1
|
Gosens I, Minnema J, Boere AJF, Duistermaat E, Fokkens P, Vidmar J, Löschner K, Bokkers B, Costa AL, Peters RJB, Delmaar C, Cassee FR. Biodistribution of cerium dioxide and titanium dioxide nanomaterials in rats after single and repeated inhalation exposures. Part Fibre Toxicol 2024; 21:33. [PMID: 39143599 PMCID: PMC11323389 DOI: 10.1186/s12989-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Physiologically based kinetic models facilitate the safety assessment of inhaled engineered nanomaterials (ENMs). To develop these models, high quality datasets on well-characterized ENMs are needed. However, there are at present, several data gaps in the systemic availability of poorly soluble particles after inhalation. The aim of the present study was therefore to acquire two comparable datasets to parametrize a physiologically-based kinetic model. METHOD Rats were exposed to cerium dioxide (CeO2, 28.4 ± 10.4 nm) and titanium dioxide (TiO2, 21.6 ± 1.5 nm) ENMs in a single nose-only exposure to 20 mg/m3 or a repeated exposure of 2 × 5 days to 5 mg/m3. Different dose levels were obtained by varying the exposure time for 30 min, 2 or 6 h per day. The content of cerium or titanium in three compartments of the lung (tissue, epithelial lining fluid and freely moving cells), mediastinal lymph nodes, liver, spleen, kidney, blood and excreta was measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at various time points post-exposure. As biodistribution is best studied at sub-toxic dose levels, lactate dehydrogenase (LDH), total protein, total cell numbers and differential cell counts were determined in bronchoalveolar lavage fluid (BALF). RESULTS Although similar lung deposited doses were obtained for both materials, exposure to CeO2 induced persistent inflammation indicated by neutrophil granulocytes influx and exhibited an increased lung elimination half-time, while exposure to TiO2 did not. The lavaged lung tissue contained the highest metal concentration compared to the lavage fluid and cells in the lavage fluid for both materials. Increased cerium concentrations above control levels in secondary organs such as lymph nodes, liver, spleen, kidney, urine and faeces were detected, while for titanium this was found in lymph nodes and liver after repeated exposure and in blood and faeces after a single exposure. CONCLUSION We have provided insight in the distribution kinetics of these two ENMs based on experimental data and modelling. The study design allows extrapolation at different dose-levels and study durations. Despite equal dose levels of both ENMs, we observed different distribution patterns, that, in part may be explained by subtle differences in biological responses in the lung.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands.
| | - Jordi Minnema
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - A John F Boere
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Evert Duistermaat
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Paul Fokkens
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Janja Vidmar
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrin Löschner
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bas Bokkers
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Ruud J B Peters
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Christiaan Delmaar
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
- Institute for Risk Assessment Studies, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Szűcs-Somlyó É, Lehel J, Májlinger K, Tóth F, Jerzsele Á, Kővágó C. Immune response to zinc oxide inhalation in metal fume fever, and the possible role of IL-17f. Sci Rep 2023; 13:22239. [PMID: 38097754 PMCID: PMC10721908 DOI: 10.1038/s41598-023-49430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Metal fume fever (MFF) is a work-related disease caused by the inhalation of metal particles, including zinc oxide. Chronic asthma may develop as a long-term consequence of exposure, particularly for welders and metal workers who are most at risk. In this study, we investigated the effects of ZnO fume inhalation on multiple inflammation-related cytokine- and cytokine receptor genes in mice from lung and lymph node samples, to explore the role of these in the pathogenesis of MFF. In our experiments, the animals were treated with a sub-toxic amount of ZnO fume for 4 h a day for 3 consecutive days. Sampling occurred 3 and 12 h post-treatment. We are the first to demonstrate that ZnO inhalation causes extremely increased levels of IL-17f gene expression at both sampling time points, in addition to increased gene expression rates of several other interleukins and cytokines, such as IL-4, IL-13, CXCL5, CSF-3, and IFN-γ. Our animal experiment provides new insights into the immunological processes of early metal fume fever development. IL-17f plays a crucial role in connecting immunological and oxidative stress events. The increased levels of IL-4 and IL-13 cytokines may explain the development of long-term allergic asthma after exposure to ZnO nanoparticles, which is well-known among welders, smelters, and metal workers.
Collapse
Affiliation(s)
- Éva Szűcs-Somlyó
- Department of Epidemiology and Infectious Diseases, University of Veterinary Medicine, Istvan str. 2., 1078, Budapest, Hungary
| | - József Lehel
- Department of Food Hygiene, University of Veterinary Medicine, Istvan str. 2., 1078, Budapest, Hungary.
| | - Kornél Májlinger
- Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Bertalan Lajos str. 7., 1111, Budapest, Hungary
- MTA-BME Lendület Composite Research Group, Bertalan Lajos str. 7., 1111, Budapest, Hungary
| | - Fruzsina Tóth
- University of Veterinary Medicine, Istvan str. 2., 1078, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Istvan Str. 2., 1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine H-1078, Istvan str. 2., Budapest, Hungary
| | - Csaba Kővágó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Istvan Str. 2., 1078, Budapest, Hungary
| |
Collapse
|
3
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
4
|
Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1808. [PMID: 36416026 PMCID: PMC9699155 DOI: 10.1002/wnan.1808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
The rapid growth of nanomaterial applications has raised safety concerns for human health. A number of studies have been conducted to assess the toxicokinetics, toxicology, dose-response, and risk assessment of different nanomaterials using in vitro and in vivo animal and human models. However, current studies cannot meet the demand for efficient assessment of toxicokinetics, dose-response relationships, or the toxicological risk arising from the rapidly increasing number of newly synthesized nanomaterials. In this article, we review the methods for conducting toxicokinetics, hazard identification, dose-response, exposure, and risk assessment studies of nanomaterials, identify the knowledge gaps, and discuss the challenges remaining. We provide the rationale behind the appropriate design of nanomaterial plasma toxicokinetic and tissue distribution studies, including caveats on the interpretation and correlation of in vitro and in vivo toxicology studies. The potential of using physiologically based pharmacokinetic (PBPK) models to extrapolate toxicokinetic and toxicity findings from in vitro to in vivo and from animals to humans is discussed, and the knowledge gaps of PBPK modeling for nanomaterials are identified. While challenges still exist, there has been progress in the toxicokinetics, hazard identification, and risk assessment of nanomaterials in the past two decades. Recent advancements in the field are highlighted with relevant examples. We also share latest guidelines as well as our perspectives on future studies needed to characterize the toxicokinetics, toxicity, and dose-response relationship in support of nanomaterial risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Jim E. Riviere
- 1Data Consortium, Kansas State University, Olathe, Kansas, USA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Kermanizadeh A, Jacobsen NR, Mroczko A, Brown D, Stone V. Acute hazard assessment of silver nanoparticles following intratracheal instillation, oral and intravenous injection exposures. Nanotoxicology 2022; 15:1295-1311. [PMID: 35015612 DOI: 10.1080/17435390.2021.2020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With ever-increasing production and use of nanoparticles (NPs), there is a necessity to evaluate the probability of consequential adverse effects in individuals exposed to these particles. It is now understood that a proportion of NPs can translocate from primary sites of exposure to a range of secondary organs, with the liver, kidneys and spleen being some of the most important. In this study, we carried out a comprehensive toxicological profiling (inflammation, changes in serum biochemistry, oxidative stress, acute phase response and histopathology) of Ag NP induced adverse effects in the three organs of interest following acute exposure of the materials at identical doses via intravenous (IV), intratracheal (IT) instillation and oral administration. The data clearly demonstrated that bioaccumulation and toxicity of the particles were most significant following the IV route of exposure, followed by IT. However, oral exposure to the NPs did not result in any changes that could be interpreted as toxicity in any of the organs of interest within the confines of this investigation. The finding of this study clearly indicates the importance of the route of exposure in secondary organ hazard assessment for NPs. Finally, we identify Connexin 32 (Cx32) as a novel biomarker of NP-mediated hepatic damage which is quantifiable both (in vitro) and in vivo following exposure of physiologically relevant doses.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Human Sciences Research Centre, University of Derby, Derby, United Kingdom
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Agnieszka Mroczko
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
| | - David Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Cazzagon V, Giubilato E, Pizzol L, Ravagli C, Doumett S, Baldi G, Blosi M, Brunelli A, Fito C, Huertas F, Marcomini A, Semenzin E, Zabeo A, Zanoni I, Hristozov D. Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System. NANOIMPACT 2022; 25:100373. [PMID: 35559879 DOI: 10.1016/j.impact.2021.100373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties.
Collapse
Affiliation(s)
- V Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - E Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy; GreenDecision S.r.l., 30170 Venice Mestre, Italy.
| | - L Pizzol
- GreenDecision S.r.l., 30170 Venice Mestre, Italy
| | - C Ravagli
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - S Doumett
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - G Baldi
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - M Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - A Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - C Fito
- ITENE, C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - F Huertas
- ITENE, C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - A Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - E Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - A Zabeo
- GreenDecision S.r.l., 30170 Venice Mestre, Italy
| | - I Zanoni
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - D Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy.
| |
Collapse
|
7
|
Nanomaterial-Induced Extra-Pulmonary Health Effects – the Importance of Next Generation Physiologically Relevant In Vitro Test Systems for the Future of Nanotoxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:259-273. [DOI: 10.1007/978-3-030-88071-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Braakhuis HM, Murphy F, Ma-Hock L, Dekkers S, Keller J, Oomen AG, Stone V. An Integrated Approach to Testing and Assessment to Support Grouping and Read-Across of Nanomaterials After Inhalation Exposure. ACTA ACUST UNITED AC 2021; 7:112-128. [PMID: 34746334 PMCID: PMC8567336 DOI: 10.1089/aivt.2021.0009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Here, we describe the generation of hypotheses for grouping nanoforms (NFs) after inhalation exposure and the tailored Integrated Approaches to Testing and Assessment (IATA) with which each specific hypothesis can be tested. This is part of a state-of-the-art framework to support the hypothesis-driven grouping and read-across of NFs, as developed by the EU-funded Horizon 2020 project GRACIOUS. Development of Grouping Hypotheses and IATA: Respirable NFs, depending on their physicochemical properties, may dissolve either in lung lining fluid or in acidic lysosomal fluid after uptake by cells. Alternatively, NFs may also persist in particulate form. Dissolution in the lung is, therefore, a decisive factor for the toxicokinetics of NFs. This has led to the development of four hypotheses, broadly grouping NFs as instantaneous, quickly, gradually, and very slowly dissolving NFs. For instantaneously dissolving NFs, hazard information can be derived by read-across from the ions. For quickly dissolving particles, as accumulation of particles is not expected, ion toxicity will drive the toxic profile. However, the particle aspect influences the location of the ion release. For gradually dissolving and very slowly dissolving NFs, particle-driven toxicity is of concern. These NFs may be grouped by their reactivity and inflammation potency. The hypotheses are substantiated by a tailored IATA, which describes the minimum information and laboratory assessments of NFs under investigation required to justify grouping. Conclusion: The GRACIOUS hypotheses and tailored IATA for respiratory toxicity of inhaled NFs can be used to support decision making regarding Safe(r)-by-Design product development or adoption of precautionary measures to mitigate potential risks. It can also be used to support read-across of adverse effects such as pulmonary inflammation and subsequent downstream effects such as lung fibrosis and lung tumor formation after long-term exposure.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona Murphy
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Susan Dekkers
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Johannes Keller
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Agnes G Oomen
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vicki Stone
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Gosens I, Costa PM, Olsson M, Stone V, Costa AL, Brunelli A, Badetti E, Bonetto A, Bokkers BGH, de Jong WH, Williams A, Halappanavar S, Fadeel B, Cassee FR. Pulmonary toxicity and gene expression changes after short-term inhalation exposure to surface-modified copper oxide nanoparticles. NANOIMPACT 2021; 22:100313. [PMID: 35559970 DOI: 10.1016/j.impact.2021.100313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have previously been shown to cause dose-dependent pulmonary toxicity following inhalation. Here, CuO NPs (10 nm), coated with polyethylenimine (PEI) or ascorbate (ASC) resulting in positively or negatively charged NPs, respectively, were evaluated. Rats were exposed nose-only to similar exposure dose levels of ASC or PEI coated CuO NPs for 5 consecutive days. On day 6 and day 27 post-exposure, pulmonary toxicity markers in bronchoalveolar lavage fluid (BALF), lung histopathology and genome-wide transcriptomic changes in lungs, were assessed. BALF analyses showed a dose-dependent pulmonary inflammation and cell damage, which was supported by the lung histopathological findings of hypertrophy/hyperplasia of bronchiolar and alveolar epithelium, interstitial and alveolar inflammation, and paracortical histiocytosis in mediastinal lymph nodes for both types of CuO NPs. Transcriptomics analysis showed that pathways related to inflammation and cell proliferation were significantly activated. Additionally, we found evidence for the dysregulation of drug metabolism-related genes, especially in rats exposed to ASC-coated CuO NPs. Overall, no differences in the type of toxic effects and potency between the two surface coatings could be established, except with respect to the (regional) dose that initiates bronchiolar and alveolar hypertrophy. This disproves our hypothesis that differences in surface coatings affect the pulmonary toxicity of CuO NPs.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Pedro M Costa
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; UCIBIO - Applied molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Magnus Olsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vicki Stone
- Heriot-Watt University, School of Life Sciences, Edinburgh, UK
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Bas G H Bokkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Wim H de Jong
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Current Updates On the In vivo Assessment of Zinc Oxide Nanoparticles Toxicity Using Animal Models. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Fometu SS, Wu G, Ma L, Davids JS. A review on the biological effects of nanomaterials on silkworm ( Bombyx mori). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:190-202. [PMID: 33614385 PMCID: PMC7884877 DOI: 10.3762/bjnano.12.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The production of high-quality silkworm silk is of importance in sericulture in addition to the production of biomass, silk proteins, and animal feed. The distinctive properties of nanomaterials have the potential to improve the development of various sectors including medicine, cosmetics, and agriculture. The application of nanotechnology in sericulture not only improves the survival rate of the silkworm, promotes the growth and development of silkworm, but also improves the quality of silk fiber. Despite the positive contributions of nanomaterials, there are a few concerns regarding the safety of their application to the environment, in humans, and in experimental models. Some studies have shown that some nanomaterials exhibit toxicity to tissues and organs of the silkworm, while other nanomaterials exhibit therapeutic properties. This review summarizes some reports on the biological effects of nanomaterials on silkworm and how the application of nanomaterials improves sericulture.
Collapse
Affiliation(s)
- Sandra Senyo Fometu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Guohua Wu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Lin Ma
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Joan Shine Davids
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| |
Collapse
|
12
|
Verdon R, Gillies SL, Brown DM, Henry T, Tran L, Tyler CR, Rossi AG, Stone V, Johnston HJ. Neutrophil activation by nanomaterials in vitro: comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line. Nanotoxicology 2020; 15:1-20. [PMID: 33272088 DOI: 10.1080/17435390.2020.1834635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Assessment of nanomaterial (NM) induced inflammatory responses has largely relied on rodent testing via measurement of leukocyte accumulation in target organs. Despite observations that NMs activate neutrophil driven inflammatory responses in vivo, a limited number of studies have investigated neutrophil responses to NMs in vitro. We compared responses between the human neutrophil-like HL-60 cell line and human primary neutrophils following exposure to silver (Ag), zinc oxide (ZnO), copper oxide (CuO) and titanium dioxide (TiO2) NMs. NM cytotoxicity and neutrophil activation were assessed by measuring cellular metabolic activity, cytokine production, respiratory burst, and release of neutrophil extracellular traps. We observed a similar pattern of response between HL-60 cells and primary neutrophils, however we report that some neutrophil functions are compromised in the cell line. Ag NMs were consistently observed to stimulate neutrophil activation, with CuO NMs inducing similar though weaker responses. TiO2 NMs did not induce a neutrophil response in either cell type. Interestingly, ZnO NMs readily induced activation of HL-60 cells but did not appear to activate primary cells. Our findings are relevant to the development of a tiered testing strategy for NM hazard assessment which promotes the use of non-rodent models. Whilst we acknowledge that HL-60 cells may not be a perfect substitute for primary cells and require further investigation regarding their ability to predict neutrophil activation, we recommend their use for initial screening of NM-induced inflammation. Primary human neutrophils can then be used for more focused assessments of neutrophil activation before progressing to in vivo models where necessary.
Collapse
Affiliation(s)
- Rachel Verdon
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | | - David M Brown
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Theodore Henry
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Lang Tran
- Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh, UK
| | - Charles R Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Vicki Stone
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
13
|
Kokot H, Kokot B, Sebastijanović A, Voss C, Podlipec R, Zawilska P, Berthing T, Ballester-López C, Danielsen PH, Contini C, Ivanov M, Krišelj A, Čotar P, Zhou Q, Ponti J, Zhernovkov V, Schneemilch M, Doumandji Z, Pušnik M, Umek P, Pajk S, Joubert O, Schmid O, Urbančič I, Irmler M, Beckers J, Lobaskin V, Halappanavar S, Quirke N, Lyubartsev AP, Vogel U, Koklič T, Stoeger T, Štrancar J. Prediction of Chronic Inflammation for Inhaled Particles: the Impact of Material Cycling and Quarantining in the Lung Epithelium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003913. [PMID: 33073368 DOI: 10.1002/adma.202003913] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/22/2020] [Indexed: 06/11/2023]
Abstract
On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.
Collapse
Affiliation(s)
- Hana Kokot
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia
| | - Boštjan Kokot
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, 2000, Slovenia
| | - Aleksandar Sebastijanović
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, 1000, Slovenia
| | - Carola Voss
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Rok Podlipec
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Ion Beam Center, Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328, Dresden, Germany
| | - Patrycja Zawilska
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Trine Berthing
- National Research Centre for the Working Environment, Copenhagen Ø, 2100, Denmark
| | | | | | - Claudia Contini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Mikhail Ivanov
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| | - Ana Krišelj
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Petra Čotar
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Qiaoxia Zhou
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Department of Forensic Pathology, Sichuan University, Chengdu, 610065, China
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Matthew Schneemilch
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Zahra Doumandji
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, Nancy, F-54000, France
| | - Mojca Pušnik
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Polona Umek
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Stane Pajk
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Olivier Joubert
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, Nancy, F-54000, France
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Iztok Urbančič
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences, Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1Y 0M1, Canada
| | - Nick Quirke
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, 2100, Denmark
| | - Tilen Koklič
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Janez Štrancar
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| |
Collapse
|
14
|
Qin X, Tang Q, Jiang X, Zhang J, Wang B, Liu X, Zhang Y, Zou Z, Chen C. Zinc Oxide Nanoparticles Induce Ferroptotic Neuronal Cell Death in vitro and in vivo. Int J Nanomedicine 2020; 15:5299-5315. [PMID: 32884256 PMCID: PMC7436556 DOI: 10.2147/ijn.s250367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Zinc oxide nanoparticles (ZnONPs) are one of the most important nanomaterials that are widely used in the food, cosmetic and medical industries. Humans are often exposed to ZnONPs via inhalation, and they may reach the brain where neurotoxic effects could occur via systemic distribution. However, the mechanisms underlying how ZnONPs produce neurotoxic effects in the brain remain unclear. In this study, we aimed to investigate the novel mechanism involved in ZnONPs-induced neurotoxicity. Methods and Results We demonstrated for the first time that pulmonary exposure to ZnONPs by intratracheal instillation could trigger ferroptosis, a new form of cell death, in the neuronal cells of mouse cerebral cortex. A similar phenomenon was also observed in cultured neuron-like PC-12 cell line. By using a specific inhibitor of ferroptosis ferrostatin-1 (Fer-1), our results showed that inhibition of ferroptosis by Fer-1 could significantly alleviate the ZnONPs-induced neuronal cell death both in vivo and in vitro. Mechanistic investigation revealed that ZnONPs selectively activated the JNK pathway and thus resulted in the ferroptotic phenotypes, JNK inhibitor SP600125 could reverse lipid peroxidation upregulation and ferroptotic cell death induced by ZnONPs in PC-12 cells. Conclusion Taken together, this study not only demonstrates that pulmonary exposure of ZnONPs can induce JNK-involved ferroptotic cell death in mouse cortex and PC-12 cells, but also provides a clue that inhibition of ferroptosis by specific agents or drugs may serve as a feasible approach for reducing the untreatable neurotoxicity induced by ZnONPs.
Collapse
Affiliation(s)
- Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuemei Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yandan Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
15
|
Hadrup N, Sharma AK, Loeschner K, Jacobsen NR. Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review. Regul Toxicol Pharmacol 2020; 115:104690. [PMID: 32474071 DOI: 10.1016/j.yrtph.2020.104690] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Silver is used in a wide range of products, and during their production and use, humans may be exposed through inhalation. Therefore, it is critical to know the concentration levels at which adverse effects may occur. In rodents, inhalation of silver nanoparticles has resulted in increased silver in the lungs, lymph nodes, liver, kidney, spleen, ovaries, and testes. Reported excretion pathways of pulmonary silver are urinary and faecal excretion. Acute effects in humans of the inhalation of silver include lung failure that involved increased heart rate and decreased arterial blood oxygen pressure. Argyria-a blue-grey discoloration of skin due to deposited silver-was observed after pulmonary exposure in 3 individuals; however, the presence of silver in the discolorations was not tested. Argyria after inhalation seems to be less likely than after oral or dermal exposure. Repeated inhalation findings in rodents have shown effects on lung function, pulmonary inflammation, bile duct hyperplasia, and genotoxicity. In our evaluation, the range of NOAEC values was 0.11-0.75 mg/m3. Silver in the ionic form is likely more toxic than in the nanoparticle form but that difference could reflect their different biokinetics. However, silver nanoparticles and ions have a similar pattern of toxicity, probably reflecting that the effect of silver nanoparticles is primarily mediated by released ions. Concerning genotoxicity studies, we evaluated silver to be positive based on studies in mammalian cells in vitro and in vivo when considering various exposure routes. Carcinogenicity data are absent; therefore, no conclusion can be provided on this endpoint.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Denmark
| | - Katrin Loeschner
- Division for Food Technology, Research Group for Nano-Bio Science, National Food Institute, Technical University of Denmark, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| |
Collapse
|
16
|
Kermanizadeh A, Powell LG, Stone V. A review of hepatic nanotoxicology - summation of recent findings and considerations for the next generation of study designs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:137-176. [PMID: 32321383 DOI: 10.1080/10937404.2020.1751756] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The liver is one of the most important multi-functional organs in the human body. Amongst various crucial functions, it is the main detoxification center and predominantly implicated in the clearance of xenobiotics potentially including particulates that reach this organ. It is now well established that a significant quantity of injected, ingested or inhaled nanomaterials (NMs) translocate from primary exposure sites and accumulate in liver. This review aimed to summarize and discuss the progress made in the field of hepatic nanotoxicology, and crucially highlight knowledge gaps that still exist.Key considerations include In vivo studies clearly demonstrate that low-solubility NMs predominantly accumulate in the liver macrophages the Kupffer cells (KC), rather than hepatocytes.KCs lining the liver sinusoids are the first cell type that comes in contact with NMs in vivo. Further, these macrophages govern overall inflammatory responses in a healthy liver. Therefore, interaction with of NM with KCs in vitro appears to be very important.Many acute in vivo studies demonstrated signs of toxicity induced by a variety of NMs. However, acute studies may not be that meaningful due to liver's unique and unparalleled ability to regenerate. In almost all investigations where a recovery period was included, the healthy liver was able to recover from NM challenge. This organ's ability to regenerate cannot be reproduced in vitro. However, recommendations and evidence is offered for the design of more physiologically relevant in vitro models.Models of hepatic disease enhance the NM-induced hepatotoxicity.The review offers a number of important suggestions for the future of hepatic nanotoxicology study design. This is of great significance as its findings are highly relevant due to the development of more advanced in vitro, and in silico models aiming to improve physiologically relevant toxicological testing strategies and bridging the gap between in vitro and in vivo experimentation.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
- School of Medical Sciences, Bangor University, Bangor, UK
| | - Leagh G Powell
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Vicki Stone
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
17
|
Huang Q, Zhang J, Zhang Y, Timashev P, Ma X, Liang XJ. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics 2020; 10:5649-5670. [PMID: 32483410 PMCID: PMC7254997 DOI: 10.7150/thno.42569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
The unique features of noble-metal nanostructures (NMNs) are leading to unprecedented expansion of research and exploration of their application in therapeutics, diagnostics and bioimaging fields. With the ever-growing applications of NMNs, both therapeutic and environmental NMNs are likely to be exposed to tissues and organs, requiring careful studies towards their biological effects in vitro and in vivo. Upon NMNs exposure, tissues and cells may undergo a series of adaptive changes both in morphology and function. At the cellular level, the accumulation of NMNs in various subcellular organelles including lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus may interfere with their functions, causing changes in a variety of cellular functions, such as digestion, protein synthesis and secretion, energy metabolism, mitochondrial respiration, and proliferation. In animals, retention of NMNs in metabolic-, respiratory-, immune-related, and other organs can trigger significant physiological and pathological changes to these organs and influence their functions. Exploring how NMNs interact with tissues and cells and the underlying mechanisms are of vital importance for their future applications. Here, we illustrate the characteristics of NMNs-induced adaptive changes both in vitro and in vivo. Potential strategies in the design of NMNs are also discussed to take advantage of beneficial adaptive changes and avoid unfavorable changes for the proper implementation of these nanoplatforms.
Collapse
Affiliation(s)
- Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Nymark P, Bakker M, Dekkers S, Franken R, Fransman W, García-Bilbao A, Greco D, Gulumian M, Hadrup N, Halappanavar S, Hongisto V, Hougaard KS, Jensen KA, Kohonen P, Koivisto AJ, Dal Maso M, Oosterwijk T, Poikkimäki M, Rodriguez-Llopis I, Stierum R, Sørli JB, Grafström R. Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904749. [PMID: 31913582 DOI: 10.1002/smll.201904749] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.
Collapse
Affiliation(s)
- Penny Nymark
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Martine Bakker
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Susan Dekkers
- National Institute for Public Health and the Environment, RIVM, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Remy Franken
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Wouter Fransman
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Amaia García-Bilbao
- GAIKER Technology Centre, Parque Tecnológico, Ed. 202, 48170, Zamudio, Bizkaia, Spain
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Mary Gulumian
- National Institute for Occupational Health, 25 Hospital St, Constitution Hill, 2000, Johannesburg, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Niels Hadrup
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Vesa Hongisto
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Karin Sørig Hougaard
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Pekka Kohonen
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| | - Antti Joonas Koivisto
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Miikka Dal Maso
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | - Thies Oosterwijk
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Mikko Poikkimäki
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 6, 33720, Tampere, Finland
| | | | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, TNO, P.O. Box 96800, NL-2509 JE, The Hague, The Netherlands
| | - Jorid Birkelund Sørli
- National Research Center for the Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Roland Grafström
- Karolinska Institutet, Institute of Environmental Medicine, Nobels väg 13, 171 77, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Karjakatu 35 B, 20520, Turku, Finland
| |
Collapse
|
19
|
Alghsham RS, Satpathy SR, Bodduluri SR, Hegde B, Jala VR, Twal W, Burlison JA, Sunkara M, Haribabu B. Zinc Oxide Nanowires Exposure Induces a Distinct Inflammatory Response via CCL11-Mediated Eosinophil Recruitment. Front Immunol 2019; 10:2604. [PMID: 31787980 PMCID: PMC6856074 DOI: 10.3389/fimmu.2019.02604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023] Open
Abstract
High aspect ratio zinc oxide nanowires (ZnONWs) have become one of the most important products in nanotechnology. The wide range applications of ZnONWs have heightened the need for evaluating the risks and biological consequences to these particles. In this study, we investigated inflammatory pathways activated by ZnONWs in cultured cells as well as the consequences of systemic exposure in mouse models. Confocal microscopy showed rapid phagocytic uptake of FITC-ZnONWs by macrophages. Exposure of macrophages or lung epithelial cells to ZnONWs induced the production of CCL2 and CCL11. Moreover, ZnONWs exposure induced both IL-6 and TNF-α production only in macrophages but not in LKR13 cells. Intratracheal instillation of ZnONWs in C57BL/6 mice induced a significant increase in the total numbers of immune cells in the broncho alveolar lavage fluid (BALFs) 2 days after instillation. Macrophages and eosinophils were the predominant cellular infiltrates of ZnONWs exposed mouse lungs. Similar cellular infiltrates were also observed in a mouse air-pouch model. Pro-inflammatory cytokines IL-6 and TNF-α as well as chemokines CCL11, and CCL2 were increased both in BALFs and air-pouch lavage fluids. These results suggest that exposure to ZnONWs may induce distinct inflammatory responses through phagocytic uptake and formation of soluble Zn2+ ions.
Collapse
Affiliation(s)
- Ruqaih S Alghsham
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Shuchismita R Satpathy
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Sobha R Bodduluri
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Bindu Hegde
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Waleed Twal
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Joseph A Burlison
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Mahendra Sunkara
- Department of Chemical Engineering, Conn Center for Renewable Energy, University of Louisville, Louisville, KY, United States
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Kermanizadeh A, Brown DM, Stone V. The variances in cytokine production profiles from non- or activated THP-1, Kupffer cell and human blood derived primary macrophages following exposure to either alcohol or a panel of engineered nanomaterials. PLoS One 2019; 14:e0220974. [PMID: 31393970 PMCID: PMC6687179 DOI: 10.1371/journal.pone.0220974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
The portfolio of cytokines is key to the function of macrophages as sentries of the innate immune system as well as being critical for the transition from innate to adaptive immunity. Cytokine bias is critical in the fate of macrophages into a continuum of inflammatory to anti-inflammatory macrophages. Due to advances in the field of toxicology, increasingly advanced multi-cellular in vitro safety assessment models are being developed in order to allow for a better predication of potential adverse effects in humans with many of these models include a macrophage population. The selection of the correct macrophage cells in these advanced in vitro models is critical for a physiologically relevant and realistic immune response. In this study we investigated cytokine response profile (IL1-β, IL6, IL10 and TNF-α) of activated and non-activated THP-1 (immortalized monocyte-like cell line), primary human Kupffer cells (liver resident macrophages) and human primary peripheral blood mononuclear cells following exposure of a panel of nanomaterials or ethanol. The data demonstrated that the THP-1 cell line are not great cytokine producers. The PBMC appear to be a good in vitro surrogate for circulating/pro-inflammatory macrophages but are not a suitable replacement for Kupffer cells. The findings from this study highlight the necessity for the selection of appropriate macrophages populations to meet the specific physiological requirements of in vitro experiment.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, United Kingdom
- * E-mail:
| | - David M. Brown
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, United Kingdom
| | - Vicki Stone
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Kermanizadeh A, Brown DM, Moritz W, Stone V. The importance of inter-individual Kupffer cell variability in the governance of hepatic toxicity in a 3D primary human liver microtissue model. Sci Rep 2019; 9:7295. [PMID: 31086251 PMCID: PMC6513945 DOI: 10.1038/s41598-019-43870-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
The potential for nanomaterial (NM) translocation to secondary organs is a realistic prospect, with the liver one of the most important target organs. Traditional in vitro or ex vivo hepatic toxicology models are often limiting and/or troublesome (i.e. short life-span reduced metabolic activity, lacking important cell populations, high inter-individual variability, etc.). Building on previous work, this study utilises a 3D human liver microtissue (MT) model (MT composed of mono-culture of hepatocytes or two different co-culture MT systems with non-parenchymal cell (NPC) fraction sourced from different donors) to investigate the importance of inter-donor variability of the non-parenchymal cell population in the overall governance of toxicological response following exposure to a panel of NMs. To the best of our knowledge, this is the first study of its kind to investigate inter-donor variability in hepatic NPC population. The data showed that the Kupffer cells were crucial in dictating the overall hepatic toxicity following exposure to the materials. Furthermore, a statistically significant difference was noted between the two co-culture MT models. However, the trend for particle-induced biological responses was similar between the co-cultures (cytotoxicity, cytokine production and caspase activity). Therefore, despite the recognition of some discrepancies in the absolute values between the co-culture models, the fact that the trends and patterns of biological responses were comparable between the multi-cellular models we propose the 3D liver MT to be a valuable tool in particle toxicology.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK.
| | - David M Brown
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK
| | | | - Vicki Stone
- Heriot Watt University, School of Engineering and Physical Sciences, Nano Safety Research Group, Edinburgh, UK
| |
Collapse
|
22
|
Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S. Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 2019; 42:84-93. [PMID: 30103634 DOI: 10.1080/01480545.2018.1491987] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
In recent years, nanoparticles are being used extensively in personal healthcare products such as cosmetics, sunscreens, soaps, and shampoos. Particularly, metal oxide nanoparticles are gaining competence as key industrial constituents, progressing toward a remarkable rise in their applications. Zinc oxide and titanium oxide nanoparticles are the most commonly employed metal oxide nanoparticles in sunscreens, ointments, foot care, and over the counter topical products. Dermal exposure to these metal oxides predominantly occurs through explicit use of cosmetic products and airway exposure to nanoparticle dusts is primarily mediated via occupational exposure. There is a compelling need to understand the toxicity effects of nanoparticles which can easily enter the cells and induce oxidative stress. Consequently, these products have become a direct source of pollution in the environment and thereby greatly impact our ecosystem. A complete understanding of the toxicity mechanism of nano-ZnO is intended to resolve whether and to what extent such nanoparticles may pose a threat to the environment and to human beings. In this review article, we have discussed the characteristics of metal oxide nanoparticles and its applications in the cosmetic industry. We have also highlighted about their toxicity effects and their impact on human health.
Collapse
Affiliation(s)
- Vimala Devi Subramaniam
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Suhanya Veronica Prasad
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Antara Banerjee
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Madhumala Gopinath
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Ramachandran Murugesan
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Francesco Marotta
- b ReGentra R&d international for Aging Intervention , Milano-Beijing & VCC, Preventitive Medical Promotion Foundation , Beijing , China
| | - Xiao-Feng Sun
- c Department of Oncology and Department of Clinical and Experimental Medicine , University of Linköping , Linköping , Sweden
| | - Surajit Pathak
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| |
Collapse
|
23
|
De Jong WH, De Rijk E, Bonetto A, Wohlleben W, Stone V, Brunelli A, Badetti E, Marcomini A, Gosens I, Cassee FR. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology 2018; 13:50-72. [DOI: 10.1080/17435390.2018.1530390] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wim H. De Jong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Alessandro Bonetto
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | - Wendel Wohlleben
- Department of Material Physics and Dept. of Experimental Toxicology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Andrea Brunelli
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | - Elena Badetti
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | - Antonio Marcomini
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | - Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Flemming R. Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Studies, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
Yang Y, Xu L, Dekkers S, Zhang LG, Cassee FR, Zuo YY. Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8920-8929. [PMID: 30011188 DOI: 10.1021/acs.est.8b02976] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Metal-based nanomaterials (MNMs) represent a large category of the engineered nanomaterials, and have been extensively used to enhance the electrical, optical, and magnetic properties of nanoenabled consumer products. Inhaled MNMs can penetrate deeply into the peripheral lung at which they first interact with the pulmonary surfactant (PS) lining of alveoli. Here we studied the biophysical inhibitory potential of representative MNMs on a modified natural PS, Infasurf, using a novel in vitro experimental methodology called the constrained drop surfactometry (CDS). It was found that the biophysical inhibitory potential of six MNMs on Infasurf ranks in the order CeO2 > ZnO > TiO2 > Ag > Fe3O4 > ZrO2-CeO2. This rank of in vitro biophysical inhibition is in general agreement with the in vitro and in vivo toxicity of these MNMs. Directly imaging the lateral structure and molecular conformation of the PS film using atomic force microscopy revealed that there exists a correlation between biophysical inhibition of the PS film by the MNMs and their aggregation state at the PS film. Taken together, our study suggests that the nano-bio interactions at the PS film are determined by multiple physicochemical properties of the MNMs, including not only well-studied properties such as their chemical composition and particle size, but also properties such as hydrophobicity, dissolution rate, and aggregation state at the PS film found here. Our study provides novel insight into the understanding of nanotoxicology and metallomics of MNMs.
Collapse
Affiliation(s)
- Yi Yang
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Lu Xu
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Susan Dekkers
- National Institute for Public Health and the Environment , 3720 BA , Bilthoven , The Netherlands
| | - Lijie Grace Zhang
- Departments of Mechanical and Aerospace Engineering, Biomedical Engineering, and Medicine , The George Washington University , Washington , D.C. 20052 , United States
| | - Flemming R Cassee
- National Institute for Public Health and the Environment , 3720 BA , Bilthoven , The Netherlands
- Institute of Risk Assessment Sciences , Utrecht University , 3508 TD , Utrecht , The Netherlands
| | - Yi Y Zuo
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
- Department of Pediatrics, John A. Burns School of Medicine , University of Hawaii , Honolulu , Hawaii 96826 , United States
| |
Collapse
|
25
|
Kermanizadeh A, Jacobsen NR, Roursgaard M, Loft S, Møller P. Hepatic Hazard Assessment of Silver Nanoparticle Exposure in Healthy and Chronically Alcohol Fed Mice. Toxicol Sci 2018; 158:176-187. [PMID: 28453772 DOI: 10.1093/toxsci/kfx080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Silver (Ag) nanoparticles (NPs) are currently among one of the most widely used nanomaterials. This in turn, implies an increased risk of human and environmental exposure. Alcohol abuse is a global issue with millions of people in the general population affected by the associated adverse effects. The excessive consumption of alcohol is a prominent cause of chronic liver disease which manifest in multiple disorders. In this study, the adverse health effects of Ag NP exposure were investigated in models of alcoholic hepatic disease in vitro and in vivo. The data showed that Ag NP induced hepatic health effects were aggravated in the alcohol pretreated mice in comparison to controls with regards to an organ specific inflammatory response, changes in blood biochemistry, acute phase response and hepatic pathology. In addition, alcoholic disease influenced the organ's ability for recovery post-NP challenge. Additionally, it is demonstrated that the in vivo data correlated well with in vitro findings where ethanol pretreatment of hepatocytes resulted in significantly increased inflammatory response post-Ag NP exposure. To the best of our knowledge this is the first study of its kind to investigate nano-sized material-induced hepatic pathology in models representative of susceptible individuals (those with pre-existing alcohol liver disease) within the population. This is an area of research in the field of nanotoxicology, and in particular with regard to NP risk assessment that is almost entirely overlooked.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Han Y, Lee DK, Kim SH, Lee S, Jeon S, Cho WS. High inflammogenic potential of rare earth oxide nanoparticles: the New Hazardous Entity. Nanotoxicology 2018; 12:712-728. [DOI: 10.1080/17435390.2018.1472311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Youngju Han
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dong-Keon Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Sung-Hyun Kim
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Seonghan Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
27
|
Líbalová H, Costa PM, Olsson M, Farcal L, Ortelli S, Blosi M, Topinka J, Costa AL, Fadeel B. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. CHEMOSPHERE 2018; 196:482-493. [PMID: 29324388 DOI: 10.1016/j.chemosphere.2017.12.182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/02/2017] [Accepted: 12/28/2017] [Indexed: 05/25/2023]
Abstract
The rapid dissolution of copper oxide (CuO) nanoparticles (NPs) with release of ions is thought to be one of the main factors modulating their toxicity. Here we assessed the cytotoxicity of a panel of CuO NPs (12 nm ± 4 nm) with different surface modifications, i.e., anionic sodium citrate (CIT) and sodium ascorbate (ASC), neutral polyvinylpyrrolidone (PVP), and cationic polyethylenimine (PEI), versus the pristine (uncoated) NPs, using a murine macrophage cell line (RAW264.7). Cytotoxicity, reactive oxygen species (ROS) production, and cellular uptake were assessed. The cytotoxicity results were analyzed by the benchmark dose (BMD) method and the NPs were ranked based on BMD20 values. The PEI-coated NPs were found to be the most cytotoxic. Despite the different properties of the coating agents, NP dissolution in cell medium was only marginally affected by surface modification. Furthermore, CuCl2 (used as an ion control) elicited significantly less cytotoxicity when compared to the CuO NPs. We also observed that the antioxidant, N-acetylcysteine, failed to protect against the cytotoxicity of the uncoated CuO NPs. Indeed, the toxicity of the surface-modified CuO NPs was not directly linked to particle dissolution and subsequent Cu burden in cells, nor to cellular ROS production, although CuO-ASC NPs, which were found to be the least cytotoxic, yielded lower levels of ROS in comparison to pristine NPs. Hierarchical cluster analysis suggested, instead, that the toxicity in the current in vitro model could be explained by synergistic interactions between the NPs, their dissolution, and the toxicity of the coating agents.
Collapse
Affiliation(s)
- Helena Líbalová
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pedro M Costa
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Olsson
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lucian Farcal
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Jan Topinka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna L Costa
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, Rossi AG, Tran L, Tucker C, Tyler CR, Stone V. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 2017; 48:252-271. [PMID: 29239234 DOI: 10.1080/10408444.2017.1404965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.
Collapse
Affiliation(s)
| | - Rachel Verdon
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Suzanne Gillies
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - David M Brown
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | | | - Theodore B Henry
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Adriano G Rossi
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Lang Tran
- c Institute of Occupational Medicine , Edinburgh , UK
| | - Carl Tucker
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Charles R Tyler
- d Department of Biosciences , College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | - Vicki Stone
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
29
|
Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regul Toxicol Pharmacol 2017; 91:257-266. [DOI: 10.1016/j.yrtph.2017.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
|
30
|
Chou CC, Chen W, Hung Y, Mou CY. Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22235-22251. [PMID: 28608695 DOI: 10.1021/acsami.7b05359] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomedical applications of mesoporous silica nanoparticles (MSNs) require efficient cellular uptake and low toxicity. The purpose of this study is to investigate the cellular uptake and toxicity of MSNs with different sizes and charges (50, 100, and 250 nm with a positive surface charge and 100 nm with a negative surface charge) exposed to human monocyte-derived macrophages, lung epithelium BEAS-2B cells, and mice using genome-wide gene expression analysis and cellular/animal-level end point tests. We found that MSNs can be taken up into cells through endocytosis in a charge- and size-dependent manner, with positively charged and larger MSNs being more easily taken up into the cells by recruiting more types of endocytotic pathways for more cellular uptake. Moreover, the cytotoxicity of MSNs could be correlated with the amount of MSNs taken up by cells, which positively correlates to the particle size and dosage. Therefore, only positively charged and larger MSNs (≥100 nm) during higher treatment doses (≥500 μg mL-1) resulted in a sufficient accumulation of internalized MSNs in cells to induce significant release of reactive oxygen species (ROS) and oxidative stress, inflammatory gene upregulation through NF-κB and AP-1, and eventually autophagy-mediated necrotic cell death. Furthermore, genome-wide gene expression analysis could reflect the above in vitro cellular damages and corresponding in vivo injuries in mice, indicating that specific gene expression footprints may be used for assessing the safety of nanoparticles. The present finding provides some insights into the rational design of effective MSN-based drug/gene delivery systems and biomedical applications.
Collapse
Affiliation(s)
- Cheng-Chung Chou
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University , Chia-Yi, Taiwan 62102, ROC
| | - Wei Chen
- Department of Chemistry, National Taiwan University , Taipei, Taiwan 10617, ROC
| | - Yann Hung
- Department of Chemistry, National Taiwan University , Taipei, Taiwan 10617, ROC
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University , Taipei, Taiwan 10617, ROC
| |
Collapse
|
31
|
Ivask A, Scheckel KG, Kapruwan P, Stone V, Yin H, Voelcker NH, Lombi E. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. Nanotoxicology 2017; 11:150-156. [PMID: 28165880 DOI: 10.1080/17435390.2017.1282049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles.
Collapse
Affiliation(s)
- Angela Ivask
- a Future Industries Institute, University of South Australia , Mawson Lakes , Australia
| | - Kirk G Scheckel
- b National Risk Management Research Laboratory , US Environmental Protection Agency , Cincinnati , OH , USA
| | - Pankaj Kapruwan
- a Future Industries Institute, University of South Australia , Mawson Lakes , Australia
| | | | - Hong Yin
- d CSIRO Manufacturing , Clayton , Australia
| | - Nicolas H Voelcker
- a Future Industries Institute, University of South Australia , Mawson Lakes , Australia
| | - Enzo Lombi
- a Future Industries Institute, University of South Australia , Mawson Lakes , Australia
| |
Collapse
|
32
|
Hristozov D, Zabeo A, Alstrup Jensen K, Gottardo S, Isigonis P, Maccalman L, Critto A, Marcomini A. Demonstration of a modelling-based multi-criteria decision analysis procedure for prioritisation of occupational risks from manufactured nanomaterials. Nanotoxicology 2016; 10:1215-28. [DOI: 10.3109/17435390.2016.1144827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy,
| | - Alex Zabeo
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy,
| | - Keld Alstrup Jensen
- The National Research Center for the Working Environment, Copenhagen, Denmark,
| | | | - Panagiotis Isigonis
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy,
| | | | - Andrea Critto
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy,
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice, Italy,
| |
Collapse
|
33
|
Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BGH, de Jong WH, Brown D, Hristozov D, Stone V. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology 2016; 10:1084-95. [PMID: 27132941 PMCID: PMC4975088 DOI: 10.3109/17435390.2016.1172678] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Increased use of nanomaterials has raised concerns about the potential for undesirable human health and environmental effects. Releases into the air may occur and, therefore, the inhalation route is of specific interest. Here we tested copper oxide nanoparticles (CuO NPs) after repeated inhalation as hazard data for this material and exposure route is currently lacking for risk assessment. Methods: Rats were exposed nose-only to a single exposure concentration and by varying the exposure time, different dose levels were obtained (C × T protocol). The dose is expressed as 6 h-concentration equivalents of 0, 0.6, 2.4, 3.3, 6.3, and 13.2 mg/m3 CuO NPs, with a primary particle size of 10 9.2–14 nm and an MMAD of 1.5 μm. Results: Twenty-four hours after a 5-d exposure, dose-dependent lung inflammation and cytotoxicity were observed. Histopathological examinations indicated alveolitis, bronchiolitis, vacuolation of the respiratory epithelium, and emphysema in the lung starting at 2.4 mg/m3. After a recovery period of 22 d, limited inflammation was still observed, but only at the highest dose of 13.2 mg/m3. The olfactory epithelium in the nose degenerated 24 h after exposure to 6.3 and 13.2 mg/m3, but this was restored after 22 d. No histopathological changes were detected in the brain, olfactory bulb, spleen, kidney and liver. Conclusion: A 5-d, 6-h/day exposure equivalent to an aerosol of agglomerated CuO NPs resulted in a dose-dependent toxicity in rats, which almost completely resolved during a 3-week post-exposure period.
Collapse
Affiliation(s)
- Ilse Gosens
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Flemming R Cassee
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands .,b Institute for Risk Assessment Studies, Utrecht University , Utrecht , The Netherlands
| | - Michela Zanella
- c ECSIN-European Center for the Sustainable Impact of Nanotechnology, Veneto Nanotech S.C.P.A. , Rovigo , Italy
| | - Laura Manodori
- c ECSIN-European Center for the Sustainable Impact of Nanotechnology, Veneto Nanotech S.C.P.A. , Rovigo , Italy
| | - Andrea Brunelli
- d Informatics and Statistics, University Ca' Foscari of Venice, INCA - VEGAPARK , Venice , Italy
| | - Anna Luisa Costa
- e National Research Council - Institute of Science and Technology for Ceramics , Faenza , Italy , and
| | - Bas G H Bokkers
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Wim H de Jong
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - David Brown
- f School of Life Sciences, Heriot-Watt University, Nanosafety Research Group , Edinburgh , UK
| | - Danail Hristozov
- d Informatics and Statistics, University Ca' Foscari of Venice, INCA - VEGAPARK , Venice , Italy
| | - Vicki Stone
- f School of Life Sciences, Heriot-Watt University, Nanosafety Research Group , Edinburgh , UK
| |
Collapse
|
34
|
Vranic S, Gosens I, Jacobsen NR, Jensen KA, Bokkers B, Kermanizadeh A, Stone V, Baeza-Squiban A, Cassee FR, Tran L, Boland S. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO 2 nanoparticles. Arch Toxicol 2016; 91:353-363. [PMID: 26872950 DOI: 10.1007/s00204-016-1673-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NP) have a tendency to agglomerate after dispersion in physiological media, which can be prevented by the addition of serum. This may however result in modification of the toxic potential of particles due to the formation of protein corona. Our study aimed to analyze the role of serum that is added to improve the dispersion of 10 nm TiO2 NPs on in vitro and in vivo effects following the exposure via the respiratory route. We characterized NP size, surface charge, sedimentation rate, the presence of protein corona and the oxidant-generating capacity after NP dispersion in the presence/absence of serum. The effect of serum on NP internalization, cytotoxicity and pro-inflammatory responses was assessed in a human pulmonary cell line, NCI-H292. Serum in the dispersion medium led to a slower sedimentation, but an enhanced cellular uptake of TiO2 NPs. Despite this greater uptake, the pro-inflammatory response in NCI-H292 cells was lower after serum supplementation (used either as a dispersant or as a cell culture additive), which may be due to a reduced intrinsic oxidative potential of TiO2 NPs. Interestingly, serum could be added 2 h after the NP treatment without affecting the pro-inflammatory response. We also determined the acute pulmonary and hepatic toxicity in vivo 24 h after intratracheal instillation of TiO2 NPs in C57BL/6N mice. The use of serum resulted in an underestimation of the local acute inflammatory response in the lung, while a systemic response on glutathione reduction remained unaffected. In conclusion, serum as a dispersion agent for TiO2 NPs can lead to an underestimation of the acute pro-inflammatory response in vitro and in vivo. To avoid potential unwanted effects of dispersants and medium components, we recommend that the protocol of NM preparation should be thoroughly tested, and reflect as close as possible realistic exposure conditions.
Collapse
Affiliation(s)
- Sandra Vranic
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France.,Nanomedicine Lab, Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Upper Brook Street, Manchester, M13 9PT, UK
| | - Ilse Gosens
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nicklas Raun Jacobsen
- Danish Centre for Nanosafety, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Keld A Jensen
- Danish Centre for Nanosafety, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Ali Kermanizadeh
- School of Life Sciences, Heriot-Watt University, John Muir building, Edinburgh, UK.,Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Vicki Stone
- School of Life Sciences, Heriot-Watt University, John Muir building, Edinburgh, UK
| | - Armelle Baeza-Squiban
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France
| | - Flemming R Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Sonja Boland
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France.
| |
Collapse
|
35
|
Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RPF, Cassee FR, Wallin H, Kreyling W, Stoeger T, Loft S, Møller P, Tran L, Stone V. A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health--ENPRA Project--The Highlights, Limitations, and Current and Future Challenges. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:1-28. [PMID: 27030582 DOI: 10.1080/10937404.2015.1126210] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ENPRA was one of the earlier multidisciplinary European Commission FP7-funded projects aiming to evaluate the risks associated with nanomaterial (NM) exposure on human health across pulmonary, cardiovascular, hepatic, renal, and developmental systems. The outputs from this project have formed the basis of this review. A retrospective interpretation of the findings across a wide range of in vitro and in vivo studies was performed to identify the main highlights from the project. In particular, focus was placed on informing what advances were made in the hazard assessment of NM, as well as offering some suggestions on the future of "nanotoxicology research" based on these observations, shortcomings, and lessons learned from the project. A number of issues related to the hazard assessment of NM are discussed in detail and include use of appropriate NM for nanotoxicology investigations; characterization and dispersion of NM; use of appropriate doses for all related investigations; need for the correct choice of experimental models for risk assessment purposes; and full understanding of the test systems and correct interpretation of data generated from in vitro and in vivo systems. It is hoped that this review may assist in providing information in the implementation of guidelines, model systems, validation of assessment methodology, and integrated testing approaches for risk assessment of NM. It is vital to learn from ongoing and/or completed studies to avoid unnecessary duplication and offer suggestions that might improve different aspects of experimental design.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Ilse Gosens
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Laura MacCalman
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| | - Helinor Johnston
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Pernille H Danielsen
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Nicklas R Jacobsen
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Anke-Gabriele Lenz
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| | - Teresa Fernandes
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Roel P F Schins
- g IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Flemming R Cassee
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Håkan Wallin
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Wolfgang Kreyling
- h Helmholtz Zentrum München , Institute of Epidemiology II , Munich , Germany
| | - Tobias Stoeger
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| | - Steffen Loft
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Peter Møller
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Lang Tran
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| | - Vicki Stone
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| |
Collapse
|
36
|
Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 2015; 45:837-72. [DOI: 10.3109/10408444.2015.1058747] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|