting signals could lead to impairment between proliferation and differentiation in skeletal muscles. Moreover, promotion of an M2-like macrophage phenotype (IL-13, IL-10) by let-7a down-regulation and simultaneous promotion of an M1-like macrophage (IL-6, TNF-α) phenotype through the over-expression of EEF2 lead to a deregulation between M1/M2 tuning, that is responsible for a first pro-inflammatory/proliferative phase followed by an anti-inflammatory pro-myogenic phase during skeletal muscle regeneration after injury. These observations are important to understand the mechanism by which inflammation may play a significant role in skeletal muscle dysfunction in spaceflights, providing new links between immune response and skeletal muscle deregulation, which may be useful to further investigate possible therapeutic intervention.
Collapse
Affiliation(s)
- Laura Teodori
- Diagnostic and Metrology Laboratory, TECFIS-FSN, ENEA, Frascati, Italy
| | - Alessandra Costa
- Diagnostic and Metrology Laboratory, TECFIS-FSN, ENEA, Frascati, Italy
| | - Luigi Campanella
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Maria C Albertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
20
|
Wu P, Dai G, Chen F, Chen L, Zhang T, Xie K, Wang J, Zhang G. Transcriptome profile analysis of leg muscle tissues between slow- and fast-growing chickens. PLoS One 2018; 13:e0206131. [PMID: 30403718 PMCID: PMC6221307 DOI: 10.1371/journal.pone.0206131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Chicken is widely favored by consumers because of some unique features. The leg muscles occupy an important position in the market. However, the specific mechanism for regulating muscle growth speed is not clear. In this experiment, we used Jinghai yellow chickens with different body weights at 300 days as research subjects. The chickens were divided into fast- and slow-growing groups, and we collected leg muscles after slaughtering for use in RNA-seq. After comparing the two groups, 87 differentially expressed genes (DEGs) were identified (fold change ≥ 2 and FDR < 0.05). The fast-growing group had 42 up-regulated genes and 45 down-regulated genes among these DEGs compared to the slow-growing group. Six items were significantly enriched in the biological process: embryo development ending in birth or egg hatching, chordate embryonic development, embryonic skeletal system development, and embryo development as well as responses to ketones and the sulfur compound biosynthetic process. Two significantly enriched pathways were found in the KEGG pathway analysis (P-value < 0.05): the insulin signaling pathway and the adipocytokine signaling pathway. This study provides a theoretical basis for the molecular mechanism of chicken growth and for improving the production of Jinghai yellow chicken.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| |
Collapse
|
21
|
Miao Z, Wang S, Wang Y, Wei P, Khan MA, Zhang J, Guo L, Liu D. Comparison of microRNAs in the intramuscular adipose tissue from Jinhua and Landrace pigs. J Cell Biochem 2018; 120:192-200. [DOI: 10.1002/jcb.27298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Panpeng Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Muhammad Akram Khan
- Department of Pathobiology Faculty of Veterinary and Animal Sciences, PMAS‐Arid Agriculture University Rawalpindi Rawalpindi Pakistan
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Liping Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology Xinxiang Henan China
| |
Collapse
|
22
|
Expression and Regulation Profile of Mature MicroRNA in the Pig: Relevance to Xenotransplantation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2983908. [PMID: 29750148 PMCID: PMC5884403 DOI: 10.1155/2018/2983908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Abstract
The pig is an important source of meat production and provides a valuable model for certain human diseases. MicroRNA (miRNA), which is noncoding RNA and regulates gene expression at the posttranscriptional level, plays a critical role in various biological processes. Studies on identification and function of mature miRNAs in multiple pig tissues are increasing, yet the literature is limited. Therefore, we reviewed current research to determine the miRNAs expressed in specific pig tissues that are involved in carcass values (including muscle and adipocytes), reproduction (including pituitary, testis, and ovary), and development of some solid organs (e.g., brain, lung, kidney, and liver). We also discuss the possible regulating mechanisms of miRNA. Finally, as pig organs are suitable candidates for xenotransplantation, biomarkers of their miRNA in xenotransplantation were evaluated.
Collapse
|
23
|
Proteomic and microRNA Transcriptome Analysis revealed the microRNA-SmyD1 network regulation in Skeletal Muscle Fibers performance of Chinese perch. Sci Rep 2017; 7:16498. [PMID: 29184116 PMCID: PMC5705591 DOI: 10.1038/s41598-017-16718-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Fish myotomes are comprised of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. Although the expression profile properties in fast and slow muscle fibers had been investigated at the mRNA levels, a comprehensive analysis at proteomic and microRNA transcriptomic levels is limited. In the present study, we first systematically compared the proteomic and microRNA transcriptome of the slow and fast muscles of Chinese perch (Siniperca chuatsi). Total of 2102 proteins were identified in muscle tissues. Among them, 99 proteins were differentially up-regulated and 400 were down-regulated in the fast muscle compared with slow muscle. MiRNA microarrays revealed that 199 miRNAs identified in the two types of muscle fibers. Compared with the fast muscle, the 32 miRNAs was up-regulated and 27 down-regulated in the slow muscle. Specifically, expression of miR-103 and miR-144 was negatively correlated with SmyD1a and SmyD1b expression in fast and slow muscles, respectively. The luciferase reporter assay further verified that the miR-103 and miR-144 directly regulated the SmyD1a and SmyD1b expression by targeting their 3′-UTR. The constructed miRNA-SmyD1 interaction network might play an important role in controlling the development and performance of different muscle fiber types in Chinese perch.
Collapse
|
24
|
Guo J, Zhao W, Zhan S, Li L, Zhong T, Wang L, Dong Y, Zhang H. Identification and Expression Profiling of miRNAome in Goat longissimus dorsi Muscle from Prenatal Stages to a Neonatal Stage. PLoS One 2016; 11:e0165764. [PMID: 27798673 PMCID: PMC5087842 DOI: 10.1371/journal.pone.0165764] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle development is a complex biological process regulated by numerous genes and non-coding RNAs, such as microRNAs (miRNAs). In the current study, we made use of the deep sequencing data from Jianzhou Da’er goat longissimus dorsi sampled on days 45, 60, and 105 of gestation, as well as day three after birth to identify miRNAs that regulate goat skeletal myogenesis, and examine their temporal expression profiles. A total of 410 known goat miRNAs, 752 miRNA homologs and 88 novel miRNAs were identified across four stages. Besides three myomiRs, the abundance of 17 miRNAs, including chi-miR-424, chi-miR-542-3p and chi-miR-136-5p was more than 10,000 reads per million mapped reads (RPM), on average. Furthermore, 50 miRNAs with more than 100 RPM clustered at the imprinted DLK1–DIO3 locus on chromosome 21 and showed similar expression patterns, indicating that these miRNAs played important roles in skeletal myogenesis of goats. Based on pairwise comparisons, 221 differentially expressed (DE), known miRNAs were identified across four stages. GO and KEGG analyses of the genes targeted by the DE miRNAs revealed the significantly enriched processes and pathways to be consistent with temporal changes of skeletal muscle development across all sampled stages. However, follow-up experimental studies were required to explore functions of these miRNAs and targets underlying skeletal myogenesis.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Wei Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Yao Dong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Postcode 611130, People’s Republic of China
- * E-mail:
| |
Collapse
|
25
|
MicroRNA Stability in FFPE Tissue Samples: Dependence on GC Content. PLoS One 2016; 11:e0163125. [PMID: 27649415 PMCID: PMC5029930 DOI: 10.1371/journal.pone.0163125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/03/2016] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs responsible for fine-tuning of gene expression at post-transcriptional level. The alterations in miRNA expression levels profoundly affect human health and often lead to the development of severe diseases. Currently, high throughput analyses, such as microarray and deep sequencing, are performed in order to identify miRNA biomarkers, using archival patient tissue samples. MiRNAs are more robust than longer RNAs, and resistant to extreme temperatures, pH, and formalin-fixed paraffin-embedding (FFPE) process. Here, we have compared the stability of miRNAs in FFPE cardiac tissues using next-generation sequencing. The mode read length in FFPE samples was 11 nucleotides (nt), while that in the matched frozen samples was 22 nt. Although the read counts were increased 1.7-fold in FFPE samples, compared with those in the frozen samples, the average miRNA mapping rate decreased from 32.0% to 9.4%. These results indicate that, in addition to the fragmentation of longer RNAs, miRNAs are to some extent degraded in FFPE tissues as well. The expression profiles of total miRNAs in two groups were highly correlated (0.88 <r < 0.92). However, the relative read count of each miRNA was different depending on the GC content (p<0.0001). The unequal degradation of each miRNA affected the abundance ranking in the library, and miR-133a was shown to be the most abundant in FFPE cardiac tissues instead of miR-1, which was predominant before fixation. Subsequent quantitative PCR (qPCR) analyses revealed that miRNAs with GC content of less than 40% are more degraded than GC-rich miRNAs (p<0.0001). We showed that deep sequencing data obtained using FFPE samples cannot be directly compared with that of fresh frozen samples. The combination of miRNA deep sequencing and other quantitative analyses, such as qPCR, may improve the utility of archival FFPE tissue samples.
Collapse
|
26
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
27
|
Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge. Int J Mol Sci 2015; 16:22438-55. [PMID: 26389897 PMCID: PMC4613317 DOI: 10.3390/ijms160922438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS) challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192) were selected for validation by quantitative polymerase chain reaction (qPCR), which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1) mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.
Collapse
|