1
|
O’Lone C, Juhász A, Nye-Wood M, Moody D, Dunn H, Ral JP, Colgrave ML. Advancing Sustainable Malting Practices: Aquaporins as Potential Breeding Targets for Improved Water Uptake during Controlled Germination of Barley ( Hordeum vulgare L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10149-10161. [PMID: 38635353 PMCID: PMC11066872 DOI: 10.1021/acs.jafc.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.
Collapse
Affiliation(s)
- Clare
E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - David Moody
- InterGrain
Pty Ltd, Bibra
Lake 6163, Western Australia, Australia
| | - Hugh Dunn
- Pilot
Malting Australia, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
| | - Jean-Philippe Ral
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, Black
Mountain, Australian Capital Territory 2601, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup 6027, Western Australia, Australia
- Agriculture
and Food, Commonwealth Scientific and Industrial
Research Organization, St Lucia 4067, Queensland, Australia
| |
Collapse
|
2
|
Qu M, Huang X, García-Caparrós P, Shabala L, Fuglsang AT, Yu M, Shabala S. Understanding the role of boron in plant adaptation to soil salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14358. [PMID: 38783511 DOI: 10.1111/ppl.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Soil salinity is a major environmental constraint affecting the sustainability and profitability of agricultural production systems. Salinity stress tolerance has been present in wild crop relatives but then lost, or significantly weakened, during their domestication. Given the genetic and physiological complexity of salinity tolerance traits, agronomical solutions may be a suitable alternative to crop breeding for improved salinity stress tolerance. One of them is optimizing fertilization practices to assist plants in dealing with elevated salt levels in the soil. In this review, we analyse the causal relationship between the availability of boron (an essential metalloid micronutrient) and plant's adaptive responses to salinity stress at the whole-plant, cellular, and molecular levels, and a possibility of using boron for salt stress mitigation. The topics covered include the impact of salinity and the role of boron in cell wall remodelling, plasma membrane integrity, hormonal signalling, and operation of various membrane transporters mediating plant ionic and water homeostasis. Of specific interest is the role of boron in the regulation of H+-ATPase activity whose operation is essential for the control of a broad range of voltage-gated ion channels. The complex relationship between boron availability and expression patterns and the operation of aquaporins is also discussed.
Collapse
Affiliation(s)
- Mei Qu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Lana Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- School of Biological Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Zou Z, Zheng Y, Chang L, Zou L, Zhang L, Min Y, Zhao Y. TIP aquaporins in Cyperus esculentus: genome-wide identification, expression profiles, subcellular localizations, and interaction patterns. BMC PLANT BIOLOGY 2024; 24:298. [PMID: 38632542 PMCID: PMC11025170 DOI: 10.1186/s12870-024-04969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Tonoplast intrinsic proteins (TIPs), which typically mediate water transport across vacuolar membranes, play an essential role in plant growth, development, and stress responses. However, their characterization in tigernut (Cyperus esculentus L.), an oil-bearing tuber plant of the Cyperaceae family, is still in the infancy. RESULTS In this study, a first genome-wide characterization of the TIP subfamily was conducted in tigernut, resulting in ten members representing five previously defined phylogenetic groups, i.e., TIP1-5. Although the gene amounts are equal to that present in two model plants Arabidopsis and rice, the group composition and/or evolution pattern were shown to be different. Except for CeTIP1;3 that has no counterpart in both Arabidopsis and rice, complex orthologous relationships of 1:1, 1:2, 1:3, 2:1, and 2:2 were observed. Expansion of the CeTIP subfamily was contributed by whole-genome duplication (WGD), transposed, and dispersed duplications. In contrast to the recent WGD-derivation of CeTIP3;1/-3;2, synteny analyses indicated that TIP4 and - 5 are old WGD repeats of TIP2, appearing sometime before monocot-eudicot divergence. Expression analysis revealed that CeTIP genes exhibit diverse expression profiles and are subjected to developmental and diurnal fluctuation regulation. Moreover, when transiently overexpressed in tobacco leaves, CeTIP1;1 was shown to locate in the vacuolar membrane and function in homo/heteromultimer, whereas CeTIP2;1 is located in the cell membrane and only function in heteromultimer. Interestingly, CeTIP1;1 could mediate the tonoplast-localization of CeTIP2;1 via protein interaction, implying complex regulatory patterns. CONCLUSIONS Our findings provide a global view of CeTIP genes, which provide valuable information for further functional analysis and genetic improvement through manipulating key members in tigernut.
Collapse
Affiliation(s)
- Zhi Zou
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China.
| | - Yujiao Zheng
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China
| | - Lili Chang
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China
| | - Liangping Zou
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China
| | - Li Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, Hubei, 430074, P. R. China
| | - Yi Min
- Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - Yongguo Zhao
- National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, P. R. China.
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| |
Collapse
|
4
|
Raza Q, Rashid MAR, Waqas M, Ali Z, Rana IA, Khan SH, Khan IA, Atif RM. Genomic diversity of aquaporins across genus Oryza provides a rich genetic resource for development of climate resilient rice cultivars. BMC PLANT BIOLOGY 2023; 23:172. [PMID: 37003962 PMCID: PMC10064747 DOI: 10.1186/s12870-023-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Plant aquaporins are critical genetic players performing multiple biological functions, especially climate resilience and water-use efficiency. Their genomic diversity across genus Oryza is yet to be explored. RESULTS This study identified 369 aquaporin-encoding genes from 11 cultivated and wild rice species and further categorized these into four major subfamilies, among which small basic intrinsic proteins are speculated to be ancestral to all land plant aquaporins. Evolutionarily conserved motifs in peptides of aquaporins participate in transmembrane transport of materials and their relatively complex gene structures provide an evolutionary playground for regulation of genome structure and transcription. Duplication and evolution analyses revealed higher genetic conservation among Oryza aquaporins and strong purifying selections are assisting in conserving the climate resilience associated functions. Promoter analysis highlighted enrichment of gene upstream regions with cis-acting regulatory elements involved in diverse biological processes, whereas miRNA target site prediction analysis unveiled substantial involvement of osa-miR2102-3p, osa-miR2927 and osa-miR5075 in post-transcriptional regulation of gene expression patterns. Moreover, expression patterns of japonica aquaporins were significantly perturbed in response to different treatment levels of six phytohormones and four abiotic stresses, suggesting their multifarious roles in plants survival under stressed environments. Furthermore, superior haplotypes of seven conserved orthologous aquaporins for higher thousand-grain weight are reported from a gold mine of 3,010 sequenced rice pangenomes. CONCLUSIONS This study unveils the complete genomic atlas of aquaporins across genus Oryza and provides a comprehensive genetic resource for genomics-assisted development of climate-resilient rice cultivars.
Collapse
Affiliation(s)
- Qasim Raza
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Khan
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Atif
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan.
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Huang C, Butterly CR, Moody D, Pourkheirandish M. Mini review: Targeting below-ground plant performance to improve nitrogen use efficiency (NUE) in barley. Front Genet 2023; 13:1060304. [PMID: 36935938 PMCID: PMC10017981 DOI: 10.3389/fgene.2022.1060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Nitrogen (N) fertilizer is one of the major inputs for grain crops including barley and its usage is increasing globally. However, N use efficiency (NUE) is low in cereal crops, leading to higher production costs, unfulfilled grain yield potential and environmental hazards. N uptake is initiated from plant root tips but a very limited number of studies have been conducted on roots relevant to NUE specifically. In this review, we used barley, the fourth most important cereal crop, as the primary study plant to investigate this topic. We first highlighted the recent progress and study gaps in genetic analysis results, primarily, the genome-wide association study (GWAS) regarding both biological and statistical considerations. In addition, different factors contributing to NUE are discussed in terms of root morphological and anatomical traits, as well as physiological mechanisms such as N transporter activities and hormonal regulation.
Collapse
Affiliation(s)
- Claire Huang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Clayton R. Butterly
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - David Moody
- InterGrain Pty Ltd., Bibra Lake, WA, Australia
| | - Mohammad Pourkheirandish
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Interaction between Boron and Other Elements in Plants. Genes (Basel) 2023; 14:genes14010130. [PMID: 36672871 PMCID: PMC9858995 DOI: 10.3390/genes14010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Boron (B) is an essential mineral nutrient for growth of plants, and B deficiency is now a worldwide problem that limits production of B deficiency-sensitive crops, such as rape and cotton. Agronomic practice has told that balanced B and other mineral nutrient fertilizer applications is helpful to promote crop yield. In recent years, much research has reported that applying B can also reduce the accumulation of toxic elements such as cadmium and aluminum in plants and alleviate their toxicity symptoms. Therefore, the relation between B and other elements has become an interesting issue for plant nutritionists. Here we summarize the research progress of the interaction between B and macronutrients such as nitrogen, phosphorus, calcium, potassium, magnesium, and sulfur, essential micronutrients such as iron, manganese, zinc, copper, and molybdenum, and beneficial elements such as sodium, selenium, and silicon. Moreover, the interaction between B and toxic elements such as cadmium and aluminum, which pose a serious threat to agriculture, is also discussed in this paper. Finally, the possible physiological mechanisms of the interaction between B and other elements in plants is reviewed. We propose that the cell wall is an important intermediary between interaction of B and other elements, and competitive inhibition of elements and related signal transduction pathways also play a role. Currently, research on the physiological role of B in plants mainly focuses on its involvement in the structure and function of cell walls, and our understanding of the details for interactions between B and other elements also tend to relate to the cell wall. However, we know little about the metabolic process of B inside cells, including its interactions with other elements. More research is needed to address the aforementioned research questions in future.
Collapse
|
7
|
The Role of Aquaporins in Plant Growth under Conditions of Oxygen Deficiency. Int J Mol Sci 2022; 23:ijms231710159. [PMID: 36077554 PMCID: PMC9456501 DOI: 10.3390/ijms231710159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Plants frequently experience hypoxia due to flooding caused by intensive rainfall or irrigation, when they are partially or completely submerged under a layer of water. In the latter case, some resistant plants implement a hypoxia avoidance strategy by accelerating shoot elongation, which allows lifting their leaves above the water surface. This strategy is achieved due to increased water uptake by shoot cells through water channels (aquaporins, AQPs). It remains a puzzle how an increased flow of water through aquaporins into the cells of submerged shoots can be achieved, while it is well known that hypoxia inhibits the activity of aquaporins. In this review, we summarize the literature data on the mechanisms that are likely to compensate for the decline in aquaporin activity under hypoxic conditions, providing increased water entry into cells and accelerated shoot elongation. These mechanisms include changes in the expression of genes encoding aquaporins, as well as processes that occur at the post-transcriptional level. We also discuss the involvement of hormones, whose concentration changes in submerged plants, in the control of aquaporin activity.
Collapse
|
8
|
Wang J, Yang L, Chai S, Ren Y, Guan M, Ma F, Liu J. An aquaporin gene MdPIP1;2 from Malus domestica confers salt tolerance in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153711. [PMID: 35550521 DOI: 10.1016/j.jplph.2022.153711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins are known as water channel proteins. In this study, an aquaporin gene MdPIP1;2 was cloned from Malus domestica cv. Qinguan encoding a protein of 289 amino acids that formed the typical structure of aquaporin by six transmembrane domains, two asparagine-proline-alanine motifs, aromatic/arginine filter, and Forger's position. MdPIP1;2 was highly expressed in the water-sensitive or water-requiring tissues, and upregulated by salt and PEG stresses. MdPIP1;2 transgenic Arabidopsis exhibited enhanced salt stress tolerance with less Na + accumulation, lower malondialdehyde (MDA) content, lower electrolyte leakage (EL) level, and higher superoxide dismutase (SOD) and peroxidase (POD) activities compared with WT plants. Additionally, transcriptome analysis indicated MdPIP1;2 transgenic Arabidopsis could present healthier growth and development condition probably through regulating morphological structures and accumulating specific secondary metabolites under salt stress. Our results are a useful reference for better understanding the biological function of aquaporin in apple tree, especially in plant response to abiotic stress.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Leilei Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shuangshuang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yafei Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Guan
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Song S, Zhang D, Ma F, Xing W, Huang D, Wu B, Chen J, Chen D, Xu B, Xu Y. Genome-Wide Identification and Expression Analyses of the Aquaporin Gene Family in Passion Fruit ( Passiflora edulis), Revealing PeTIP3-2 to Be Involved in Drought Stress. Int J Mol Sci 2022; 23:5720. [PMID: 35628541 PMCID: PMC9146829 DOI: 10.3390/ijms23105720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaporins (AQPs) in plants can transport water and small molecules, and they play an important role in plant development and abiotic stress response. However, to date, a comprehensive study on AQP family members is lacking. In this study, 27 AQP genes were identified from the passion fruit genome and classified into four groups (NIP, PIP, TIP, SIP) on the basis of their phylogenetic relationships. The prediction of protein interactions indicated that the AQPs of passion fruit were mainly associated with AQP family members and boron protein family genes. Promoter cis-acting elements showed that most PeAQPs contain light response elements, hormone response elements, and abiotic stress response elements. According to collinear analysis, passion fruit is more closely related to Arabidopsis than rice. Furthermore, three different fruit ripening stages and different tissues were analyzed on the basis of the transcriptome sequencing results for passion fruit AQPs under drought, high-salt, cold and high-temperature stress, and the results were confirmed by qRT-PCR. The results showed that the PeAQPs were able to respond to different abiotic stresses, and some members could be induced by and expressed in response to multiple abiotic stresses at the same time. Among the three different fruit ripening stages, 15 AQPs had the highest expression levels in the first stage. AQPs are expressed in all tissues of the passion fruit. One of the passion fruit aquaporin genes, PeTIP3-2, which was induced by drought stress, was selected and transformed into Arabidopsis. The survival rate of transgenic plants under drought stress treatment is higher than that of wild-type plants. The results indicated that PeTIP3-2 was able to improve the drought resistance of plants. Our discovery lays the foundation for the functional study of AQPs in passion fruit.
Collapse
Affiliation(s)
- Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Dahui Zhang
- Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (J.C.)
| | - Funing Ma
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Wenting Xing
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Bin Wu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Jian Chen
- Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (J.C.)
| | - Di Chen
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Binqiang Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| |
Collapse
|
10
|
Reddy PS, Dhaware MG, Sivasakthi K, Divya K, Nagaraju M, Sri Cindhuri K, Kavi Kishor PB, Bhatnagar-Mathur P, Vadez V, Sharma KK. Pearl Millet Aquaporin Gene PgPIP2;6 Improves Abiotic Stress Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:820996. [PMID: 35356115 PMCID: PMC8959815 DOI: 10.3389/fpls.2022.820996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Pearl millet [Pennisetum glaucum (L) R. Br.] is an important cereal crop of the semiarid tropics, which can withstand prolonged drought and heat stress. Considering an active involvement of the aquaporin (AQP) genes in water transport and desiccation tolerance besides several basic functions, their potential role in abiotic stress tolerance was systematically characterized and functionally validated. A total of 34 AQP genes from P. glaucum were identified and categorized into four subfamilies, viz., plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin-26-like intrinsic proteins (NIPs), and small basic intrinsic proteins (SIPs). Sequence analysis revealed that PgAQPs have conserved characters of AQP genes with a closer relationship to sorghum. The PgAQPs were expressed differentially under high vapor pressure deficit (VPD) and progressive drought stresses where the PgPIP2;6 gene showed significant expression under high VPD and drought stress. Transgenic tobacco plants were developed by heterologous expression of the PgPIP2;6 gene and functionally characterized under different abiotic stresses to further unravel their role. Transgenic tobacco plants in the T2 generations displayed restricted transpiration and low root exudation rates in low- and high-VPD conditions. Under progressive drought stress, wild-type (WT) plants showed a quick or faster decline of soil moisture than transgenics. While under heat stress, PgPIP2;6 transgenics showed better adaptation to heat (40°C) with high canopy temperature depression (CTD) and low transpiration; under low-temperature stress, they displayed lower transpiration than their non-transgenic counterparts. Cumulatively, lower transpiration rate (Tr), low root exudation rate, declined transpiration, elevated CTD, and lower transpiration indicate that PgPIP2;6 plays a role under abiotic stress tolerance. Since the PgPIP2;6 transgenic plants exhibited better adaptation against major abiotic stresses such as drought, high VPD, heat, and cold stresses by virtue of enhanced transpiration efficiency, it has the potential to engineer abiotic stress tolerance for sustained growth and productivity of crops.
Collapse
Affiliation(s)
| | - Mahamaya G. Dhaware
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kaliamoorthy Sivasakthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Marka Nagaraju
- Department of Biochemistry, ICMR – National Institute of Nutrition, Hyderabad, India
| | - Katamreddy Sri Cindhuri
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Polavarapu Bilhan Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kiran K. Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
11
|
Identification of Aquaporin Gene Family in Response to Natural Cold Stress in Ligustrum × vicaryi Rehd. FORESTS 2022. [DOI: 10.3390/f13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants are susceptible to a variety of abiotic stresses during the growing period, among which low temperature is one of the more frequent stress factors. Maintaining water balance under cold stress is a difficult and critical challenge for plants. Studies have shown that aquaporins located on the cytomembrane play an important role in controlling water homeostasis under cold stress, and are involved in the tolerance mechanism of plant cells to cold stress. In addition, the aquaporin gene family is closely related to the cold resistance of plants. As a major greening tree species in urban landscaping, Ligustrum× vicaryi Rehd. is more likely to be harmed by low temperature after a harsh winter and a spring with fluctuating temperatures. Screening the target aquaporin genes of Ligustrum × vicaryi responding to cold resistance under natural cold stress will provide a scientific theoretical basis for cold resistance breeding of Ligustrum × vicaryi. In this study, the genome-wide identification of the aquaporin gene family was performed at four different overwintering periods in September, November, January and April, and finally, 58 candidate Ligustrum × vicaryi aquaporin (LvAQP) genes were identified. The phylogenetic analysis revealed four subfamilies of the LvAQP gene family: 32 PIPs, 11 TIPs, 11 NIPs and 4 SIPs. The number of genes in PIPs subfamily was more than that in other plants. Through the analysis of aquaporin genes related to cold stress in other plants and LvAQP gene expression patterns identified 20 LvAQP genes in response to cold stress, and most of them belonged to the PIPs subfamily. The significantly upregulated LvAQP gene was Cluster-9981.114831, and the significantly downregulated LvAQP genes were Cluster-9981.112839, Cluster-9981.107281, and Cluster-9981.112777. These genes might play a key role in responding to cold tolerance in the natural low-temperature growth stage of Ligustrum × vicaryi.
Collapse
|
12
|
Akdemir H. Evaluation of transcription factor and aquaporin gene expressions in response to Al 2O 3 and ZnO nanoparticles during barley germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:466-476. [PMID: 34166973 DOI: 10.1016/j.plaphy.2021.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Aluminum oxide and zinc oxide nanoparticles (NPs) are two of the mostly produced engineered metal oxide NPs. Here, barley germination and root elongation as well as gene expressions of the selected aquaporins (HvTip1;1 and HvPip1;1) and transcription factors (HvERFs and HvNFX1) were investigated after exposure to Al2O3 and ZnO NPs for foreseeing the effect of NP exposure. ICP-MS analysis showed that the nanoparticles were taken up into root and leaves. Even the germination analysis and seedling establishment data indicate that the applied NPs do not have any observable inhibitory effects except on root length, the gene expression analysis revealed that these nanoparticle applications lead to a response at the molecular level. The gene expression profiling indicated that aquaporins and transcription factor genes were differentially regulated in leaves and roots in response to NPs treatments. The expressions of aquaporin genes were higher especially in leaves in compared to the control plants. Gradual decrease was obtained in roots by application of the increased levels of Al2O3 NPs. The effects of ZnO NPs on gene expression levels of barley TFs were dramatically more distinctive in comparison with that of Al2O3 NPs. The expression profiles of HvERFs and HvNFX1 transcription factors in response to the Al2O3 and ZnO NPs suggest that these selected TFs can play important roles in shaping abiotic stress tolerance in young barley roots and leaves. Outcomes of the study will allow us to predict complex stress response of barley in response to the nanoparticles.
Collapse
Affiliation(s)
- Hulya Akdemir
- Faculty of Science, Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
13
|
Singh S, Kumar V, Parihar P, Dhanjal DS, Singh R, Ramamurthy PC, Prasad R, Singh J. Differential regulation of drought stress by biological membrane transporters and channels. PLANT CELL REPORTS 2021; 40:1565-1583. [PMID: 34132878 DOI: 10.1007/s00299-021-02730-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Stress arising due to abiotic factors affects the plant's growth and productivity. Among several existing abiotic stressors like cold, drought, heat, salinity, heavy metal, etc., drought condition tends to affect the plant's growth by inducing two-point effect, i.e., it disturbs the water balance as well as induces toxicity by disturbing the ion homeostasis, thus hindering the growth and productivity of plants, and to survive under this condition, plants have evolved several transportation systems that are involved in regulating the drought stress. The role of membrane transporters has gained interest since genetic engineering came into existence, and they were found to be the important modulators for tolerance, avoidance, ion movements, stomatal movements, etc. Here in this comprehensive review, we have discussed the role of transporters (ABA, protein, carbohydrates, etc.) and channels that aids in withstanding the drought stress as well as the regulatory role of transporters involved in osmotic adjustments arising due to drought stress. This review also provides a gist of hydraulic conductivity by roots that are involved in regulating the drought stress.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Parul Parihar
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Rachana Singh
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| |
Collapse
|
14
|
Ahmed S, Kouser S, Asgher M, Gandhi SG. Plant aquaporins: A frontward to make crop plants drought resistant. PHYSIOLOGIA PLANTARUM 2021; 172:1089-1105. [PMID: 33826759 DOI: 10.1111/ppl.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/10/2021] [Accepted: 04/03/2021] [Indexed: 05/25/2023]
Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress.
Collapse
Affiliation(s)
- Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Shaista Kouser
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Patel J, Mishra A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. PHYSIOLOGIA PLANTARUM 2021; 172:1030-1044. [PMID: 33421148 DOI: 10.1111/ppl.13324] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
Water is a vital resource for plants to grow, thrive, and complete their life cycle. In recent years, drastic changes in the climate, especially drought frequency and severity, have increased, which reduces agricultural productivity worldwide. Aquaporins are membrane channels belonging to the major intrinsic protein superfamily, which play an essential role in cellular water and osmotic homeostasis of plants under both control and water deficit conditions. A genome-wide search reveals the vast availability of aquaporin isoforms, phylogenetic relationships, different families, conserved residues, chromosomal locations, and gene structure of aquaporins. Furthermore, aquaporins gating and subcellular trafficking are commonly controlled by phosphorylation, cytosolic pH, divalent cations, reactive oxygen species, and stoichiometry. Researchers have identified their involvement in regulating hydraulic conductance, root system architecture, modulation of abiotic stress-related genes, seed viability and germination, phloem loading, xylem water exit, photosynthetic parameters, and post-drought recovery. Remarkable effects following the change in aquaporin activity and/or gene expression have been observed on root water transport properties, nutrient acquisition, physiology, transpiration, stomatal aperture, gas exchange, and water use efficiency. The present review highlights the role of different aquaporin homologs under water-deficit stress condition in model and crop plants. Moreover, the opportunity and challenges encountered to explore aquaporins for engineering drought-tolerant crop plants are also discussed here.
Collapse
Affiliation(s)
- Jaykumar Patel
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Vats S, Sudhakaran S, Bhardwaj A, Mandlik R, Sharma Y, Kumar S, Tripathi DK, Sonah H, Sharma TR, Deshmukh R. Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124910. [PMID: 33453583 DOI: 10.1016/j.jhazmat.2020.124910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Uptake of hazardous metal(loid)s adversely affects plants and imposes a threat to the entire food chain. Here, the role of aquaporins (AQPs) providing tolerance against hazardous metal(loid)s in plants is discussed to provide a perspective on the present understanding, knowledge gaps, and opportunities. Plants adopt complex molecular and physiological mechanisms for better tolerance, adaptability, and survival under metal(loid)s stress. Water conservation in plants is one such primary strategies regulated by AQPs, a family of channel-forming proteins facilitating the transport of water and many other solutes. The strategy is more evident with reports suggesting differential expression of AQPs adopted by plants to cope with the heavy metal stress. In this regard, numerous studies showing enhanced tolerance against hazardous elements in plants due to AQPs activity are discussed. Consequently, present understanding of various aspects of AQPs, such as tertiary-structure, transport activity, solute-specificity, differential expression, gating mechanism, and subcellular localization, are reviewed. Similarly, various tools and techniques are discussed in detail aiming at efficient utilization of resources and knowledge to combat metal(loid)s stress. The scope of AQP transgenesis focusing on heavy metal stresses is also highlighted. The information provided here will be helpful to design efficient strategies for the development of metal(loid)s stress-tolerant crops.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sreeja Sudhakaran
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
17
|
Kurowska MM. Aquaporins in Cereals-Important Players in Maintaining Cell Homeostasis under Abiotic Stress. Genes (Basel) 2021; 12:genes12040477. [PMID: 33806192 PMCID: PMC8066221 DOI: 10.3390/genes12040477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Cereal productivity is reduced by environmental stresses such as drought, heat, elevated CO2, salinity, metal toxicity and cold. Sometimes, plants are exposed to multiple stresses simultaneously. Plants must be able to make a rapid and adequate response to these environmental stimuli in order to restore their growing ability. The latest research has shown that aquaporins are important players in maintaining cell homeostasis under abiotic stress. Aquaporins are membrane intrinsic proteins (MIP) that form pores in the cellular membranes, which facilitate the movement of water and many other molecules such as ammonia, urea, CO2, micronutrients (silicon and boron), glycerol and reactive oxygen species (hydrogen peroxide) across the cell and intercellular compartments. The present review primarily focuses on the diversity of aquaporins in cereal species, their cellular and subcellular localisation, their expression and their functioning under abiotic stresses. Lastly, this review discusses the potential use of mutants and plants that overexpress the aquaporin-encoding genes to improve their tolerance to abiotic stress.
Collapse
Affiliation(s)
- Marzena Małgorzata Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
18
|
Knipfer T, Danjou M, Vionne C, Fricke W. Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. PLANT, CELL & ENVIRONMENT 2021; 44:458-475. [PMID: 33140852 DOI: 10.1111/pce.13936] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/24/2020] [Indexed: 05/21/2023]
Abstract
The aim of the study was to understand the hydraulic response to salt stress of the root system of the comparatively salt-tolerant crop barley (Hordeum vulgare L.). We focused on the transcellular path of water movement across the root cylinder that involves the crossing of membranes. This path allows for selective water uptake, while excluding salt ions. Hydroponically grown plants were exposed to 100 mM NaCl for 5-7 days and analysed when 15-17 days old. A range of complementary and novel approaches was used to determine hydraulic conductivity (Lp). This included analyses at cell, root and plant level and modelling of water flow. Apoplastic barrier formation and gene expression level of aquaporins (AQPs) was analysed. Salt stress reduced the Lp of root system through reducing water flow along the transcellular path. This involved changes in the activity and gene expression level of AQPs. Modelling of root-Lp showed that the reduction in root-Lp did not require added hydraulic resistances through apoplastic barriers at the endodermis. The bulk of data points to a near-perfect semi-permeability of roots of control plants (solute reflection coefficient σ ~1.0). Roots of salt-stressed plants are almost as semi-permeable (σ > 0.8).
Collapse
Affiliation(s)
- Thorsten Knipfer
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
- Department of Viticulture & Enology, University of California, Davis, California, USA
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Danjou
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Charles Vionne
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Tran STH, Horie T, Imran S, Qiu J, McGaughey S, Byrt CS, Tyerman SD, Katsuhara M. A Survey of Barley PIP Aquaporin Ionic Conductance Reveals Ca 2+-Sensitive HvPIP2;8 Na + and K + Conductance. Int J Mol Sci 2020; 21:E7135. [PMID: 32992595 PMCID: PMC7582361 DOI: 10.3390/ijms21197135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/02/2023] Open
Abstract
Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.
Collapse
Affiliation(s)
- Sen Thi Huong Tran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan; (S.T.H.T.); (S.I.)
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue 530000, Vietnam
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan;
| | - Shahin Imran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan; (S.T.H.T.); (S.I.)
| | - Jiaen Qiu
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Adelaide 5064, Australia; (J.Q.); (C.S.B.); (S.D.T.)
| | - Samantha McGaughey
- Research School of Biology, Australian National University, Canberra 2600, Australia;
| | - Caitlin S. Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Adelaide 5064, Australia; (J.Q.); (C.S.B.); (S.D.T.)
- Research School of Biology, Australian National University, Canberra 2600, Australia;
| | - Stephen D. Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, Adelaide 5064, Australia; (J.Q.); (C.S.B.); (S.D.T.)
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan; (S.T.H.T.); (S.I.)
| |
Collapse
|
20
|
Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 2020; 21:ijms21124335. [PMID: 32570736 PMCID: PMC7352393 DOI: 10.3390/ijms21124335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Jasmonates modulate many growth and developmental processes and act as stress hormones that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins, and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that are responsible for the precise regulation of the movement of water and other substrates between cell compartments. We identified the cis-regulatory motifs for the methyl jasmonate (MeJA)-induced genes in the promoter regions of all the HvTIP genes, which are active in barley seedlings, and thus we hypothesised that the HvTIP expression could be a response to jasmonate signalling. In the presented study, we determined the effect of methyl jasmonate on the growth parameters and photosynthesis efficiency of barley seedlings that had been exposed to different doses of MeJA (15–1000 µM × 120 h) in a hydroponic solution. All of the applied MeJA concentrations caused a significant reduction of barley seedling growth, which was most evident in the length of the first leaf sheath and dry leaf weight. The observed decrease of the PSII parameters after the exposure to high doses of MeJA (500 µM or higher) was associated with the downregulation of HvPsbR gene encoding one of the extrinsic proteins of the Oxygen Evolving Complex. The reduced expression of HvPsbR might lead to the impairment of the OEC action, manifested by the occurrence of the K-band in an analysis of fluorescence kinetics after MeJA treatment as well as reduced photosynthesis efficiency. Furthermore, methyl jasmonate treatment caused a decrease in the nitrogen content in barley leaves, which was associated with an increased expression the four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2) predicted to transport the nitrogen compounds from the vacuole to the cytosol. The upregulation of the nitrogen-transporting HvTIPs might suggest their involvement in the vacuolar unloading of ammonia and urea, which both could be remobilised when the nitrogen content in the leaves decreases. Our research provides tips on physiological role of the individual TIP subfamily members of aquaporins under methyl jasmonate action.
Collapse
|
21
|
Hussain A, Tanveer R, Mustafa G, Farooq M, Amin I, Mansoor S. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics 2020; 112:263-275. [DOI: 10.1016/j.ygeno.2019.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022]
|
22
|
Kurowska MM, Wiecha K, Gajek K, Szarejko I. Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley. PLoS One 2019; 14:e0226423. [PMID: 31846477 PMCID: PMC6917287 DOI: 10.1371/journal.pone.0226423] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Tonoplast Intrinsic Proteins (TIP) are plant aquaporins that are primarily localized in the tonoplast and play a role in the bidirectional flux of water and other substrates across a membrane. In barley, eleven members of the HvTIP gene subfamily have been identified. Here, we describe the transcription profile of the HvTIP genes in the leaves of barley seedlings being grown under optimal moisture conditions, drought stress and a re-watering phase. The applied drought stress caused a 55% decrease in the relative water content (RWC) in seedlings, while re-watering increased the RWC to 90% of the control. Our analysis showed that all HvTIP genes, except HvTIP3;2, HvTIP4;3 and HvTIP5.1, were expressed in leaves of ten-day-old barley seedlings under optimal water conditions with the transcripts of HvTIP2;3, HvTIP1;2 and HvTIP1;1 being the most abundant. We showed, for the first time in barley, a significant variation in the transcriptional activity between the analysed genes under drought stress. After drought treatment, five HvTIP genes, which are engaged in water transport, were down-regulated to varying degrees, while two, HvTIP3;1 and HvTIP4;1, were up-regulated. The HvTIP3;1 isoform, which is postulated as transporting hydrogen peroxide, expressed the highest increase of activity (ca. 5000x) under drought stress, thus indicating its importance in the response to this stress. Re-hydration caused the return of the expression of many genes to the level that was observed under optimal moisture conditions or, at least, a change in this direction Additionally, we examined the promotor regions of HvTIP and detected the presence of the cis-regulatory elements that are connected with the hormone and stress responses in all of the genes. Overall, our results suggest that 7 of 11 studied HvTIP (HvTIP1;1, HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3, HvTIP3;1, HvTIP4;1) have an important function during the adaptation of barley to drought stress conditions. We discuss the identified drought-responsive HvTIP in terms of their function in the adaptation of barley to this stress.
Collapse
Affiliation(s)
- Marzena Małgorzata Kurowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- * E-mail:
| | - Klaudia Wiecha
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Katarzyna Gajek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
23
|
Dhanagond S, Liu G, Zhao Y, Chen D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. Non-Invasive Phenotyping Reveals Genomic Regions Involved in Pre-Anthesis Drought Tolerance and Recovery in Spring Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:1307. [PMID: 31708943 PMCID: PMC6823269 DOI: 10.3389/fpls.2019.01307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/19/2019] [Indexed: 05/07/2023]
Abstract
With ongoing climate change, drought events are becoming more frequent and will affect biomass formation when occurring during pre-flowering stages. We explored growth over time under such a drought scenario, via non-invasive imaging and revealed the underlying key genetic factors in spring barley. By comparing with well-watered conditions investigated in an earlier study and including information on timing, QTL could be classified as constitutive, drought or recovery-adaptive. Drought-adaptive QTL were found in the vicinity of genes involved in dehydration tolerance such as dehydrins (Dhn4, Dhn7, Dhn8, and Dhn9) and aquaporins (e.g. HvPIP1;5, HvPIP2;7, and HvTIP2;1). The influence of phenology on biomass formation increased under drought. Accordingly, the main QTL during recovery was the region of HvPPD-H1. The most important constitutive QTL for late biomass was located in the vicinity of HvDIM, while the main locus for seedling biomass was the HvWAXY region. The disappearance of QTL marked the genetic architecture of tiller number. The most important constitutive QTL was located on 6HS in the region of 1-FEH. Stage and tolerance specific QTL might provide opportunities for genetic manipulation to stabilize biomass and tiller number under drought conditions and thereby also grain yield.
Collapse
Affiliation(s)
- Sidram Dhanagond
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guozheng Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- BBCC – Innovation Center Gent, Gent Zwijnaarde, Belgium
| | - Yusheng Zhao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Dijun Chen
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michele Grieco
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benjamin Kilian
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Global Crop Diversity Trust (GCDT), Bonn, Germany
| | - Andreas Graner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Kerstin Neumann
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
24
|
Pandey A, Khan MK, Hakki EE, Gezgin S, Hamurcu M. Combined Boron Toxicity and Salinity Stress-An Insight into Its Interaction in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E364. [PMID: 31547605 PMCID: PMC6843824 DOI: 10.3390/plants8100364] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development. Few studies have reported that combined boron toxicity and high salinity stress have more damaging effects on plant growth than individual B and salt stress, while other studies have highlighted less damaging effects of the combined stress. Hence, it is interesting to understand the positive interaction of this combined stress so that it can be effectively employed for the improvement of crops that generally show the negative effects of this combined stress. In this review, we discussed the possible processes that occur in plants in response to this combined stress condition. We highly suggest that the combined B and salinity stress condition should be considered as a novel stress condition by researchers; hence, we recommend the name "BorSal" for this combined boron toxicity and high salinity state in the soil. Membrane-bound activities, mobility of ions, water transport, pH changes, transpiration, photosynthesis, antioxidant activities, and different molecular transporters are involved in the effects of BorSal interaction in plants. The discussed mechanisms indicate that the BorSal stress state should be studied in light of the involved physiological and molecular processes that occur after B and salt interaction in plants.
Collapse
Affiliation(s)
- Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mohd Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Erdogan Esref Hakki
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| |
Collapse
|
25
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
26
|
Qian W, Yang X, Li J, Luo R, Yan X, Pang Q. Genome-wide characterization and expression analysis of aquaporins in salt cress ( Eutrema salsugineum). PeerJ 2019; 7:e7664. [PMID: 31565576 PMCID: PMC6745184 DOI: 10.7717/peerj.7664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Aquaporins (AQPs) serve as water channel proteins and belong to major intrinsic proteins (MIPs) family, functioning in rapidly and selectively transporting water and other small solutes across biological membranes. Importantly, AQPs have been shown to play a critical role in abiotic stress response pathways of plants. As a species closely related to Arabidopsis thaliana, Eutrema salsugineum has been proposed as a model for studying salt resistance in plants. Here we surveyed 35 full-length AQP genes in E. salsugineum, which could be grouped into four subfamilies including 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), nine NOD-like intrinsic proteins (NIPs), and three small basic intrinsic proteins (SIPs) by phylogenetic analysis. EsAQPs were comprised of 237-323 amino acids, with a theoretical molecular weight (MW) of 24.31-31.80 kDa and an isoelectric point (pI) value of 4.73-10.49. Functional prediction based on the NPA motif, aromatic/arginine (ar/R) selectivity filter, Froger's position and specificity-determining position suggested quite differences in substrate specificities of EsAQPs. EsAQPs exhibited global expressions in all organs as shown by gene expression profiles and should be play important roles in response to salt, cold and drought stresses. This study provides comprehensive bioinformation on AQPs in E. salsugineum, which would be helpful for gene function analysis for further studies.
Collapse
Affiliation(s)
- Weiguo Qian
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiaomin Yang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Jiawen Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| |
Collapse
|
27
|
Li W, Zhang D, Zhu G, Mi X, Guo W. Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton. BMC Genomics 2019; 20:538. [PMID: 31262248 PMCID: PMC6604486 DOI: 10.1186/s12864-019-5928-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aquaporins (AQPs) are integral membrane proteins from a larger family of major intrinsic proteins (MIPs) and function in a huge variety of processes such as water transport, plant growth and stress response. The availability of the whole-genome data of different cotton species allows us to study systematic evolution and function of cotton AQPs on a genome-wide level. RESULTS Here, a total of 53, 58, 113 and 111 AQP genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. A comprehensive analysis of cotton AQPs, involved in exon/intron structure, functional domains, phylogenetic relationships and gene duplications, divided these AQPs into five subfamilies (PIP, NIP, SIP, TIP and XIP). Comparative genome analysis among 30 species from algae to angiosperm as well as common tandem duplication events in 24 well-studied plants further revealed the evolutionary conservation of AQP family in the organism kingdom. Combining transcriptome analysis and Quantitative Real-time PCR (qRT-PCR) verification, most AQPs exhibited tissue-specific expression patterns both in G. raimondii and G. hirsutum. Meanwhile, a bias of time to peak expression of several AQPs was also detected after treating G. davidsonii and G. hirsutum with 200 mM NaCl. It is interesting that both PIP1;4 h/i/j and PIP2;2a/e showed the highly conserved tandem structure, but differentially contributed to tissue development and stress response in different cotton species. CONCLUSIONS These results demonstrated that cotton AQPs were structural conservation while experienced the functional differentiation during the process of evolution and domestication. This study will further broaden our insights into the evolution and functional elucidation of AQP gene family in cotton.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
28
|
Van Gansbeke B, Khoo KHP, Lewis JG, Chalmers KJ, Mather DE. Fine mapping of Rha2 in barley reveals candidate genes for resistance against cereal cyst nematode. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1309-1320. [PMID: 30656354 PMCID: PMC6476833 DOI: 10.1007/s00122-019-03279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 05/29/2023]
Abstract
The cereal cyst nematode resistance locus Rha2 was mapped to a 978 kbp region on the long arm of barley chromosome 2H. Three candidate genes are discussed. The cereal cyst nematode (CCN) Heterodera avenae is a soil-borne obligate parasite that can cause severe damage to cereals. This research involved fine mapping of Rha2, a CCN resistance locus on chromosome 2H of barley. Rha2 was previously mapped relative to restriction fragment length polymorphisms (RFLPs) in two mapping populations. Anchoring of flanking RFLP clone sequences to the barley genome assembly defined an interval of 5077 kbp. Genotyping-by-sequencing of resistant and susceptible materials led to the discovery of potentially useful single nucleotide polymorphisms (SNPs). Assays were designed for these SNPs and applied to mapping populations. This narrowed the region of interest to 3966 kbp. Further fine mapping was pursued by crossing and backcrossing the resistant cultivar Sloop SA to its susceptible ancestor Sloop. Evaluation of F2 progeny confirmed that the resistance segregates as a single dominant gene. Genotyping of 9003 BC2F2 progeny identified recombinants. Evaluation of recombinant BC2F3 progeny narrowed the region of interest to 978 kbp. Two of the SNPs within this region proved to be diagnostic of CCN resistance across a wide range of barley germplasm. Fluorescence-based and gel-based assays were developed for these SNPs for use in marker-assisted selection. Within the candidate region of the reference genome, there are nine high-confidence predicted genes. Three of these, one that encodes RAR1 (a cysteine- and histidine-rich domain-containing protein), one that is predicted to encode an acetylglutamate kinase and one that is predicted to encode a tonoplast intrinsic protein, are discussed as candidate genes for CCN resistance.
Collapse
Affiliation(s)
- Bart Van Gansbeke
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Kelvin H P Khoo
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - John G Lewis
- South Australian Research and Development Institute, GPO Box 397, Adelaide, SA, 5001, Australia
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
29
|
Vicente R, Vergara-Díaz O, Kerfal S, López A, Melichar J, Bort J, Serret MD, Araus JL, Kefauver SC. Identification of traits associated with barley yield performance using contrasting nitrogen fertilizations and genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 282:83-94. [PMID: 31003614 DOI: 10.1016/j.plantsci.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 05/08/2023]
Abstract
Much attention has been paid to understanding the traits associated with crop performance and the associated underlying physiological mechanisms, with less effort done towards combining different plant scales, levels of observation, or including hybrids of autogamous species. We aim to identify mechanisms at canopy, leaf and transcript levels contributing to crop performance under contrasting nitrogen supplies in three barley genotypes, two hybrids and one commercial line. High nitrogen fertilization did not affect photosynthetic capacity on a leaf area basis and lowered nitrogen partial factor productivity past a certain point, but increased leaf area and biomass accumulation, parameters that were closely tracked using various different high throughput remote sensing based phenotyping techniques. These aspects, together with a larger catabolism of leaf nitrogen compounds amenable to sink translocation, contributed to higher crop production. Better crop yield and growth in hybrids compared to the line was linked to a nitrogen-saving strategy in source leaves to the detriment of larger sink size, as indicated by the lower leaf nitrogen content and downregulation of nitrogen metabolism and aquaporin genes. While these changes did not reduce photosynthesis capacity on an area basis, they were related with better nitrogen use in the hybrids compared with the line.
Collapse
Affiliation(s)
- Rubén Vicente
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Omar Vergara-Díaz
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Samir Kerfal
- Syngenta España, S.A.U., Calle de la Ribera del Loira 8-10, 28042 Madrid, Spain.
| | - Antonio López
- Syngenta España, S.A.U., Calle de la Ribera del Loira 8-10, 28042 Madrid, Spain.
| | - James Melichar
- Syngenta U.K., Hill Farm Road, Whittlesford, Cambridge, CB22 4QT, United Kingdom.
| | - Jordi Bort
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - María Dolores Serret
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - José Luis Araus
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Shawn C Kefauver
- Section of Plant Physiology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, and AGROTECNIO (Centre for Research in Agrotechnology), Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
30
|
Wei X, Jin X, Ndayambaza B, Min X, Zhang Z, Wang Y, Liu W. Transcriptome-Wide Characterization and Functional Identification of the Aquaporin Gene Family During Drought Stress in Common Vetch. DNA Cell Biol 2019; 38:374-384. [PMID: 30807211 DOI: 10.1089/dna.2018.4562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQPs) are transmembrane channels that are essential for the movement of water and other small molecules between biofilms in various physiological processes in plants. In this study, based on transcriptome-wide data, we identified and described a total of 21 AQP genes in common vetch (Vicia sativa subsp. sativa), which is an economically important pasture legume worldwide. Based on phylogenetic analyses, the VsAQPs were sorted into four subfamilies, including four plasma membrane intrinsic proteins (PIPs), six tonoplast intrinsic proteins (TIPs), seven NOD26-like intrinsic proteins, and four small basic intrinsic proteins. Furthermore, chemical and physical properties of these VsAQPs, including the isoelectric point and theoretical molecular weight, were analyzed. Analyses of the AQP signature sequences and key residues indicated the substrate specificity of each VsAQP. A set of VsAQPs was selected for gene expression analysis in a number of tissues and after drought stress treatments using real-time quantitative reverse transcription/polymerase chain reaction assays. Most of the PIPs and TIPs were proposed to have critical roles in regulating the flow of water during drought stress. Heterologous expression experiments in yeast indicated that VsPIP1;2 and VsPIP2;2 are key candidate genes for improving drought stress tolerance. The results reported in this study could be a crucial resource for further practical analyses and for genetic improvement of drought stress tolerance in common vetch.
Collapse
Affiliation(s)
- Xingyi Wei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Boniface Ndayambaza
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
31
|
Transcriptional profiling of wheat (Triticum aestivum L.) during a compatible interaction with the cereal cyst nematode Heterodera avenae. Sci Rep 2019; 9:2184. [PMID: 30778126 PMCID: PMC6379437 DOI: 10.1038/s41598-018-37824-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
Cereal cyst nematode (CCN, Heterodera avenae) presents severe challenges to wheat (Triticum aestivum L.) production worldwide. An investigation of the interaction between wheat and CCN can greatly improve our understanding of how nematodes alter wheat root metabolic pathways for their development and could contribute to new control strategies against CCN. In this study, we conducted transcriptome analyses of wheat cv. Wen 19 (Wen19) by using RNA-Seq during the compatible interaction with CCN at 1, 3 and 8 days past inoculation (dpi). In total, 71,569 transcripts were identified, and 10,929 of them were examined as differentially expressed genes (DEGs) in response to CCN infection. Based on the functional annotation and orthologous findings, the protein phosphorylation, oxidation-reduction process, regulation of transcription, metabolic process, transport, and response process as well as many other pathways previously reported were enriched at the transcriptional level. Plant cell wall hydrolysis and modifying proteins, auxin biosynthesis, signalling and transporter genes were up-regulated by CCN infection to facilitate penetration, migration and syncytium establishment. Genes responding to wounding and jasmonic acid stimuli were enriched at 1 dpi. We found 16 NBS-LRR genes, 12 of which were down-regulated, indicating the repression of resistance. The expression of genes encoding antioxidant enzymes, glutathione S-transferases and UDP-glucosyltransferase was significantly up-regulated during CCN infection, indicating that they may play key roles in the compatible interaction of wheat with CCN. Taken together, the results obtained from the transcriptome analyses indicate that the genes involved in oxidation-reduction processes, induction and suppression of resistance, metabolism, transport and syncytium establishment may be involved in the compatible interaction of Wen 19 with CCN. This study provides new insights into the responses of wheat to CCN infection. These insights could facilitate the elucidation of the potential mechanisms of wheat responses to CCN.
Collapse
|
32
|
Singh RK, Shweta S, Muthamilarasan M, Rani R, Prasad M. Study on aquaporins of Setaria italica suggests the involvement of SiPIP3;1 and SiSIP1;1 in abiotic stress response. Funct Integr Genomics 2019; 19:587-596. [PMID: 30759293 DOI: 10.1007/s10142-018-00653-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
Abstract
Aquaporins are versatile proteins involved in several biological as well as molecular functions, and they have been extensively studied in various plant systems. Increasing evidences indicate their role in biotic and abiotic stresses, and therefore, studying these proteins in a naturally stress-tolerant crop would provide further insights into the roles of this important protein family. Given this, the present study was performed in foxtail millet (Setaria italica), a model plant for studying biofuel, stress tolerance, and C4 photosynthetic traits. The study identified 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), and 3 small basic intrinsic proteins (SIPs) in foxtail millet. The identified proteins and their corresponding genes were characterized using in silico approaches such as chromosomal localization, analysis of gene and protein properties, phylogenetic analysis, promoter analysis, and RNA-seq-derived expression profiling. The candidate genes identified through these analyses were studied for their expression in response to abiotic stresses (dehydration, salinity, and heat) as well as hormone treatments (abscisic acid, methyl jasmonate, and salicylic acid) in two contrasting cultivars of foxtail millet. The study showed that SiPIP3;1 and SiSIP1;1 were differentially expressed in both the cultivars in response to stress and hormone treatments. Overexpression of these genes in a heterologous yeast system also demonstrated that the transgenic cells were able to tolerate dehydration as well as salt stress which suggests the involvement of these proteins in the tolerance mechanism. Overall, the present study provides insights into structure and organization of the aquaporin gene family in foxtail millet and highlights the potential candidate genes for further functional characterizations.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shweta Shweta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Rekha Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
33
|
Medina S, Vicente R, Nieto-Taladriz MT, Aparicio N, Chairi F, Vergara-Diaz O, Araus JL. The Plant-Transpiration Response to Vapor Pressure Deficit (VPD) in Durum Wheat Is Associated With Differential Yield Performance and Specific Expression of Genes Involved in Primary Metabolism and Water Transport. FRONTIERS IN PLANT SCIENCE 2019; 9:1994. [PMID: 30697225 PMCID: PMC6341309 DOI: 10.3389/fpls.2018.01994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/21/2018] [Indexed: 05/23/2023]
Abstract
The regulation of plant transpiration was proposed as a key factor affecting transpiration efficiency and agronomical adaptation of wheat to water-limited Mediterranean environments. However, to date no studies have related this trait to crop performance in the field. In this study, the transpiration response to increasing vapor pressure deficit (VPD) of modern Spanish semi-dwarf durum wheat lines was evaluated under controlled conditions at vegetative stage, and the agronomical performance of the same set of lines was assessed at grain filling as well as grain yield at maturity, in Mediterranean environments ranging from water stressed to good agronomical conditions. A group of linear-transpiration response (LTR) lines exhibited better performance in grain yield and biomass compared to segmented-transpiration response (STR) lines, particularly in the wetter environments, whereas the reverse occurred only in the most stressed trial. LTR lines generally exhibited better water status (stomatal conductance) and larger green biomass (vegetation indices) during the reproductive stage than STR lines. In both groups, the responses to growing conditions were associated with the expression levels of dehydration-responsive transcription factors (DREB) leading to different performances of primary metabolism-related enzymes. Thus, the response of LTR lines under fair to good conditions was associated with higher transcription levels of genes involved in nitrogen (GS1 and GOGAT) and carbon (RCBL) metabolism, as well as water transport (TIP1.1). In conclusion, modern durum wheat lines differed in their response to water loss, the linear transpiration seemed to favor uptake and transport of water and nutrients, and photosynthetic metabolism led to higher grain yield except for very harsh drought conditions. The transpiration response to VPD may be a trait to further explore when selecting adaptation to specific water conditions.
Collapse
Affiliation(s)
- Susan Medina
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima, Peru
| | - Rubén Vicente
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| | | | - Nieves Aparicio
- Agricultural Technology Institute of Castilla and León (ITACYL), Valladolid, Spain
| | - Fadia Chairi
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| | - Omar Vergara-Diaz
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| | - José Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
34
|
Madrid-Espinoza J, Brunel-Saldias N, Guerra FP, Gutiérrez A, Del Pozo A. Genome-Wide Identification and Transcriptional Regulation of Aquaporin Genes in Bread Wheat ( Triticum aestivum L.) under Water Stress. Genes (Basel) 2018; 9:genes9100497. [PMID: 30326657 PMCID: PMC6210132 DOI: 10.3390/genes9100497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins essential for controlling the flow of water and other molecules required for development and stress tolerance in plants, including important crop species such as wheat (Triticum aestivum). In this study, we utilized a genomic approach for analyzing the information about AQPs available in public databases to characterize their structure and function. Furthermore, we validated the expression of a suite of AQP genes, at the transcriptional level, including accessions with contrasting responses to drought, different organs and water stress levels. We found 65 new AQP genes, from which 60% are copies expanded by polyploidization. Sequence analysis of the AQP genes showed that the purifying selection pressure acted on duplicate genes, which was related to a high conservation of the functions. This situation contrasted with the expression patterns observed for different organs, developmental stages or genotypes under water deficit conditions, which indicated functional divergence at transcription. Expression analyses on contrasting genotypes showed high gene transcription from Tonoplast Intrinsic Protein 1 (TIP1) and 2 (TIP2), and Plasma Membrane Intrinsic Protein 1 (PIP1) and 2 (PIP2) subfamilies in roots and from TIP1 and PIP1 subfamilies in leaves. Interestingly, during severe drought stress, 4 TIP genes analyzed in leaves of the tolerant accession reached up to 15-fold the level observed at the susceptible genotype, suggesting a positive relationship with drought tolerance. The obtained results extend our understanding of the structure and function of AQPs, particularly under water stress conditions.
Collapse
Affiliation(s)
- José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Nidia Brunel-Saldias
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca 3460000, Chile.
| | - Fernando P Guerra
- Laboratorio de Genética y Biotecnología Forestal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Adelina Gutiérrez
- Laboratorio de Genética y Biotecnología Forestal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
35
|
Gitto A, Fricke W. Zinc treatment of hydroponically grown barley plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression. PHYSIOLOGIA PLANTARUM 2018; 164:176-190. [PMID: 29381217 DOI: 10.1111/ppl.12697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 05/18/2023]
Affiliation(s)
- Aurora Gitto
- School of Biology and Environmental Sciences; University College Dublin; Dublin 4 Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences; University College Dublin; Dublin 4 Republic of Ireland
| |
Collapse
|
36
|
Merlaen B, De Keyser E, Van Labeke MC. Identification and substrate prediction of new Fragaria x ananassa aquaporins and expression in different tissues and during strawberry fruit development. HORTICULTURE RESEARCH 2018; 5:20. [PMID: 29619231 PMCID: PMC5880810 DOI: 10.1038/s41438-018-0019-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 05/07/2023]
Abstract
The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry (Fragaria x ananassa). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa, few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.
Collapse
Affiliation(s)
- Britt Merlaen
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Ellen De Keyser
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Marie-Christine Van Labeke
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
37
|
Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants. Int J Biol Macromol 2017; 107:2630-2642. [PMID: 29080824 DOI: 10.1016/j.ijbiomac.2017.10.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023]
Abstract
Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots.
Collapse
|
38
|
Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet 2017; 58:421-435. [PMID: 28779288 PMCID: PMC5655603 DOI: 10.1007/s13353-017-0403-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Festuca arundinacea and F. pratensis are the models in forage grasses to recognize the molecular basis of drought, salt and frost tolerance, respectively. Transcription profiles of plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) aquaporin genes were obtained for leaves of Festuca species treated with different abiotic stimuli. F. arundinacea plants were exposed to drought and salt stress, whereas F. pratensis plants were cold-hardened. Changes in genes expression measured with use of real time qRT-PCR method were compared between two genotypes characterized with a significantly different level of each stress tolerance. Under drought the transcript level of PIP1;2 and TIP1;1 aquaporin decreased in both analyzed F. arundinacea genotypes, whereas for PIP2;1 only in a high drought tolerant plant. A salt treatment caused a reduction of PIP1;2 transcript level in a high salt tolerant genotype and an increase of TIP1;1 transcript abundance in both F. arundinacea genotypes, but it did not influence the expression of PIP2;1 aquaporin. During cold-hardening a decrease of PIP1;2, PIP2;1, and TIP1;1 aquaporin transcripts was observed, both in high and low frost tolerant genotypes. The obtained results revealed that the selected genotypes responded in a different way to abiotic stresses application. A reduced level of PIP1;2 transcript in F. arundinacea low drought tolerant genotype corresponded with a faster water loss and a lowering of photosynthesis efficiency and gas exchange during drought conditions. In F. pratensis, cold acclimation was associated with a lower level of aquaporin transcripts in both high and low frost tolerant genotypes. This is the first report on aquaporin transcriptional profiling under abiotic stress condition in forage grasses.
Collapse
|
39
|
Sun H, Li L, Lou Y, Zhao H, Yang Y, Wang S, Gao Z. The bamboo aquaporin gene PeTIP4;1-1 confers drought and salinity tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2017; 36:597-609. [PMID: 28168515 DOI: 10.1007/s00299-017-2106-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/08/2017] [Indexed: 05/04/2023]
Abstract
PeTIP4;1-1, an aquaporin gene involved in bamboo shoot growth, is regulated by abiotic stresses. Overexpression of PeTIP4;1-1 confers drought and salinity tolerance in transgenic Arabidopsis. Aquaporins play a central role in numerous physiological processes throughout plant growth and development. PeTIP4;1-1, an aquaporin gene isolated from moso bamboo (Phyllostachys edulis), comprises an open reading frame (ORF) of 756 bp encoding a peptide of 251 amino acids. The genomic sequence corresponding to the ORF of PeTIP4;1-1 was 1777 bp and contained three exons separated by two introns. PeTIP4;1-1 was constitutively expressed at the highest level in culms, and the expression level was elevated with increasing height of the bamboo shoot. PeTIP4;1-1 was significantly up-regulated in response to drought and salinity stresses in bamboo roots and leaves. To investigate the role of PeTIP4;1-1 in response to drought and salinity stresses, transgenic Arabidopsis plants overexpressing PeTIP4;1-1 under the control of CaMV 35S promoter were generated and subjected to morphological and physiological assays. Compared with Col-0, the transgenic plants showed enhanced tolerance to drought and salinity stresses and produced longer taproots, which had more green leaves, higher F v/F m and NPQ values, higher activities of SOD, POD and CAT, lower MDA concentration and higher water content. Transcript levels of three stress-related genes (AtP5CS, AtNHX1 and AtLEA) were enhanced. These results indicated that PeTIP4;1-1 might play an important function in response to drought and salinity stresses, and is a candidate gene for breeding of stress tolerance in other crops through genetic engineering.
Collapse
Affiliation(s)
- Huayu Sun
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Lichao Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Yongfeng Lou
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
- Jiangxi Academy of Forestry, Nanchang, 330013, China
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Yihong Yang
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
- College of Horticulture, Agricultural University of Hebei, Baoding, 071001, China
| | - Sining Wang
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene Science for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
40
|
|
41
|
Rhee J, Horie T, Sasano S, Nakahara Y, Katsuhara M. Identification of an H 2 O 2 permeable PIP aquaporin in barley and a serine residue promoting H 2 O 2 transport. PHYSIOLOGIA PLANTARUM 2017; 159:120-128. [PMID: 27595571 DOI: 10.1111/ppl.12508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 05/12/2023]
Abstract
A barley (Hordeum vulgare) plasma membrane type aquaporin, HvPIP2;5, was identified as an H2 O2 permeable aquaporin among 21 barley and rice PIPs examined in the heterologous expression system using Saccharomyces cerevisiae. Four TIPs were also detected as H2 O2 -transporting aquaporins among 15 barley and rice TIPs. Influx of H2 O2 into yeast cells expressing HvPIP2;5 was determined with a florescent-dye-based assay. Indirect immunofluorescence indicated that the expression of HvPIP2;5 protein was ubiquitous in root tissues, and was also weakly observed in leaf epidermal cells and cells in the vascular bundle. Point mutated variants of HvPIP2;5 were generated by the site-directed mutagenesis. Growth assays of yeast cells expressing these mutated HvPIP2;5 proteins suggested that Ser-126 in HvPIP2;5 has a large impact on H2 O2 transport with a minor influence on the HvPIP2;5-mediated water transport.
Collapse
Affiliation(s)
- Jiye Rhee
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Shizuka Sasano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoshiki Nakahara
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
- Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
42
|
McGaughey SA, Osborn HL, Chen L, Pegler JL, Tyerman SD, Furbank RT, Byrt CS, Grof CPL. Roles of Aquaporins in Setaria viridis Stem Development and Sugar Storage. FRONTIERS IN PLANT SCIENCE 2016; 7:1815. [PMID: 28018372 PMCID: PMC5147461 DOI: 10.3389/fpls.2016.01815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/17/2016] [Indexed: 05/29/2023]
Abstract
Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis.
Collapse
Affiliation(s)
- Samantha A. McGaughey
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Hannah L. Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Lily Chen
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| | - Stephen D. Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Caitlin S. Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| |
Collapse
|
43
|
Shmakov NA, Vasiliev GV, Shatskaya NV, Doroshkov AV, Gordeeva EI, Afonnikov DA, Khlestkina EK. Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq. BMC PLANT BIOLOGY 2016; 16:245. [PMID: 28105957 PMCID: PMC5123340 DOI: 10.1186/s12870-016-0926-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). RESULTS 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. CONCLUSIONS Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.
Collapse
Affiliation(s)
- Nickolay A. Shmakov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
44
|
Characterization and differential expression analysis of Toxocara canis aquaporin-1 gene. Parasitol Res 2016; 115:3631-6. [PMID: 27215210 DOI: 10.1007/s00436-016-5129-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/12/2016] [Indexed: 01/07/2023]
Abstract
Toxocara canis is an intestinal nematode of canids with a worldwide distribution, causing an important but neglected parasitic zoonosis in humans. Aquaporins (AQP) are a family of water channel proteins, which function as membrane channels to regulate water homeostasis. In this study, the coding sequence of aquaporin-1 gene of T. canis (Tc-aqp-1) was cloned and characterized. The obtained Tc-aqp-1 coding sequence was 933 bp in length, which predicted to encode 311 amino acids. Two conserved asparagine-proline-alanine (NPA) motifs were identified in the multiple sequence alignments. Phylogenetic analysis revealed the closest relationship between T. canis and Opisthorchis viverrini based on aquaporin-1 amino acid sequence. A structure was predicted with ligand binding sites predicted at H93, N95, N226, L94, I79, and I210 and with active sites predicted at I256 and G207. Gene Ontology (GO) annotations predicted its cellular component term of integral component of plasma membrane (GO: 0005887), molecular function term of channel activity (GO: 0015250), and biological process term of water transport (GO: 0006833). Tissue expression analysis revealed that the Tc-aqp-1 was highly expressed in the intestine of adult male. The findings of the present study provide the basis for further functional studies of T. canis aquaporin-1.
Collapse
|
45
|
Zou Z, Yang L, Gong J, Mo Y, Wang J, Cao J, An F, Xie G. Genome-Wide Identification of Jatropha curcas Aquaporin Genes and the Comparative Analysis Provides Insights into the Gene Family Expansion and Evolution in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2016; 7:395. [PMID: 27066041 PMCID: PMC4814485 DOI: 10.3389/fpls.2016.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae), an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.). Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., nine plasma membrane intrinsic proteins (PIPs), nine tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and four small basic intrinsic proteins (SIPs). Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger's positions, and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guishui Xie
- Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| |
Collapse
|
46
|
Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Mol Biol Rep 2016; 43:437-50. [PMID: 26993482 DOI: 10.1007/s11033-016-3973-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Aquaporins (AQPs) are known to play a major role in maintaining water and hydraulic conductivity balance in the plant system. Numerous studies have showed AQPs execute multi-function throughout plant growth and development, including water transport, nitrogen, carbon, and micronutrient acquisition etc. However, little information on AQPs is known in bamboo. In this study, we present the first genome-wide identification and characterization of AQP genes in moso bamboo (Phyllostachys edulis) using bioinformatics. In total, 26 AQP genes were identified by homologous analysis, which were divided into four groups (PIPs, TIPs, NIPs, and SIPs) based on the phylogenetic analysis. All the genes were located on 26 different scaffolds respectively on basis of the gene mapped to bamboo genome. Evolutionary analysis indicated that Ph. edulis was more close to Oryza sativa than Zea mays in the genetic relationship. Besides, qRT-PCR was used to analyze gene expression profiles, which revealed that AQP genes were expressed constitutively in all the detected tissues, and were all responsive to the environmental cues such as drought, water, and NaCl stresses. This data suggested that AQPs may play fundamental roles in maintaining normal growth and development of bamboo, which would contribute to better understanding for the complex regulation mechanism involved in the fast-growing process of bamboo. Furthermore, the result could provide valuable information for further research on bamboo functional genomics.
Collapse
|
47
|
Alavilli H, Awasthi JP, Rout GR, Sahoo L, Lee BH, Panda SK. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1566. [PMID: 27818670 PMCID: PMC5073208 DOI: 10.3389/fpls.2016.01566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/05/2016] [Indexed: 05/19/2023]
Abstract
We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a 3-week drought period unlike the control plants which wilted and died during stress treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls and water under salt and osmotic stresses than did control. We also observed lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in part, by reducing the secondary oxidative stress caused by salt and osmotic stresses. Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis lines showed higher expression and activities of ROS scavenging enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline biosynthesis genes, Δ 1-Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2) were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses, which coincided with increased levels of the osmoprotectant proline. Together, these results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt and high osmotic stresses by increasing activities and/or expression of ROS scavenging enzymes and osmoprotectant biosynthetic genes.
Collapse
Affiliation(s)
| | - Jay Prakash Awasthi
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Gyana R. Rout
- Department of Agricultural Biotechnology, Orissa University of Agriculture and TechnologyBhubaneswar, India
| | - Lingaraj Sahoo
- Department of Bioscience and Biotechnology, Indian Institute of TechnologyGuwahati, India
| | - Byeong-ha Lee
- Department of Life Science, Sogang UniversitySeoul, Korea
- *Correspondence: Byeong-ha Lee
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
- Sanjib Kumar Panda
| |
Collapse
|
48
|
Deshmukh RK, Sonah H, Bélanger RR. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. FRONTIERS IN PLANT SCIENCE 2016; 7:1896. [PMID: 28066459 PMCID: PMC5167727 DOI: 10.3389/fpls.2016.01896] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 05/02/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Collapse
|