1
|
Huang SC, Lei YP, Hsiao MC, Hsieh YK, Tang QP, Chen C, Hsu MY. Multicomponent Dietary Supplementation: Impact on Tear Secretion and Ocular Surface Inflammation in Dry Eye Syndrome Patients. Antioxidants (Basel) 2025; 14:103. [PMID: 39857437 PMCID: PMC11760835 DOI: 10.3390/antiox14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Dry eye syndrome (DES) is a prevalent ocular condition characterized by tear film instability, inflammation, and discomfort, affecting millions worldwide. DES is related to oxidative stress imbalance and ocular surface inflammation, which are important factors in the development of the condition. Recent studies have demonstrated that fish oil, lutein, and zeaxanthin possess anti-inflammatory and antioxidant properties. This study investigated the efficacy of a multicomponent dietary supplement in improving tear secretion and mitigating ocular surface inflammation in patients with DES. It was an open-label intervention trial. In total, 52 participants were randomly assigned to control (n = 23) and supplement (45 mg/day eicosapentaenoic acid, 30 mg/day docosahexaenoic acid, 30 mg/day lutein, and 1.8 mg/day zeaxanthin; n = 29) groups for 12 weeks. The participants were evaluated using Schirmer's test and the ocular surface disease index (OSDI) as ocular surface parameters. Moreover, blood or tear oxidative stress, antioxidant capacities, and tear inflammatory indicators were measured at weeks 0 and 12. The results indicated a significant increase in tear secretion and a significant reduction in OSDI scores in the supplement group. Additionally, inflammatory markers, such as interleukin (IL)-6 and IL-8, significantly decreased after the intervention. However, the OSDI of the supplement group significantly improved by 6.60 points (β = -6.60, p = 0.01). These findings support the potential of targeted nutritional supplementation as a safe and effective strategy for alleviating DES symptoms, offering an alternative to conventional treatments that exclusively focus on symptom management. This study highlights the role of specific nutrients in modulating tear production and inflammation, thereby providing a foundation for dietary approaches to DES treatment. Future research should explore the long-term benefits of such interventions and their impact on overall ocular health.
Collapse
Affiliation(s)
- Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Yen-Ping Lei
- Department of Nursing, National Yang Ming Chiao Tung University, Hsinchu City 300, Taiwan;
| | - Min-Chien Hsiao
- Department of Medical Education, Changhua Christian Hospital, Changhua City 500, Taiwan;
| | - Yu-Kai Hsieh
- School of Medicine, Taipei Medical University, Taipei City 110, Taiwan;
| | - Quei-Ping Tang
- Department of Nutrition, Wei Gong Memorial Hospital, Toufen City 351, Taiwan;
| | - Connie Chen
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan;
- Department of Optometry, Chung Shan Medical University, Taichung City 402, Taiwan
- Institute of Optometry, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Min-Yen Hsu
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung City 402, Taiwan
| |
Collapse
|
2
|
Tian X, Hu Y, Gao Y, Wang G, Tai B, Yang B, Xing F. Effects of Aspergillus flavus infection on multi-scale structures and physicochemical properties of maize starch during storage. Carbohydr Polym 2024; 342:122322. [PMID: 39048185 DOI: 10.1016/j.carbpol.2024.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
This study systematically analyzed the effect of Aspergillus flavus infection on the maize starch multi-scale structure, physicochemical properties, processing characteristics, and synthesis regulation. A. flavus infection led to a decrease in the content of starch, an increase in the content of reactive oxygen species (ROS) and malondialdehyde (MDA), a significant decrease in the activities of peroxidase (POD) and superoxide dismutase (SOD). In addition, A. flavus infection had a significant destructive effect on the double helix structure, relative crystallinity and lamellar structure of starch, resulting in the reduction of starch viscosity, affecting the viscoelastic properties of starch, and complicating the gel formation process. However, the eugenol treatment group significantly inhibited the growth of A. flavus during maize storage, protecting the multi-scale structure and processing characteristics of maize starch from being damaged. Transcriptome analysis showed that genes involved in carbohydrate synthesis in maize were significantly downregulated and genes involved in energy synthesis were significantly upregulated, indicating that maize converted its energy storage into energy synthesis to fight the invasion of A. flavus. These results of this study enriched the mechanism of quality deterioration during maize storage, and provide theoretical and technical support for the prevention of A. flavus infection during maize storage.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yafan Hu
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Gao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
4
|
Wang Q, Xu X, Ye J, Zhang Z. The role of cGAS/STING signaling in ophthalmological diseases. Biomed Pharmacother 2024; 177:117078. [PMID: 38968795 DOI: 10.1016/j.biopha.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
The eye is one of the most vulnerable parts of the human body. There are many kinds of ophthalmic diseases, which are caused by multiple factors. Generally, ophthalmic diseases have the characteristics of complicated etiology and difficult therapy. With the development of the times, ophthalmic diseases have become a major problem that affects people's lives. Inflammation, a major factor inducing ocular diseases, is one of the most popular research directions. The cGAS/STING pathway is a recently discovered inflammatory signaling pathway, which recognizes double-stranded DNA (dsDNA) as an activation signal to promote the expression of downstream cytokines that promote inflammatory response or autoimmune response. Since most of the current treatments for ophthalmic diseases mainly rely on surgery, it is of positive significance to explore the pathogenesis for the discovery of drug targets. This review summarize the research progress of the cGAS/STING pathway in major ophthalmic diseases by introducing the correlation between classical inflammatory pathway and ophthalmic diseases, in order to predict the research direction and methods targeting the cGAS/STING pathway in the pathogenesis of ophthalmic diseases, and also provide guidance for the mechanism as well as molecular targets of ophthalmic diseases.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The First People's Hospital of Jingzhou City, Jingzhou 434000, China
| | - Xiaozhi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China.
| | - Zuhai Zhang
- Department of Ophthalmology, The First People's Hospital of Jingzhou City, Jingzhou 434000, China.
| |
Collapse
|
5
|
Pasala PK, Raghupathi NK, Yaraguppi DA, Challa RR, Vallamkonda B, Ahmad SF, Chennamsetty Y, Kumari PK, DSNBK P. Potential preventative impact of aloe-emodin nanoparticles on cerebral stroke-associated myocardial injury by targeting myeloperoxidase: In supporting with In silico and In vivo studies. Heliyon 2024; 10:e33154. [PMID: 39022073 PMCID: PMC11253067 DOI: 10.1016/j.heliyon.2024.e33154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The present study examined the potential neuroprotective effects of aloe-emodin (AE) nanoparticles on the cerebral stroke-associated target protein myeloperoxidase (MPO). We investigated the binding interactions between AE and MPO through molecular docking and molecular dynamics simulations. Molecular docking results indicated that AE exhibited a binding energy of -6.9 kcal/mol, whereas it was -7.7 kcal/mol for 2-{[3,5-bis(trifluoromethyl)benzyl]amino}-n-hydroxy-6-oxo-1,6-dihydropyrimidine-5-carboxamide (CCl). Furthermore, molecular dynamics studies demonstrated that AE possesses a stronger binding affinity (-57.137 ± 13.198 kJ/mol) than does CCl (-22.793 ± 30.727 kJ/mol), suggesting that AE has a more substantial inhibitory effect on MPO than does CCl. Despite the therapeutic potential of AE for neurodegenerative disorders, its bioavailability is limited within the body. A proposed hypothesis to enhance the bioavailability of AE is its conversion into aloe-emodin nanoparticles (AENP). The AENPs synthesized through a fabrication method were spherical with a consistent diameter of 104.4 ± 7.9 nm and a polydispersity index ranging from 0.525 to 0.586. In rats experiencing cerebral stroke, there was a notable increase in cerebral infarction size; abnormalities in electrocardiogram (ECG) and electroencephalogram (EEG) patterns; a decrease in brain and cardiac antioxidant activities; and an increase in myeloperoxidase levels compared to those in normal rats. Compared with AE treatment, AENP treatment significantly ameliorated cerebral infarction, normalized ECG and EEG patterns, enhanced brain and cardiac antioxidant activities, and reduced MPO levels in stroke rats. Histopathological evaluations revealed pronounced alterations in the rat hippocampus, with pyknotic nuclei, disarray and loosely packed cells, deterioration of cardiac muscle fibers, and extensive damage to cardiac myocytes, in contrast to those in normal rats. AENP treatment mitigated these pathological changes more effectively than AE treatment in both brain and cardiac cells. These findings support that AENP provides considerable protection against stroke-associated myocardial infarction.
Collapse
Affiliation(s)
- Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh, 515721, India
| | - Niranjan Kumar Raghupathi
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubli, Karnataka, 580031, India
| | - Ranadheer Reddy Challa
- Department of Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA, 19060, USA
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Analysis, Odin Pharmaceutical LLC, Somerset, NJ, 08873, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeswanth Chennamsetty
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - P.V. Kamala Kumari
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, India
| | - Prasanth DSNBK
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| |
Collapse
|
6
|
Al-Bassam L, Shearman GC, Brocchini S, Alany RG, Williams GR. The Potential of Selenium-Based Therapies for Ocular Oxidative Stress. Pharmaceutics 2024; 16:631. [PMID: 38794293 PMCID: PMC11125443 DOI: 10.3390/pharmaceutics16050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress plays a critical role in the development of chronic ocular conditions including cataracts, age-related macular degeneration, and diabetic retinopathy. There is a need to explore the potential of topical antioxidants to slow the progression of those conditions by mediating oxidative stress and maintaining ocular health. Selenium has attracted considerable attention because it is a component of selenoproteins and antioxidant enzymes. The application of selenium to a patient can increase selenoprotein expression, counteracting the effect of reactive oxygen species by increasing the presence of antioxidant enzymes, and thus slowing the progression of chronic ocular disorders. Oxidative stress effects at the biomolecular level for prevalent ocular conditions are described in this review along with some of the known defensive mechanisms, with a focus on selenoproteins. The importance of selenium in the eye is described, along with a discussion of selenium studies and uses. Selenium's antioxidant and anti-inflammatory qualities may prevent or delay eye diseases. Recent breakthroughs in drug delivery methods and nanotechnology for selenium-based ocular medication delivery are enumerated. Different types of selenium may be employed in formulations aimed at managing ocular oxidative stress conditions.
Collapse
Affiliation(s)
- Lulwah Al-Bassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Gemma C. Shearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Raid G. Alany
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| |
Collapse
|
7
|
Valdés-Arias D, Locatelli EVT, Sepulveda-Beltran PA, Mangwani-Mordani S, Navia JC, Galor A. Recent United States Developments in the Pharmacological Treatment of Dry Eye Disease. Drugs 2024; 84:549-563. [PMID: 38652355 PMCID: PMC11189955 DOI: 10.1007/s40265-024-02031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Dry eye disease (DED) can arise from a variety of factors, including inflammation, meibomian gland dysfunction (MGD), and neurosensory abnormalities. Individuals with DED may exhibit a range of clinical signs, including tear instability, reduced tear production, and epithelial disruption, that are driven by different pathophysiological contributors. Those affected often report a spectrum of pain and visual symptoms that can impact physical and mental aspects of health, placing an overall burden on an individual's well-being. This cumulative impact of DED on an individual's activities and on society underscores the importance of finding diverse and effective management strategies. Such management strategies necessitate an understanding of the underlying pathophysiological mechanisms that contribute to DED in the individual patient. Presently, the majority of approved therapies for DED address T cell-mediated inflammation, with their tolerability and effectiveness varying across different studies. However, there is an emergence of treatments that target additional aspects of the disease, including novel inflammatory pathways, abnormalities of the eyelid margin, and neuronal function. These developments may allow for a more nuanced and precise management strategy for DED. This review highlights the recent pharmacological advancements in DED therapy in the United States. It discusses the mechanisms of action of these new treatments, presents key findings from clinical trials, discusses their current stage of development, and explores their potential applicability to different sub-types of DED. By providing a comprehensive overview of products in development, this review aims to contribute valuable insights to the ongoing efforts in enhancing the therapeutic options available to individuals suffering from DED.
Collapse
Affiliation(s)
- David Valdés-Arias
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Elyana V T Locatelli
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA
| | | | | | - Juan Carlos Navia
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA.
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA.
| |
Collapse
|
8
|
Huang K, Guo R, Luo H, Liu H, Chen D, Deng T, Li J, He J, Xu Z, Li M, He Q. Mucoadhesive liposomal delivery system synergizing anti-inflammation and anti-oxidation for enhanced treatment against dry eye disease. J Control Release 2024; 368:318-328. [PMID: 38428530 DOI: 10.1016/j.jconrel.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Dry eye disease (DED) is a common and frequent ocular surface disease worldwide, which can cause severe ocular surface discomfort and blurred vision. Inflammation and reactive oxygen species (ROS) play decisive roles in the development of DED. However, existing treatments usually focus on anti-inflammation while ignore the role of ROS in DED. Ever worse, the clinical preparations are easily cleared by nasolacrimal ducts, resulting in poor therapeutic effect. To circumvent these obstacles, here we designed a phenylboronic acid (PBA) modified liposome co-loading immunosuppressant cyclosporin A (CsA) and antioxidant crocin (Cro). The CsA/Cro PBA Lip achieved mucoadhesion through the formation of covalent bonds between PBA and the sialic acid residues on mucin, and consequently improved the retention of drugs on the ocular surface. By inhibiting ROS production and blocking NF-κB inflammatory pathway, CsA/Cro PBA Lip successfully promoted the healing of damaged corneal epithelium, eventually achieving the goal of relieving DED. CsA/Cro PBA Lip is proven a simple yet effective dual-drug delivery system, exhibiting superior antioxidant and anti-inflammatory effects both in vitro and in vivo. This approach holds great potential in the clinical treatment of DED and other related mucosal inflammations.
Collapse
Affiliation(s)
- Kexin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Haoyuan Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Houqin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Bu J, Liu Y, Zhang R, Lin S, Zhuang J, Sun L, Zhang L, He H, Zong R, Wu Y, Li W. Potential New Target for Dry Eye Disease-Oxidative Stress. Antioxidants (Basel) 2024; 13:422. [PMID: 38671870 PMCID: PMC11047456 DOI: 10.3390/antiox13040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Dry eye disease (DED) is a multifactorial condition affecting the ocular surface. It is characterized by loss of tear film homeostasis and accompanied by ocular symptoms that may potentially result in damage to the ocular surface and even vision loss. Unmodifiable risk factors for DED mainly include aging, hormonal changes, and lifestyle issues such as reduced sleep duration, increased screen exposure, smoking, and ethanol consumption. As its prevalence continues to rise, DED has garnered considerable attention, prompting the exploration of potential new therapeutic targets. Recent studies have found that when the production of ROS exceeds the capacity of the antioxidant defense system on the ocular surface, oxidative stress ensues, leading to cellular apoptosis and further oxidative damage. These events can exacerbate inflammation and cellular stress responses, further increasing ROS levels and promoting a vicious cycle of oxidative stress in DED. Therefore, given the central role of reactive oxygen species in the vicious cycle of inflammation in DED, strategies involving antioxidants have emerged as a novel approach for its treatment. This review aims to enhance our understanding of the intricate relationship between oxidative stress and DED, thereby providing directions to explore innovative therapeutic approaches for this complex ocular disorder.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yanbo Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Sijie Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jingbin Zhuang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Le Sun
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lingyu Zhang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Hui He
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rongrong Zong
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yang Wu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Wei Li
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| |
Collapse
|
10
|
Pan J, Pany S, Martinez-Carrasco R, Fini ME. Differential Efficacy of Small Molecules Dynasore and Mdivi-1 for the Treatment of Dry Eye Epitheliopathy or as a Countermeasure for Nitrogen Mustard Exposure of the Ocular Surface. J Pharmacol Exp Ther 2024; 388:506-517. [PMID: 37442618 PMCID: PMC10801785 DOI: 10.1124/jpet.123.001697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
The ocular surface comprises the wet mucosal epithelia of the cornea and conjunctiva, the associated glands, and the overlying tear film. Epitheliopathy is the common pathologic outcome when the ocular surface is subjected to oxidative stress. Whether different stresses act via the same or different mechanisms is not known. Dynasore and dyngo-4a, small molecules developed to inhibit the GTPase activity of classic dynamins DNM1, DNM2, and DNM3, but not mdivi-1, a specific inhibitor of DNM1L, protect corneal epithelial cells exposed to the oxidant tert-butyl hydroperoxide (tBHP). Here we report that, while dyngo-4a is the more potent inhibitor of endocytosis, dynasore is the better cytoprotectant. Dynasore also protects corneal epithelial cells against exposure to high salt in an in vitro model of dysfunctional tears in dry eye. We now validate this finding in vivo, demonstrating that dynasore protects against epitheliopathy in a mouse model of dry eye. Knockdown of classic dynamin DNM2 was also cytoprotective against tBHP exposure, suggesting that dynasore's effect is at least partially on target. Like tBHP and high salt, exposure of corneal epithelial cells to nitrogen mustard upregulated the unfolded protein response and inflammatory markers, but dynasore did not protect against nitrogen mustard exposure. In contrast, mdivi-1 was cytoprotective. Interestingly, mdivi-1 did not inhibit the nitrogen mustard-induced expression of inflammatory cytokines. We conclude that exposure to tBHP or nitrogen mustard, two different oxidative stress agents, cause corneal epitheliopathy via different pathologic pathways. SIGNIFICANCE STATEMENT: Results presented in this paper, for the first time, implicate the dynamin DNM2 in ocular surface epitheliopathy. The findings suggest that dynasore could serve as a new topical treatment for dry eye epitheliopathy and that mdivi-1 could serve as a medical countermeasure for epitheliopathy due to nitrogen mustard exposure, with potentially increased efficacy when combined with anti-inflammatory agents and/or UPR modulators.
Collapse
Affiliation(s)
- Jinhong Pan
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - Satyabrata Pany
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - Rafael Martinez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| |
Collapse
|
11
|
Huang B, Zhang N, Qiu X, Zeng R, Wang S, Hua M, Li Q, Nan K, Lin S. Mitochondria-targeted SkQ1 nanoparticles for dry eye disease: Inhibiting NLRP3 inflammasome activation by preventing mitochondrial DNA oxidation. J Control Release 2024; 365:1-15. [PMID: 37972763 DOI: 10.1016/j.jconrel.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/04/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder mutually promoted by reactive oxygen species (ROS) and ocular surface inflammation. NLRP3 is the key regulator for inducing ocular surface inflammation in DED. However, the mechanism by which ROS influences the bio-effects of NLRP3, and the consequent development of DED, largely remains elusive. In the present study, we uncovered that robust ROS can oxidate mitochondrial DNA (ox-mtDNA) along with loss of mitochondria compaction causing the cytosolic release of ox-mtDNA and subsequent co-localization with cytosolic NLRP3, which can promote the activation of NLRP3 inflammasome and stimulate NLRP3-mediated inflammation. Visomitin (also known as SkQ1), a mitochondria-targeted anti-oxidant, could reverse such a process by in situ scavenging of mitochondrial ROS. To effectively deliver SkQ1, we further developed a novel mitochondria-targeted SkQ1 nanoparticle (SkQ1 NP) using a charge-driven self-assembly strategy. Compared with free SkQ1, SkQ1 NPs exhibited significantly higher cytosolic- and mitochondrial-ROS scavenging activity (1.7 and 1.9 times compared to levels of the free SkQ1 group), thus exerting a better in vitro protective effect against H2O2-induced cell death in human corneal epithelial cells (HCECs). After topical administration, SkQ1 NPs significantly reduced in vivo mtDNA oxidation, while suppressing the expressions of NLRP3, Caspase-1, and IL-1β, which consequently resulted in better therapeutic effects against DED. Results suggested that by efficiently scavenging mitochondrial ROS, SkQ1 NPs could in situ inhibit DED-induced mtDNA oxidation, thus blocking the interaction of ox-mtDNA and NLRP3; this, in turn, suppressed NLRP3 inflammasome activation and NLRP3-mediated inflammatory signaling. Results suggested that SkQ1 NPs have great potential as a new treatment for DED.
Collapse
Affiliation(s)
- Baoshan Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Na Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; First Affiliated Hospital of Northwestern University, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Xi'an 710002, China
| | - Xinying Qiu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Zeng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuimiao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengxia Hua
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Sen Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
12
|
Storås AM, Fineide F, Magnø M, Thiede B, Chen X, Strümke I, Halvorsen P, Galtung H, Jensen JL, Utheim TP, Riegler MA. Using machine learning model explanations to identify proteins related to severity of meibomian gland dysfunction. Sci Rep 2023; 13:22946. [PMID: 38135766 PMCID: PMC10746717 DOI: 10.1038/s41598-023-50342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.
Collapse
Affiliation(s)
- Andrea M Storås
- Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.
- Department of Computer Science, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| | - Fredrik Fineide
- Department of Computer Science, OsloMet - Oslo Metropolitan University, Oslo, Norway
- The Norwegian Dry Eye Clinic, Oslo, Bergen, Norway
| | - Morten Magnø
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Xiangjun Chen
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Inga Strümke
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Halvorsen
- Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
- Department of Computer Science, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Hilde Galtung
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Janicke L Jensen
- Department of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Tor P Utheim
- Department of Computer Science, OsloMet - Oslo Metropolitan University, Oslo, Norway
- The Norwegian Dry Eye Clinic, Oslo, Bergen, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Michael A Riegler
- Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
- Department of Computer Science, OsloMet - Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
14
|
Coco G, Ambrosini G, Poletti S, Meliante LA, Taloni A, Scorcia V, Giannaccare G. Recent advances in drug treatments for dry eye disease. Expert Opin Pharmacother 2023; 24:2059-2079. [PMID: 37804227 DOI: 10.1080/14656566.2023.2269090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Dry eye disease (DED) is a common ocular condition with a significant impact on patients' quality of life. Conventional treatments include behavioral changes, tear substitutes, and anti-inflammatory agents; however, recent advances in the understanding of DED pathogenesis have opened the way to the development of novel treatment strategies able to target several pathways involved in the onset and persistence of DED. AREAS COVERED Literature search was conducted on PubMed and Scopus around the term 'dry eye disease' and others involving its pathophysiology and therapeutic strategy. The primary focus was on recent drugs approved by FDA or under investigation in phase 3 clinical trials. Google and ClinicalTrials.gov were used for obtaining information about the status of FDA approval and ongoing clinical trials. EXPERT OPINION Due to its multifaced pathogenesis, DED management is often challenging, and patients' needs are frequently unmet. Recently, several novel treatments have been either FDA-approved or studied in late-phase trials. These novel drugs target-specific biological components of the ocular surface and reduce inflammation and ocular pain. Additionally, new drug delivery systems allow for increased bioavailability, improve effective dosing, and minimize ocular side effects. These advances in drug therapies show real promise for better management of DED patients.
Collapse
Affiliation(s)
- Giulia Coco
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Ambrosini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Poletti
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Antonia Meliante
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Taloni
- Department of Ophthalmology, University of Magna Græcia, Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University of Magna Græcia, Catanzaro, Italy
| | | |
Collapse
|
15
|
Liang Q, Guo R, Tsao JR, He Y, Wang C, Jiang J, Zhang D, Chen T, Yue T, Hu K. Salidroside alleviates oxidative stress in dry eye disease by activating autophagy through AMPK-Sirt1 pathway. Int Immunopharmacol 2023; 121:110397. [PMID: 37302369 DOI: 10.1016/j.intimp.2023.110397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Dry eye disease (DED) is a multifactorial disease, and oxidative stress plays a crucial role in its pathogenesis. Recently, multiple studies have shown that upregulation of autophagy can protect the cornea from oxidative stress damage. The present study investigated the therapeutic effects of salidroside, the main component of Rhodiola crenulata, in both in vivo and in vitro dry eye models. The results showed that topical eye drop treatment with salidroside restored corneal epithelium damage, increased tear secretion, and reduced cornea inflammation in the DED mice. Salidroside activated autophagy through AMP-activated protein kinase (AMPK)-sirtuin-1 (Sirt1) signaling pathway, which promoted the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and increased the expression of downstream antioxidant factors heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). This process restored antioxidant enzyme activity, reduced reactive oxygen species (ROS) accumulation, and alleviated oxidative stress. The application of autophagy inhibitor chloroquine and AMPK inhibitor Compound C reversed the therapeutic efficacy of salidroside, validating the above findings. In conclusion, our data suggest that salidroside is a promising candidate for DED treatment.
Collapse
Affiliation(s)
- Qi Liang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Rongjie Guo
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Jia-Ruei Tsao
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Yun He
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Chenchen Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 618 Fengqi East Rd, Hangzhou, Zhejiang, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Di Zhang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Taige Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Tingting Yue
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China.
| | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Lucia Dos Santos Silva R, de Sousa Barberino R, Tavares de Matos MH. Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: A review. Theriogenology 2023; 207:110-122. [PMID: 37290274 DOI: 10.1016/j.theriogenology.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The in vitro culture systems of ovarian preantral follicles have been developed for studying follicular and oocyte growth, for future use of immature oocytes as sources of fertilizable oocytes and for screening ovarian toxic substances. One of the key limitations of the in vitro culture of preantral follicles is the oxidative stress by accumulation of reactive oxygen species (ROS), which can impair follicular development and oocyte quality. Several factors are associated with oxidative stress in vitro, which implies the need for a rigorous control of the conditions as well as addition of antioxidant agents to the culture medium. Antioxidant supplementation can minimize or eliminate the damage caused by ROS, supporting follicular survival and development and producing mature oocytes competent for fertilization. This review focuses on the use of antioxidants and their role in preventing follicular damage caused by oxidative stress in the in vitro culture of preantral follicles.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-900, Petrolina, PE, Brazil.
| |
Collapse
|
17
|
De Luca I, Di Cristo F, Conte R, Peluso G, Cerruti P, Calarco A. In-Situ Thermoresponsive Hydrogel Containing Resveratrol-Loaded Nanoparticles as a Localized Drug Delivery Platform for Dry Eye Disease. Antioxidants (Basel) 2023; 12:antiox12050993. [PMID: 37237859 DOI: 10.3390/antiox12050993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Dry eye disease (DED) is a dynamic and complex disease that can cause significant damage to the ocular surface and discomfort, compromising the patient's quality of life. Phytochemicals such as resveratrol have received increasing attention due to their ability to interfere with multiple pathways related to these diseases. However, the low bioavailability and the poor therapeutic response of resveratrol hinder its clinical applications. Cationic polymeric nanoparticles, in combination with in situ gelling polymers, could represent a promising strategy to prolong drug corneal residence time reducing the frequency of administration and increasing the therapeutic response. Eyedrop formulations, based on acetylated polyethyleneimine-modified polylactic-co-glicolyc acid- (PLGA-PEI) nanoparticles loaded with resveratrol (RSV-NPs) were dispersed into poloxamer 407 hydrogel and characterized in terms of pH, gelation time, rheological properties, in vitro drugs release, and biocompatibility. Moreover, the antioxidant and anti-inflammatory effects of RSV were assessed in vitro by mimicking a DED condition through the exposition of epithelial corneal cells to a hyperosmotic state. This formulation exhibited sustained release of RSV for up to 3 days, exerting potent antioxidant and anti-inflammatory effects on corneal epithelial cells. In addition, RSV reversed the mitochondrial dysfunction mediated by high osmotic pressure, leading to upregulated sirtuin-1 (SIRT1) expression, an essential regulator of mitochondrial function. These results suggest the potential of eyedrop formulation as a platform to overcome the rapid clearance of current solutions for treating various inflammation- and oxidative stress-related diseases such as DED.
Collapse
Affiliation(s)
- Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | | | - Raffaele Conte
- Elleva Pharma s.r.l., Via P. Castellino 111, 80131 Napoli, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
- Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
18
|
Fragoulis A, Tohidnezhad M, Kubo Y, Wruck CJ, Craveiro RB, Bock A, Wolf M, Pufe T, Jahr H, Suhr F. The Contribution of the Nrf2/ARE System to Mechanotransduction in Musculoskeletal and Periodontal Tissues. Int J Mol Sci 2023; 24:ijms24097722. [PMID: 37175428 PMCID: PMC10177782 DOI: 10.3390/ijms24097722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Frank Suhr
- Division of Molecular Exercise Physiology, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
| |
Collapse
|
19
|
Martinez-Carrasco R, Fini ME. Dynasore Protects Corneal Epithelial Cells Subjected to Hyperosmolar Stress in an In Vitro Model of Dry Eye Epitheliopathy. Int J Mol Sci 2023; 24:ijms24054754. [PMID: 36902183 PMCID: PMC10003680 DOI: 10.3390/ijms24054754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Epitheliopathy at the ocular surface is a defining sign of dry eye disease, a common disorder that affects 10% to 30% of the world's population. Hyperosmolarity of the tear film is one of the main drivers of pathology, with subsequent endoplasmic reticulum (ER) stress, the resulting unfolded protein response (UPR), and caspase-3 activation implicated in the pathway to programmed cell death. Dynasore, is a small molecule inhibitor of dynamin GTPases that has shown therapeutic effects in a variety of disease models involving oxidative stress. Recently we showed that dynasore protects corneal epithelial cells exposed to the oxidant tBHP, by selective reduction in expression of CHOP, a marker of the UPR PERK branch. Here we investigated the capacity of dynasore to protect corneal epithelial cells subjected to hyperosmotic stress (HOS). Similar to dynasore's capacity to protect against tBHP exposure, dynasore inhibits the cell death pathway triggered by HOS, protecting against ER stress and maintaining a homeostatic level of UPR activity. However, unlike with tBHP exposure, UPR activation due to HOS is independent of PERK and mostly driven by the UPR IRE1 branch. Our results demonstrate the role of the UPR in HOS-driven damage, and the potential of dynasore as a treatment to prevent dry eye epitheliopathy.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence: (R.M.-C.); (M.E.F.)
| | - M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Correspondence: (R.M.-C.); (M.E.F.)
| |
Collapse
|
20
|
Dammak A, Pastrana C, Martin-Gil A, Carpena-Torres C, Peral Cerda A, Simovart M, Alarma P, Huete-Toral F, Carracedo G. Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines 2023; 11:biomedicines11020292. [PMID: 36830827 PMCID: PMC9952931 DOI: 10.3390/biomedicines11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, conjunctiva, uvea, and lens. In fact, the injury in the anterior segment of the eye takes its origin from the perturbation of the pro-oxidant/antioxidant balance and leads to increased oxidative damage, especially when the first line of antioxidant defence weakens with age. Furthermore, oxidative stress is related to mitochondrial dysfunction, DNA damage, lipid peroxidation, protein modification, apoptosis, and inflammation, which are involved in anterior ocular disease progression such as dry eye, keratoconus, uveitis, and cataract. The different pathologies are interconnected through various mechanisms such as inflammation, oxidative stress making the diagnostics more relevant in early stages. The end point of the molecular pathway is the release of different antioxidant biomarkers offering the potential of predictive diagnostics of the pathology. In this review, we have analysed the oxidative stress and inflammatory processes in the front of the eye to provide a better understanding of the pathomechanism, the importance of biomarkers for the diagnosis of eye diseases, and the recent treatment of anterior ocular diseases.
Collapse
|
21
|
Krajčíková K, Balicka A, Lapšanská M, Trbolová A, Guľašová Z, Kondrakhova D, Komanický V, Rašiová A, Tomečková V. The Effects of Fisetin on Cyclosporine-Treated Dry Eye Disease in Dogs. Int J Mol Sci 2023; 24:1488. [PMID: 36675005 PMCID: PMC9862591 DOI: 10.3390/ijms24021488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Dry eye disease (DED) is a chronic debilitating ophthalmological disease with the current therapeutic options focused on the suppression of the symptoms. Among the possibilities of how to improve DED therapy, polyphenols have shown an enormous capacity to counteract DED functional changes. The study aimed to specifically target pathophysiological mechanisms by the addition of fisetin to the cyclosporine treatment protocol. We examined dog patients with DED on cyclosporine treatment that were administered 0.1% fisetin or fisetin-free eye drops. For the assessment of fisetin effects, tear film production and matrix metalloproteinase 9 (MMP-9) were studied in the tear film. Tear production was not recovered after 7 or 14 days (9.40 mm ± 6.02 mm, p = 0.47; 9.80 mm ± 6.83 mm, p = 0.53, respectively). MMP-9 levels significantly increased after 7 days and then dropped after 14 days (775.44 ng/mL ± 527.52 ng/mL, p = 0.05; 328.49 ng/mL ± 376.29 ng/mL, p = 1.00, respectively). Fisetin addition to cyclosporine DED treatment was not able to restore tear fluid production but influenced molecular pathological events through MMP-9.
Collapse
Affiliation(s)
- Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Agnieszka Balicka
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Mária Lapšanská
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Alexandra Trbolová
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Zuzana Guľašová
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Adriana Rašiová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| |
Collapse
|
22
|
Scarpellini C, Ramos Llorca A, Lanthier C, Klejborowska G, Augustyns K. The Potential Role of Regulated Cell Death in Dry Eye Diseases and Ocular Surface Dysfunction. Int J Mol Sci 2023; 24:731. [PMID: 36614174 PMCID: PMC9820812 DOI: 10.3390/ijms24010731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The research on new treatments for dry eye diseases (DED) has exponentially grown over the past decades. The increased prevalence of dry eye conditions, particularly in the younger population, has received much attention. Therefore, it is of utmost importance to identify novel therapeutical targets. Regulated cell death (RCD) is an essential process to control the biological homeostasis of tissues and organisms. The identification of different mechanisms of RCD stimulated the research on their involvement in different human pathologies. Whereas apoptosis has been widely studied in DED and included in the DED vicious cycle, the role of RCD still needs to be completely elucidated. In this review, we will explore the potential roles of different types of RCD in DED and ocular surface dysfunction. Starting from the evidence of oxidative stress and inflammation in dry eye pathology, we will analyse the potential therapeutic applications of the following principal RCD mechanisms: ferroptosis, necroptosis, and pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2160 Antwerp, Belgium
| |
Collapse
|
23
|
Shin CS, Veettil RA, Sakthivel TS, Adumbumkulath A, Lee R, Zaheer M, Kolanthai E, Seal S, Acharya G. Noninvasive Delivery of Self-Regenerating Cerium Oxide Nanoparticles to Modulate Oxidative Stress in the Retina. ACS APPLIED BIO MATERIALS 2022; 5:5816-5825. [PMID: 36441967 DOI: 10.1021/acsabm.2c00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diseases affecting the retina, such as age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and retinal vein occlusions, are currently treated by the intravitreal injection of drug formulations. These disease pathologies are driven by oxidative damage due to chronic high concentrations of reactive oxygen species (ROS) in the retina. Intravitreal injections often induce retinal detachment, intraocular hemorrhage, and endophthalmitis. Furthermore, the severe eye pain associated with these injections lead to patient noncompliance and treatment discontinuation. Hence, there is a critical need for the development of a noninvasive therapy that is effective for a prolonged period for treating retinal diseases. In this study, we developed a noninvasive cerium oxide nanoparticle (CNP) delivery wafer (Cerawafer) for the modulation of ROS in the retina. We fabricated Cerawafer loaded with CNP and determined its SOD-like enzyme-mimetic activity and ability to neutralize ROS generated in vitro. We demonstrated Cerawafer's ability to deliver CNP in a noninvasive fashion to the retina in healthy mouse eyes and the CNP retention in the retina for more than a week. Our studies have demonstrated the in vivo efficacy of the Cerawafer to modulate ROS and associated down-regulation of VEGF expression in the retinas of very-low-density lipoprotein receptor knockout (vldlr-/-) mouse model. The development of a Cerawafer nanotherapeutic will fulfill a hitherto unmet need. Currently, there is no such therapeutic available, and the development of a Cerawafer nanotherapeutic will be a major advancement in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Crystal S Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Remya Ammassam Veettil
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Tamil S Sakthivel
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Aparna Adumbumkulath
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77030, United States
| | - Richard Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mahira Zaheer
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816, United States.,College of Medicine, Biionix Cluster, University of Central Florida, Orlando, Florida 32827, United States
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
24
|
Nagaarudkumaran N, Mirzapour P, McCanna D, Ngo W. Temporal Change in Pro-Inflammatory Cytokine Expression from Immortalized Human Corneal Epithelial Cells Exposed to Hyperosmotic Stress. Curr Eye Res 2022; 47:1488-1495. [PMID: 36107828 DOI: 10.1080/02713683.2022.2125531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To determine the metabolic activity, and cytokine expression over time from immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. METHODS HCECs were cultured and expanded in DMEM/F-12 with 10% FBS. The cells were exposed to either normal media (295 mmol/kg) or hyperosmolar media (500 mmol/kg) for 0.25, 3, 6, and 12 hours. After each exposure duration, metabolic activity was quantified using alamarBlue, and a panel of pro-inflammatory cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α, IFN-γ, and IL-17A) was quantified using multiplexed electrochemiluminescence (Meso Scale Diagnostics, Rockville, MD). RESULTS Metabolic activity of the HCEC exposed to hyperosmolar conditions was significantly reduced at the 3-, 6-, and 12-hour mark compared to the control (all p < 0.01). There was no significant difference in cytokine expression between the hyperosmolar media and control at the 0.25- and 3-hour mark for all cytokines (all p ≥ 0.28). The difference in cytokine expression between the hyperosmolar media and the control was significant for IL-1β, IL-4, IL-6, IL-8, IL-12p70, IL-13, and TNF-α at the 6-hour mark (all p ≤ 0.02). No significant change in cytokine expression between the hyperosmolar media and control was noted for IL-2, IL-10, IL-17A, and IFN-γ (all p ≥ 0.74) at the 6-hour mark. CONCLUSION Hyperosmolar stress reduced cell metabolic activity and increased expression of IL-1β, IL-4, IL6, IL8, IL-12p70, IL-13, and TNF-α over a 6-hour period in an immortalized HCEC line.
Collapse
Affiliation(s)
- Nijani Nagaarudkumaran
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Parisa Mirzapour
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - David McCanna
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - William Ngo
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
| |
Collapse
|
25
|
Balsam Poplar Buds: Extraction of Potential Phenolic Compounds with Polyethylene Glycol Aqueous Solution, Thermal Sterilization of Extracts and Challenges to Their Application in Topical Ocular Formulations. Antioxidants (Basel) 2022; 11:antiox11091771. [PMID: 36139845 PMCID: PMC9495353 DOI: 10.3390/antiox11091771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds of natural origin have been valued for their beneficial effects on health since ancient times. During our study, we performed the extraction of phenolic compounds from balsam poplar buds using different concentrations of aqueous polyethylene glycol 400 solvents (10-30% PEG400). The aqueous 30% PEG400 extract showed the best phenolic yield. The stability of the extract during autoclave sterilization was evaluated. The extract remained stable under heat sterilization. Ophthalmic formulations are formed using different concentrations (8-15%) of poloxamer 407 (P407) together with hydroxypropyl methylcellulose (0.3%), sodium carboxymethyl cellulose (0.3%) or hyaluronic acid (0.1%). Physicochemical parameters of the formulations remained significantly unchanged after sterilization. Formulations based on 12% P407 exhibited properties characteristic of in situ gels, the gelation point of the formulations was close to the temperature of the cornea. After evaluating the amount of released compounds, it was found that, as the concentration of polymers increases, the amount of released compounds decreases. Formulations based on 15% P407 released the least biologically active compounds. Sterilized formulations remained stable for 30 days.
Collapse
|
26
|
Park SH, Hwang JS, Shin YJ. Effect of multivitamin drug on intractable dry eye symptoms. Front Med (Lausanne) 2022; 9:978107. [PMID: 36148465 PMCID: PMC9486468 DOI: 10.3389/fmed.2022.978107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye is a disorder of tear film and ocular surface characterized by ocular discomforts. It is associated with multiple causes and sometimes intractable. We investigated the effect of oral multivitamin supplementation (MVG) on dry eyes. Tear break-up time (TBUT), fluorescein ocular surface staining score, and tear secretion Schirmer test were measured in dry eye patients refractory to conventional topical treatment. The ocular surface disease index (OSDI), visual analog pain score (VAS), and modified standardized patient evaluation of eye dryness questionnaire were analyzed. In total, 42 eyes of 42 patients were included. TBUT increased at 1 and 3 months compared to baseline (p < 0.05). OSDI decreased at 1 and 3 months compared to baseline (p < 0.05). VAS score, impact on life, and frequency of total symptoms decreased at 3 months compared to baseline (p < 0.05). Oral administration of MVG, a vitamin complex formulation, was effective in stabilizing tear stability and alleviating symptoms in patients with intractable dry eye. Thus, it may be a viable treatment option for intractable dry eye.
Collapse
Affiliation(s)
- Se Hie Park
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, South Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, South Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, South Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, South Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, South Korea
- *Correspondence: Young Joo Shin,
| |
Collapse
|
27
|
An Oral Polyphenol Formulation to Modulate the Ocular Surface Inflammatory Process and to Improve the Symptomatology Associated with Dry Eye Disease. Nutrients 2022; 14:nu14153236. [PMID: 35956412 PMCID: PMC9370512 DOI: 10.3390/nu14153236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Due to their antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic effects, polyphenols are first-rate candidates to prevent or treat chronic diseases in which oxidative stress-induced inflammation plays a role in disease pathogenesis. Dry eye disease (DED) is a common pathology, on which novel phenolic compound formulations have been tested as an adjuvant therapeutic approach. However, polyphenols are characterized by limited stability and solubility, insolubility in water, very rapid metabolism, and a very short half-life. Thus, they show poor bioavailability. To overcome these limitations and improve their stability and bioavailability, we evaluated the safety and efficacy of an oral formulation containing among other compounds, polyphenols and omega-3 fatty acids, with the addition of a surfactant in patients with DED. Subjects were randomly assigned to one of four study groups including the study formulation (A), placebo (P), the study formulation + eye lubricant (A + L), and placebo + eye lubricant (P + L). Patients from the A and P groups were instructed to take two capsules every 24 h, while patients in the L groups also added one drop of lubricant twice a day for 12 weeks as well. Regarding safety, non-ocular abnormalities were observed during study formulation therapy. Liver function tests did not show any statistically significant difference (baseline vs. week 4). Concerning efficacy, there was a statistically significant difference between baseline, month 1, and month 3 in the OSDI (Ocular Surface Disease Index) test results in both treatment groups (group A and group A + L). Furthermore, both groups showed statistically significant differences between baseline and month 3 regarding the non-invasive film tear breakup time (NIF-BUT) score and a positive trend related to Shirmer's test at month 3. The non-invasive average breakup time (NIAvg-BUT) score showed a statistically significant difference at month 3 when compared with baseline in the A + L group. The P + L group showed a statistically significant difference in terms of the OSDI questionary between baseline and month 3. Regarding the lissamine green staining, the A + L group showed a statistical difference between baseline and month 3 (p = 0.0367). The placebo + lubricant group did not show statistically significant differences. Finally, the placebo group did not show any data with statistically significant differences. Consequently, this polyphenol formulation as a primary treatment outperformed the placebo alone, and the polyphenol oral formulation used as an adjuvant to artificial tears was superior to the combination of the placebo and the artificial tears. Thus, our data strongly suggest that this polyphenol oral formulation improves visual strain symptoms and tear film status in patients with mild to moderate DED.
Collapse
|
28
|
Watanabe S, Nihongaki Y, Itoh K, Uyama T, Toda S, Watanabe S, Inoue T. Defunctionalizing intracellular organelles such as mitochondria and peroxisomes with engineered phospholipase A/acyltransferases. Nat Commun 2022; 13:4413. [PMID: 35906209 PMCID: PMC9338259 DOI: 10.1038/s41467-022-31946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, USA.
- Johns Hopkins University School of Medicine, Center for Cell Dynamics, Baltimore, MD, 21205, USA.
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuta Nihongaki
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, USA
- Johns Hopkins University School of Medicine, Center for Cell Dynamics, Baltimore, MD, 21205, USA
| | - Kie Itoh
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, USA
- Johns Hopkins University School of Medicine, Center for Cell Dynamics, Baltimore, MD, 21205, USA
- Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, MD, 21205, USA
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Satoshi Toda
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shigeki Watanabe
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, USA
- Johns Hopkins University School of Medicine, Center for Cell Dynamics, Baltimore, MD, 21205, USA
- Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, MD, 21205, USA
| | - Takanari Inoue
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, USA.
- Johns Hopkins University School of Medicine, Center for Cell Dynamics, Baltimore, MD, 21205, USA.
| |
Collapse
|
29
|
Ouyang W, Wang S, Hu J, Liu Z. Can the cGAS-STING Pathway Play a Role in the Dry Eye? Front Immunol 2022; 13:929230. [PMID: 35812407 PMCID: PMC9263829 DOI: 10.3389/fimmu.2022.929230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye is one of the most common ocular surface diseases in the world and seriously affects the quality of life of patients. As an immune-related disease, the mechanism of dry eye has still not been fully elucidated. The cGAS-STING pathway is a recently discovered pathway that plays an important role in autoimmune and inflammatory diseases by recognizing dsDNA. As an important signal to initiate inflammation, the release of dsDNA is associated with dry eye. Herein, we focused on the pathophysiology of the immune-inflammatory response in the pathogenesis of dry eye, attempted to gain insight into the involvement of dsDNA in the dry eye immune response, and investigated the mechanism of the cGAS-STING pathway involved in the immune-inflammatory response. We further proposed that the cGAS-STING pathway may participate in dry eye as a new mechanism linking dry eye and the immune-inflammatory response, thus providing a new direction for the mechanistic exploration of dry eye.
Collapse
Affiliation(s)
- Weijie Ouyang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shoubi Wang
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Xiamen University, Xiamen, China
- Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen University, Xiamen, China
- Xiamen Diabetes Prevention and Treatment Center, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Diabetes Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Zuguo Liu, ; Jiaoyue Hu,
| |
Collapse
|
30
|
Bourouti KE, Konstantaros C, Gaitanaki C, Aggeli IK. Severe Hyperosmotic Stress Issues an ER Stress-Mediated “Death Sentence” in H9c2 Cells, with p38-MAPK and Autophagy “Coming to the Rescue”. Biomedicines 2022; 10:biomedicines10061421. [PMID: 35740442 PMCID: PMC9219732 DOI: 10.3390/biomedicines10061421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
With several cardiovascular pathologies associated with osmotic perturbations, researchers are in pursuit of identifying the signaling sensors, mediators and effectors involved, aiming at formulating novel diagnostic and therapeutic strategies. In the present study, H9c2 cells were treated with 0.5 M sorbitol to elicit hyperosmotic stress. Immunoblotting as well as cell viability analyses revealed the simultaneous but independent triggering of multiple signaling pathways. In particular, our findings demonstrated the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) and upregulation of the immunoglobulin heavy-chain-binding protein (BiP) expression, indicating the onset of the Integrated Stress Response (IRS) and endoplasmic reticulum stress (ERS), respectively. In addition, autophagy was also induced, evidenced by the enhancement of Beclin-1 protein expression and of AMP-dependent kinase (AMPK) and Raptor phosphorylation levels. The involvement of a Na+/H+ exchanger-1 (NHE-1) as well as NADPH oxidase (Nox) in 0.5 M sorbitol-induced eIF2α phosphorylation was also indicated. Of note, while inhibition of ERS partially alleviated the detrimental effect of 0.5 M sorbitol on H9c2 cellular viability, attenuation of p38-MAPK activity and late phase autophagy further mitigated it. Deciphering the mode of these pathways’ potential interactions and of their complications may contribute to the quest for effective clinical interventions against associated cardiovascular diseases.
Collapse
|
31
|
Permkam C, Suriyaphol G, Sirisawadi S, Tuntivanich N. Biological Compositions of Canine Amniotic Membrane and Its Extracts and the Investigation of Corneal Wound Healing Efficacy In Vitro. Vet Sci 2022; 9:vetsci9050227. [PMID: 35622755 PMCID: PMC9143045 DOI: 10.3390/vetsci9050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The usage of canine amniotic membrane (cAM) is mainly of interest in veterinary ophthalmology. Topical formulations of cAM could deliver the beneficial properties of cAM without the need for surgical intervention. The present study aimed to investigate biological compositions of cAM and its extracts, including their corneal wound healing efficacy. In this study, canine amniotic membrane extract (cAME) and lyophilized canine amniotic membrane extract (cAMX) were developed. Bioactive molecules related to corneal wound healing, including hepatocyte growth factor, tissue inhibitor of metalloproteinase-1 and -2, Thrombospondin-1 and Interleukin-1 receptor antagonist were studied at both gene and protein expression levels. Cell viability and wound healing assays were investigated for the possibility of cAME and cAMX as topical applications. The results demonstrated that all of the relevant genes and proteins were detected in cAM, cAME and cAMX. Both cAME and cAMX showed wound healing properties in vitro and cAME at 1.0 mg/mL concentration appeared to have the best healing efficacy. In conclusion, cAME and cAMX generated for topical use provided promising results in the healing of corneal defects.
Collapse
Affiliation(s)
- Chompunut Permkam
- Veterinary Bioscience Program, Department of Veterinary Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (G.S.); (S.S.)
| | - Sujin Sirisawadi
- Biochemistry Unit, Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (G.S.); (S.S.)
| | - Nalinee Tuntivanich
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +6684-695-1295
| |
Collapse
|
32
|
Stuard WL, Guner MK, Robertson DM. IGFBP-3 Regulates Mitochondrial Hyperfusion and Metabolic Activity in Ocular Surface Epithelia during Hyperosmolar Stress. Int J Mol Sci 2022; 23:4066. [PMID: 35409425 PMCID: PMC9000157 DOI: 10.3390/ijms23074066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
In the eye, hyperosmolarity of the precorneal tear film triggers inflammation and the development of dry eye disease (DED), a highly prevalent condition that causes depression and disability in severe forms. A member of the insulin-like growth factor (IGF) family, the IGF binding protein-3 (IGFBP-3), is a pleiotropic protein with known roles in growth downregulation and survival. IGFBP-3 exerts these effects by blocking IGF-1 activation of the type 1 IGF-receptor (IGF-1R). Here, we examined a new IGF-independent role for IGFBP-3 in the regulation of mitochondrial and metabolic activity in ocular surface epithelial cells subject to hyperosmolar stress and in a mouse model of DED. We found that hyperosmolar stress decreased IGFBP-3 expression in vitro and in vivo. Treatment with exogenous IGFBP-3 induced an early, transient shift in IGF-1R to mitochondria, followed by IGFBP-3 nuclear accumulation. IGFBP-3 nuclear accumulation increased protein translation, blocked the hyperosmolar-mediated decrease in oxidative phosphorylation through the induction of mitochondrial hyperfusion, and restored corneal health in vivo. These data indicate that IGFBP-3 acts a stress response protein in ocular surface epithelia subject to hyperosmolar stress. These findings may lead to the development of first-in-class therapeutics to treat eye diseases with underlying mitochondrial dysfunction.
Collapse
Affiliation(s)
- Whitney L Stuard
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Melis K Guner
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Tian L, Wen Y, Li S, Zhang P, Wang Y, Wang J, Cao K, Du L, Wang N, Jie Y. Benefits and Safety of Astaxanthin in the Treatment of Mild-To-Moderate Dry Eye Disease. Front Nutr 2022; 8:796951. [PMID: 35096941 PMCID: PMC8792747 DOI: 10.3389/fnut.2021.796951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: To evaluate the effect of astaxanthin in the treatment of mild-to-moderate dry eye disease (DED) in middle-aged and elderly patients. Methods: 120 eyes of 60 middle-aged and elderly patients with mild-to-moderate DED were enrolled in this prospective, one-group, quasi-experimental study. Six milligram Astaxanthin tablets (Weihong Haematococcus Pluvialis Astaxanthin, Hangzhou Xinwei Low Carbon Technology R&D Co., Ltd., China) were administered orally, twice daily for 30 ± 2 days. History of eye diseases, treatment, systemic disease, and medication before the test were recorded. In addition, the ocular surface disease index (OSDI) questionnaire, non-invasive tear break-up time (NIBUT), fluorescein break-up time (FBUT), corneal fluorescein staining (CFS) score, eyelid margin signs, meibomian gland (MG) expressibility, meibum quality, meibomian gland dropout (MGDR), Schirmer I test (SIt), tear meniscus height (TMH), bulbar conjunctiva congestion degree, blink frequency, incomplete blink rate, and thickness of tear film lipid layer were collected before treatment, 2 weeks after the initiation of treatment, and at the end of treatment. Visual acuity (VA), intraocular pressure (IOP), anterior segment, fundus, discomfort symptoms and other adverse reactions were also monitored throughout the study to assess the safety. Results: OSDI score, NIBUT, BUT, CFS score, eyelid margin signs, MG expressibility, meibum quality, and blink frequency improved significantly to varying degrees after treatment compared with those before the treatment (P < 0.05), while TMH, SIt, conjunctival congestion, the thickness of tear film lipid layer, MGDR, incomplete blink rate, VA and IOP did not differ (P > 0.05). Conclusions: Oral administration of astaxanthin improves the symptoms and signs of middle-aged and elderly patients with mild-to-moderate DED.
Collapse
|
34
|
Protective effect and mechanism of betaine against hyperosmotic stress in porcine intestinal epithelium. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Snijders KE, Fehér A, Táncos Z, Bock I, Téglási A, van den Berk L, Niemeijer M, Bouwman P, Le Dévédec SE, Moné MJ, Van Rossom R, Kumar M, Wilmes A, Jennings P, Verfaillie CM, Kobolák J, Ter Braak B, Dinnyés A, van de Water B. Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Arch Toxicol 2021; 95:3285-3302. [PMID: 34480604 PMCID: PMC8448683 DOI: 10.1007/s00204-021-03127-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62–1000 nM) or diethyl maleate (5.62–1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.
Collapse
Affiliation(s)
- Kirsten E Snijders
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | - Linda van den Berk
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn J Moné
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Rob Van Rossom
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | | | - Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - András Dinnyés
- BioTalentum Ltd., 2100, Gödöllő, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
36
|
Sedlak L, Świerczyńska M, Borymska W, Zych M, Wyględowska-Promieńska D. Impact of dorzolamide, benzalkonium-preserved dorzolamide and benzalkonium-preserved brinzolamide on selected biomarkers of oxidative stress in the tear film. BMC Ophthalmol 2021; 21:319. [PMID: 34470600 PMCID: PMC8411550 DOI: 10.1186/s12886-021-02079-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Long-term use of topical, especially benzalkonium chloride (BAC)-preserved, antiglaucoma medications can cause a negative impact on the ocular surface. The aim of the study was to assess the effect of topical carbonic anhydrase inhibitors (CAIs) on selected oxidative stress biomarkers in the tear film. Methods The patients were divided into four sex-matched groups: group C (n = 25) – control group – subjects who did not use topical antiglaucoma medications, group DL (n = 14) – patients using preservative-free dorzolamide, group DL + BAC (n = 16) – patients using topical BAC-preserved dorzolamide, group BL + BAC (n = 17) – patients using BAC-preserved brinzolamide. Subjects in all the study groups have been using the eye drops two times daily for 6–12 months. The oxidative stress biomarkers in the tear film samples were measured: total protein (TP) concentration, advanced oxidation protein products (AOPP) content, total sulfhydryl (-SH) groups content, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as Total Oxidant Status (TOS), Total Antioxidant Response (TAR), and Oxidative Stress Index (OSI). Results The advanced oxidation protein products content, Total Oxidant Status as well as superoxide dismutase and catalase activities in the group DL + BAC and BL + BAC were higher in comparison with the group C. The total sulfhydryl groups content was lower in the group DL + BAC and BL + BAC when compared to group C. Oxidative Stress Index was higher in the groups DL + BAC and BL + BAC in comparison with the groups DL and C. Conclusions Use of topical benzalkonium chloride-preserved carbonic anhydrase inhibitors increases oxidative stress in the tear film.
Collapse
Affiliation(s)
- Lech Sedlak
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland
| | - Marta Świerczyńska
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland. .,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland.
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.,Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
37
|
Ghosh AK, Thapa R, Hariani HN, Volyanyuk M, Ogle SD, Orloff KA, Ankireddy S, Lai K, Žiniauskaitė A, Stubbs EB, Kalesnykas G, Hakkarainen JJ, Langert KA, Kaja S. Poly(lactic-co-glycolic acid) Nanoparticles Encapsulating the Prenylated Flavonoid, Xanthohumol, Protect Corneal Epithelial Cells from Dry Eye Disease-Associated Oxidative Stress. Pharmaceutics 2021; 13:1362. [PMID: 34575438 PMCID: PMC8471707 DOI: 10.3390/pharmaceutics13091362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.
Collapse
Affiliation(s)
- Anita Kirti Ghosh
- Graduate Program in Biochemistry and Molecular Biology, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
| | - Rubina Thapa
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
| | - Harsh Nilesh Hariani
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Graduate Program in Neuroscience, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Michael Volyanyuk
- Graduate Program in Neuroscience, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Sean David Ogle
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Karoline Anne Orloff
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Samatha Ankireddy
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Karen Lai
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Agnė Žiniauskaitė
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Evan Benjamin Stubbs
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Giedrius Kalesnykas
- Research & Development Division, UAB Experimentica, LT-10223 Vilnius, Lithuania;
| | - Jenni Johanna Hakkarainen
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
| | - Kelly Ann Langert
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Simon Kaja
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
38
|
Bogdan ED, Stuard WL, Titone R, Robertson DM. IGFBP-3 Mediates Metabolic Homeostasis During Hyperosmolar Stress in the Corneal Epithelium. Invest Ophthalmol Vis Sci 2021; 62:11. [PMID: 34100890 PMCID: PMC8196413 DOI: 10.1167/iovs.62.7.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional secretory protein with well-known roles in cell growth and survival. Data in our laboratory suggest that IGFBP-3 may be functioning as a stress response protein in the corneal epithelium. The purpose of this study is to determine the role of IGFBP-3 in mediating the corneal epithelial cell stress response to hyperosmolarity, a well-known pathophysiological event in the development of dry eye disease. Methods Telomerase-immortalized human corneal epithelial (hTCEpi) cells were used in this study. Cells were cultured in serum-free media with (growth) or without (basal) supplements. Hyperosmolarity was achieved by increasing salt concentrations to 450 and 500 mOsM. Metabolic and mitochondrial changes were assessed using Seahorse metabolic flux analysis and assays for mitochondrial calcium, polarization and mtDNA. Levels of IGFBP-3 and inflammatory mediators were quantified using ELISA. Cytotoxicity was evaluated using a lactate dehydrogenase assay. In select experiments, cells were cotreated with 500 ng/mL recombinant human (rh)IGFBP-3. Results Hyperosmolar stress altered metabolic activity, shifting cells towards a respiratory phenotype. Hyperosmolar stress further altered mitochondrial calcium levels, depolarized mitochondria, decreased levels of ATP, mtDNA, and expression of IGFBP-3. In contrast, hyperosmolar stress increased production of the proinflammatory cytokines IL-6 and IL-8. Supplementation with rhIGFBP-3 abrogated metabolic and mitochondrial changes with only marginal effects on IL-8. Conclusions These findings indicate that IGFBP-3 is a critical protein involved in hyperosmolar stress responses in the corneal epithelium. These data further support a new role for IGFBP-3 in the control of cellular metabolism.
Collapse
Affiliation(s)
- Evan D Bogdan
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Whitney L Stuard
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Rossella Titone
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Danielle M Robertson
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
39
|
Musayeva A, Jiang S, Ruan Y, Zadeh JK, Chronopoulos P, Pfeiffer N, Müller WE, Ackermann M, Xia N, Li H, Gericke A. Aged Mice Devoid of the M 3 Muscarinic Acetylcholine Receptor Develop Mild Dry Eye Disease. Int J Mol Sci 2021; 22:6133. [PMID: 34200187 PMCID: PMC8201107 DOI: 10.3390/ijms22116133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The parasympathetic nervous system is critically involved in the regulation of tear secretion by activating muscarinic acetylcholine receptors. Hence, various animal models targeting parasympathetic signaling have been developed to induce dry eye disease (DED). However, the muscarinic receptor subtype (M1-M5) mediating tear secretion remains to be determined. This study was conducted to test the hypothesis that the M3 receptor subtype regulates tear secretion and to evaluate the ocular surface phenotype of mice with targeted disruption of the M3 receptor (M3R-/-). The experimental techniques included quantification of tear production, fluorescein staining of the ocular surface, environmental scanning electron microscopy, assessment of proliferating cells in the corneal epithelium and of goblet cells in the conjunctiva, quantification of mRNA for inflammatory cytokines and prooxidant redox enzymes and quantification of reactive oxygen species. Tear volume was reduced in M3R-/- mice compared to age-matched controls at the age of 3 months and 15 months, respectively. This was associated with mild corneal epitheliopathy in the 15-month-old but not in the 3-month-old M3R-/- mice. M3R-/- mice at the age of 15 months also displayed changes in corneal epithelial cell texture, reduced conjunctival goblet cell density, oxidative stress and elevated mRNA expression levels for inflammatory cytokines and prooxidant redox enzymes. The findings suggest that the M3 receptor plays a pivotal role in tear production and its absence leads to ocular surface changes typical for DED at advanced age.
Collapse
Affiliation(s)
- Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.J.); (Y.R.); (J.K.Z.); (P.C.); (N.P.)
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.J.); (Y.R.); (J.K.Z.); (P.C.); (N.P.)
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.J.); (Y.R.); (J.K.Z.); (P.C.); (N.P.)
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.J.); (Y.R.); (J.K.Z.); (P.C.); (N.P.)
| | - Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.J.); (Y.R.); (J.K.Z.); (P.C.); (N.P.)
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.J.); (Y.R.); (J.K.Z.); (P.C.); (N.P.)
| | - Werner E.G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany;
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany;
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (N.X.); (H.L.)
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (N.X.); (H.L.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.J.); (Y.R.); (J.K.Z.); (P.C.); (N.P.)
| |
Collapse
|
40
|
Crosslinked Hyaluronic Acid with Liposomes and Crocin Confers Cytoprotection in an Experimental Model of Dry Eye. Molecules 2021; 26:molecules26040849. [PMID: 33561944 PMCID: PMC7915152 DOI: 10.3390/molecules26040849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial condition caused by tear deficiency and accompanied by ocular surface damage. Recent data support a key role of oxidative and inflammatory processes in the pathogenesis of DED. Hyaluronic acid (HA) is widely used in artificial tears to treat DED by improving ocular hydration and reducing surface friction. Crocin (Cr), the main constituent of saffron, is a renowned compound that exhibits potent antioxidant and anti-inflammatory effects. The present study was undertaken to assess the viscosity and muco-adhesiveness of a photoactivated formulation with crosslinked HA (cHA), Cr, and liposomes (cHA-Cr-L). Our aim was also to evaluate whether cHA-Cr-L may exert cytoprotective effects against oxidative and inflammatory processes in human corneal epithelial cells (HCECs). Viscosity was measured using a rotational rheometer, and then the muco-adhesiveness was evaluated. Under hyperosmolarity (450 mOsm), the HCECs were treated with cHA-Cr-L. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) were quantified by quantitative real-time polymerase chain reaction (RT-qPCR). The levels of reactive oxygen species (ROS) were measured using the DCF assay. The combined action of cHA-Cr-L produced a higher viscosity and muco-adhesiveness compared to the control. The anti-inflammatory effect of cHA-Cr-L was achieved through a significant reduction of IL-1β and TNFα (p < 0.001). The results also showed that cHA-Cr-L reduces ROS production under conditions of hyperosmolarity (p < 0.001). We conclude that cHA-Cr-L has potential as a therapeutic agent in DED, which should be further investigated.
Collapse
|
41
|
Favero G, Moretti E, Krajčíková K, Tomečková V, Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants (Basel) 2021; 10:antiox10020190. [PMID: 33525721 PMCID: PMC7911148 DOI: 10.3390/antiox10020190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease is a multifactorial pathology compromising the quality of life of patients, resulting in significant damage of the ocular surface and discomfort. The current therapeutical strategies are not able to definitively resolve the underlying causes and stop the symptoms. Polyphenols are promising natural molecules that are receiving increasing attention for their activity/effects in counteracting the main pathologic mechanisms of dry eye disease and reducing its symptoms. In the present review, a deep literature search focusing on the main polyphenols tested against dry eye disease was conducted, analyzing related in vitro, in vivo, and clinical studies to provide a comprehensive and current review on the state of the art. Polyphenols present multiple effects against dry eye diseases-related ocular surface injury. In particular, the observed beneficial effects of polyphenols on corneal cells are the reduction of the pathological processes of inflammation, oxidative stress, and apoptosis and modulation of the tear film. Due to numerous studies reporting that polyphenols are effective and safe for treating the pathological mechanisms of this ocular surface disease, we believe that future studies should confirm and extend the evidence of polyphenols efficacy in clinical practice against dry eye disease and help to develop new ophthalmic drug(s).
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|
42
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
43
|
Liu Z, Chen D, Chen X, Bian F, Qin W, Gao N, Xiao Y, Li J, Pflugfelder SC, Li DQ. Trehalose Induces Autophagy Against Inflammation by Activating TFEB Signaling Pathway in Human Corneal Epithelial Cells Exposed to Hyperosmotic Stress. Invest Ophthalmol Vis Sci 2021; 61:26. [PMID: 32785678 PMCID: PMC7441355 DOI: 10.1167/iovs.61.10.26] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Autophagy plays an important role in balancing the inflammatory response to restore homeostasis. The aim of this study was to explore the mechanism by which trehalose suppresses inflammatory cytokines via autophagy activation in primary human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. Methods An in vitro dry eye model was used in which HCECs were cultured in hyperosmolar medium with the addition of sodium chloride (NaCl). Trehalose was applied in different concentrations. The levels of TNF-α, IL-1β, IL-6, and IL-8 were detected using RT-qPCR and ELISA. Cell viability assays, immunofluorescent staining of LC3B, and western blots of Beclin1, Atg5, Atg7, LC3B, and P62 were conducted. The key factors in upstream signaling pathways of autophagy activation were measured: P-Akt, Akt, and transcription factor EB (TFEB). Results Trehalose reduced the proinflammatory mediators TNF-α, IL-1β, IL-6, and IL-8 in primary HCECs at 450 mOsM. This effect was osmolarity dependent, and a level of 1.0% trehalose showed the most suppression. Trehalose promoted autophagosome formation and autophagic flux, as evidenced by increased production of Beclin1, Atg5, and Atg7, as well as higher LC3B I protein turnover to LC3B II, with decreased protein levels of P62/SQSTM1. The addition of 3-methyladenine blocked autophagy activation and increased the release of proinflammatory cytokines. Trehalose further activated TFEB, with translocation from cytoplasm to the nucleus, but diminished Akt activity. Conclusions Our findings demonstrate that trehalose, functioning as an autophagy enhancer, suppresses the inflammatory response by promoting autophagic flux via TFEB activation in primary HCECs exposed to hyperosmotic stress, a process that is beneficial to dry eye.
Collapse
Affiliation(s)
- Zhao Liu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ding Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Bian
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Wenjuan Qin
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Ning Gao
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States.,Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yangyan Xiao
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jinmiao Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
44
|
Somayajulu M, McClellan SA, Pitchaikannu A, Bessert D, Liu L, Steinle J, Hazlett LD. Effects of Glycyrrhizin Treatment on Diabetic Cornea. J Ocul Pharmacol Ther 2020; 37:12-23. [PMID: 33347772 DOI: 10.1089/jop.2020.0105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: To test how glycyrrhizin (GLY) affects mouse corneal epithelial cells (MCEC) and the diabetic murine cornea. Methods: Viability of MCEC grown under normal or high glucose (HG) with/without GLY was tested by an MTT assay. In addition, C57BL/6 mice were injected with streptozotocin and a subset of control and diabetic mice received GLY in their drinking water. mRNA and protein levels of proinflammatory and oxidative stress molecules were tested by reverse transcription-polymerase chain reaction (RT-PCR) in both models. Ex vivo studies using human diabetic versus control corneas analyzed proinflammatory and oxidative stress markers using RT-PCR and enzyme-linked immunosorbent assay. Results: GLY protected against loss of cell viability induced by HG and significantly reduced HMGB1, IL-1β, TLR2, TLR4, NLRP3, COX2, SOD2, HO-1, GPX2, and GR1. In vivo, corneas of GLY-treated diabetic mice showed significantly decreased mRNA expression for CXCL2, iNOS, and all molecules listed above; GLY also lowered HMGB1 and IL-1β proteins (in vitro and in vivo). Ex vivo studies using diabetic human corneas revealed elevated mRNA levels of inflammatory and oxidative stress molecules (as listed above for in vivo) versus normal age-matched controls. Protein levels for HMGB1 and IL-1β also were elevated in diabetic human versus control corneas. Conclusions: The data provide evidence that GLY treatment attenuates inflammation and oxidative stress in vitro in MCEC and in vivo in the cornea of diabetic mice. Ex vivo data support the similarities of proinflammatory and oxidative stress data in mouse compared to human, suggesting that GLY treatment would have relevancy to patient care.
Collapse
Affiliation(s)
- Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Denise Bessert
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Li Liu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jena Steinle
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
45
|
Tsubota K, Pflugfelder SC, Liu Z, Baudouin C, Kim HM, Messmer EM, Kruse F, Liang L, Carreno-Galeano JT, Rolando M, Yokoi N, Kinoshita S, Dana R. Defining Dry Eye from a Clinical Perspective. Int J Mol Sci 2020; 21:ijms21239271. [PMID: 33291796 PMCID: PMC7730816 DOI: 10.3390/ijms21239271] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, the number of patients with dry eye disease (DED) has increased dramatically. The incidence of DED is higher in Asia than in Europe and North America, suggesting the involvement of cultural or racial factors in DED etiology. Although many definitions of DED have been used, discrepancies exist between the various definitions of dry eye disease (DED) used across the globe. This article presents a clinical consensus on the definition of DED, as formulated in four meetings with global DED experts. The proposed new definition is as follows: “Dry eye is a multifactorial disease characterized by a persistently unstable and/or deficient tear film (TF) causing discomfort and/or visual impairment, accompanied by variable degrees of ocular surface epitheliopathy, inflammation and neurosensory abnormalities.” The key criteria for the diagnosis of DED are unstable TF, inflammation, ocular discomfort and visual impairment. This definition also recommends the assessment of ocular surface epitheliopathy and neurosensory abnormalities in each patient with suspected DED. It is easily applicable in clinical practice and should help practitioners diagnose DED consistently. This consensus definition of DED should also help to guide research and clinical trials that, to date, have been hampered by the lack of an established surrogate endpoint.
Collapse
Affiliation(s)
- Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-3-5363-3219
| | | | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen 361102, China;
| | | | - Hyo Myung Kim
- Korea University Medical Center, Anam Hospital, Seoul 02841, Korea;
| | - Elisabeth M. Messmer
- Department of Ophthalmology, Ludwig Maximilian University, 80539 Munich, Germany;
| | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Lingyi Liang
- Zhongshan Ophthalmic Center, Guangzhou 510060, China;
| | | | - Maurizio Rolando
- ISPRE OPHTHALMICS (Instituto di Medicina Oftalmica), 16129 Genoa, Italy;
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Reza Dana
- Cornea & Refractive Surgery, Massachusetts Eye & Ear, Boston, MA 02114, USA; (J.T.C.-G.); (R.D.)
| |
Collapse
|
46
|
Autophagy Activation Protects Ocular Surface from Inflammation in a Dry Eye Model In Vitro. Int J Mol Sci 2020; 21:ijms21238966. [PMID: 33255884 PMCID: PMC7728298 DOI: 10.3390/ijms21238966] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023] Open
Abstract
Inflammation is the main pathophysiology of dry eye, characterized by tear film instability and hyperosmolarity. The aim of this study was to investigate the association of inflammation and cellular autophagy using an in vitro dry eye model with primary cultured human corneal epithelial cells (HCECs). Primary HCECs cultured with fresh limbal explants from donors were switched to a hyperosmotic medium (450 mOsM) by adding sodium chloride into the culture medium. We observed the stimulated inflammatory mediators, TNF-α, IL-1β, IL-6 and IL-8, as well as the increased expression of autophagy related genes, Ulk1, Beclin1, Atg5 and LC3B, as evaluated by RT-qPCR and ELISA. The immunofluorescent staining of LC3B and Western blotting revealed the activated autophagosome formation and autophagic flux, as evidenced by the increased LC3B autophagic cells with activated Beclin1, Atg5, Atg7 and LC3B proteins, and the decreased levels of P62 protein in HCECs. Interestingly, the autophagy activation was later at 24 h than inflammation induced at 4 h in HCECs exposed to 450 mOsM. Furthermore, application of rapamycin enhanced autophagy activation also reduced the inflammatory mediators and restored cell viability in HCECs exposed to the hyperosmotic medium. Our findings for the first time demonstrate that the autophagy activation is a late phase response to hyperosmotic stress, and is enhanced by rapamycin, which protects HCECs by suppressing inflammation and promoting cells survival, suggesting a new therapeutic potential to treat dry eye diseases.
Collapse
|
47
|
Modulation of Oxidative Stress and Inflammation in the Aged Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:294-308. [PMID: 33159886 DOI: 10.1016/j.ajpath.2020.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Inflammation and oxidative stress accompany aging. This study investigated the interplay between oxidative stress and inflammation in the lacrimal gland. C57BL/6 mice were used at 2 to 3, 12, and 24 months of age. Nuclear factor erythroid derived-2-related factor 2 (Nrf2)-/- and corresponding wild-type mice were used at 2 to 3 and 12 to 13 months of age. A separate group of 15.5 to 17 months of age C57BL/6 mice received a diet containing an Nrf2 inducer (Oltipraz) for 8 weeks. Aged C57BL/6 lacrimal glands showed significantly greater lymphocytic infiltration, higher levels of MHC II, IFN-γ, IL-1β, TNF-α, and cathepsin S (Ctss) mRNA transcripts, and greater nitrotyrosine and 4-hydroxynonenal protein. Young Nrf2-/- mice showed an increase in IL-1β, IFN-γ, MHC II, and Ctss mRNA transcripts compared with young wild-type mice and greater age-related changes at 12 to 13 months of age. Oltipraz diet significantly decreased nitrotyrosine and 4-hydroxynonenal and decreased the expression of IL-1β and TNF-α mRNA transcripts, while decreasing the frequency of CD45+CD4+ cells in lacrimal glands and significantly increasing conjunctival goblet cell density compared with a standard diet. The findings provide novel insight into the development of chronic, low-grade inflammation and oxidative stress in age-related dry eye. New therapies targeting oxidative stress pathways will be valuable in treating age-related dry eye.
Collapse
|
48
|
The cornea in keratoconjunctivitis sicca. Exp Eye Res 2020; 201:108295. [PMID: 33038387 DOI: 10.1016/j.exer.2020.108295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
The lacrimal functional unit (LFU) regulates tear production, composition, distribution and clearance to maintain a stable protective tear layer that is essential for maintaining corneal epithelial health. Dysfunction of the LFU, commonly referred to as dry eye, leads to increased tear osmolarity and levels of inflammatory mediators in tears that cause ocular surface epithelial disease, termed keratoconjunctivitis sicca (KCS). Corneal changes in KCS include glycocalyx loss, barrier disruption, surface irregularity inflammatory cytokine/chemokine production, cornification and apoptosis. These can reduce visual function and the increased shear force on the corneal epithelium can stimulate nociceptors sensitized by inflammation causing irritation and pain that may precede frank clinical signs. Therapy of keratoconjunctivitis sicca should be tailored to improve tear stability, normalize tear composition, improve barrier function and minimize shear forces and damaging inflammation to improve corneal epithelial health.
Collapse
|
49
|
Resveratrol Rescues Human Corneal Epithelial Cells Cultured in Hyperosmolar Conditions: Potential for Dry Eye Disease Treatment. Cornea 2020; 39:1520-1532. [DOI: 10.1097/ico.0000000000002495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Li L, Jin R, Li Y, Nho JH, Choi W, Ji YS, Yoon HJ, Yoon KC. Effects of Eurya japonica extracts on human corneal epithelial cells and experimental dry eye. Exp Ther Med 2020; 20:1607-1615. [PMID: 32742392 PMCID: PMC7388282 DOI: 10.3892/etm.2020.8830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
Eurya japonica (EJ) leaves have been indicated to exert anti-oxidative and anti-inflammatory effects. Dry eye disease (DED) is a chronic inflammatory disease and oxidative stress is closely associated with DED. The aim of the present study was to analyze the therapeutic efficacy of EJ in DED using human corneal epithelial (HCE) cells and a mouse model of experimental dry eye (EDE). EJ extracts (0.001, 0.01 and 0.1%) were used to treat HCE cells. Cell viability and mitochondrial function were detected using a EZ-Cytox cell viability assay kit and mitochondrial membrane potential assays. Dichlorofluorescein diacetate (DCF-DA) assay was used to measure cellular reactive oxygen species (ROS) levels. Subsequently, eye drops consisting of BSS or 0.001%, 0.01 and 0.1% EJ extracts were applied for treatment of EDE. At 7 days, conjunctival ROS production was measured using a DCF-DA assay. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, 10 kDa interferon gamma-induced protein 10 (IP-10) and monokine induced by interferon-γ (MIG) levels in the conjunctiva were analyzed using a multiplex immunobead assay. Tear film and ocular surface parameters were measured. Treatment with EJ extracts in HCE cells effectively improved cell viability, ROS levels and mitochondrial function. Mice treated with 0.01 and 0.1% EJ extracts indicated a significant decrease in ROS, TNF-α, IL-1β, IP-10 and MIG levels compared with the EDE or BSS groups. Furthermore, a significant improvement in all clinical parameters was observed in the 0.01 and 0.1% EJ extract groups. EJ extracts could decrease cytotoxicity and ROS production in HCE cells. Additionally, topical EJ extracts reduced oxidative damage and inflammation and improved clinical signs of EDE, suggesting that EJ extracts may be used as an adjunctive therapy for DED.
Collapse
Affiliation(s)
- Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea.,Biomedical Sciences and Center for Creative Biomedical Scientists, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Rujun Jin
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Ying Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Jong Hyun Nho
- Department of Korean Medicine Preclinical Trial Center, National Development Institute of Korean Medicine, Jangheung-gun 59319, Republic of Korea
| | - Won Choi
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Yong Sok Ji
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Hyeon Jeong Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|