1
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
2
|
Palumbo RJ, Yang Y, Feigon J, Hanes SD. Catalytic activity of the Bin3/MePCE methyltransferase domain is dispensable for 7SK snRNP function in Drosophila melanogaster. Genetics 2024; 226:iyad203. [PMID: 37982586 PMCID: PMC10763541 DOI: 10.1093/genetics/iyad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Methylphosphate Capping Enzyme (MePCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MePCE in vitro, little is known about its functions in vivo, or what roles-if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MePCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MePCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MePCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.
Collapse
Affiliation(s)
- Ryan J Palumbo
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Steven D Hanes
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
3
|
Linscott ML, Yildiz Y, Flury S, Newby ML, Pak TR. Age and 17β-Estradiol (E 2) Facilitate Nuclear Export and Argonaute Loading of microRNAs in the Female Brain. Noncoding RNA 2023; 9:74. [PMID: 38133208 PMCID: PMC10745551 DOI: 10.3390/ncrna9060074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Aging in women is accompanied by a dramatic change in circulating sex steroid hormones. Specifically, the primary circulating estrogen, 17β-estradiol (E2), is nearly undetectable in post-menopausal women. This decline is associated with a variety of cognitive and mood disorders, yet hormone replacement therapy is only effective within a narrow window of time surrounding the menopausal transition. Our previous work identified microRNAs as a potential molecular substrate underlying the change in E2 efficacy associated with menopause in advanced age. Specifically, we showed that E2 regulated a small subset of mature miRNAs in the aging female brain. In this study, we hypothesized that E2 regulates the stability of mature miRNAs by altering their subcellular localization and their association with argonaute proteins. We also tested the hypothesis that the RNA binding protein, hnRNP A1, was an important regulator of mature miR-9-5p expression in neuronal cells. Our results demonstrated that E2 treatment affected miRNA subcellular localization and its association with argonaute proteins differently, depending on the length of time following E2 deprivation (i.e., ovariectomy). We also provide strong evidence that hnRNP A1 regulates the transcription of pri-miR-9 and likely plays a posttranscriptional role in mature miR-9-5p turnover. Taken together, these data have important implications for considering the optimal timing for hormone replacement therapy, which might be less dependent on age and more related to how long treatment is delayed following menopause.
Collapse
Affiliation(s)
| | | | | | | | - Toni R. Pak
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.L.L.); (Y.Y.); (S.F.); (M.L.N.)
| |
Collapse
|
4
|
Palumbo RJ, Hanes SD. Catalytic activity of the Bin3/MEPCE methyltransferase domain is dispensable for 7SK snRNP function in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543302. [PMID: 37333392 PMCID: PMC10274667 DOI: 10.1101/2023.06.01.543302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Methylphosphate Capping Enzyme (MEPCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MEPCE in vitro, little is known about its functions in vivo, or what roles- if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MEPCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MEPCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MEPCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.
Collapse
Affiliation(s)
- Ryan J Palumbo
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University 750 East Adams Street, 4283 Weiskotten Hall, Syracuse, New York, 13210
| | - Steven D Hanes
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University 750 East Adams Street, 4283 Weiskotten Hall, Syracuse, New York, 13210
| |
Collapse
|
5
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3'-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3'-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
Affiliation(s)
- Jianguo Feng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
- Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jianlong Zhou
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yunxiao Lin
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
| |
Collapse
|
6
|
Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol 2022; 221:1077-1092. [PMID: 36113587 DOI: 10.1016/j.ijbiomac.2022.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.
Collapse
|
7
|
Heterogeneous nuclear ribonucleoprotein A/B: an emerging group of cancer biomarkers and therapeutic targets. Cell Death Dis 2022; 8:337. [PMID: 35879279 PMCID: PMC9314375 DOI: 10.1038/s41420-022-01129-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A/B (hnRNPA/B) is one of the core members of the RNA binding protein (RBP) hnRNPs family, including four main subtypes, A0, A1, A2/B1 and A3, which share the similar structure and functions. With the advance in understanding the molecular biology of hnRNPA/B, it has been gradually revealed that hnRNPA/B plays a critical role in almost the entire steps of RNA life cycle and its aberrant expression and mutation have important effects on the occurrence and progression of various cancers. This review focuses on the clinical significance of hnRNPA/B in various cancers and systematically summarizes its biological function and molecular mechanisms.
Collapse
|
8
|
Kaur R, Batra J, Stuchlik O, Reed MS, Pohl J, Sambhara S, Lal SK. Heterogeneous Ribonucleoprotein A1 (hnRNPA1) Interacts with the Nucleoprotein of the Influenza a Virus and Impedes Virus Replication. Viruses 2022; 14:v14020199. [PMID: 35215793 PMCID: PMC8880450 DOI: 10.3390/v14020199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), like other viruses, depends on the host cellular machinery for replication and production of progeny. The relationship between a virus and a host is complex, shaped by many spatial and temporal interactions between viral and host proteome, ultimately dictating disease outcome. Therefore, it is imperative to identify host-virus interactions as crucial determinants of disease pathogenies. Heterogeneous ribonucleoprotein A1 (hnRNPA1) is an RNA binding protein involved in the life cycle of many DNA and RNA viruses; however, its role in IAV remains undiscovered. Here we report that human hnRNPA1 physically interacts with the nucleoprotein (NP) of IAV in mammalian cells at different time points of the viral replication cycle. Temporal distribution studies identify hnRNPA1 and NP co-localize in the same cellular milieu in both nucleus and mitochondria in NP-transfected and IAV-infected mammalian cells. Interestingly, hnRNPA1 influenced NP gene expression and affected viral replication. Most importantly, hnRNPA1 knockdown caused a significant increase in NP expression and enhanced viral replication (93.82%) in IAV infected A549 cells. Conversely, hnRNPA1 overexpression reduced NP expression at the mRNA and protein levels and impeded virus replication by (60.70%), suggesting antagonistic function. Taken together, results from this study demonstrate that cellular hnRNPA1 plays a protective role in the host hitherto unknown and may hold potential as an antiviral target to develop host-based therapeutics against IAV.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
| | - Jyoti Batra
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
| | - Olga Stuchlik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Matthew S. Reed
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Jan Pohl
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
- Correspondence: (S.S.); (S.K.L.)
| | - Sunil Kumar Lal
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
- Tropical Medicine & Biology Platform, Monash University, Selangor 47500, Malaysia
- Correspondence: (S.S.); (S.K.L.)
| |
Collapse
|
9
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
10
|
Beijer D, Kim HJ, Guo L, O'Donovan K, Mademan I, Deconinck T, Van Schil K, Fare CM, Drake LE, Ford AF, Kochański A, Kabzińska D, Dubuisson N, Van den Bergh P, Voermans NC, Lemmers RJ, van der Maarel SM, Bonner D, Sampson JB, Wheeler MT, Mehrabyan A, Palmer S, De Jonghe P, Shorter J, Taylor JP, Baets J. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight 2021; 6:e148363. [PMID: 34291734 PMCID: PMC8410042 DOI: 10.1172/jci.insight.148363] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Inès Mademan
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Tine Deconinck
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Kristof Van Schil
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren E Drake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alice F Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Nicolas Dubuisson
- Neuromuscular Reference Centre, University Hospitals St-Luc, University of Louvain, Brussels, Belgium
| | - Peter Van den Bergh
- Neuromuscular Reference Centre, University Hospitals St-Luc, University of Louvain, Brussels, Belgium
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Devon Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Jacinda B Sampson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Anahit Mehrabyan
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven Palmer
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter De Jonghe
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, Belgium
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, Belgium
| |
Collapse
|
11
|
Yu S, Li J, Ji G, Ng ZL, Siew J, Lo WN, Ye Y, Chew YY, Long YC, Zhang W, Guccione E, Loh YH, Jiang ZH, Yang H, Wu Q. Npac Is a Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:110-128. [PMID: 33676077 PMCID: PMC9510873 DOI: 10.1016/j.gpb.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 07/16/2020] [Accepted: 08/15/2020] [Indexed: 12/31/2022]
Abstract
Chromatin modification contributes to pluripotency maintenance in embryonic stem cells (ESCs). However, the related mechanisms remain obscure. Here, we show that Npac, a “reader” of histone H3 lysine 36 trimethylation (H3K36me3), is required to maintain mouse ESC (mESC) pluripotency since knockdown of Npac causes mESC differentiation. Depletion of Npac in mouse embryonic fibroblasts (MEFs) inhibits reprogramming efficiency. Furthermore, our chromatin immunoprecipitation followed by sequencing (ChIP-seq) results of Npac reveal that Npac co-localizes with histone H3K36me3 in gene bodies of actively transcribed genes in mESCs. Interestingly, we find that Npac interacts with positive transcription elongation factor b (p-TEFb), Ser2-phosphorylated RNA Pol II (RNA Pol II Ser2P), and Ser5-phosphorylated RNA Pol II (RNA Pol II Ser5P). Furthermore, depletion of Npac disrupts transcriptional elongation of the pluripotency genes Nanog and Rif1. Taken together, we propose that Npac is essential for the transcriptional elongation of pluripotency genes by recruiting p-TEFb and interacting with RNA Pol II Ser2P and Ser5P.
Collapse
Affiliation(s)
- Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| | - Guanxu Ji
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Zhen Long Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jiamin Siew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wan Ning Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ying Ye
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yuan Yuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zhi-Hong Jiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore.
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China.
| |
Collapse
|
12
|
Congrains A, Niemann FS, Duarte ADSS, Ferro KPV, Olalla-Saad ST. Novel Non-Coding Transcript in NR4A3 Locus, LncNR4A3, Regulates RNA Processing Machinery Proteins and NR4A3 Expression. Front Oncol 2020; 10:569668. [PMID: 33330042 PMCID: PMC7719789 DOI: 10.3389/fonc.2020.569668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
NR4A3 is a key tumor suppressor in myeloid malignancy, mice lacking both NR4A1 and family member NR4A3 rapidly develop lethal acute myeloid leukemia (AML). We identified a long non-coding transcript in the NR4A3 locus and pursued the characterization of this anonymous transcript and the study of its role in leukemogenesis. We characterized this novel long non-coding transcript as a sense polyadenylated transcript. Bone marrow cells from AML patients expressed significantly reduced levels of lncNR4A3 compared to healthy controls (controls = 15, MDS= 20, p=0.05., AML= 21, p<0.01). Expression of NR4A3, as previously reported, was also significantly reduced in AML. Interestingly, the expression of both coding and non-coding transcripts was highly correlated (Pearson R = 0.3771, P<0.01). Transient over-expression of LncNR4A3 by nucleofection led to an increase in the RNA and protein level of NR4A3, reduction of proliferation in myeloid cell lines K-562 and KG1 (n=3 and 2 respectively, p<0.05) and reduced colony formation capacity in primary leukemic cells. A mass spectrometry-based quantitative proteomics approach was used to identify proteins dysregulated after lncNR4A3 over-expression in K-562. Enrichment analysis showed that the altered proteins are biologically connected (n=4, p<0.001) and functionally associated to RNA binding, transcription elongation, and splicing. Remarkably, we were able to validate the most significant results by WB. We showed that this novel transcript, lncNR4A3 regulates NR4A3 and we hypothesize this regulatory mechanism is mediated by the modulation of the RNA processing machinery.
Collapse
Affiliation(s)
- Ada Congrains
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Brazil
| | | | | | | | | |
Collapse
|
13
|
Kajitani N, Schwartz S. Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses 2020; 12:E1110. [PMID: 33007936 PMCID: PMC7600041 DOI: 10.3390/v12101110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPVs) depend on the cellular RNA-processing machineries including alternative RNA splicing and polyadenylation to coordinate HPV gene expression. HPV RNA processing is controlled by cis-regulatory RNA elements and trans-regulatory factors since the HPV splice sites are suboptimal. The definition of HPV exons and introns may differ between individual HPV mRNA species and is complicated by the fact that many HPV protein-coding sequences overlap. The formation of HPV ribonucleoproteins consisting of HPV pre-mRNAs and multiple cellular RNA-binding proteins may result in the different outcomes of HPV gene expression, which contributes to the HPV life cycle progression and HPV-associated cancer development. In this review, we summarize the regulation of HPV16 gene expression at the level of RNA processing with focus on the interactions between HPV16 pre-mRNAs and cellular RNA-binding factors.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden;
| | | |
Collapse
|
14
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia. Leukemia 2020; 34:2621-2634. [PMID: 32358566 DOI: 10.1038/s41375-020-0839-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
Previous studies demonstrated that splicing factor mutations are recurrent events in hematopoietic malignancies with both clinical and functional implications. However, their aberrant splicing patterns in acute myeloid leukemia remain largely unexplored. In this study, we characterized mutations in SRSF2, U2AF1, and SF3B1, the most commonly mutated splicing factors. In our clinical analysis of 2678 patients, splicing factor mutations showed inferior relapse-free and overall survival, however, these mutations did not represent independent prognostic markers. RNA-sequencing of 246 and independent validation in 177 patients revealed an isoform expression profile which is highly characteristic for each individual mutation, with several isoforms showing a strong dysregulation. By establishing a custom differential splice junction usage pipeline, we accurately detected aberrant splicing in splicing factor mutated samples. A large proportion of differentially used junctions were novel, including several junctions in leukemia-associated genes. In SRSF2(P95H) mutants, we further explored the possibility of a cascading effect through the dysregulation of the splicing pathway. Furthermore, we observed a validated impact on overall survival for two junctions overused in SRSF2(P95H) mutants. We conclude that splicing factor mutations do not represent independent prognostic markers. However, they do have genome-wide consequences on gene splicing leading to dysregulated isoform expression of several genes.
Collapse
|
16
|
Abstract
Studies on myotonic dystrophy type 1 (DM1) have led to the RNA-mediated disease model for hereditary disorders caused by noncoding microsatellite expansions. This model proposes that DM1 disease manifestations are caused by a reversion to fetal RNA processing patterns in adult tissues due to the expression of toxic CUG RNA expansions (CUGexp) leading to decreased muscleblind-like, but increased CUGBP1/ETR3-like factor 1 (CELF1), alternative splicing activities. Here, we test this model in vivo, using the mouse HSA LR poly(CUG) model for DM1 and recombinant adeno-associated virus (rAAV)-mediated transduction of specific splicing factors. Surprisingly, systemic overexpression of HNRNPA1, not previously linked to DM1, also shifted DM1-relevant splicing targets to fetal isoforms, resulting in more severe muscle weakness/myopathy as early as 4 to 6 wk posttransduction, whereas rAAV controls were unaffected. Overexpression of HNRNPA1 promotes fetal exon inclusion of representative DM1-relevant splicing targets in differentiated myoblasts, and HITS-CLIP of rAAV-mycHnrnpa1-injected muscle revealed direct interactions of HNRNPA1 with these targets in vivo. Similar to CELF1, HNRNPA1 protein levels decrease during postnatal development, but are elevated in both regenerating mouse muscle and DM1 skeletal muscle. Our studies suggest that CUGexp RNA triggers abnormal expression of multiple nuclear RNA binding proteins, including CELF1 and HNRNPA1, that antagonize MBNL activity to promote fetal splicing patterns.
Collapse
|
17
|
Lorton BM, Shechter D. Cellular consequences of arginine methylation. Cell Mol Life Sci 2019; 76:2933-2956. [PMID: 31101937 PMCID: PMC6642692 DOI: 10.1007/s00018-019-03140-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Arginine methylation is a ubiquitous post-translational modification. Three predominant types of arginine-guanidino methylation occur in Eukarya: mono (Rme1/MMA), symmetric (Rme2s/SDMA), and asymmetric (Rme2a/ADMA). Arginine methylation frequently occurs at sites of protein-protein and protein-nucleic acid interactions, providing specificity for binding partners and stabilization of important biological interactions in diverse cellular processes. Each methylarginine isoform-catalyzed by members of the protein arginine methyltransferase family, Type I (PRMT1-4,6,8) and Type II (PRMT5,9)-has unique downstream consequences. Methylarginines are found in ordered domains, domains of low complexity, and in intrinsically disordered regions of proteins-the latter two of which are intimately connected with biological liquid-liquid phase separation. This review highlights discoveries illuminating how arginine methylation affects genome integrity, gene transcription, mRNA splicing and mRNP biology, protein translation and stability, and phase separation. As more proteins and processes are found to be regulated by arginine methylation, its importance for understanding cellular physiology will continue to grow.
Collapse
Affiliation(s)
- Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
18
|
Liu Y, Feng W, Gu S, Wang H, Zhang Y, Chen W, Xu W, Lin C, Gong A, Xu M. The UCA1/KRAS axis promotes human pancreatic ductal adenocarcinoma stem cell properties and tumor growth. Am J Cancer Res 2019; 9:496-510. [PMID: 30949406 PMCID: PMC6448060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023] Open
Abstract
Emerging evidence indicates that the long noncoding RNA UCA1 is upregulated in multiple cancers, including pancreatic ductal adenocarcinoma (PDAC), and plays a critical role in various complex biological processes. However, the functional roles of UCA1 in PDAC remain to be clarified. In the current study, we showed that UCA1 significantly promoted cell proliferation and tumor growth both in vitro and in vivo, and enhanced stemness maintenance of PDAC cell lines. Moreover, we found that UCA1 overexpression increased the activity and expression of oncogenic KRAS. Mechanistically, upregulated UCA1 increased phospho-KRAS protein levels by interacting with hnRNPA2B1, and KRAS facilitated high cytoplasmic accumulation of hnRNPA2B1. Additionally, we identified that UCA1 functioned as a competing endogenous RNA (ceRNA) to increase the expression of KRAS via sponging miR-590-3p, and in turn, KRAS promoted UCA1 expression. Collectively, these findings suggest that the UCA1-KRAS axis plays a crucial role in PDAC progression and that UCA1 may serve as a target for new PDAC therapies.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Wen Feng
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
- Department of Gastroenterology, Songjiang Hospital Affiliated Shanghai First People’s Hospital, Shanghai Jiao Tong UniversityShanghai 201600, China
| | - Shumin Gu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Youli Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Wei Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Wei Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Chen Lin
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu UniversityZhenjiang 212003, Jiangsu Province, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu Province, China
| |
Collapse
|
19
|
Levengood JD, Tolbert BS. Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function. Semin Cell Dev Biol 2019; 86:150-161. [PMID: 29625167 PMCID: PMC6177329 DOI: 10.1016/j.semcdb.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
20
|
Lampasona AA, Czaplinski K. Hnrnpab regulates neural cell motility through transcription of Eps8. RNA (NEW YORK, N.Y.) 2019; 25:45-59. [PMID: 30314980 PMCID: PMC6298563 DOI: 10.1261/rna.067413.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 05/05/2023]
Abstract
Cell migration requires a complicated network of structural and regulatory proteins. Changes in cellular motility can impact migration as a result of cell-type or developmental stage regulated expression of critical motility genes. Hnrnpab is a conserved RNA-binding protein found as two isoforms produced by alternative splicing. Its expression is enriched in the subventricular zone (SVZ) and the rostral migratory stream within the brain, suggesting possible support of the migration of neural progenitor cells in this region. Here we show that the migration of cells from the SVZ of developing Hnrnpab-/- mouse brains is impaired. An RNA-seq analysis to identify Hnrnpab-dependent cell motility genes led us to Eps8, and in agreement with the change in cell motility, we show that Eps8 is decreased in Hnrnpab-/- SVZ tissue. We scrutinized the motility of Hnrnpab-/- cells and confirmed that the decreases in both cell motility and Eps8 are restored by ectopically coexpressing both alternatively spliced Hnrnpab isoforms, therefore these variants are surprisingly nonredundant for cell motility. Our results support a model where both Hnrnpab isoforms work in concert to regulate Eps8 transcription in the mouse SVZ to promote the normal migration of neural cells during CNS development.
Collapse
Affiliation(s)
- Alexa A Lampasona
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11749, USA
- Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11749, USA
| | - Kevin Czaplinski
- Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11749, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11749, USA
| |
Collapse
|
21
|
Lee YJ, Wang Q, Rio DC. Coordinate regulation of alternative pre-mRNA splicing events by the human RNA chaperone proteins hnRNPA1 and DDX5. Genes Dev 2018; 32:1060-1074. [PMID: 30042133 PMCID: PMC6075143 DOI: 10.1101/gad.316034.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/12/2023]
Abstract
Alternative premessenger RNA (pre-mRNA) splicing is a post-transcriptional mechanism for controlling gene expression. Splicing patterns are determined by both RNA-binding proteins and nuclear pre-mRNA structure. Here, we analyzed pre-mRNA splicing patterns, RNA-binding sites, and RNA structures near these binding sites coordinately controlled by two splicing factors: the heterogeneous nuclear ribonucleoprotein hnRNPA1 and the RNA helicase DDX5. We identified thousands of alternative pre-mRNA splicing events controlled by these factors by RNA sequencing (RNA-seq) following RNAi. Enhanced cross-linking and immunoprecipitation (eCLIP) on nuclear extracts was used to identify protein-RNA-binding sites for both proteins in the nuclear transcriptome. We found a significant overlap between hnRNPA1 and DDX5 splicing targets and that they share many closely linked binding sites as determined by eCLIP analysis. In vivo SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical RNA structure probing data were used to model RNA structures near several exons controlled and bound by both proteins. Both sequence motifs and in vivo UV cross-linking sites for hnRNPA1 and DDX5 were used to map binding sites in their RNA targets, and often these sites flanked regions of higher chemical reactivity, suggesting an organized nature of nuclear pre-mRNPs. This work provides a first glimpse into the possible RNA structures surrounding pre-mRNA splicing factor-binding sites.
Collapse
Affiliation(s)
- Yeon J Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Qingqing Wang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
- Center for RNA Systems Biology, University of California at Berkeley, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
22
|
Nguyen ED, Balas MM, Griffin AM, Roberts JT, Johnson AM. Global profiling of hnRNP A2/B1-RNA binding on chromatin highlights LncRNA interactions. RNA Biol 2018; 15:901-913. [PMID: 29938567 PMCID: PMC6161681 DOI: 10.1080/15476286.2018.1474072] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 01/03/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) often carry out their functions through associations with adaptor proteins. We recently identified heterogeneous ribonucleoprotein (hnRNP) A2/B1 as an adaptor of the human HOTAIR lncRNA. hnRNP A2 and B1 are splice isoforms of the same gene. The spliced version of HOTAIR preferentially associates with the B1 isoform, which we hypothesize contributes to RNA-RNA matching between HOTAIR and transcripts of target genes in breast cancer. Here we used enhanced cross-linking immunoprecipitation (eCLIP) to map the direct interactions between A2/B1 and RNA in breast cancer cells. Despite differing by only twelve amino acids, the A2 and B1 splice isoforms associate preferentially with distinct populations of RNA in vivo. Through cellular fractionation experiments we characterize the pattern of RNA association in chromatin, nucleoplasm, and cytoplasm. We find that a majority of interactions occur on chromatin, even those that do not contribute to co-transcriptional splicing. A2/B1 binding site locations on multiple RNAs hint at a contribution to the regulation and function of lncRNAs. Surprisingly, the strongest A2/B1 binding site occurs in a retained intron of HOTAIR, which interrupts an RNA-RNA interaction hotspot. In vitro eCLIP experiments highlight additional exonic B1 binding sites in HOTAIR which also surround the RNA-RNA interaction hotspot. Interestingly, a version of HOTAIR with the intron retained is still capable of making RNA-RNA interactions in vitro through the hotspot region. Our data further characterize the multiple functions of a repurposed splicing factor with isoform-biased interactions, and highlight that the majority of these functions occur on chromatin-associated RNA.
Collapse
Affiliation(s)
- Eric D. Nguyen
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maggie M. Balas
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
- University of Colorado School of Medicine RNA Bioscience Initiative, Aurora, CO, USA
| | - April M. Griffin
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
| | - Justin T. Roberts
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
| | - Aaron M. Johnson
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, Aurora, University of Colorado School of Medicine, CO, USA
- University of Colorado School of Medicine RNA Bioscience Initiative, Aurora, CO, USA
| |
Collapse
|
23
|
Dvinge H. Regulation of alternative
mRNA
splicing: old players and new perspectives. FEBS Lett 2018; 592:2987-3006. [DOI: 10.1002/1873-3468.13119] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heidi Dvinge
- Department of Biomolecular Chemistry School of Medicine and Public Health University of Wisconsin‐Madison WI USA
| |
Collapse
|
24
|
Purice MD, Taylor JP. Linking hnRNP Function to ALS and FTD Pathology. Front Neurosci 2018; 12:326. [PMID: 29867335 PMCID: PMC5962818 DOI: 10.3389/fnins.2018.00326] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Following years of rapid progress identifying the genetic underpinnings of amyotrophic lateral sclerosis (ALS) and related diseases such as frontotemporal dementia (FTD), remarkable consistencies have emerged pointing to perturbed biology of heterogeneous nuclear ribonucleoproteins (hnRNPs) as a central driver of pathobiology. To varying extents these RNA-binding proteins are deposited in pathological inclusions in affected tissues in ALS and FTD. Moreover, mutations in hnRNPs account for a significant number of familial cases of ALS and FTD. Here we review the normal function and potential pathogenic contribution of TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1 to disease. We highlight recent evidence linking the low complexity sequence domains (LCDs) of these hnRNPs to the formation of membraneless organelles and discuss how alterations in the dynamics of these organelles could contribute to disease. In particular, we discuss the various roles of disease-associated hnRNPs in stress granule assembly and disassembly, and examine the emerging hypothesis that disease-causing mutations in these proteins lead to accumulation of persistent stress granules.
Collapse
Affiliation(s)
- Maria D Purice
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| |
Collapse
|
25
|
Mishra N, Reddy KS, Timilsina U, Gaur D, Gaur R. Human APOBEC3B interacts with the heterogenous nuclear ribonucleoprotein A3 in cancer cells. J Cell Biochem 2018; 119:6695-6703. [PMID: 29693745 DOI: 10.1002/jcb.26855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/09/2018] [Indexed: 11/07/2022]
Abstract
Human APOBEC3B (A3B), like other APOBEC3 members, is a cytosine deaminase which causes hypermutation of single stranded genome. Recent studies have shown that A3B is predominantly elevated in multiple cancer tissues and cell lines such as the bladder, cervix, lung, head and neck, and breast. Upregulation and activation of A3B in developing tumors can cause an unexpected cluster of mutations which promote cancer development and progression. The cellular proteins which facilitate A3B function through direct or indirect interactions remain largely unknown. In this study, we performed LC-MS-based proteomics to identify cellular proteins which coimmunoprecipitated with A3B. Our results indicated a specific interaction of A3B with hnRNP A3 (heterogeneous nuclear ribonucleoprotein). This interaction was verified by co-immunoprecipitation and was found to be RNA-dependent. Furthermore, A3B and hnRNP A3 colocalized as evident from immunofluorescence analysis.
Collapse
Affiliation(s)
- Nawneet Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - K Sony Reddy
- School of Biotechnology, KIIT University, Odisha, India
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Deepak Gaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
26
|
Abstract
Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.
Collapse
Affiliation(s)
- Annemieke A Michels
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| | - Olivier Bensaude
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| |
Collapse
|
27
|
Park J, Choe CH, Kim J, Yang JS, Kim JH, Jang H, Jang YS. Heterogeneous Nuclear Ribonucleoprotein A2B1 Exerts a Regulatory Role in Lipopolysaccharide-stimulated 38B9 B Cell Activation. Immune Netw 2018; 17:437-450. [PMID: 29302256 PMCID: PMC5746613 DOI: 10.4110/in.2017.17.6.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/01/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules, which are recognized for their primary function of presenting an antigen to the T cell receptor, are involved in various signaling pathways in B cell activation. We identified heterogeneous nuclear ribonucleoprotein (hnRNP) A2B1 as an MHC class II molecule-associated protein involved in MHC class II-mediated signal transduction in lipopolysaccharide (LPS)-stimulated 38B9 B cells. Although the function of hnRNP A2B1 in the nucleus is primarily known, the level of hnRNP A2B1 in the cytoplasm was increased in LPS-stimulated 38B9 cells, while it was not detected in the cytoplasm of non-treated 38B9 cells. The silencing of hnRNP A2B1 expression using siRNA disturbed B cell maturation by regulation of mitogen-activated protein kinase signaling, NF-κB activation, and protein kinase B activation. These results suggest that hnRNP A2B1 is associated with MHC class II molecules and is involved in B cell activation signaling pathways in LPS-stimulated 38B9 cells.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | | | - Ju Kim
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Jing Shian Yang
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Jin Hyun Kim
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Hyonseok Jang
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea.,Department of Oral Maxillofacial Surgery, Korea University Ansan Hospital, Ansan 15355, Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea.,Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
28
|
Auboeuf D. Alternative mRNA processing sites decrease genetic variability while increasing functional diversity. Transcription 2017; 9:75-87. [PMID: 29099315 PMCID: PMC5834221 DOI: 10.1080/21541264.2017.1373891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent large-scale RNA sequencing efforts have revealed the extensive diversity of mRNA molecules produced from most eukaryotic coding genes, which arises from the usage of alternative, cryptic or non-canonical splicing and intronic polyadenylation sites. The prevailing view regarding the tremendous diversity of coding gene transcripts is that mRNA processing is a flexible and more-or-less noisy process leading to a diversity of proteins on which natural selection can act depending on protein-mediated cellular functions. However, this concept raises two main questions. First, do alternative mRNA processing pathways have a role other than generating mRNA and protein diversity? Second, is the cellular function of mRNA variants restricted to the biogenesis of functional protein isoforms? Here, I propose that the co-transcriptional use of alternative mRNA processing sites allows first, the resolution of co-transcriptional biophysical constraints that may otherwise result in DNA instability, and second, increases the diversity of cellular functions of mRNAs in a manner that is not restricted to protein synthesis.
Collapse
Affiliation(s)
- Didier Auboeuf
- a Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell , 46 Allée d'Italie Site Jacques Monod, Lyon , France
| |
Collapse
|
29
|
Cornella N, Tebaldi T, Gasperini L, Singh J, Padgett RA, Rossi A, Macchi P. The hnRNP RALY regulates transcription and cell proliferation by modulating the expression of specific factors including the proliferation marker E2F1. J Biol Chem 2017; 292:19674-19692. [PMID: 28972179 DOI: 10.1074/jbc.m117.795591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) form a large family of RNA-binding proteins that exert numerous functions in RNA metabolism. RALY is a member of the hnRNP family that binds poly-U-rich elements within several RNAs and regulates the expression of specific transcripts. RALY is up-regulated in different types of cancer, and its down-regulation impairs cell cycle progression. However, the RALY's role in regulating RNA levels remains elusive. Here, we show that numerous genes coding for factors involved in transcription and cell cycle regulation exhibit an altered expression in RALY-down-regulated HeLa cells, consequently causing impairments in transcription, cell proliferation, and cell cycle progression. Interestingly, by comparing the list of RALY targets with the list of genes affected by RALY down-regulation, we found an enrichment of RALY mRNA targets in the down-regulated genes upon RALY silencing. The affected genes include the E2F transcription factor family. Given its role as proliferation-promoting transcription factor, we focused on E2F1. We demonstrate that E2F1 mRNA stability and E2F1 protein levels are reduced in cells lacking RALY expression. Finally, we also show that RALY interacts with transcriptionally active chromatin in both an RNA-dependent and -independent manner and that this association is abolished in the absence of active transcription. Taken together, our results highlight the importance of RALY as an indirect regulator of transcription and cell cycle progression through the regulation of specific mRNA targets, thus strengthening the possibility of a direct gene expression regulation exerted by RALY.
Collapse
Affiliation(s)
- Nicola Cornella
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Toma Tebaldi
- the Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Lisa Gasperini
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | | | | | - Annalisa Rossi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| | - Paolo Macchi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| |
Collapse
|
30
|
Meng X, Cui J, Wang Y, Zhang X, Li D, Hai Y, Du H. Heterogeneous nuclear ribonucleoprotein A1 interacts with microRNA-34a to promote chondrogenic differentiation of mesenchymal stem cells. Am J Transl Res 2017; 9:1774-1782. [PMID: 28469782 PMCID: PMC5411925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/01/2017] [Indexed: 09/28/2022]
Abstract
The mesenchymal stem cell (MSC) shows potential in degenerative disc disease (DDD) treatment. However, little is known about the function of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) in modulating the chondrogenic differentiation of MSCs. This study aimed to investigate the role of hnRNPA1 in the chondrogenic differentiation of MSCs and potential mechanisms. Mouse MSCs C3H10 and chondrogenic ATDC5 cells were used to quantify hnRNPA1 expression. The hnRNPA1 overexpression vectors were transfected into C3H10 cells, cell viability and chondrogenic factors expressions were assessed by MTT assay, qPCR and Western blot, respectively. After microRNA-34a (miR-34a) inhibitor transfection, expressions of chondrogenic factors and the Wnt signaling were detected. RNA-binding protein immunoprecipitation (RIP) was performed to reveal the interaction between hnRNPA1 and miR-34a. Results showed that hnRNPA1 was significantly down-regulated in C3H10 compared to ATDC5.Overexpression of hnRNPA1 markedly promoted C3H10 cell viability and expressions of chondrogenic factors SRY-box 9 (SOX9), collagen II, hyaluronan synthase 2 (HAS2) and aggrecan, without significant influence on adipogenic factors. miR-34a inhibitor suppressed chondrogenic factors expressions. RIP results showed the interaction between miR-34a and hnRNPA1. Besides, hnRNPA1 promoted expressions of Wnt family member 3A (WNT3A), WNT5A and β-catenin, and these effects were abrogated by miR-34a inhibitor. We fund the promotive effect of hnRNPA1 on chondrogenic factors, which might require the interaction with miR-34a and the regulation of the Wnt signaling. Thus hnRNPA1 might induce the chondrogenic differentiation of MSCs that facilitate the MSC therapy for DDD.
Collapse
Affiliation(s)
- Xianglong Meng
- Department of Orthopedic, Beijing Chao-Yang Hospital Affiliated to Capital Medical UniversityBeijing 100020, China
| | - Jiawen Cui
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology BeijingBeijing 100083, China
| | - Yunsheng Wang
- Department of Orthopedic, Beijing Chao-Yang Hospital Affiliated to Capital Medical UniversityBeijing 100020, China
| | - Xinuo Zhang
- Department of Orthopedic, Beijing Chao-Yang Hospital Affiliated to Capital Medical UniversityBeijing 100020, China
| | - Dongyue Li
- Department of Orthopedic, Beijing Chao-Yang Hospital Affiliated to Capital Medical UniversityBeijing 100020, China
| | - Yong Hai
- Department of Orthopedic, Beijing Chao-Yang Hospital Affiliated to Capital Medical UniversityBeijing 100020, China
| | - Hongwu Du
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology BeijingBeijing 100083, China
| |
Collapse
|
31
|
Abstract
The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these 'spliceosomal mutations' suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic and biological effects of spliceosomal mutations are crucial for the development of cancer therapies targeted at these mutations.
Collapse
Affiliation(s)
- Heidi Dvinge
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eunhee Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Leukemia Service, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
32
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|