1
|
Winnicki AC, Dietrich MH, Yeoh LM, Carias LL, Roobsoong W, Drago CL, Malachin AN, Redinger KR, Feufack-Donfack LB, Baldor L, Jung NC, McLaine OS, Skomorovska-Prokvolit Y, Orban A, Opi DH, Kirtley P, Nielson K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK, Sattabongkot J, Tham WH, Popovici J, Beeson JG, Bosch J, King CL. Potent AMA1-specific human monoclonal antibody against Plasmodium vivax Pre-erythrocytic and Blood Stages. Nat Commun 2024; 15:10556. [PMID: 39632799 PMCID: PMC11618605 DOI: 10.1038/s41467-024-53848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. We show that humAb 826827 blocks the invasion of human reticulocytes using Pv clinical isolates and inhibits sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 - 3.7 µg/mL). Inoculation of human liver transgenic (FRG-humHep) female mice with humAb 826827 significantly reduces liver infection in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate-transcendent, blocks both pre-erythrocytic and blood stage infection, and could be a potential therapy for Pv.
Collapse
MESH Headings
- Plasmodium vivax/immunology
- Animals
- Humans
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/drug therapy
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Female
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Hepatocytes/parasitology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Antibodies, Protozoan/immunology
- Sporozoites/immunology
- Reticulocytes/parasitology
- Reticulocytes/metabolism
- Reticulocytes/immunology
- Erythrocytes/parasitology
- Erythrocytes/immunology
- Leukocytes, Mononuclear/immunology
- Liver/parasitology
Collapse
Affiliation(s)
- Anna C Winnicki
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Melanie H Dietrich
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lee M Yeoh
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Lenore L Carias
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chiara L Drago
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Alyssa N Malachin
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Karli R Redinger
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | | | - Lea Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Nicolai C Jung
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Olivia S McLaine
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Yelenna Skomorovska-Prokvolit
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kiersey Nielson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nastaran Rezakhani
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jürgen Bosch
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- InterRayBio LLC, Cleveland, USA.
| | - Christopher L King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
2
|
Weng S, Tian E, Gao M, Zhang S, Yang G, Zhou B. Eimeria: Navigating complex intestinal ecosystems. PLoS Pathog 2024; 20:e1012689. [PMID: 39576763 PMCID: PMC11584145 DOI: 10.1371/journal.ppat.1012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Eimeria is an intracellular obligate apicomplexan parasite that parasitizes the intestinal epithelial cells of livestock and poultry, exhibiting strong host and tissue tropism. Parasite-host interactions involve complex networks and vary as the parasites develop in the host. However, understanding the underlying mechanisms remains a challenge. Acknowledging the lack of studies on Eimeria invasion mechanism, we described the possible invasion process through comparative analysis with other apicomplexan parasites and explored the fact that parasite-host interactions serve as a prerequisite for successful recognition, penetration of the intestinal mechanical barrier, and completion of the invasion. Although it is recognized that microbiota can enhance the host immune capacity to resist Eimeria invasion, changes in the microenvironment can, in turn, contribute to Eimeria invasion and may be associated with reduced immune capacity. We also discuss the immune evasion strategies of Eimeria, emphasizing that the host employs sophisticated immune regulatory mechanisms to suppress immune evasion by parasites, thereby sustaining a balanced immune response. This review aims to deepen our understanding of Eimeria-host interactions, providing a theoretical basis for the study of the pathogenicity of Eimeria and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- Shengjie Weng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Meng Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Siyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Guodong Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Bianhua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| |
Collapse
|
3
|
Winnicki AC, King CL, Bosch J, Malachin AN, Carias LL, Skomorovska-Prokvolit Y, Tham WH, Dietrich MH, Popovici J, Roobsoong W, Beeson JG, Sattabongkot J, Yeoh LM, Opi DH, Feufack-Donfack LB, Orban A, Drago CL, McLaine OS, Redinger KR, Jung NC, Baldor L, Kirtley P, Neilsen K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK. Potent AMA1-specific human monoclonal antibody against P. vivax Pre-erythrocytic and Blood Stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579302. [PMID: 38370683 PMCID: PMC10871283 DOI: 10.1101/2024.02.07.579302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. We isolated 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. HumAb 826827 blocked the invasion of human erythrocytes using Pv clinical isolates and inhibited sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 to 3.7 ug/mL). It also significantly reduced liver infection of chimeric FRG humHep mice in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate transcendent, blocks both pre erythrocytic and blood stage infection, and could be a new therapy for Pv.
Collapse
|
4
|
Chen X, Qiu X, Ni J, Liao S, Qi N, Li J, Lv M, Lin X, Cai H, Hu J, Song Y, Yin L, Zhu Y, Zhang J, Zhang H, Sun M. Immunoprotective effects of DNA vaccine against Eimeria tenella based on EtAMA3 and EtRON2 L2. Vet Parasitol 2024; 327:110141. [PMID: 38367528 DOI: 10.1016/j.vetpar.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Eimeria tenella is the most pathogenic and harmful intestinal parasitic protozoan. Recombinant DNA vaccines open options for promising strategies for preventing avian coccidiosis, replacing chemical drugs and live oocyst vaccines. Two important antigenic proteins, EtAMA3 (also known as SporoAMA1) and EtRON2L2, act together to promote the invasion of E. tenella sporozoites. In this study, a recombinant DNA vaccine, designated pcDNA3.1(+)-AR, was constructed based on EtAMA3DII, EtRON2L2D3, and EtRON2L2D4. Chickens were intramuscularly immunized with different doses (25, 50, or 100 μg) of pcDNA3.1(+)-AR to evaluate its immunoprotective effects in vivo. The chickens in the 50 μg and 100 μg groups had higher cytokine concentrations (interleukin 2, interferon-gamma, and interleukin 10), and lesion scores (81.9% and 67.57%, respectively) and relative oocyst production (47% and 19%, respectively) reduced compared with the unchallenged group, indicating partial protection against E. tenella. These results suggest that pcDNA3.1(+)-AR is a promising vaccine candidate against avian coccidiosis.
Collapse
Affiliation(s)
- Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xixi Qiu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junli Ni
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoji Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
5
|
Gao Y, Shen Y, Fan J, Ding H, Zheng B, Yu H, Huang S, Kong Q, Lv H, Zhuo X, Lu S. Establishment and application of an iELISA detection method for measuring apical membrane antigen 1 (AMA1) antibodies of Toxoplasma gondii in cats. BMC Vet Res 2023; 19:229. [PMID: 37924072 PMCID: PMC10623812 DOI: 10.1186/s12917-023-03775-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/05/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Diseases caused by Toxoplasma gondii (T. gondii) have introduced serious threats to public health. There is an urgent need to develop a rapid detection method for T. gondii infection in cats, which are definitive hosts. Recombinant apical membrane antigen 1 (rAMA1) was produced in a prokaryotic expression system and used as the detection antigen. The aim of this study was to evaluate and optimize a reliable indirect enzyme-linked immunosorbent assay (iELISA) method based on rAMA1 for the detection of antibodies against T. gondii in cats. RESULTS The rAMA1-iELISA method was developed and optimized by the chessboard titration method. There were no cross-reactions between T. gondii-positive cat serum and positive serum for other pathogens, indicating that rAMA1-iELISA could only detect T. gondii in most cases. The lowest detection limit of rAMA1-iELISA was 1:3200 (dilution of positive serum), and the CV of repeated tests within batches and between batches were confirmed to be less than 10%. The results of 247 cat serum samples detected by rAMA1-iELISA (kappa value = 0.622, p < 0.001) were in substantial agreement with commercial ELISA. The ROC curve analysis revealed the higher overall check accuracy of rAMA1-iELISA (sensitivity = 91.7%, specificity = 93.6%, AUC = 0.956, 95% CI 0.905 to 1.000) than GRA7-based iELISA (sensitivity = 91.7%, specificity = 85.5%, AUC = 0.936, 95% CI 0.892 to 0.980). Moreover, the positive rate of rAMA1-iELISA (6.5%, 16/247) was higher than that of GRA7-based iELISA (3.6%, 9/247) and that of commercial ELISA kit (4.9%, 12/247). CONCLUSION The iELISA method with good specificity, sensitivity, and reproducibility was established and can be used for large-scale detection of T. gondii infection in clinical cat samples.
Collapse
Affiliation(s)
- Yafan Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jiyuan Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haijie Yu
- Jiaxing Vocational & Technical College, Jiaxing, 314036, China
| | - Siyang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Qingming Kong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hangjun Lv
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
6
|
Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell Mol Life Sci 2023; 80:74. [PMID: 36847896 PMCID: PMC9969379 DOI: 10.1007/s00018-023-04712-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.
Collapse
|
7
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
8
|
Biswas A, Raran-Kurussi S, Narayan A, Kar A, Chandra Mashurabad P, Bhattacharyya MK, Mandal K. Efficient refolding and functional characterization of PfAMA1(DI+DII) expressed in E. coli. Biochem Biophys Rep 2021; 26:100950. [PMID: 33665380 PMCID: PMC7907217 DOI: 10.1016/j.bbrep.2021.100950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a surface protein of Plasmodium sp. that plays a crucial role in forming moving junction (MJ) during the invasion of human red blood cells. The obligatory presence of AMA1 in the parasite lifecycle designates this protein as a potential vaccine candidate and an essential target for the development of novel peptide or protein therapeutics. However, due to multiple cysteine residues in the protein sequence, attaining the native fold with correct disulfide linkages during the refolding process after expression in bacteria has remained challenging for years. Although several approaches to obtain the refolded protein from bacterial expression have been reported previously, achieving high yield during refolding and proper functional validation of the expressed protein was lacking. We report here an improved method of refolding to obtain higher quantity of refolded protein. We have also validated the refolded protein's functional activity by evaluating the expressed AMA1 protein binding with a known inhibitory peptide, rhoptry neck protein 2 (RON2), using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). A simple yet effective protocol for P. falciparum AMA1 protein expression from E. coli. Highly reproducible and scalable refolding protocol. The modified refolding method uses a step-wise dialysis technique. Functional validation of the refolded protein shown by binding with PfRON2 ectodomain using SPR and ITC.
Collapse
Affiliation(s)
- Anamika Biswas
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Sreejith Raran-Kurussi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Akash Narayan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Abhisek Kar
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
| | - Purna Chandra Mashurabad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Mrinal Kanti Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana 500046, India
- Corresponding author.
| |
Collapse
|
9
|
Wang Q, Zhu S, Zhao Q, Huang B, Yu S, Yu Y, Liang S, Wang H, Zhao H, Han H, Dong H. Identification and Characterization of a Novel Apical Membrane Antigen 3 in Eimeria tenella. J Eukaryot Microbiol 2021; 68:e12836. [PMID: 33289220 DOI: 10.1111/jeu.12836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Eimeria tenella is an obligate intracellular parasite in the phylum Apicomplexa. As described for other members of Apicomplexa, apical membrane antigen 1 (AMA1) has been shown to be critical for sporozoite invasion of host cells by E. tenella. Recently, an E. tenella paralogue of AMA1 (EtAMA1), dubbed sporoAMA1 (EtAMA3), was identified in proteomic and transcriptomic analyses of E. tenella, but not further characterized. Here, we show that EtAMA3 is a type I integral membrane protein that has 24% -38% identity with other EtAMAs. EtAMA3 has the same pattern of Cys residues in domains I and II of AMA1 orthologs from apicomplexan parasites, but high variance in domain III, with all six invariant Cys residues absent. EtAMA3 expression was developmentally regulated at the mRNA and protein levels. EtAMA3 protein was detected in sporulated oocysts and sporozoites, but not in the unsporulated oocysts or second-generation merozoites. EtAMA3 is secreted by micronemes and is primarily localized to the apical end of sporozoites during host-cell invasion. Additionally, pretreatment of sporozoites with rEtAMA3-specific antibodies substantially impeded their invasion into host cells. These results suggest EtAMA3 is a sporozoite-specific protein that is involved in host-cell sporozoite invasion.
Collapse
Affiliation(s)
- Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, China
| |
Collapse
|
10
|
Wang Q, Zhao Q, Zhu S, Huang B, Yu S, Liang S, Wang H, Zhao H, Han H, Dong H. Further investigation of the characteristics and biological function of Eimeria tenella apical membrane antigen 1. ACTA ACUST UNITED AC 2020; 27:70. [PMID: 33306022 PMCID: PMC7731912 DOI: 10.1051/parasite/2020068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Apical membrane antigen 1 (AMA1) is a type I integral membrane protein that is highly conserved in apicomplexan parasites. Previous studies have shown that Eimeria tenella AMA1 (EtAMA1) is critical for sporozoite invasion of host cells. Here, we show that EtAMA1 is a microneme protein secreted by sporozoites, confirming previous results. Individual and combined treatment with antibodies of EtAMA1 and its interacting proteins, E. tenella rhoptry neck protein 2 (EtRON2) and Eimeria-specific protein (EtESP), elicited significant anti-invasion effects on the parasite in a concentration-dependent manner. The overexpression of EtAMA1 in DF-1 cells showed a significant increase of sporozoite invasion. Isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS were used to screen differentially expressed proteins (DEPs) in DF-1 cells transiently transfected with EtAMA1. In total, 3953 distinct nonredundant proteins were identified and 163 of these were found to be differentially expressed, including 91 upregulated proteins and 72 downregulated proteins. The DEPs were mainly localized within the cytoplasm and were involved in protein binding and poly(A)-RNA binding. KEEG analyses suggested that the key pathways that the DEPs belonged to included melanogenesis, spliceosomes, tight junctions, and the FoxO and MAPK signaling pathways. The data in this study not only provide a comprehensive dataset for the overall protein changes caused by EtAMA1 expression, but also shed light on EtAMA1’s potential molecular mechanisms during Eimeria infections.
Collapse
Affiliation(s)
- Qingjie Wang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Huanzhi Zhao
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, 200241 Shanghai, PR China
| |
Collapse
|
11
|
Drew DR, Sanders PR, Weiss G, Gilson PR, Crabb BS, Beeson JG. Functional Conservation of the AMA1 Host-Cell Invasion Ligand Between P. falciparum and P. vivax: A Novel Platform to Accelerate Vaccine and Drug Development. J Infect Dis 2019; 217:498-507. [PMID: 29165651 DOI: 10.1093/infdis/jix583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax and P. falciparum malaria species have diverged significantly in receptor-ligand interactions and host-cell invasion. One protein common to both is the merozoite invasion ligand AMA1. While the general structure of AMA1 is similar between species, their sequences are divergent. Surprisingly, it was possible to genetically replace PfAMA1 with PvAMA1 in P. falciparum parasites. PvAMA1 complemented PfAMA1 function and supported invasion of erythrocytes by P. falciparum. Genetically modified P. falciparum expressing PvAMA1 evaded the invasion inhibitory effects of antibodies to PfAMA1, demonstrating species specificity of functional antibodies. We generated antibodies to recombinant PvAMA1 that effectively inhibited invasion, confirming the function of PvAMA1 in genetically modified parasites. Results indicate significant molecular flexibility in AMA1 enabling conserved function despite substantial sequence divergence across species. This provides powerful new tools to quantify the inhibitory activities of antibodies or drugs targeting PvAMA1, opening new opportunities for vaccine and therapeutic development against P. vivax.
Collapse
Affiliation(s)
| | | | | | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.,Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
12
|
A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2018; 126:172-184. [PMID: 30399440 DOI: 10.1016/j.micpath.2018.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022]
Abstract
At present, there is not any available accepted vaccine for prevention of Toxoplasma gondii (T. gondii) in human and animals. We conducted literature search through English (Google Scholar, PubMed, Science Direct, Scopus, EBSCO, ISI Web of Science) scientific paper databases to find the best vaccine candidates against toxoplasmosis among T. gondii antigens. Articles with information on infective stage, pathogenicity, immunogenicity and characterization of antigens were selected. We considered that the ideal and significant vaccines should include different antigens and been expressed in all infective stages of the parasite with a high pathogenicity and immunogenicity. Evaluation within this systematic review indicates that MIC 3, 4, 13, ROP 2, RON 5, GRA 1, 6, 8, 14 are expressed in all three infective stages and have pathogenicity and immunogenicity. MIC 5, ROM 4, GRA 2, 4, 15, ROP 5, 16, 17, 38, RON 4, MIC 1, GRA 10, 12, 16, SAG 3 are expressed in only tachyzoites and bradyzoites stages of T. gondii with pathogenicity/immunogenicity. Some antigens appeared to be expressed in a single stage (tachyzoites) but have high pathogenicity and induce immune response. They include enolase2 (ENO2), SAG 1, SAG5D, HSP 70, ROM 1, ROM 5, AMA 1, ROP 18, RON2 and GRA 24. In conclusion, current vaccination against T. gondii infection is not satisfactory, and with the increasing number of high-risk individuals, the development of an effective and safe specific vaccine is greatly valuable for toxoplasmosis prevention. This systematic review reveals prepare candidates for immunization studies.
Collapse
|
13
|
Guo J, Li M, Sun Y, Yu L, He P, Nie Z, Zhan X, Zhao Y, Luo X, Wang S, Aoyang S, Liu Q, Huang C, He L, Zhao J. Characterization of a novel secretory spherical body protein in Babesia orientalis and Babesia orientalis-infected erythrocytes. Parasit Vectors 2018; 11:433. [PMID: 30045776 PMCID: PMC6060518 DOI: 10.1186/s13071-018-3018-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
Background The spherical body, a membrane bound organelle localized in the apical organelle complex, is unique to Babesia and Theileria spp. The spherical body proteins (SBPs) secreted by spherical bodies include SBP1, SBP2, SBP3 and SBP4. Up to now, only SBP3 has been characterized in Babesia orientalis. Methods The BoSBP4 gene was amplified from cDNA and gDNA and cloned into the pGEX-6P-1 vector by homologous recombination, sequenced and analyzed by bioinformatics tools. The amino acid (aa) sequence of BoSBP4 was compared with that of Babesia bovis and Babesia bigemina as well as SBP3 of B. orientalis. The immunoreactivity was evaluated by incubating recombinant BoSBP4 (rBoSBP4) with the serum of B. orientalis-infected water buffalo. The native form of BoSBP4 was identified by incubating lysate of B. orientalis-infected water buffalo erythrocytes with the anti-rBoSBP4 mouse serum. The cellular localization of BoSBP4 was determined by indirect immunofluorescence assay. Results The full length of the BoSBP4 gene was estimated to be 945 bp without introns, encoding a 314 aa polypeptide with a predicted molecular weight of 37 kDa. The truncated recombinant protein was expressed from 70 to 945 bp as a GST fusion protein with a practical molecular weight of 70 kDa. BoSBP4 shared a 40% and 30% identity with B. bovis and B. bigemina, respectively. Furthermore, it was 31% identical to SBP3 of B. orientalis. BoSBP4 was identified in the lysate of B. orientalis-infected water buffalo erythrocytes with a molecular weight of 37 kDa, corresponding to the expected molecular mass of BoSBP4. The result of rBoSBP4 with positive serum revealed that BoSBP4 can elicit an immune response to B. orientalis-infected water buffalo. The cellular localization of BoSBP4 was detected to be adjacent to the merozoite nucleus in the intracellular phase, followed by the diffusion of the fluorescence of BoSBP4 into the cytoplasm of B. orientalis-infected erythrocytes as puncta-like specks and a gradual increase of the fluorescence. Conclusions In this study, SBP4 in B. orientalis was characterized for the first time. It may play a key role in interaction with the host cell by being secreted into the cytoplasm of the B. orientalis-infected erythrocytes to facilitate parasite growth and reproduction.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Siqi Aoyang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Cuiqin Huang
- College of Life Science, Longyan University & Fujian, Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| |
Collapse
|
14
|
Not a Simple Tether: Binding of Toxoplasma gondii AMA1 to RON2 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to Dephosphorylation of Its Cytosolic Tail. mBio 2016; 7:mBio.00754-16. [PMID: 27624124 PMCID: PMC5021801 DOI: 10.1128/mbio.00754-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apical membrane antigen 1 (AMA1) is a receptor protein on the surface of Toxoplasma gondii that plays a critical role in host cell invasion. The ligand to which T. gondii AMA1 (TgAMA1) binds, TgRON2, is secreted into the host cell membrane by the parasite during the early stages of invasion. The TgAMA1-TgRON2 complex forms the core of the “moving junction,” a ring-shaped zone of tight contact between the parasite and host cell membranes, through which the parasite pushes itself during invasion. Paradoxically, the parasite also expresses rhomboid proteases that constitutively cleave the TgAMA1 transmembrane domain. How can TgAMA1 function effectively in host cell binding if its extracellular domain is constantly shed from the parasite surface? We show here that when TgAMA1 binds the domain 3 (D3) peptide of TgRON2, its susceptibility to cleavage by rhomboid protease(s) is greatly reduced. This likely serves to maintain parasite-host cell binding at the moving junction, a hypothesis supported by data showing that parasites expressing a hypercleavable version of TgAMA1 invade less efficiently than wild-type parasites do. Treatment of parasites with the D3 peptide was also found to reduce phosphorylation of S527 on the cytoplasmic tail of TgAMA1, and parasites expressing a phosphomimetic S527D allele of TgAMA1 showed an invasion defect. Taken together, these data suggest that TgAMA1-TgRON2 interaction at the moving junction protects TgAMA1 molecules that are actively engaged in host cell penetration from rhomboid-mediated cleavage and generates an outside-in signal that leads to dephosphorylation of the TgAMA1 cytosolic tail. Both of these effects are required for maximally efficient host cell invasion. Nearly one-third of the world’s population is infected with the protozoan parasite Toxoplasma gondii, which causes life-threatening disease in neonates and immunocompromised individuals. T. gondii is a member of the phylum Apicomplexa, which includes many other parasites of veterinary and medical importance, such as those that cause coccidiosis, babesiosis, and malaria. Apicomplexan parasites grow within their hosts through repeated cycles of host cell invasion, parasite replication, and host cell lysis. Parasites that cannot invade host cells cannot survive or cause disease. AMA1 is a highly conserved protein on the surface of apicomplexan parasites that is known to be important for invasion, and the work presented here reveals new and unexpected insights into AMA1 function. A more complete understanding of the role of AMA1 in invasion may ultimately contribute to the development of new chemotherapeutics designed to disrupt AMA1 function and invasion-related signaling in this important group of human pathogens.
Collapse
|
15
|
Delgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLoS One 2016; 11:e0144764. [PMID: 26731670 PMCID: PMC4701444 DOI: 10.1371/journal.pone.0144764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum is an obligate intracellular protozoan parasite that employs a highly sophisticated mechanism to access the protective environment of the host cells. Key to this mechanism is the formation of an electron dense ring at the parasite-host cell interface called the Moving Junction (MJ) through which the parasite invades. The MJ incorporates two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, the latter one being targeted to the host cell membrane during invasion. Crystal structures of AMA1 have shown that a partially mobile loop, termed the DII loop, forms part of a deep groove in domain I and overlaps with the RON2 binding site. To investigate the mechanism by which the DII loop influences RON2 binding, we measured the kinetics of association and dissociation and binding equilibria of a PfRON2sp1 peptide with both PfAMA1 and an engineered form of PfAMA1 where the flexible region of the DII loop was replaced by a short Gly-Ser linker (ΔDII-PfAMA1). The reactions were tracked by fluorescence anisotropy as a function of temperature and concentration and globally fitted to acquire the rate constants and corresponding thermodynamic profiles. Our results indicate that both PfAMA1 constructs bound to the PfRON2sp1 peptide with the formation of one intermediate in a sequential reversible reaction: A↔B↔C. Consistent with Isothermal Titration Calorimetry measurements, final complex formation was enthalpically driven and slightly entropically unfavorable. Importantly, our experimental data shows that the DII loop lengthened the complex half-life time by 18-fold (900 s and 48 s at 25°C for Pf and ΔDII-Pf complex, respectively). The longer half-life of the Pf complex appeared to be driven by a slower dissociation process. These data highlight a new influential role for the DII loop in kinetically locking the functional binary complex to enable host cell invasion.
Collapse
Affiliation(s)
- Roberto F. Delgadillo
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | - Michelle L. Parker
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Martin J. Boulanger
- Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
| | - Dominique Douguet
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
- * E-mail:
| |
Collapse
|
16
|
Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMA-RON2 pair. Proc Natl Acad Sci U S A 2015; 113:398-403. [PMID: 26712012 DOI: 10.1073/pnas.1515898113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T. gondii harbors a novel AMA designated as TgAMA4 that shows extreme sequence divergence from all characterized AMA family members. Here we show that sporozoite-expressed TgAMA4 clusters in a distinct phylogenetic clade with Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) proteins and forms a high-affinity, functional complex with its coevolved partner, TgRON2L1. High-resolution crystal structures of TgAMA4 in the apo and TgRON2L1-bound forms complemented with alanine scanning mutagenesis data reveal an unexpected architecture and assembly mechanism relative to previously characterized AMA-RON2 complexes. Principally, TgAMA4 lacks both a deep surface groove and a key surface loop that have been established to govern RON2 ligand binding selectivity in other AMAs. Our study reveals a previously underappreciated level of molecular diversity at the parasite-host-cell interface and offers intriguing insight into the adaptation strategies underlying sporozoite invasion. Moreover, our data offer the potential for improved design of neutralizing therapeutics targeting a broad range of AMA-RON2 pairs and apicomplexan invasive stages.
Collapse
|