1
|
Xiao S, Wang C, Yu K, Liu G, Wu S, Wang J, Niu S, Zou J, Liu S. Enhanced CO 2 uptake is marginally offset by altered fluxes of non-CO 2 greenhouse gases in global forests and grasslands under N deposition. GLOBAL CHANGE BIOLOGY 2023; 29:5829-5849. [PMID: 37485988 DOI: 10.1111/gcb.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2 O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2 O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH ) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS , soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2 O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4 , suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2 -eq year-1 vs. grassland, 0.58 Pg CO2 -eq year-1 ) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2 -eq year-1 vs. grassland, 0.18 Pg CO2 -eq year-1 ) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%-4.8%) by the combined effects of its stimulation of N2 O emissions together with the reduced soil uptake of CH4 .
Collapse
Affiliation(s)
- Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Chao Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Genyuan Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Du Y, Wang YP, Hui D, Su F, Yan J. Significant effects of precipitation frequency on soil respiration and its components-A global synthesis. GLOBAL CHANGE BIOLOGY 2023; 29:1188-1205. [PMID: 36408676 DOI: 10.1111/gcb.16532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Global warming intensifies the hydrological cycle, which results in changes in precipitation regime (frequency and amount), and will likely have significant impacts on soil respiration (Rs ). Although the responses of Rs to changes in precipitation amount have been extensively studied, there is little consensus on how Rs will be affected by changes in precipitation frequency (PF) across the globe. Here, we synthesized the field observations from 296 published papers to quantify the effects of PF on Rs and its components using meta-analysis. Our results indicated that the effects of PF on Rs decreased with an increase in background mean annual precipitation. When the data were grouped by climate conditions, increased PF showed positive effects on Rs under the arid condition but not under the semi-humid or humid conditions, whereas decreased PF suppressed Rs across all the climate conditions. The positive effects of increased PF mainly resulted from the positive response of heterotrophic respiration under the arid condition while the negative effects of decreased PF were mainly attributed to the reductions in root biomass and respiration. Overall, our global synthesis provided for the first time a comprehensive analysis of the divergent effects of PF on Rs and its components across climate regions. This study also provided a framework for understanding and modeling responses of ecosystem carbon cycling to global precipitation change.
Collapse
Affiliation(s)
- Yue Du
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Fanglong Su
- School of Life Sciences, Henan University, Kaifeng, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Han L, Ganjurjav H, Hu G, Wu J, Yan Y, Danjiu L, He S, Xie W, Yan J, Gao Q. Nitrogen Addition Affects Ecosystem Carbon Exchange by Regulating Plant Community Assembly and Altering Soil Properties in an Alpine Meadow on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:900722. [PMID: 35769289 PMCID: PMC9234307 DOI: 10.3389/fpls.2022.900722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) deposition can affect the global ecosystem carbon balance. However, how plant community assembly regulates the ecosystem carbon exchange in response to the N deposition remains largely unclear, especially in alpine meadows. In this study, we conducted a manipulative experiment to examine the impacts of N (ammonium nitrate) addition on ecosystem carbon dioxide (CO2) exchange by changing the plant community assembly and soil properties at an alpine meadow site on the Qinghai-Tibetan Plateau from 2014 to 2018. The N-addition treatments were N0, N7, N20, and N40 (0, 7, 20, and 40 kg N ha-1year-1) during the plant growing season. The net ecosystem CO2 exchange (NEE), gross ecosystem productivity (GEP), and ecosystem respiration (ER) were measured by a static chamber method. Our results showed that the growing-season NEE, ER and GEP increased gradually over time with increasing N-addition rates. On average, the NEE increased significantly by 55.6 and 65.2% in N20 and N40, respectively (p < 0.05). Nitrogen addition also increased forage grass biomass (GB, including sedge and Gramineae) by 74.3 and 122.9% and forb biomass (FB) by 73.4 and 51.4% in N20 and N40, respectively (p < 0.05). There were positive correlations between CO2 fluxes (NEE and GEP) and GB (p < 0.01), and the ER was positively correlated with functional group biomass (GB and FB) and soil available N content (NO3 --N and NH4 +-N) (p < 0.01). The N-induced shift in the plant community assembly was primarily responsible for the increase in NEE. The increase in GB mainly contributed to the N stimulation of NEE, and FB and the soil available N content had positive effects on ER in response to N addition. Our results highlight that the plant community assembly is critical in regulating the ecosystem carbon exchange response to the N deposition in alpine ecosystems.
Collapse
Affiliation(s)
- Ling Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Yan
- China New Era Group Corporation, Beijing, China
| | | | | | | | - Jun Yan
- Nagqu Grassland Station, Nagqu, China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| |
Collapse
|
4
|
Yang Q, Liu G, Agostinho F, Giannetti BF, Yang Z. Assessment of ecological restoration projects under water limits: Finding a balance between nature and human needs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114849. [PMID: 35272164 DOI: 10.1016/j.jenvman.2022.114849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Revegetation has significantly contributed to improvements in ecosystem services, such as carbon sequestration and soil retention. Yet, vegetation expansion in water-limited regions may generate conflict of water demand between nature and humans. Present studies are still lacking when it comes to identifying the permissible vegetation capacity, i.e. net primary productivity (NPP) threshold, based on the local water resources limits, and further proposing adjustment and optimization strategies to keep water use balanced in anthropogenic-biological systems. Under such a circumstance, this study assesses the difference between the actual NPP and NPP thresholds at regional and ecosystem scales in China. The results show that 8 out of 31 provinces have their provincial actual NPP above the regional NPP thresholds, mainly concentrated in northern China between 400 and 800 mm iso-precipitation line, i.e. North China Plain (Beijing-Tianjin-Hebei), the middle reaches of the Yellow River Basin (Shaanxi and Henan provinces), and the Northeast China (Heilongjiang, Jilin and Liaoning). Forest ecosystems dominate the difference between the actual total woodland and grassland ecosystems NPP and the permissible NPP thresholds in these regions, ranging from 67% (Beijing) to 99% (Tianjin). If the current vegetation intensity in these regions remains unchanged, the areas of woodland and grassland ecosystems should be optimized 0-48% and 0-100% of their present areas to balance the water demand between the ecosystems and humans, without considering the potential consequence of climate change and soil erosion. Although 23 provinces have their regional actual NPP below their permissible NPP thresholds, 6 out of 23 provinces still have their woodland and grassland ecosystems NPP above the corresponding NPP thresholds, mainly focusing on the Northwestern China north over the 400 mm iso-precipitation line, including Inner Mongolia, Qinghai, Hainan, Shanxi, Gansu and Xinjiang. Forest ecosystems also dominate the negative NPP differences in these regions, ranging from 91% (Inner Mongolia) to 46% (Gansu). These reveal the hidden and potential pressure in the 6 provinces to balance limited water resources in the local anthropogenic-biological system. This study provides a method to assess the water-resources permissible NPP threshold and further proposes the specific adjustment and optimization plans for the areas with actual NPP above the corresponding NPP thresholds, which can provide guidance for ecological restoration program implementations in a more sustainable way.
Collapse
Affiliation(s)
- Qing Yang
- Key Laboratory for City Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Gengyuan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Feni Agostinho
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Post-Graduation Program in Production Engineering, Paulista University, São Paulo, 04026-002, Brazil
| | - Biagio F Giannetti
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Post-Graduation Program in Production Engineering, Paulista University, São Paulo, 04026-002, Brazil
| | - Zhifeng Yang
- Key Laboratory for City Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Cui H, Sun W, Delgado‐Baquerizo M, Song W, Ma J, Wang K, Ling X. Cascading effects of N fertilization activate biologically driven mechanisms promoting P availability in a semi‐arid grassland ecosystem. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Haiying Cui
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Life Science Northeast Normal University Changchun Jilin China
- Departamento de Sistemas Físicos Químicos y Naturales Universidad Pablo de Olavide Sevilla Spain
| | - Wei Sun
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Life Science Northeast Normal University Changchun Jilin China
| | - Manuel Delgado‐Baquerizo
- Departamento de Sistemas Físicos Químicos y Naturales Universidad Pablo de Olavide Sevilla Spain
| | - Wenzheng Song
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Life Science Northeast Normal University Changchun Jilin China
| | - Jian‐Ying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains Ministry of Education School of Geographical Sciences Northeast Normal University Changchun Jilin China
| | - Keying Wang
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Life Science Northeast Normal University Changchun Jilin China
| | - Xiaoli Ling
- Key Laboratory of Vegetation Ecology of Ministry of Education Institute of Grassland Science School of Life Science Northeast Normal University Changchun Jilin China
| |
Collapse
|
6
|
Wang K, Zhong S, Sun W. Clipping defoliation and nitrogen addition shift competition between a C 3 grass (Leymus chinensis) and a C 4 grass (Hemarthria altissima). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:221-232. [PMID: 31671249 DOI: 10.1111/plb.13064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Human-induced disturbances, including grazing and clipping, that cause defoliation are common in natural grasslands. Plant functional type differences in the ability to compensate for this tissue loss may influence interspecific competition. To explore the effects of different intensities of clipping and nitrogen (N) addition on compensatory growth and interspecific competition, we measured accumulated aboveground biomass (AGB), belowground biomass (BGB), tiller number, non-structural carbohydrates concentrations and leaf gas exchange parameters in two locally co-occurring species (the C3 grass Leymus chinensis and the C4 grass Hemarthria altissima) growing in monoculture and in mixture. For both grasses, the clipping treatment had significant impacts on the accumulated AGB, and the 40% clipping treatment had the largest effect. BGB gradually decreased with increasing defoliation intensity. Severe defoliation caused a significant increase in tiller number. Stored carbohydrates in the belowground biomass were mobilised and transported aboveground for the growth of new leaves to compensate for clipping-induced injury. The net CO2 assimilation rate (A) of the remaining leaves increased with clipping intensity and peaked under clipping intensities of 20% or 40%. Nitrogen addition, at a rate of 10 g·N·m-2 ·year-1 , enhanced A of the remaining leaves and non-structural carbohydrate concentrations, which benefited plant compensatory growth, especially for the C3 grass. Under the mixed planting conditions, the clipping and N addition treatments lowered the competitive advantage of the C4 grass. The results suggest that a combination of defoliation and N deposition have the potential to benefit the coexistence of C3 and C4 grasses.
Collapse
Affiliation(s)
- K Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - S Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - W Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| |
Collapse
|
7
|
Ren R, Xu W, Zhao M, Sun W. Grazing offsets the stimulating effects of nitrogen addition on soil CH4 emissions in a meadow steppe in Northeast China. PLoS One 2019; 14:e0225862. [PMID: 31790489 PMCID: PMC6886810 DOI: 10.1371/journal.pone.0225862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022] Open
Abstract
Grazing is the most common land use type for grasslands, and grazing may alter the impacts of the predicted enhancement of nitrogen deposition on soil CH4 flux. To understand the effects of nitrogen addition, grazing, and their interactions on soil CH4 flux, we conducted a field study on CH4 flux in a meadow steppe in Northeast China from 2017 to 2018. We measured the soil CH4 flux and soil physiochemical and vegetation parameters. The studied meadow steppe soil acted as a CH4 source due to the legacy effects of an extreme rainfall event. During the experimental period, the average CH4 fluxes were 7.8 ± 1.0, 5.8 ± 0.5, 9.3 ± 0.9 and 7.6 ± 0.6 μg m-2 h-1 for the CK (control), G (grazing), N (nitrogen addition) and NG (grazing and nitrogen addition) treatments, respectively. The cumulative CH4 fluxes were 24.9 ± 2.6, 11.5 ± 4.9, 28.8 ± 4.2 and 17.8 ± 3.5 μg m-2 yr-1 for the CK, G, N and NG treatments, respectively. The N addition increased the average CH4 flux by 19%, and the grazing treatment reduced it by 25%. The soil CH4 flux was positively correlated with the 0-10 cm soil water filled pore space (P < 0.01), soil NH4+-N (P < 0.01) and soil NO3--N (P < 0.01), but negatively correlated with the 0-10 cm soil temperature (P < 0.01), except for the sampling dates that were strongly influenced by the extreme rainfall event. The average CH4 flux was significantly (P < 0.05) affected by the grazing and N addition treatments with the N addition treatment significantly (P < 0.05) increased the CH4 flux, whereas grazing significantly (P < 0.05) decreased the CH4 flux. Grazing offset the stimulating effects of N addition on CH4 flux, and there was no difference (P = 0.79) in the CH4 flux between the CK and NG plots. In summary, moderate grazing has the potential to reduce the negative impacts of N addition on CH4 flux and can increase the capacity of the soil CH4 sink in the studied meadow steppe.
Collapse
Affiliation(s)
- Rongrong Ren
- Key Laboratory for Vegetation Ecology, Ministry of Education Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Wanling Xu
- Key Laboratory for Vegetation Ecology, Ministry of Education Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Mingming Zhao
- Key Laboratory for Vegetation Ecology, Ministry of Education Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Wei Sun
- Key Laboratory for Vegetation Ecology, Ministry of Education Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, China
- * E-mail:
| |
Collapse
|
8
|
Montagnani L, Badraghi A, Speak AF, Wellstein C, Borruso L, Zerbe S, Zanotelli D. Evidence for a non-linear carbon accumulation pattern along an Alpine glacier retreat chronosequence in Northern Italy. PeerJ 2019; 7:e7703. [PMID: 31616581 PMCID: PMC6790226 DOI: 10.7717/peerj.7703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Background The glaciers in the Alps, as in other high mountain ranges and boreal zones, are generally retreating and leaving a wide surface of bare ground free from ice cover. This early stage soil is then colonized by microbes and vegetation in a process of primary succession. It is rarely experimentally examined whether this colonization process is linear or not at the ecosystem scale. Thus, to improve our understanding of the variables involved in the carbon accumulation in the different stages of primary succession, we conducted this research in three transects on the Matsch glacier forefield (Alps, N Italy) at an altitude between 2,350 and 2,800 m a.s.l. Methods In three field campaigns (July, August and September 2014) a closed transparent chamber was used to quantify the net ecosystem exchange (NEE) between the natural vegetation and the atmosphere. On the five plots established in each of the three transects, shading nets were used to determine ecosystem response function to variable light conditions. Ecosystem respiration (Reco) and gross ecosystem exchange (GEE) was partitioned from NEE. Following the final flux measurements, biometric sampling was conducted to establish soil carbon (C) and nitrogen (N) content and the biomass components for each transect. Results A clear difference was found between the earlier and the later successional stage. The older successional stages in the lower altitudes acted as a stronger C sink, where NEE, GEE and Reco were significantly higher than in the earlier successional stage. Of the two lower transects, the sink capacity of intermediate-succession plots exceeded that of the plots of older formation, in spite of the more developed soil. Total biomass (above- and belowground) approached its maximum value in the intermediate ecosystem, whilst the later stage of succession predominated in the corresponding belowground organic mass (biomass, N and C). Outlook We found that the process of carbon accumulation along a glacier retreat chronosequence is not linear, and after a quite rapid increase in carbon accumulation capacity in the first 150 years, in average 9 g C m−2 year−1, it slows down, taking place mainly in the belowground biomass components. Concurrently, the photosynthetic capacity peaks in the intermediate stage of ecosystem development. If confirmed by further studies on a larger scale, this study would provide evidence for a predominant effect of plant physiology over soil physical characteristics in the green-up phase after glacier retreat, which has to be taken into account in the creation of scenarios related to climate change and future land use.
Collapse
Affiliation(s)
- Leonardo Montagnani
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Forest Services, Autonomous Province of Bolzano, Bolzano, Italy
| | - Aysan Badraghi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Andrew Francis Speak
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Camilla Wellstein
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefan Zerbe
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Damiano Zanotelli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
9
|
Drought sensitivity of aboveground productivity in Leymus chinensis meadow steppe depends on drought timing. Oecologia 2019; 191:685-696. [PMID: 31535253 DOI: 10.1007/s00442-019-04506-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
There is limited understanding of the combined effects of discrete climate extremes and chronic environmental changes on ecosystem processes and functioning. We assessed the interactions of extreme drought timing (45 days, in spring or summer) and nitrogen (N) addition in a full factorial field experiment in a Leymus chinensis-dominated meadow steppe in northeast China. We evaluated the resistance and recovery of the grassland (calculated in terms of aboveground biomass) to these two drought events. The spring drought reduced aboveground biomass by 28% in the unfertilized plots and by 33% in the fertilized plots, and the effects persisted during the subsequent post-drought period within the same growing season; however, the summer drought had no significant influence on aboveground biomass. Although there were no significant interactive effects between drought timing and N addition, we observed a potential trend of N addition increasing the proportion of aboveground biomass suppressed by spring drought but not summer drought. Moreover, the drought resistance of the aboveground biomass was positively correlated with the response of the belowground biomass to drought. One year after the extreme drought events, the spring drought effects on aboveground and belowground biomass were negligible. Our results indicate that the drought sensitivity of productivity likely depends on the phenological and morphological traits of the single highly dominant species (Leymus chinensis) in this meadow steppe.
Collapse
|
10
|
Zhong S, Xu Y, Meng B, Loik ME, Ma JY, Sun W. Nitrogen Addition Increases the Sensitivity of Photosynthesis to Drought and Re-watering Differentially in C 3 Versus C 4 Grass Species. FRONTIERS IN PLANT SCIENCE 2019; 10:815. [PMID: 31333687 PMCID: PMC6616207 DOI: 10.3389/fpls.2019.00815] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 05/03/2023]
Abstract
Global change factors, such as variation in precipitation regimes and nitrogen (N) deposition, are likely to occur simultaneously and may have profound impacts on the relative abundance of grasses differing in functional traits, such as C3 and C4 species. We conducted an extreme drought and re-watering experiment to understand differences in the resistance and recovery abilities of C3 and C4 grasses under different N deposition scenarios. A C3 perennial grass (Leymus chinensis) and two C4 grasses (annual species Chloris virgata and perennial species Hemarthria altissima) that co-occur in Northeast China were selected as experimental plants. For both C3 and C4 grasses, N addition caused a strong increase in biomass and resulted in more severe drought stress, leading to a change in the dominant photosynthetic limitation during the drought periods. Although N addition increased antioxidant enzyme activities and protective solute concentrations, the carbon fixing capacity did not fully recover to pre-drought levels by the end of the re-watering period. N addition resulted in lower resilience under the drought conditions and lower resistance at the end of the re-watering. However, N addition led to faster recovery of photosynthesis, especially in the C3 grass, which indicate that the effect of N addition on photosynthesis during drought was asymmetric, especially in the plants with different photosynthetic nitrogen use efficiency (PNUE). These findings demonstrated that nitrogen deposition may significant alter the susceptibility of C3 and C4 grass species to drought stress and re-watering, highlighting the asymmetry between resistance and resilience and to improve our understanding about plant responses to climate change.
Collapse
Affiliation(s)
- Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yueqiao Xu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bo Meng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Michael E Loik
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jian-Ying Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
11
|
Shi B, Zhang J, Wang C, Ma J, Sun W. Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition. Sci Rep 2018. [PMID: 29540738 PMCID: PMC5852051 DOI: 10.1038/s41598-018-22813-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The effects of manipulating nitrogen (N) deposition, with the use of a single form of N, on soil enzyme activities have been extensively studied. However, the impacts varying the N type (organic vs. inorganic) on soil hydrolytic enzyme activities have been less studied. We performed a 60 day incubation experiment using saline-alkaline soil. The objectives were to explore how the microbial biomass and enzyme activities respond to a mixed N addition at different inorganic to organic N ratios. The experimental design was full factorial, with two rates of N addition (10 g N m−2 and 20 g N m−2) and four ratios of N addition (inorganic N:organic N = 10:0, 7:3, 3:7, 1:9). The results showed that N addition stimulated enzyme activities involved in C, N and P cycling. Enzyme activities under mixed N addition increased compared to those under single inorganic N addition in most cases. The inorganic to organic N ratios interacted with the N addition rate to affect the enzyme activities. Our results suggest that various N fertilizers, which have different inorganic to organic N ratios, should be applied when evaluating the effects of atmospheric N deposition on the soil microbial enzyme activities and ecosystem structure and function.
Collapse
Affiliation(s)
- Baoku Shi
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China
| | - Junmei Zhang
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China
| | - Chengliang Wang
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China
| | - Jianying Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wei Sun
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
12
|
Shi B, Wang Y, Meng B, Zhong S, Sun W. Effects of Nitrogen Addition on the Drought Susceptibility of the Leymus chinensis Meadow Ecosystem Vary with Drought Duration. FRONTIERS IN PLANT SCIENCE 2018; 9:254. [PMID: 29535757 PMCID: PMC5835344 DOI: 10.3389/fpls.2018.00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is not clear yet how extreme drought and nitrogen (N) deposition influence grassland ecosystem functions when they are considered together, especially in complex field conditions. To explore the response of the Leymus chinensis meadow ecosystem to manipulated extreme drought (45 days), N addition and their interaction, we measured leaf photosynthetic characteristics, aboveground phytomass on the community level and ecosystem C exchange in different treatments at the middle and the end of the drought period. The extreme drought treatment decreased the leaf net CO2 assimilation rate and ecosystem C exchange [gross ecosystem productivity (GEP), ecosystem respiration and net ecosystem CO2 exchange]. In contrast, the N addition treatment increased aboveground phytomass, GEP and net ecosystem CO2 exchange. The effects of N addition on the drought susceptibility of the L. chinensis meadow ecosystem varied with drought severity. The N addition treatment alleviated drought-induced suppression of CO2 exchange at the leaf and ecosystem levels in the middle of the drought period, whereas it exacerbated drought-induced suppression of the CO2 exchange and aboveground phytomass on the community level at the end of the drought period. Given that dominance by L. chinensis is a characteristic of the studied ecosystem, knowledge of the traits of L. chinensis and its response to multiple global change drivers will be crucial for predicting future ecosystem functions. Furthermore, increasing N deposition may affect the response of the L. chinensis meadow ecosystem to further droughts by increasing carbon allocation to roots and therefore root-shoot ratios.
Collapse
Affiliation(s)
- Baoku Shi
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yunbo Wang
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Meng
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Shangzhi Zhong
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- *Correspondence: Wei Sun,
| |
Collapse
|
13
|
Zhong S, Chai H, Xu Y, Li Y, Ma JY, Sun W. Drought Sensitivity of the Carbon Isotope Composition of Leaf Dark-Respired CO 2 in C 3 ( Leymus chinensis) and C 4 ( Chloris virgata and Hemarthria altissima) Grasses in Northeast China. FRONTIERS IN PLANT SCIENCE 2017; 8:1996. [PMID: 29375587 PMCID: PMC5770615 DOI: 10.3389/fpls.2017.01996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/07/2017] [Indexed: 05/13/2023]
Abstract
Whether photosynthetic pathway differences exist in the amplitude of nighttime variations in the carbon isotope composition of leaf dark-respired CO2 (δ13Cl) and respiratory apparent isotope fractionation relative to biomass (ΔR,biomass) in response to drought stress is unclear. These differences, if present, would be important for the partitioning of C3-C4 mixed ecosystem C fluxes. We measured δ13Cl, the δ13C of biomass and of potential respiratory substrates and leaf gas exchange in one C3 (Leymus chinensis) and two C4 (Chloris virgata and Hemarthria altissima) grasses during a manipulated drought period. For all studied grasses, δ13Cl decreased from 21:00 to 03:00 h. The magnitude of the nighttime shift in δ13Cl decreased with increasing drought stress. The δ13Cl values were correlated with the δ13C of respiratory substrates, whereas the magnitude of the nighttime shift in δ13Cl strongly depended on the daytime carbon assimilation rate and the range of nighttime variations in the respiratory substrate content. The ΔR,biomass in the C3 and C4 grasses varied in opposite directions with the intensification of the drought stress. The contribution of C4 plant-associated carbon flux is likely to be overestimated if carbon isotope signatures are used for the partitioning of ecosystem carbon exchange and the δ13C of biomass is used as a substitute for leaf dark-respired CO2. The detected drought sensitivities in δ13Cl and differences in respiratory apparent isotope fractionation between C3 and C4 grasses have marked implications for isotope partitioning studies at the ecosystem level.
Collapse
Affiliation(s)
- Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Hua Chai
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yueqiao Xu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jian-Ying Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Viglizzo EF, Jobbágy EG, Ricard MF, Paruelo JM. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:47-60. [PMID: 27096628 DOI: 10.1016/j.scitotenv.2016.03.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed.
Collapse
Affiliation(s)
- E F Viglizzo
- INTA, EEA Anguil, Grupo de Investigaciones en Gestión Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa, Argentina; INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa, Argentina; UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina.
| | - E G Jobbágy
- CONICET, Andes 950, 5700 San Luis, San Luis, Argentina; Grupo de Estudios Ambientales IMASL, Ejército de los, Andes 950, 5700 San Luis, San Luis, Argentina
| | - M F Ricard
- INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa, Argentina; UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina
| | - J M Paruelo
- Laboratorio de Análisis Regional y Teledetección, Departamento de Métodos Cuantitativos Sistemas de información, Facultad de Agronomía and IFEVA, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417 Buenos Aires, Argentina
| |
Collapse
|
15
|
Cui H, Wang Y, Jiang Q, Chen S, Ma JY, Sun W. Carbon Isotope Composition of Nighttime Leaf-Respired CO2 in the Agricultural-Pastoral Zone of the Songnen Plain, Northeast China. PLoS One 2015; 10:e0137575. [PMID: 26356083 PMCID: PMC4565631 DOI: 10.1371/journal.pone.0137575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022] Open
Abstract
Variations in the carbon isotope signature of leaf dark-respired CO2 (δ13CR) within a single night is a widely observed phenomenon. However, it is unclear whether there are plant functional type differences with regard to the amplitude of the nighttime variation in δ13CR. These differences, if present, would be important for interpreting the short-term variations in the stable carbon signature of ecosystem respiration and the partitioning of carbon fluxes. To assess the plant functional type differences relating to the magnitude of the nighttime variation in δ13CR and the respiratory apparent fractionation, we measured the δ13CR, the leaf gas exchange, and the δ13C of the respiratory substrates of 22 species present in the agricultural-pastoral zone of the Songnen Plain, northeast China. The species studied were grouped into C3 and C4 plants, trees, grasses, and herbs. A significant nocturnal shift in δ13CR was detected in 20 of the studied species, with the magnitude of the shift ranging from 1‰ to 5.8‰. The magnitude of the nighttime variation in δ13CR was strongly correlated with the daytime cumulative carbon assimilation, which suggests that variation in δ13CR were influenced, to some extent, by changes in the contribution of malate decarboxylation to total respiratory CO2 flux. There were no differences in the magnitude of the nighttime variation in δ13CR between the C3 and C4 plants, as well as among the woody plants, herbs and graminoids. Leaf respired CO2 was enriched in 13C compared to biomass, soluble carbohydrates and lipids; however the magnitude of enrichment differed between 8 pm and 4 am, which were mainly caused by the changes in δ13CR. We also detected the plant functional type differences in respiratory apparent fractionation relative to biomass at 4 am, which suggests that caution should be exercised when using the δ13C of bulk leaf material as a proxy for the δ13C of leaf-respired CO2.
Collapse
Affiliation(s)
- Haiying Cui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| | - Yunbo Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| | - Qi Jiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China, 100093
| | - Jian-Ying Ma
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, P. R. China, 830011
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, P. R. China, 130024
| |
Collapse
|