1
|
Hiyama TY. Understanding of Thirst in Medical Science. Yonago Acta Med 2025; 68:1-11. [PMID: 39968113 PMCID: PMC11831041 DOI: 10.33160/yam.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025]
Abstract
Thirst is fundamentally considered as a physiological function developed to maintain the homeostasis of body fluids. However, we occasionally experience thirst in situations that are not necessarily related to the maintenance of bodily fluid homeostasis. Because the only method available had been to quantify the degree of thirst using psychological indices, thirst research had made little progress until very recently. To quantitatively analyze thirst, it is necessary to elucidate the nature of the brain's "thirst center," which is believed to become active in response to thirst. Textbooks of physiology often refer to the "thirst center" in the hypothalamus, which is considered to sense the osmotic pressure of body fluids. However, they did not specify the location of this center in the hypothalamus. Furthermore, the existence of the so-called "osmotic pressure sensors" has yet to be confirmed. However, recently, a series of findings have been published that delve into the true nature of the thirst center. These advancements have been achieved using several new techniques, including the real-time monitoring of neural activities related to thirst regulation within the brains of experimental animals. At least at the animal level, recent advancements in experimental techniques have made it possible to objectively quantify the intensity of thirst as a physiological response. In this review article, the history of our research is presented and latest developments in thirst research are presented.
Collapse
Affiliation(s)
- Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, Yonago 683-8503, Japan and
- International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
| |
Collapse
|
2
|
Hiyama TY. Brain sodium sensing for regulation of thirst, salt appetite, and blood pressure. Physiol Rep 2024; 12:e15970. [PMID: 38479999 PMCID: PMC10937250 DOI: 10.14814/phy2.15970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
The brain possesses intricate mechanisms for monitoring sodium (Na) levels in body fluids. During prolonged dehydration, the brain detects variations in body fluids and produces sensations of thirst and aversions to salty tastes. At the core of these processes Nax , the brain's Na sensor, exists. Specialized neural nuclei, namely the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), which lack the blood-brain barrier, play pivotal roles. Within the glia enveloping the neurons in these regions, Nax collaborates with Na+ /K+ -ATPase and glycolytic enzymes to drive glycolysis in response to elevated Na levels. Lactate released from these glia cells activates nearby inhibitory neurons. The SFO hosts distinct types of angiotensin II-sensitive neurons encoding thirst and salt appetite, respectively. During dehydration, Nax -activated inhibitory neurons suppress salt-appetite neuron's activity, whereas salt deficiency reduces thirst neuron's activity through cholecystokinin. Prolonged dehydration increases the Na sensitivity of Nax via increased endothelin expression in the SFO. So far, patients with essential hypernatremia have been reported to lose thirst and antidiuretic hormone release due to Nax -targeting autoantibodies. Inflammation in the SFO underlies the symptoms. Furthermore, Nax activation in the OVLT, driven by Na retention, stimulates the sympathetic nervous system via acid-sensing ion channels, contributing to a blood pressure elevation.
Collapse
Affiliation(s)
- Takeshi Y. Hiyama
- Department of Integrative PhysiologyTottori University Graduate School and Faculty of MedicineYonagoJapan
| |
Collapse
|
3
|
Structure-guided unlocking of Na X reveals a non-selective tetrodotoxin-sensitive cation channel. Nat Commun 2022; 13:1416. [PMID: 35301303 PMCID: PMC8931054 DOI: 10.1038/s41467-022-28984-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Unlike classical voltage-gated sodium (NaV) channels, NaX has been characterized as a voltage-insensitive, tetrodotoxin-resistant, sodium (Na+)-activated channel involved in regulating Na+ homeostasis. However, NaX remains refractory to functional characterization in traditional heterologous systems. Here, to gain insight into its atypical physiology, we determine structures of the human NaX channel in complex with the auxiliary β3-subunit. NaX reveals structural alterations within the selectivity filter, voltage sensor-like domains, and pore module. We do not identify an extracellular Na+-sensor or any evidence for a Na+-based activation mechanism in NaX. Instead, the S6-gate remains closed, membrane lipids fill the central cavity, and the domain III-IV linker restricts S6-dilation. We use protein engineering to identify three pore-wetting mutations targeting the hydrophobic S6-gate that unlock a robust voltage-insensitive leak conductance. This constitutively active NaX-QTT channel construct is non-selective among monovalent cations, inhibited by extracellular calcium, and sensitive to classical NaV channel blockers, including tetrodotoxin. Our findings highlight a functional diversity across the NaV channel scaffold, reshape our understanding of NaX physiology, and provide a template to demystify recalcitrant ion channels.
Collapse
|
4
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Dolivo D, Rodrigues A, Sun L, Li Y, Hou C, Galiano R, Hong SJ, Mustoe T. The Na x (SCN7A) channel: an atypical regulator of tissue homeostasis and disease. Cell Mol Life Sci 2021; 78:5469-5488. [PMID: 34100980 PMCID: PMC11072345 DOI: 10.1007/s00018-021-03854-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022]
Abstract
Within an articulately characterized family of ion channels, the voltage-gated sodium channels, exists a black sheep, SCN7A (Nax). Nax, in contrast to members of its molecular family, has lost its voltage-gated character and instead rapidly evolved a new function as a concentration-dependent sensor of extracellular sodium ions and subsequent signal transducer. As it deviates fundamentally in function from the rest of its family, and since the bulk of the impressive body of literature elucidating the pathology and biochemistry of voltage-gated sodium channels has been performed in nervous tissue, reports of Nax expression and function have been sparse. Here, we investigate available reports surrounding expression and potential roles for Nax activity outside of nervous tissue. With these studies as justification, we propose that Nax likely acts as an early sensor that detects loss of tissue homeostasis through the pathological accumulation of extracellular sodium and/or through endothelin signaling. Sensation of homeostatic aberration via Nax then proceeds to induce pathological tissue phenotypes via promotion of pro-inflammatory and pro-fibrotic responses, induced through direct regulation of gene expression or through the generation of secondary signaling molecules, such as lactate, that can operate in an autocrine or paracrine fashion. We hope that our synthesis of much of the literature investigating this understudied protein will inspire more research into Nax not simply as a biochemical oddity, but also as a potential pathophysiological regulator and therapeutic target.
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Adrian Rodrigues
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Lauren Sun
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Yingxing Li
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Chun Hou
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
- Department of Plastic and Cosmetic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robert Galiano
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Seok Jong Hong
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA.
- , 300 E. Superior St., Chicago, IL, 60611, USA.
| | - Thomas Mustoe
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA.
- , 737 N. Michigan Ave., Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
7
|
Loeffler CR, Bodi D, Tartaglione L, Dell'Aversano C, Preiss-Weigert A. Improving in vitro ciguatoxin and brevetoxin detection: selecting neuroblastoma (Neuro-2a) cells with lower sensitivity to ouabain and veratridine (OV-LS). HARMFUL ALGAE 2021; 103:101994. [PMID: 33980434 DOI: 10.1016/j.hal.2021.101994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Marine biotoxins accumulating in seafood products pose a risk to human health. These toxins are often potent in minute amounts and contained within complex matrices; requiring sensitive, reliable, and robust methods for their detection. The mouse neuroblastoma (Neuro-2a) cytotoxicity assay (N2a-assay) is a sensitive, high-throughput, in vitro method effective for detecting sodium channel-specific marine biotoxins. The N2a-assay can be conducted to distinguish between specific effects on voltage-gated sodium (NaV) channels, caused by toxins that activate (e.g., ciguatoxins (CTXs), brevetoxins (PbTxs)) or block (e.g., tetrodotoxins, saxitoxins) the target NaV. The sensitivity and specificity of the assay to compounds activating the NaV are achieved through the addition of the pharmaceuticals ouabain (O) and veratridine (V). However, these compounds can be toxic to Neuro-2a cells and their application at insufficient or excessive concentrations can reduce the effectiveness of this assay for marine toxin detection. Therefore, during growth incubation, Neuro-2a cells were exposed to O and V, and surviving cells exhibiting a lower sensitivity to O and V (OV-LS) were propagated. OV-LS Neuro-2a cells were selected for 60-80% survival when exposed to 0.22/0.022 mM O/V during the cytotoxicity assay. At these conditions, OV-LS N2a cells demonstrated a 3.5-fold higher survival rate 71% ± 7.9 SD (n = 232), and lower sensitivity to O/V, compared to the original Neuro-2a cells 20% ± 9.0 SD (n = 16). Additionally, OV-LS N2a cells were 1.3-2.6-fold more sensitive for detecting CTX3C 1.35 pg/ml, CTX1B 2.06 pg/ml, and PbTx-3 3.04 ng/ml compared to Neuro-2a cells using 0.1/0.01 mM O/V. Detection of CTX3C in a complex fish matrix using OV-LS cells was 0.0048 pg CTX3C/mg fish tissue equivalent. This work shows the potential for a significant improvement in sensitivity for CTX3C, CTX1B, and PbTx-3 using the OV-LS N2a-assay.
Collapse
Affiliation(s)
- Christopher R Loeffler
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de; Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Dorina Bodi
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Angelika Preiss-Weigert
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| |
Collapse
|
8
|
Ueno H, Sanada K, Miyamoto T, Baba K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Oginosawa Y, Araki M, Sonoda S, Onaka T, Otsuji Y, Ueta Y. Oxytocin-monomeric red fluorescent protein 1 synthesis in the hypothalamus under osmotic challenge and acute hypovolemia in a transgenic rat line. Physiol Rep 2020; 8:e14558. [PMID: 32914562 PMCID: PMC7507703 DOI: 10.14814/phy2.14558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
We generated a transgenic rat line that expresses oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualize the dynamics of OXT. In this transgenic rat line, hypothalamic OXT can be assessed under diverse physiological and pathophysiological conditions by semiquantitative fluorometry of mRFP1 fluorescence intensity as a surrogate marker for endogenous OXT. Using this transgenic rat line, we identified the changes in hypothalamic OXT synthesis under various physiological conditions. However, few reports have directly examined hypothalamic OXT synthesis under hyperosmolality or hypovolemia. In this study, hypothalamic OXT synthesis was investigated using the transgenic rat line after acute osmotic challenge and acute hypovolemia induced by intraperitoneal (i.p.) administration of 3% hypertonic saline (HTN) and polyethylene glycol (PEG), respectively. The mRFP1 fluorescence intensity in the paraventricular (PVN) and supraoptic nuclei (SON) was significantly increased after i.p. administration of HTN and PEG, along with robust Fos-like immunoreactivity (co-expression). Fos expression showed neuronal activation in the brain regions that are associated with the hypothalamus and/or are involved in maintaining water and electrolyte homeostasis in HTN- and PEG-treated rats. OXT and mRFP1 gene expressions were dramatically increased after HTN and PEG administration. The plasma OXT level was extremely increased after HTN and PEG administration. Acute osmotic challenge and acute hypovolemia induced upregulation of hypothalamic OXT in the PVN and SON. These results suggest that not only endogenous arginine vasopressin (AVP) but also endogenous OXT has a key role in maintaining body fluid homeostasis to cope with hyperosmolality and hypovolemia.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kenya Sanada
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Tetsu Miyamoto
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuhiko Baba
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kentaro Tanaka
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Haruki Nishimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuaki Nishimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Satomi Sonoda
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Mitsuhiro Yoshimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Takashi Maruyama
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Yasushi Oginosawa
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Masaru Araki
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Shinjo Sonoda
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Yutaka Otsuji
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Yoichi Ueta
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| |
Collapse
|
9
|
Sakuta H, Lin CH, Yamada M, Kita Y, Tokuoka SM, Shimizu T, Noda M. Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na+] in body fluids. Neurosci Res 2020; 154:45-51. [DOI: 10.1016/j.neures.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023]
|
10
|
Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, Kobayashi K, Kuwaki T, Takahashi K, Matsui S, Noda M. [Na +] Increases in Body Fluids Sensed by Central Na x Induce Sympathetically Mediated Blood Pressure Elevations via H +-Dependent Activation of ASIC1a. Neuron 2018; 101:60-75.e6. [PMID: 30503172 DOI: 10.1016/j.neuron.2018.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Increases in sodium concentrations ([Na+]) in body fluids elevate blood pressure (BP) by enhancing sympathetic nerve activity (SNA). However, the mechanisms by which information on increased [Na+] is translated to SNA have not yet been elucidated. We herein reveal that sympathetic activation leading to BP increases is not induced by mandatory high salt intakes or the intraperitoneal/intracerebroventricular infusions of hypertonic NaCl solutions in Nax-knockout mice in contrast to wild-type mice. We identify Nax channels expressed in specific glial cells in the organum vasculosum lamina terminalis (OVLT) as the sensors detecting increases in [Na+] in body fluids and show that OVLT neurons projecting to the paraventricular nucleus (PVN) are activated via acid-sensing ion channel 1a (ASIC1a) by H+ ions exported from Nax-positive glial cells. The present results provide an insight into the neurogenic mechanisms responsible for salt-induced BP elevations.
Collapse
Affiliation(s)
- Kengo Nomura
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Hiraki Sakuta
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Takashi Matsuda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Chia-Hao Lin
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kunihiko Takahashi
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets. RECENT FINDINGS Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin. Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.
Collapse
|
12
|
Abstract
Water intake is one of the most basic physiological responses and is essential to sustain life. The perception of thirst has a critical role in controlling body fluid homeostasis and if neglected or dysregulated can lead to life-threatening pathologies. Clear evidence suggests that the perception of thirst occurs in higher-order centres, such as the anterior cingulate cortex (ACC) and insular cortex (IC), which receive information from midline thalamic relay nuclei. Multiple brain regions, notably circumventricular organs such as the organum vasculosum lamina terminalis (OVLT) and subfornical organ (SFO), monitor changes in blood osmolality, solute load and hormone circulation and are thought to orchestrate appropriate responses to maintain extracellular fluid near ideal set points by engaging the medial thalamic-ACC/IC network. Thirst has long been thought of as a negative homeostatic feedback response to increases in blood solute concentration or decreases in blood volume. However, emerging evidence suggests a clear role for thirst as a feedforward adaptive anticipatory response that precedes physiological challenges. These anticipatory responses are promoted by rises in core body temperature, food intake (prandial) and signals from the circadian clock. Feedforward signals are also important mediators of satiety, inhibiting thirst well before the physiological state is restored by fluid ingestion. In this Review, we discuss the importance of thirst for body fluid balance and outline our current understanding of the neural mechanisms that underlie the various types of homeostatic and anticipatory thirst.
Collapse
Affiliation(s)
- Claire Gizowski
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| |
Collapse
|
13
|
Hagiwara T, Yoshida S, Hidaka Y. Gene expression of the concentration-sensitive sodium channel is suppressed in lipopolysaccharide-induced acute lung injury in mice. Exp Lung Res 2017; 43:150-157. [PMID: 28557567 DOI: 10.1080/01902148.2017.1321064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The concentration-sensitive sodium channel (NaC) is expressed in alveolar type II epithelial cells and pulmonary microvascular endothelial cells in mouse lungs. We recently reported that NaC contributes to amiloride-insensitive sodium transport in mouse lungs (Respiratory Physiology & Neurobiology, 2016). However, details regarding its physiological role in the lung remain unknown. To examine whether NaC is involved in alveolar fluid clearance during an acute lung injury (ALI), we analyzed the relationship between NaC gene expression in the lung and the development of pulmonary edema in lipopolysaccharide (LPS)-induced ALI mice. METHODS LPS-induced ALI mice were prepared by the intratracheal administration of LPS. Bronchoalveolar lavage (BAL) neutrophils and lung water content (LWCs) were used as a marker of ALI and pulmonary edema, respectively. NaC protein production in the lung was detected by immunoblotting and immunofluorescence. The gene expressions of NaC and the epithelial sodium channel (ENaC) of LPS-induced ALI mice were examined by quantitative RT-PCR over a time course of 14 days. RESULTS The BAL neutrophil count increased until day 2 after LPS administration and had nearly recovered by day 6. LWCs in LPS-induced mice gradually increased until day 8 and had recovered by day 14. The expression of the NaC protein in the lungs of LPS-induced mice dramatically decreased from day 2 to day 6, but recovered by day 8. The mRNA expression of NaC decreased in the lung, as well as those for α-, β-, and γ-ENaC during ALI. Thus, NaC expression is suppressed during the development stage of pulmonary edema and then recovers in the convalescent phase. CONCLUSION Our results suggest that suppression of the gene expression of NaC is involved in the development of pulmonary edema in ALI.
Collapse
Affiliation(s)
- Teruki Hagiwara
- a Department of Life Science, Faculty of Science and Engineering , Kindai University , Higashi-Osaka , Osaka , Japan
| | - Shigeru Yoshida
- a Department of Life Science, Faculty of Science and Engineering , Kindai University , Higashi-Osaka , Osaka , Japan
| | - Yuji Hidaka
- a Department of Life Science, Faculty of Science and Engineering , Kindai University , Higashi-Osaka , Osaka , Japan
| |
Collapse
|
14
|
Marunaka Y, Marunaka R, Sun H, Yamamoto T, Kanamura N, Taruno A. Na + homeostasis by epithelial Na + channel (ENaC) and Na x channel (Na x): cooperation of ENaC and Na x. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S11. [PMID: 27867979 PMCID: PMC5104600 DOI: 10.21037/atm.2016.10.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshinori Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Department of Bio-Ionomics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Japan Institute for Food Education and Health, St. Agnes’ University, Kyoto 602-8013, Japan
| | - Rie Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Hongxin Sun
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
15
|
Hiyama TY, Noda M. Sodium sensing in the subfornical organ and body-fluid homeostasis. Neurosci Res 2016; 113:1-11. [PMID: 27521454 DOI: 10.1016/j.neures.2016.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 01/28/2023]
Abstract
The brain monitors conditions of body fluids and levels of circulating neuroactive factors to maintain the systemic homeostasis. Unlike most regions in the brain, circumventricular organs (CVOs) lack the blood-brain barrier, and serve as the sensing center. Among the CVOs, the subfornical organ (SFO) is the sensing site of Na+ levels in body fluids to control water and salt intake. The SFO harbors neuronal cell bodies with a variety of hormone receptors and innervates many brain loci. In addition, the SFO harbors specialized glial cells (astrocytes and ependymal cells) expressing Nax, a Na+-level-sensitive sodium channel. These glial cells wrap a specific population of neurons with their processes, and control the firing activities of the neurons by gliotransmitters, such as lactate and epoxyeicosatrienoic acids (EETs), relevant to water/salt-intake behaviors. Recent advances in the understanding of physiological functions of the SFO are reviewed herein with a focus on the Na+-sensing mechanism by Nax.
Collapse
Affiliation(s)
- Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, and School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan.
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, and School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
16
|
Sakuta H, Nishihara E, Hiyama TY, Lin CH, Noda M. Nax signaling evoked by an increase in [Na+] in CSF induces water intake via EET-mediated TRPV4 activation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R299-306. [DOI: 10.1152/ajpregu.00352.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/27/2016] [Indexed: 11/22/2022]
Abstract
Water-intake behavior is under the control of brain systems that sense body fluid conditions at sensory circumventricular organs (sCVOs); however, the underlying mechanisms have not yet been elucidated in detail. Nax is a sodium (Na+) level sensor in the brain, and the transient receptor potential vanilloid (TRPV) channels TRPV1 and TRPV4 have been proposed to function as osmosensors. We herein investigated voluntary water intake immediately induced after an intracerebroventricular administration of a hypertonic NaCl solution in TRPV1-, TRPV4-, Na x-, and their double-gene knockout (KO) mice. The induction of water intake by TRPV1-KO mice was normal, whereas intake by TRPV4-KO and Na x-KO mice was significantly less than that by WT mice. Water intake by Na x /TRPV4-double KO mice was similar to that by the respective single KO mice. When TRPV4 activity was blocked with a specific antagonist HC-067047, water intake by WT mice was significantly reduced, whereas intake by TRPV4-KO and Na x-KO mice was not. Similar results were obtained with the administration of miconazole, which inhibits the biosynthesis of epoxyeicosatrienoic acids (EETs), endogenous agonists for TRPV4, from arachidonic acid (AA). Intracerebroventricular injection of hypertonic NaCl with AA or 5,6-EET restored water intake by Na x-KO mice to the wild-type level but not that by TRPV4-KO mice. These results suggest that the Na+ signal generated in Nax-positive glial cells leads to the activation of TRPV4-positive neurons in sCVOs to stimulate water intake by using EETs as gliotransmitters. Intracerebroventricular injection of equiosmolar hypertonic sorbitol solution induced small but significant water intake equally in all the genotypes, suggesting the presence of an unknown osmosensor in the brain.
Collapse
Affiliation(s)
- Hiraki Sakuta
- Division of Molecular Neurobiology, National Institute for Basic Biology, and
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Eri Nishihara
- Division of Molecular Neurobiology, National Institute for Basic Biology, and
| | - Takeshi Y. Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, and
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Chia-Hao Lin
- Division of Molecular Neurobiology, National Institute for Basic Biology, and
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, and
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
17
|
|