1
|
Empitu MA, Kadariswantiningsih IN, Shakri NM. Pharmacological strategies for targeting biofilms in otorhinolaryngologic infections and overcoming antimicrobial resistance (Review). Biomed Rep 2025; 22:95. [PMID: 40247931 PMCID: PMC12001231 DOI: 10.3892/br.2025.1973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Biofilm formation is a key factor in the persistence and recurrence of otorhinolaryngology (ORL) infections, driving antimicrobial resistance and treatment failure. Chronic conditions, such as rhinosinusitis, otitis media and tonsillitis, are linked to biofilm-producing pathogens, forming protective extracellular matrices that shield bacteria from immune defenses and antibiotics. The present review explores emerging pharmacological strategies to disrupt biofilm integrity and improve treatment outcomes. Strategies such as quorum sensing inhibitors, antibiofilm peptides, enzymatic dispersal agents, and drug repurposing can potentially disrupt biofilms and counter-resistance mechanisms. Furthermore, novel therapies (including nanotechnology-based drug delivery systems, phage therapy and immunomodulation) offer innovative alternatives for managing biofilm-associated infections. However, clinical implementation remains challenging. Future research should prioritize optimizing drug formulations, refining delivery techniques, and exploring synergistic combinations to enhance biofilm eradication. Implementing these innovative strategies can improve the management of chronic ORL infections, reducing recurrence rates and enhancing patient outcomes.
Collapse
Affiliation(s)
- Maulana A. Empitu
- Division of Pharmacology, Faculty of Medicine, Airlangga University, Surabaya, East Java 60131, Indonesia
- Faculty of Health, Medicine and Natural Sciences (FIKKIA), Airlangga University, Banyuwangi 68425, Indonesia
| | - Ika N. Kadariswantiningsih
- Department of Medical Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
- Clinical Microbiology Residency Program, Dr. Soetomo Regional Hospital/Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia
| | - Nadhirah Mohd Shakri
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
2
|
Song GJ, Oh SH, Lee JH, Lee M, Hwang HS, Koh JT, Lee CS. Photo-curable layered double hydroxide-hyaluronic acid-composite hydrogels with multifunctional properties for growth factor-free bone regeneration. Int J Biol Macromol 2025; 311:143980. [PMID: 40339864 DOI: 10.1016/j.ijbiomac.2025.143980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/11/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Bone regeneration is a highly complex process involving the coordinated interaction between osteogenic stem cells, the extracellular matrix (ECM), and osteoinductive signals, which are often challenged by bacterial interference. While bone prostheses incorporating growth factors such as bone morphogenetic proteins have been commercially successful, the therapeutic use of recombinant growth factors can lead to significant adverse clinical outcomes. Here, we present a photo-curable layered double hydroxide (LDH)-composite hydrogel, designed to incorporate multiple functionalities for bone regeneration without the need for exogenous growth factors. The photo-curable hyaluronic acid (HA) hydrogel features a porous microstructure, biocompatibility, precise application, and adaptability to irregular bone defects. Incorporating LDH not only enhances osteogenic signals but also provides antibacterial activity, reducing the risk of infection and promoting a more favorable environment for bone regeneration. The combination of photo-curable HA with the functional 2D-nanomaterial LDH, renowned for its ability to intercalate therapeutic molecules, results in a hydrogel scaffold that emulates the osteoconductive traits of bone ECM. Additionally, the controlled release of the osteoinductive agent simvastatin via LDH augments bone healing through stimulation of the Wnt/β-catenin pathway. This nanoengineered HA-based hydrogel demonstrates significant potential as a multifunctional bone prosthesis, offering a promising, growth factor-free solution for enhanced bone regeneration.
Collapse
Affiliation(s)
- Geun Jin Song
- Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sin-Hye Oh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Hwan Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California 90095, United States; Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea.
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Chung-Sung Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea; Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
| |
Collapse
|
3
|
Verma N, Bajiya M, Dolhey R, Surabhi, Yadav AS, Chaudhary C, Meena D, Arya H, Bhatt TK, Yadav JK, Shukla JN, Swaroop S, Pandey J. Mechanistic Insights into the Antibiofilm Activity of Simvastatin and Lovastatin against Bacillus subtilis. Mol Pharm 2025; 22:2703-2722. [PMID: 40100146 DOI: 10.1021/acs.molpharmaceut.5c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Statins have been reported for diverse pleiotropic activities, including antimicrobial and antibiofilm. However, due to the limited understanding of their mode of action, none of the statins have gained approval for antimicrobial or antibiofilm applications. In a recent drug repurposing study, we observed that two statins (i.e., Simvastatin and Lovastatin) interact stably with TasA(28-261), the principal extracellular matrix protein of Bacillus subtilis, and also induce inhibition of biofilm formation. Nevertheless, the underlying mechanism remained elusive. In the present study, we examined the impact of these statins on the physiological activity of TasA(28-261), specifically its interaction with TapA(33-253) and aggregation into the amyloid-like structure using purified recombinant TasA(28-261) and TapA(33-253) in amyloid detection-specific in vitro assays (i.e., CR binding and ThT staining assays). Results revealed that both statins interfered with amyloid formation by the TasA(28-261)-TapA(33-253) complex, while neither statin inhibited amyloid formation by lysozyme, a model amyloid-forming protein. Moreover, neither statin significantly altered the expressions of terminal regulatory genes (viz, sinR, sinI) and terminal effector genes (viz, tasA, tapA, and bslA) involved in biofilm formation by B. subtilis. While the intricate interplay between Simvastatin and Lovastatin with the diverse molecular constituents of B. subtilis biofilm remains to be elucidated conclusively, the findings obtained during the present study suggest that the underlying mechanism for Simvastatin- and Lovastatin-mediated inhibition of B. subtilis biofilm formation is manifested by interfering with the aggregation and amyloid formation by TasA(28-261)-TapA(33-253). These results represent one of the first experimental evidence for the underlying mechanism of antibiofilm activity of statins and offer valuable directions for future research to harness statins as antibiofilm therapeutics.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Mamta Bajiya
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Ragini Dolhey
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Surabhi
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Abhishek Singh Yadav
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Chhavi Chaudhary
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Dhankesh Meena
- Department of Biochemistry, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Tarun K Bhatt
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| | - Janmejay Pandey
- Department of Biotechnology, Central University of Rajasthan, Kishangarh, Ajmer 305801, Rajasthan, India
| |
Collapse
|
4
|
Kumar R, Atluri SN, Achanta A, Bogishetty C, Chunduri TR, Pss T, Ravi R. Efficacy of Simvastatin in Inhibiting Bone Resorption and Promoting Healing in Delayed Tooth Avulsion: A Case Series. Cureus 2025; 17:e79139. [PMID: 40109815 PMCID: PMC11921055 DOI: 10.7759/cureus.79139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
An avulsion is a severe dental injury characterized by the complete displacement of a tooth from its socket, often resulting in a compromised prognosis. One of the key factors influencing the success of reimplantation is the extraoral dry time, which refers to the duration the tooth remains outside of the socket. Prolonged dry time significantly impairs the viability of the periodontal ligament cells, crucial for successful healing and reattachment. Despite various protocols and treatment strategies developed to manage avulsed teeth, no single approach addresses all treatment needs effectively, particularly in cases of delayed reimplantation. Simvastatin, an anti-lipidemic drug, has demonstrated pleiotropic effects that extend beyond cholesterol lowering. These effects include anti-inflammatory properties, promotion of bone regeneration, and enhancement of periodontal ligament cell survival. Such actions suggest that simvastatin may have a beneficial role in improving outcomes following the delayed reimplantation of avulsed teeth. This case series proposes the use of simvastatin as an adjunctive treatment for avulsed teeth along with platelet-rich fibrin and hydroxyapatite, particularly in situations where reimplantation is delayed. By mitigating inflammation and stimulating tissue regeneration, simvastatin may help counteract the damage caused by prolonged extraoral dry time. Its potential to promote periodontal ligament cell survival and enhance healing processes could improve the prognosis of reimplantation, even in cases where traditional treatment alone would be less effective. Given these promising properties, simvastatin may represent a valuable addition to the treatment protocol for avulsed teeth with extended dry times. However, further clinical studies and trials are necessary to validate its efficacy and establish a clear role in the management of delayed reimplantation.
Collapse
Affiliation(s)
- Rajesh Kumar
- Paediatric Dentistry, Malla Reddy Institute of Dental Sciences, Hyderabad, IND
| | - Supraja N Atluri
- Paediatric Dentistry, Malla Reddy Institute of Dental Sciences, Hyderabad, IND
| | - Alekhya Achanta
- Paediatric Dentistry, Malla Reddy Institute of Dental Sciences, Hyderabad, IND
| | | | | | - Tejaswini Pss
- Oral and Maxillofacial Surgery, Malla Reddy Institute of Dental Sciences, Hyderabad, IND
| | - Ramakrishna Ravi
- Conservative Dentistry and Endodontics, Malla Reddy Institute of Dental Sciences, Hyderabad, IND
| |
Collapse
|
5
|
Cortês IT, Silva KDP, Cogo-Müller K. Effects of simvastatin on the mevalonate pathway and cell wall integrity of Staphylococcus aureus. J Appl Microbiol 2025; 136:lxaf012. [PMID: 39788721 DOI: 10.1093/jambio/lxaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
AIMS To investigate the effects of simvastatin as an antimicrobial, considering its influence on the mevalonate pathway and the bacterial cell wall of S. aureus. METHODS AND RESULTS S. aureus ATCC 29213 and 33591 were exposed to simvastatin in the presence of exogenous mevalonate to determine whether mevalonate could reverse the inhibition. S. aureus was also treated with simvastatin and gene expression analysis assays were performed to evaluate genes associated with the mevalonate pathway (mvaA, mvaS, mvaK1, and mvaK2), peptidoglycan synthesis (uppS, uppP, and murG), and cell wall stress (vraX, sgtB, and tcaA). Transmission electron microscopy was used to identify the presence of morphological changes. The data were compared using two-way ANOVA and Bonferroni post-test, or the Mann-Whitney test. Addition of exogenous mevalonate was able to partially or completely reverse the inhibition caused by simvastatin. A significant increase of the vraX gene and a reduction of the mvaA gene were observed, together with changes in bacterial morphology. CONCLUSION Simvastatin can exert its antimicrobial effect by means of changes in the cell wall associated with the mevalonate pathway.
Collapse
Affiliation(s)
- Iago Torres Cortês
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Avenida Limeira, 901, Areião, Piracicaba, SP 13414-903, Brazil
| | - Kátia de Pádua Silva
- Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas, Rua Cândido Portinari, 200, Cidade Universitária, Campinas, SP 13083-871, Brazil
| | - Karina Cogo-Müller
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Avenida Limeira, 901, Areião, Piracicaba, SP 13414-903, Brazil
- Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas, Rua Cândido Portinari, 200, Cidade Universitária, Campinas, SP 13083-871, Brazil
| |
Collapse
|
6
|
Abavisani M, Hoseinzadeh M, Khayami R, Kodori M, Soleimanpour S, Sahebkar A. Statins, Allies against Antibiotic Resistance? Curr Med Chem 2025; 32:729-752. [PMID: 37644745 DOI: 10.2174/0929867331666230829141301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
Due to the ever-increasing rate of antibacterial resistance, the search for effective antibacterial agents has become imperative. Researchers have investigated the potential antimicrobial properties of various classes of nonantibiotic drugs. Statins are a group of antihyperlipidemic drugs with several cholesterol-independent effects, including antiinflammatory, immune-modulating, antioxidant, and antibacterial effects. In vitro and in vivo studies have demonstrated the antibacterial properties of statins against various grampositive and gram-negative bacteria. Simvastatin and atorvastatin are the most potent members of the family. Their antibacterial effect can be attributed to several direct and indirect mechanisms. Bacterial invasion, growth, and virulence are affected by statins. However, since in vitro minimum inhibitory concentrations (MICs) are significantly higher than serum concentrations at the lipid-lowering dosage, indirect mechanisms have been suggested to explain the positive clinical results, including reducing inflammation and improving immune response capacity. Further, statins have shown promising results when combined with antibiotics and other antibacterial agents, such as triazenes and silver nanoparticles. Despite this, the controversial aspects of statins have cast doubt on their efficacy as a possible solution for antibacterial resistance, and further research is required. Consequently, this review will examine in detail the current clinical and in vitro findings and controversies regarding statins' antibacterial properties and their relevance to antibacterial resistance.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Hoseinzadeh
- Dental Research Center, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khayami
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoor Kodori
- Non-communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Roque SM, Furian AC, Takemoto MK, Duarte MCT, Parolina RD, Roque AL, Duran N, Sardi JDCO, Duarte RMT, Muller KC. Biosynthesis and Characterization of Silver Nanoparticles and Simvastatin Association in Titanium Biofilms. Pharmaceuticals (Basel) 2024; 17:1612. [PMID: 39770455 PMCID: PMC11678683 DOI: 10.3390/ph17121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs. METHODS Silver nanoparticles were first biosynthesized using the fungus Fusarium oxysporum and then characterized using Dynamic Light Scattering, X-ray Diffraction, Transmission Electron Microscopy, and energy dispersive spectroscopy. Species of Streptococcus oralis, Streptococcus mutans, Porphyromonas gingivalis, Methicillin-sensitive Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus were used and tested using Minimum Inhibitory Concentration assays with concentrations of silver nanoparticles and simvastatin alone and in combination. Biofilm inhibition and viability tests were performed on titanium surfaces. Toxicity tests were also performed on Galleria mellonella moth larvae. RESULTS The silver nanoparticles had a spherical shape without the formation of aggregates as confirmed by Transmission Electron Microscopy. Dynamic Light Scattering revealed nanoparticles with an average diameter of 53.8 nm (±1.23 nm), a polydispersity index of 0.23 and a zeta potential of -25 mV (±2.19 mV). The silver nanoparticles inhibited the growth of the strains tested in the range of 0.001592 and 63.75, while simvastatin alone inhibited the growth of the same strains in the range of 3.125-62.5 µg/mL. The antibacterial activity test of the combination of the two substances showed a reduction in the Minimum Inhibitory Concentration of about two to eight times, showing synergistic effects on Staphylococcus aureus and additive effects on Streptococcus oralis and Porphyromonas gingivalis. As for biofilm, sub-inhibitory concentrations of the combination of substances showed better antibacterial activity in inhibiting the formation of Streptococcus oralis biofilm, and this combination also proved effective in eradicating already established biofilms compared to the substances alone. The combination of silver nanoparticles and simvastatin showed low toxicity to Galleria mellonella moth larvae. CONCLUSIONS The results presented indicate that the combination of the two substances could be an alternative for the prevention and reduction of biofilms on implants. These findings open up new possibilities in the search for alternatives for the treatment of peri-implant infections, as well as the possibility of using lower doses compared to single drugs, achieving the same results and reducing potential toxic effects.
Collapse
Affiliation(s)
- Sindy Magri Roque
- Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (S.M.R.); (A.C.F.)
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| | - Ana Carolina Furian
- Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (S.M.R.); (A.C.F.)
| | - Marcela Kim Takemoto
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| | - Marta Cristina Teixeira Duarte
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas—CPQBA, Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, Brazil;
| | - Rafaela Durrer Parolina
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| | - Adriano Luís Roque
- Programa de Pós Graduação em Medicina (Cardiologia), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil;
| | - Nelson Duran
- Laboratório de Carcinogenese Urogenital e Imunoterapia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | | | - Renata Maria Teixeira Duarte
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas—CPQBA, Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, Brazil;
| | - Karina Cogo Muller
- Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (S.M.R.); (A.C.F.)
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba 13414-903, Brazil; (M.K.T.); (M.C.T.D.); (R.D.P.)
| |
Collapse
|
8
|
Ferrer-Luque CM, Hernández M, Solana C, Ruiz-Linares M. Simvastatin Efficacy on Endodontic Biofilms: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5441. [PMID: 39597265 PMCID: PMC11595455 DOI: 10.3390/ma17225441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The outcome of endodontic therapy is directly related to the control of infection. The aim of the study was to evaluate in vitro the efficacy of Simvastatin (SIM) and diclofenac (DC) solutions on endodontic biofilms. METHODS Mature biofilms were grown on dentin specimens and put in contact with the solutions to determine their antibiofilm activity. To assess residual antimicrobial activity, the dentin samples were immersed for 5 min in the solutions before microbial infection for 3 weeks. The study groups were: (1) 8% SIM, (2) 4% SIM, (3) 4% DC, (4) 2.5% sodium hypochlorite (NaOCl), and (5) 0.9% saline solution (SS). Cell viability was evaluated by means of the adenosine triphosphate (ATP) assay and flow cytometry (FC). The data collected were analyzed with the ANOVA test using Welch's correction followed by the Games-Howell test. The level of statistical significance was p < 0.05, and statistical analysis was performed using SPSS 23.0. RESULTS All study groups reduced the biofilms significantly with respect to the control. The highest reduction percentage was obtained by 2.5% NaOCl, followed by SIM 8% and 4%, without statistically significant differences. In terms of residual activity, the 4% DC solution obtained a higher percentage of dead cells. CONCLUSION Solutions of 4% and 8% SIM, and 4% Diclofenac, show antimicrobial and residual activity against multispecies endodontic biofilms.
Collapse
Affiliation(s)
- Carmen María Ferrer-Luque
- Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (M.H.); (C.S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Marcos Hernández
- Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (M.H.); (C.S.)
| | - Carmen Solana
- Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (M.H.); (C.S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Matilde Ruiz-Linares
- Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (M.H.); (C.S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
9
|
Wang B, Cai J, Huang L, Chen Y, Wang R, Luo M, Yang M, Zhang M, Nasihat, Chen G, Huang G, Zheng C. Significance of research on natural products from marine-derived Aspergillus species as a source against pathogenic bacteria. Front Microbiol 2024; 15:1464135. [PMID: 39364162 PMCID: PMC11446753 DOI: 10.3389/fmicb.2024.1464135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial infections pose a significant clinical burden on global health. The growing incidence of drug-resistant pathogens highlights the critical necessity to identify and isolate bioactive compounds from marine resources. Marine-derived fungi could provide novel lead compounds against pathogenic bacteria. Due to the particularity of the marine environment, Aspergillus species derived from marine sources have proven to be potent producers of bioactive secondary metabolites and have played a considerable role in advancing drug development. This study reviews the structural diversity and activities against pathogenic bacteria of secondary metabolites isolated from marine-derived Aspergillus species over the past 14 years (January 2010-June 2024), and 337 natural products (including 145 new compounds) were described. The structures were divided into five major categories-terpenoids, nitrogen-containing compounds, polyketides, steroids, and other classes. These antimicrobial metabolites will offer lead compounds to the development and innovation of antimicrobial agents.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Jin Cai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Longtao Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Yonghao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Ruoxi Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Mengyao Luo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Meng Yang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Mohan Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Nasihat
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| |
Collapse
|
10
|
Dos Santos DM, Moon JI, Kim DS, Bassous NJ, Marangon CA, Campana-Filho SP, Correa DS, Kang MH, Kim WJ, Shin SR. Hierarchical Chitin Nanocrystal-Based 3D Printed Dual-Layer Membranes Hydrogels: A Dual Drug Delivery Nano-Platform for Periodontal Tissue Regeneration. ACS NANO 2024; 18:24182-24203. [PMID: 39163106 DOI: 10.1021/acsnano.4c05558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Periodontitis, a prevalent chronic inflammatory disease caused by bacteria, poses a significant challenge to current treatments by merely slowing their progression. Herein, we propose an innovative solution in the form of hierarchical nanostructured 3D printed bilayer membranes that serve as dual-drug delivery nanoplatforms and provide scaffold function for the regeneration of periodontal tissue. Nanocomposite hydrogels were prepared by combining lipid nanoparticle-loaded grape seed extract and simvastatin, as well as chitin nanocrystals, which were then 3D printed into a bilayer membrane that possesses antimicrobial properties and multiscale porosity for periodontal tissue regeneration. The constructs exhibited excellent mechanical properties by adding chitin nanocrystals and provided a sustained release of distinct drugs over 24 days. We demonstrated that the bilayer membranes are cytocompatible and have the ability to induce bone-forming markers in human mesenchymal stem cells, while showing potent antibacterial activity against pathogens associated with periodontitis. In vivo studies further confirmed the efficacy of bilayer membranes in enhancing alveolar bone regeneration and reducing inflammation in a periodontal defect model. This approach suggests promising avenues for the development of implantable constructs that not only combat infections, but also promote the regeneration of periodontal tissue, providing valuable insights into advanced periodontitis treatment strategies.
Collapse
Affiliation(s)
- Danilo Martins Dos Santos
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Jae-I Moon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Nicole Joy Bassous
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Crisiane Aparecida Marangon
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Sergio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry/University of São Paulo, Av. Trabalhador Sao-carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Ebrahimzadeh M, Asgharpour F, Shokri Shirvani J, Kazemi S, Moghadamnia AA. Unveiling the Antibacterial Properties of Statins: An In Vitro Study on Helicobacter pylori. Adv Pharmacol Pharm Sci 2024; 2024:6380155. [PMID: 39161645 PMCID: PMC11333129 DOI: 10.1155/2024/6380155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Background Helicobacter pylori (H. pylori), a widespread bacterial pathogen, is associated with various gastrointestinal diseases, including gastric cancer. Statins, widely prescribed cholesterol-lowering agents, have demonstrated pleiotropic effects, including potential antimicrobial properties. This in vitro study investigated the direct antibacterial effects of three clinically approved statins, simvastatin, atorvastatin, and rosuvastatin, against H. pylori isolates. Methods H. pylori strains were isolated from gastric biopsies of dyspeptic patients and identified by microbiological techniques. The minimum inhibitory concentrations (MICs) of statins were determined using the agar dilution method, and their antimicrobial activity was evaluated by the disc diffusion method using different concentrations of simvastatin, atorvastatin, rosuvastatin, tetracycline, and amoxicillin. Scanning electron microscopy (SEM) was employed to examine the morphology of H. pylori cells. Results The minimum inhibitory concentration (MIC) values (μg/mL) of atorvastatin, rosuvastatin, simvastatin, tetracycline, and amoxicillin against H. pylori were 240 ± 20, 450 ± 20, 460 ± 15, 155 ± 30, and 140 ± 20, respectively. In the disc diffusion assay, atorvastatin and rosuvastatin produced significantly larger inhibition zones compared to simvastatin at all concentrations tested (p < 0.05). The inhibition zone diameters (mm) increased with higher statin concentrations, ranging from 9 ± 1.4 to 13 ± 1.4 for atorvastatin, 8 ± 0.9 to 11 ± 0.6 for rosuvastatin, and 5 ± 1.3 to 6 ± 1.4 for simvastatin at the highest tested concentration (1200 μg/ml). SEM analysis revealed the characteristic spiral morphology of H. pylori cells. Conclusion Statins demonstrated varying degrees of antibacterial activity against H. pylori isolates, with atorvastatin exhibiting the highest potency. While the observed effects were lower than those of conventional antibiotics, these findings suggest the potential of statins as adjunctive agents or alternative therapeutic options, warranting further investigation through in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Manijeh Ebrahimzadeh
- Student Research CommitteeHealth Research InstituteBabol University of Medical Sciences, Babol, Iran
| | - Fariba Asgharpour
- Department of Laboratory SciencesFaculty of Para-MedicineBabol University of Medical Sciences, Babol, Iran
| | - Javad Shokri Shirvani
- Cancer Research CenterHealth Research InstituteBabol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research CenterHealth Research InstituteBabol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and ToxicologySchool of MedicineBabol University of Medical Sciences, Babol, Iran
| |
Collapse
|
12
|
Davani L, Terenzi C, De Simone A, Tumiatti V, Andrisano V, Montanari S. Design of Experiments and Optimization of Monacolin K Green Extraction from Red Yeast Rice by Ultra-High-Performance Liquid Chromatography. Foods 2024; 13:2509. [PMID: 39200436 PMCID: PMC11353663 DOI: 10.3390/foods13162509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Monacolin K (MK), in red yeast rice (RYR) in the forms of lactone (LMK) and hydroxy acid (AMK), is known for its anti-hypercholesterolemic activity. Under the rising demand for natural bioactive molecules, we present a green ultrasound-assisted extraction (UAE) optimization study for MK in RYR. The development and validation of a fast, sensitive, selective, reproducible, and accurate ultra-high-performance liquid chromatography (UHPLC) method coupled to diode array detection for LMK and AMK allowed us to evaluate the MK recovery in different extract media. Firstly, the ethanol comparability to acetonitrile was assessed (recovery of 80.7 ± 0.1% for ethanol and 85.5 ± 0.2% for acetonitrile). Then, water/ethanol mixtures, with decreasing percentages of organic solvent, were tested by modulating temperature and extraction times. Water extractions at 80 °C for 10 min produced MK yield > 85%. Thus, UAE conditions were optimized by a DOE study using a water-based formulation (mouthwash). The optimal total MK extraction yield (86.6 ± 0.4%) was found under the following conditions: 80 °C, 45 min, 5 mg mL-1 (RYR powder/solvent). Therefore, the new single-process green approach allowed the simultaneous direct extraction of MK and mouthwash enrichment (MK concentration = 130.0 ± 0.6 µg mL-1), which might be tested for the prevention and treatment of periodontitis or oral candidiasis.
Collapse
Affiliation(s)
- Lara Davani
- Department for Life Quality Studies, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (L.D.); (C.T.); (V.T.); (V.A.)
| | - Cristina Terenzi
- Department for Life Quality Studies, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (L.D.); (C.T.); (V.T.); (V.A.)
| | - Angela De Simone
- Department of Drug Science and Technology University of Torino, Via P. Giuria 9, 10125 Torino, Italy;
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (L.D.); (C.T.); (V.T.); (V.A.)
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (L.D.); (C.T.); (V.T.); (V.A.)
| | - Serena Montanari
- Department for Life Quality Studies, University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (L.D.); (C.T.); (V.T.); (V.A.)
| |
Collapse
|
13
|
Ukleja M, Kricks L, Torrens G, Peschiera I, Rodrigues-Lopes I, Krupka M, García-Fernández J, Melero R, Del Campo R, Eulalio A, Mateus A, López-Bravo M, Rico AI, Cava F, Lopez D. Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains. Nat Commun 2024; 15:5583. [PMID: 38961085 PMCID: PMC11222466 DOI: 10.1038/s41467-024-49951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.
Collapse
Affiliation(s)
- Marta Ukleja
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Lara Kricks
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Ilaria Peschiera
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ines Rodrigues-Lopes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Marcin Krupka
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Julia García-Fernández
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Roberto Melero
- Department of Structural Biology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ramón y Cajal Hospital, 28034, Madrid, Spain
| | - Ana Eulalio
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - André Mateus
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - María López-Bravo
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ana I Rico
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Daniel Lopez
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain.
| |
Collapse
|
14
|
Pandey P, Rao L, Shekhar BR, Das DK, Vavilala SL. Molecular insights into flavone-mediated quorum sensing interference: A novel strategy against Serratiamarcescens biofilm-induced antibiotic resistance". Chem Biol Interact 2024; 396:111027. [PMID: 38735452 DOI: 10.1016/j.cbi.2024.111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Antibiotic resistance poses a significant challenge in modern medicine, urging the exploration of innovative approaches to combat bacterial infections. Biofilms, complex bacterial communities encased in a protective matrix, contribute to resistance by impeding antibiotic efficacy and promoting genetic exchange. Understanding biofilm dynamics is crucial for developing effective antimicrobial therapies against antibiotic resistance. This study explores the potential of flavone to combat biofilm-induced antibiotic resistance by employing in-vitro biochemical, cell biology, and Insilico (MD simulation), approaches. Flavone exhibited potent antibacterial effects with a low minimum inhibitory concentration by inducing intracellular reactive oxygen species. Flavones further inhibited the formation of biofilms by 50-60 % and disrupted the pre-formed biofilms by reducing the extracellular polysaccharide substance protective layer formed on the biofilm by 80 %. Quorum sensing (QS) plays a crucial role in bacterial pathogenicity and flavone significantly attenuated the production of QS-induced virulence factors like urease, protease, lipase, hemolysin and prodigiosin pigment in a dose-dependent manner. Further Insilico molecular docking studies along with molecular dynamic simulations run for 100 ns proved the stable binding affinity of flavone with QS-specific proteins which are crucial for biofilm formation. This study demonstrates the therapeutic potential of flavone to target QS-signaling pathway to combat S.marcescens biofilms.
Collapse
Affiliation(s)
- Pooja Pandey
- School of Biological Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai, 400098, India.
| | - Lawanya Rao
- School of Biological Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai, 400098, India.
| | - Bipin R Shekhar
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Jahangir Merwanji Street, Parel, Mumbai, India.
| | - Dhanjit K Das
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Jahangir Merwanji Street, Parel, Mumbai, India.
| | - Sirisha L Vavilala
- School of Biological Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai, 400098, India.
| |
Collapse
|
15
|
Dhakal S, Macreadie IG. Simvastatin, Its Antimicrobial Activity and Its Prevention of Alzheimer's Disease. Microorganisms 2024; 12:1133. [PMID: 38930515 PMCID: PMC11205914 DOI: 10.3390/microorganisms12061133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Simvastatin, a blockbuster drug for treating hypercholesterolemia, has multifactorial benefits as an antimicrobial agent and plays a preventative role in reducing the incidence of Alzheimer's Disease (AD). Although most of the beneficial effects of simvastatin have been attributed to its ability to reduce cholesterol levels, recent scientific studies have suggested that its benefits are largely due to its pleiotropic effects in targeting other pathways, e.g., by inhibiting protein lipidation. There are certain pleiotropic effects that can be predicted from the inhibition of the mevalonate pathway; however, some of the effects of simvastatin in proteostasis lead to reduced levels of amyloid beta, the key contributor to AD. This review discusses the use of simvastatin as an antimicrobial agent and anti-AD drug.
Collapse
Affiliation(s)
- Sudip Dhakal
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization (CSIRO), Geelong, VIC 3220, Australia;
| | - Ian G. Macreadie
- School of Science, RMIT University, Bundoora, VIC 3063, Australia
| |
Collapse
|
16
|
Huidrom S, Ngashangva N, Khumlianlal J, Sharma KC, Mukherjee PK, Devi SI. Genomic insights from Lactiplantibacillus plantarum BRD3A isolated from Atingba, a traditional fermented rice-based beverage and analysis of its potential for probiotic and antimicrobial activity against Methicillin-resistant Staphylococcus aureus. Front Microbiol 2024; 15:1357818. [PMID: 38628861 PMCID: PMC11019378 DOI: 10.3389/fmicb.2024.1357818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Lactiplantibacillus plantarum BRD3A was isolated from Atingba, a traditional fermented rice-based beverage of Manipur. Its genomic sequence has 13 contigs and its genome size is 3,320,817 bp with a guanine-cytosine (GC) ratio of 44.6%. It comprises 3185 genes including 3112 coding sequences (CDSs), 73 RNAs (including 66 tRNAs and others), and one clustered regularly interspaced short palindromic repeat (CRISPR) array. A comparative and phylogenetic analysis with the Lp. plantarum genome shows that this strain has close similarity with other Lp. plantarum strains and about 99% average nucleotide identity. Functional annotation using evolutionary genealogy of genes-non-supervised orthologous groups (EggNOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals genes associated with various biological processes such as metabolism, genetic information processing, and transport functions. Furthermore, the strain harbors bacteriocins like plantaricin E, Plantaricin F, and Enterocin X categorized under class IIb by the BAGEL4 database, indicating its potential antimicrobial properties. Additionally, AntiSMASH web server predicted four secondary regions-T3PKS, terpene, cyclic lactone inducer, and ribosomally synthesized and post-translationally modified peptide (RiPP)-suggesting an even higher antimicrobial potential. We validated the antimicrobial activity of Lp. plantarum BRD3A through in vitro experiments in which it exhibited promising bactericidal effects on methicillin-resistant Staphylococcus aureus, inhibiting their biofilm growth. These findings indicate the potential of Lp. plantarum BRD3A to be used as an alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Surmani Huidrom
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Ng Ngashangva
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| | - Joshua Khumlianlal
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | | | - Pulok Kumar Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| | - Sarangthem Indira Devi
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| |
Collapse
|
17
|
van den Biggelaar RHGA, Walburg KV, van den Eeden SJF, van Doorn CLR, Meiler E, de Ries AS, Meijer AH, Ottenhoff THM, Saris A. Identification of kinase modulators as host-directed therapeutics against intracellular methicillin-resistant Staphylococcus aureus. Front Cell Infect Microbiol 2024; 14:1367938. [PMID: 38590439 PMCID: PMC10999543 DOI: 10.3389/fcimb.2024.1367938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
The increasing prevalence of antimicrobial-resistant Staphylococcus aureus strains, especially methicillin-resistant S. aureus (MRSA), poses a threat to successful antibiotic treatment. Unsuccessful attempts to develop a vaccine and rising resistance to last-resort antibiotics urge the need for alternative treatments. Host-directed therapy (HDT) targeting critical intracellular stages of S. aureus emerges as a promising alternative, potentially acting synergistically with antibiotics and reducing the risk of de novo drug resistance. We assessed 201 ATP-competitive kinase inhibitors from Published Kinase Inhibitor Sets (PKIS1 and PKIS2) against intracellular MRSA. Seventeen hit compounds were identified, of which the two most effective and well-tolerated hit compounds (i.e., GW633459A and GW296115X) were selected for further analysis. The compounds did not affect planktonic bacterial cultures, while they were active in a range of human cell lines of cervical, skin, lung, breast and monocyte origin, confirming their host-directed mechanisms. GW633459A, structurally related to lapatinib, exhibited an HDT effect on intracellular MRSA independently of its known human epidermal growth factor receptor (EGFR)/(HER) kinase family targets. GW296115X activated adenosine monophosphate-activated protein kinase (AMPK), thereby enhancing bacterial degradation via autophagy. Finally, GW296115X not only reduced MRSA growth in human cells but also improved the survival rates of MRSA-infected zebrafish embryos, highlighting its potential as HDT.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Kimberley V Walburg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Cassandra L R van Doorn
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Eugenia Meiler
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Spain
| | - Alex S de Ries
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anno Saris
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Parolina de Carvalho RD, de Andrade Moreno J, Roque SM, Chan DCH, Torrez WB, Stipp RN, Bueno-Silva B, de Lima PO, Cogo-Müller K. Statins and oral biofilm: Simvastatin as a promising drug to control periodontal dysbiosis. Oral Dis 2024; 30:669-680. [PMID: 36416468 DOI: 10.1111/odi.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study evaluated antimicrobial activity of atorvastatin, pravastatin, rosuvastatin, and simvastatin against oral bacteria, and the interaction of simvastatin with standard antimicrobials (amoxicillin and metronidazole). METHODS Minimal inhibitory concentration assays were performed with Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Actinomyces odontolyticus, Streptococcus oralis, Streptococcus mitis, Streptococcus salivarius, Streptococcus sanguinis, and Streptococcus gordonii; checkerboard microdilution assays between simvastatin and standard antimicrobials; monospecies and multispecies biofilms. RESULTS Simvastatin showed the best antimicrobial activity against most species (MIC range from 3.12 to 25 μg/ml), highlighting the sensitivity of P. gingivalis. In the checkerboard assay, synergistic interaction was found between simvastatin and amoxicillin against S. oralis and S. sanguinis. P. gingivalis biofilm was inhibited by simvastatin at 10 and 50× Minimal inhibitory concentration, with similar effects to metronidazole. For multispecies biofilm, SMV reduced the biofilm metabolic activity (79%) and total counts (87%), comparable to amoxicillin. Simvastatin also reduced bacterial counts of Veilonnella parvula, P. gingivalis, Streptococcus mutans, Actinomyces naeslundii, P. intermedia, and Capnocytophaga ochracea in the multispecies biofilm. CONCLUSIONS Simvastatin showed antimicrobial and antibiofilm activity against oral bacteria and may contribute to the control of dysbiosis, and may be considered in clinical studies as an adjuvant in the treatment of periodontitis.
Collapse
Affiliation(s)
| | | | - Sindy Magri Roque
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Daniel Cheuk Hong Chan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Willy Bustillos Torrez
- Dental Research Division, University of Guarulhos (UNG), Guarulhos, Brazil
- Research department, Universidad Franz Tamayo, Cochabamba, Bolivia
| | - Rafael Nóbrega Stipp
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, University of Guarulhos (UNG), Guarulhos, Brazil
| | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
19
|
Das A, Kundu S, Gupta M, Mukherjee A. Synthesis of porous calcium-guar gum benzoate nano-biohybrids for sorptive removal of congo red and phosphates from water. Int J Biol Macromol 2023; 253:126662. [PMID: 37673147 DOI: 10.1016/j.ijbiomac.2023.126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
This work aims to develop an eco-sound nano-bio-hybrid sorbent using sustainable materials for sorptive elimination of congo red and phosphates from aquatic environment. An amphipathic biopolymer derivative, high DS guar gum benzoate (GGBN) was used for entrapment of as synthesized calcium carbonate nanoparticles using solvent diffusion nano-precipitation technique. Designer nano-biohybrids were developed upon experimenting with various materials stoichiometry. SEM, XRD and EDX studies confirmed near-uniform impregnation of rhombohedral calcium carbonate crystals throughout the biopolymer matrix. Average pore size distribution and surface area of final product Ca-GGBNC, were estimated from NDLFT and BET methods respectively. Analysis of adsorption findings acquired at study temperature 27 ± 2 °C showed that the maximum adsorption capacity of Ca-GGBNC recorded qmax, 333.33 mg/g for congo red azo dye and that for phosphate was at 500 mg/g. Adsorptive removal was noted and both components followed pseudo second order kinetics. Intra-particle diffusion kinetics investigation disclosed that the boundary layer effect was prominent and the adsorption rates were not solely directed by the diffusion stage. Activation energy, Ea was to be estimated using Arrhenius equation at 56.136 and 47.015 KJ/mol for congo red and phosphates respectively. The calculated thermodynamic parameters(ΔG°, ΔH°, and ΔS°) revealed the spontaneous, feasible and endothermic sorption process. Owing to active surface area, spherical size, functional moiety and porous network, antibacterial properties of nanobiohybrid were persistent and MIC against E. coli and S. aureus were recorded at 200 μg/mL and 350 μg/mL respectively.
Collapse
Affiliation(s)
- Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India.
| | - Sonia Kundu
- Department of Food Science and Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 741249, West Bengal, India
| | - Mradu Gupta
- Dravyaguna Department, Institute of Post Graduate Ayurvedic Education and Research, 294/3/1, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Arup Mukherjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 741249, West Bengal, India
| |
Collapse
|
20
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
21
|
Ramadan AMAA, Shehata RM, El-Sheikh HH, Ameen F, Stephenson SL, Zidan SAH, Al-Bedak OAM. Exploitation of Sugarcane Bagasse and Environmentally Sustainable Production, Purification, Characterization, and Application of Lovastatin by Aspergillus terreus AUMC 15760 under Solid-State Conditions. Molecules 2023; 28:molecules28104048. [PMID: 37241788 DOI: 10.3390/molecules28104048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Using the internal transcribed spacer (ITS) region for identification, three strains of Aspergillus terreus were identified and designated AUMC 15760, AUMC 15762, and AUMC 15763 for the Assiut University Mycological Centre culture collection. The ability of the three strains to manufacture lovastatin in solid-state fermentation (SSF) using wheat bran was assessed using gas chromatography-mass spectroscopy (GC-MS). The most potent strain was strain AUMC 15760, which was chosen to ferment nine types of lignocellulosic waste (barley bran, bean hay, date palm leaves, flax seeds, orange peels, rice straw, soy bean, sugarcane bagasse, and wheat bran), with sugarcane bagasse turning out to be the best substrate. After 10 days at pH 6.0 at 25 °C using sodium nitrate as the nitrogen source and a moisture content of 70%, the lovastatin output reached its maximum quantity (18.2 mg/g substrate). The medication was produced in lactone form as a white powder in its purest form using column chromatography. In-depth spectroscopy examination, including 1H, 13C-NMR, HR-ESI-MS, optical density, and LC-MS/MS analysis, as well as a comparison of the physical and spectroscopic data with published data, were used to identify the medication. At an IC50 of 69.536 ± 5.73 µM, the purified lovastatin displayed DPPH activity. Staphylococcus aureus and Staphylococcus epidermidis had MICs of 1.25 mg/mL, whereas Candida albicans and Candida glabrata had MICs of 2.5 mg/mL and 5.0 mg/mL, respectively, against pure lovastatin. As a component of sustainable development, this study offers a green (environmentally friendly) method for using sugarcane bagasse waste to produce valuable chemicals and value-added commodities.
Collapse
Affiliation(s)
- Ahmed M A A Ramadan
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo 11511, Egypt
| | - Reda M Shehata
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo 11511, Egypt
- The Regional Center for Mycology and Biotechnology (RCMB), Al Azhar University, Cairo 11511, Egypt
| | - Hussein H El-Sheikh
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo 11511, Egypt
- The Regional Center for Mycology and Biotechnology (RCMB), Al Azhar University, Cairo 11511, Egypt
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sabry A H Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | | |
Collapse
|
22
|
Sun T, Huang J, Zhang W, Zheng X, Wang H, Liu J, Leng H, Yuan W, Song C. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioact Mater 2023; 21:44-56. [PMID: 36017072 PMCID: PMC9395756 DOI: 10.1016/j.bioactmat.2022.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections (IAIs) caused by biofilm formation are the most devastating complications of orthopedic surgery. Statins have been commonly and safely used drugs for hypercholesterolemia for many years. Here, we report that simvastatin-hydroxyapatite-coated titanium alloy prevents biofilm-associated infections. The antibacterial properties of simvastatin against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro was confirmed by crystal violet staining and live-dead bacterial staining. We developed a simvastatin-and hydroxyapatite (Sim-HA)-coated titanium alloy via electrochemical deposition. Sim-HA coatings inhibited Staphylococcus aureus biofilm formation and improved the biocompatibility of the titanium alloy. Sim-HA coatings effectively prevented Staphylococcus aureus IAI in rat femurs, as confirmed by radiological assessment and histological examination. The antibacterial effects of the Sim-HA coatings were attributed to their inhibitory effects on biofilm formation, as verified by scanning electron microscopic observations and bacterial spread plate analysis. In addition, the Sim-HA coatings enhanced osteogenesis and osteointegration, as verified by micro-CT, histological evaluation, and biomechanical pull-out tests. In summary, Sim-HA coatings are promising implant materials for protection against biofilm-associated infections. Simvastatin-hydroxyapatite coatings were prepared on Ti6Al4V by electrochemical deposition process. The Simvastatin-hydroxyapatite coatings inhibited S. aureus biofilm formation and improved biocompatibility in vitro. The coatings exhibited antibacterial effects and improved bone formation in a rat femur IAI model. Simvastatin coatings are promising for application in orthopedic implants.
Collapse
|
23
|
Pharmacometabolomics for the Study of Lipid-Lowering Therapies: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24043291. [PMID: 36834701 PMCID: PMC9960554 DOI: 10.3390/ijms24043291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Lipid-lowering therapies are widely used to prevent the development of atherosclerotic cardiovascular disease (ASCVD) and related mortality worldwide. "Omics" technologies have been successfully applied in recent decades to investigate the mechanisms of action of these drugs, their pleiotropic effects, and their side effects, aiming to identify novel targets for future personalized medicine with an improvement of the efficacy and safety associated with the treatment. Pharmacometabolomics is a branch of metabolomics that is focused on the study of drug effects on metabolic pathways that are implicated in the variation of response to the treatment considering also the influences from a specific disease, environment, and concomitant pharmacological therapies. In this review, we summarized the most significant metabolomic studies on the effects of lipid-lowering therapies, including the most commonly used statins and fibrates to novel drugs or nutraceutical approaches. The integration of pharmacometabolomics data with the information obtained from the other "omics" approaches could help in the comprehension of the biological mechanisms underlying the use of lipid-lowering drugs in view of defining a precision medicine to improve the efficacy and reduce the side effects associated with the treatment.
Collapse
|
24
|
Karami F, Saber-Samandari S. Synthesis and characterization of a novel hydrogel based on carboxymethyl chitosan/sodium alginate with the ability to release simvastatin for chronic wound healing. Biomed Mater 2023; 18:025001. [PMID: 36603225 DOI: 10.1088/1748-605x/acb0a3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Since wound dressing has been considered a promising strategy to improve wound healing, recent attention has been focused on the development of modern wound dressings based on synthetic and bioactive polymers. In this study, we prepared a multifunctional wound dressing based on carboxymethyl chitosan (CMC)/sodium alginate (Alg) hydrogel containing a nanostructured lipid carrier (NLC) in which simvastatin (SIM) has been encapsulated. This dressing aimed to act as a barrier against pathogens, eliminate excess exudates, and accelerate wound healing. Among various fabricated composites of dressing, the hydrogel composite with a CMC/sodium Alg ratio of 1:2 had an average pore size of about 98.44 ± 26.9 μm and showed 707 ± 31.9% swelling and a 2116 ± 79.2 g m-2per day water vapor transfer rate (WVTR), demonstrating appropriate properties for absorbing exudates and maintaining wound moisture. The NLC with optimum composition and properties had a spherical shape and uniform particle size distribution (74.46 ± 7.9 nm). The prepared nanocomposite hydrogel displayed excellent antibacterial activity againstEscherichia coliandStaphylococcus aureusas well as high biocompatibility on L929 mouse fibroblast cells. It can release the loaded SIM drug slowly and over a prolonged period of time. The highest drug release occurred (80%) within 14 d. The results showed that this novel nanocomposite could be a promising candidate as a wound dressing for treating various chronic wounds in skin tissues.
Collapse
Affiliation(s)
- Fatemeh Karami
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Saber-Samandari
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Yirgu A, Mekonnen Y, Eyado A, Staropoli A, Vinale F. Antimicrobial Activity and Phytochemical Constituents of Leaf Extracts of Englerina woodfordioides (Schweinf.) M. Gilbert. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Synthesized Phosphonium Compounds Demonstrate Resistant Modulatory and Antibiofilm Formation Activities against Some Pathogenic Bacteria. HETEROATOM CHEMISTRY 2022. [DOI: 10.1155/2022/7411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A library of six compounds with new hybrids in a single molecule triazole ring attached to the phosphonium salts was synthesized. Click chemistry was, however, used to synthesize the 1-, 2-, and 3-triazole intermediates as a tether for the hybrid phosphonium salts. Their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and Mycobacterium smegmatis mc2155 was determined using the HT-SPOTi assay. Compound 2 showed the most effective antimicrobial activity as it inhibited the growth of Pseudomonas aeruginosa and Staphylococcus aureus at 0.0125 µg/mL and 31.25 µg/mL, respectively. From the FICI data, compounds 2ET-TOL (2) and RABYL-TOL (4) successfully modulated the activities of amoxicillin against Pseudomonas aeruginosa and Staphylococcus aureus. All the test compounds exhibited a concentration-dependent biofilm formation inhibition against S. aureus, except P-Z (compound 6). Compounds P-MEOXY (1) and 2ET-TOL (2) exhibited mild activity against P. aeruginosa with compound 4 showing antimycobacterial activity at 500 µg/mL.
Collapse
|
27
|
Hale SJM, Wagner Mackenzie B, Lux CA, Biswas K, Kim R, Douglas RG. Topical Antibiofilm Agents With Potential Utility in the Treatment of Chronic Rhinosinusitis: A Narrative Review. Front Pharmacol 2022; 13:840323. [PMID: 35770097 PMCID: PMC9234399 DOI: 10.3389/fphar.2022.840323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial biofilms in chronic and recalcitrant diseases is widely appreciated, and the treatment of biofilm infection is an increasingly important area of research. Chronic rhinosinusitis (CRS) is a complex disease associated with sinonasal dysbiosis and the presence of bacterial biofilms. While most biofilm-related diseases are associated with highly persistent but relatively less severe inflammation, the presence of biofilms in CRS is associated with greater severity of inflammation and recalcitrance despite appropriate treatment. Oral antibiotics are commonly used to treat CRS but they are often ineffective, due to poor penetration of the sinonasal mucosa and the inherently antibiotic resistant nature of bacteria in biofilms. Topical non-antibiotic antibiofilm agents may prove more effective, but few such agents are available for sinonasal application. We review compounds with antibiofilm activity that may be useful for treating biofilm-associated CRS, including halogen-based compounds, quaternary ammonium compounds and derivatives, biguanides, antimicrobial peptides, chelating agents and natural products. These include preparations that are currently available and those still in development. For each compound, antibiofilm efficacy, mechanism of action, and toxicity as it relates to sinonasal application are summarised. We highlight the antibiofilm agents that we believe hold the greatest promise for the treatment of biofilm-associated CRS in order to inform future research on the management of this difficult condition.
Collapse
Affiliation(s)
- Samuel J M Hale
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Wagner Mackenzie
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christian A Lux
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Raymond Kim
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics (Basel) 2022; 11:antibiotics11060816. [PMID: 35740222 PMCID: PMC9220406 DOI: 10.3390/antibiotics11060816] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
The worldwide scenario of antibiotic resistance and the falling number of funds for the development of novel antibiotics have led research efforts toward the study of specific cost-effective strategies aimed at discovering drugs against microbial infections. Among the potential options, drug repositioning, which has already exhibited satisfactory results in other medical fields, came out as the most promising. It consists of finding new uses for previously approved medicines and, over the years, many “repurposed drugs” displayed some encouraging in vitro and in vivo results beyond their initial application. The principal theoretical justification for reusing already existing drugs is that they have known mechanisms of action and manageable side effects. Reuse of old drugs is now considered an interesting approach to overcome the drawbacks of conventional antibiotics. The purpose of this review is to offer the reader a panoramic view of the updated studies concerning the repositioning process of different classes of non-antibiotic drugs in the antimicrobial field. Several research works reported the ability of some non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, antipsychotics, and statins to counteract the growth of harmful microorganisms, demonstrating an interesting winning mode to fight infectious diseases caused by antimicrobial resistant bacteria.
Collapse
|
29
|
Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov Today 2022; 27:2028-2041. [PMID: 35561965 DOI: 10.1016/j.drudis.2022.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Infections are a growing global threat, and the number of resistant species of microbial pathogens is alarming. However, the rapid development of cross-resistant or multidrug-resistant strains and the development of so-called 'superbugs' are in stark contrast to the number of newly launched anti-infectives on the market. In this review, I summarize the causes of antimicrobial resistance, briefly discuss different approaches to the discovery and development of new anti-infective drugs, and focus on drug repurposing strategy, which is discussed from all possible perspectives. A comprehensive overview of drugs of other indications tested for their in vitro antimicrobial activity to support existing anti-infective therapeutics is provided, including several critical remarks on this strategy of repurposing non-antibiotics to antibacterial drugs.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia; Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
30
|
Verma N, Srivastava S, Malik R, Goyal P, Pandey J. Inhibition and disintegration of Bacillus subtilis biofilm with small molecule inhibitors identified through virtual screening for targeting TasA (28-261), the major protein component of ECM. J Biomol Struct Dyn 2022; 41:2431-2447. [PMID: 35098894 DOI: 10.1080/07391102.2022.2033135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microbial biofilms have been recognized for a vital role in antibiotic resistance and chronic microbial infections for 2-3 decades; still, there are no 'anti-biofilm drugs' available for human applications. There is an urgent need to develop novel 'anti-biofilms' therapeutics to manage biofilm-associated infectious diseases. Several reports have suggested that targeting molecules involved in quorum sensing or biofilm-specific transcription may inhibit biofilm formation. However, the possibility of targeting other vital components of microbial biofilms, especially the extracellular matrix (ECM) components, has remained largely unexplored. Here we report targeting TasA(28-261), the major proteinaceous component of Bacillus subtilis ECM with two small molecule inhibitors (lovastatin and simvastatin) identified through virtual screening and drug repurposing, resulted in complete inhibition of biofilm. In molecular docking and dynamics simulation studies, lovastatin was observed to make stable interactions with TasA(28-261), whereas the simvastatin - TasA(28-261) interactions were relatively less stable. However, in subsequent in vitro studies, both lovastatin and simvastatin successfully inhibited B. subtilis biofilm formation at MIC values of < 10 µg/ml. Besides, these potential inhibitors also caused the disintegration of pre-formed biofilms. Results presented here provide 'proof of concept' for the hypothesis that targeting the extracellular matrix's vital component(s) could be one of the most efficient approaches for inhibiting microbial biofilms and disintegrating the pre-formed biofilms. We propose that a similar approach targeting ECM-associated proteins with FDA-approved drugs could be implemented to develop novel anti-biofilm therapeutic strategies against biofilm-forming chronic microbial pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemistry & Pharmacy, Central University fo Rajasthan, Ajmer, Rajasthan, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemistry & Pharmacy, Central University fo Rajasthan, Ajmer, Rajasthan, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Janmejay Pandey
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
31
|
Rahimi S, Ghasemi N, Davoudi P, Taleb I, Farajollahi M, Rahimi Darehchi N, Kazeminejad E. Antimicrobial effects of different concentrations of simvastatin versus triple antibiotic paste on Enterococcus faecalis biofilms at different stages of development. J Dent Res Dent Clin Dent Prospects 2022; 16:153-158. [PMID: 36704189 PMCID: PMC9871176 DOI: 10.34172/joddd.2022.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/09/2022] [Indexed: 01/20/2023] Open
Abstract
Background. This study assessed the antimicrobial effects of different concentrations of simvastatin versus triple antibiotic paste (TAP) on Enterococcus faecalis biofilms at different stages of development. Methods. In this in vitro study, 70 human single-rooted mature premolars were decoronated, instrumented, and autoclave-sterilized. Next, an E. faecalis suspension was prepared and inoculated into the canals to obtain 4- and 6-week biofilms. After ensuring biofilm formation, the samples in each group were randomly assigned to 5 subgroups (n=12): 1 mg/mL TAP, 10 mg/ mL TAP, 1 mg/mL simvastatin, 10 mg/mL simvastatin, and positive control (phosphate-buffered saline solution). The medicaments were applied in the canals, and the teeth were incubated for one week. Dentin samples were collected by a rotary file, cultured, and the number of E. faecalis colonies was counted. The Kruskal-Wallis, Mann-Whitney U, and Wilcoxon tests were used for data analysis (α=0.05). Results. There were significant differences in colony counts between the two concentrations of TAP and the control group against both 4- and 6-week biofilms (P<0.05). The antibacterial effect of 10 mg/mL TAP and simvastatin was stronger than that of 1 mg/mL concentration against the 4- and 6-week E. faecalis biofilms (P<0.05). Furthermore, 10 mg/mL TAP and simvastatin were more effective against the 4-week biofilms than the 6-week biofilms (P<0.05). Conclusion. According to the present results and since biofilms may remain viable in the root canal system for weeks to months, applying 10 mg/mL TAP and simvastatin might be more effective.
Collapse
Affiliation(s)
- Saeed Rahimi
- Dental and Periodontal Research Center, Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Ghasemi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Davoudi
- Department of Endodontics, Faculty of Dentistry, Shahid Beheshti Medical University, Tehran, Iran
| | | | - Mehran Farajollahi
- Department of Endodontics, Faculty of Dentistry, Shahid Beheshti Medical University, Tehran, Iran,Corresponding author: Mehran Farajollahi,
| | | | | |
Collapse
|
32
|
Torabi Z, Rahimi S, Ghasemi N, Jabbari G, Zaheri Z, Darehchi N. Effect of different intracanal medicaments on the fracture resistance of the human root. Dent Res J (Isfahan) 2022; 19:9. [PMID: 35308444 PMCID: PMC8927953 DOI: 10.4103/1735-3327.336694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/05/2021] [Accepted: 07/10/2021] [Indexed: 11/22/2022] Open
Abstract
Background: The effect of different intracanal medicaments on root fracture resistance has not been thoroughly investigated in the short and long term. To assess the effect of calcium hydroxide (CH), CH combined with Chlorhexidine (CHX), double antibiotic paste (DAP), and simvastatin as intracanal medicaments on the fracture resistance of the human root. One hundred and twenty single-rooted mandibular premolars which were extracted for periodontal reasons were collected for this in vitro study. Materials and Methods: This was an in vitro study. All teeth were decoronated. Root canals were prepared by the Pro taper system, and %2.5 NaOCl was used for irrigation. The smear layer was removed using %5.25 NaOCl and 17% ethylenediaminetetraacetic acid each for 3 min. The samples were randomly divided into five groups based on the medicament: (1) CH (2) CH + CHX (3) Simvastatin (4) DAP (5) Control group. All specimens in each group were incubated for 1 week (Subgroup A) and 1 month (Subgroup B). Then, medicaments were removed and filled with gutta-percha and AH26 sealer. All samples were tested for fracture resistance. The data were statistically evaluated with the SPSS software 17. ANOVA and Mann–Whitney U and Wilcoxon tests were used for the analysis of the data. P = 0.05 was considered statistically significant. Results: Although CH and CH + CHX increased the fracture resistance in a 1-week period, there was no significant difference between the groups after 1 month. Conclusion: Under the limitations of this study, CH and CH + CHX, DAP and simvastatin do not have a negative effect on root fracture resistance when used as intracanal medicaments for <1 month.
Collapse
|
33
|
Stupica D, Bajrović FF, Blagus R, Cerar Kišek T, Collinet-Adler S, Ružić-Sabljić E, Velušček M. Association between statin use and clinical course, microbiologic characteristics, and long-term outcome of early Lyme borreliosis. A post hoc analysis of prospective clinical trials of adult patients with erythema migrans. PLoS One 2021; 16:e0261194. [PMID: 34914751 PMCID: PMC8675750 DOI: 10.1371/journal.pone.0261194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Background Statins were shown to inhibit borrelial growth in vitro and promote clearance of spirochetes in a murine model of Lyme borreliosis (LB). We investigated the impact of statin use in patients with early LB. Methods In this post-hoc analysis, the association between statin use and clinical and microbiologic characteristics was investigated in 1520 adult patients with early LB manifesting as erythema migrans (EM), enrolled prospectively in several clinical trials between June 2006 and October 2019 at a single-center university hospital. Patients were assessed at enrollment and followed for 12 months. Results Statin users were older than patients not using statins, but statin use was not associated with Borrelia seropositivity rate, Borrelia skin culture positivity rate, or disease severity as assessed by erythema size or the presence of LB-associated symptoms. The time to resolution of EM was comparable in both groups. The odds for incomplete recovery decreased with time from enrollment, were higher in women, in patients with multiple EM, and in those reporting LB-associated symptoms at enrollment, but were unaffected by statin use. Conclusion Statin use was not associated with clinical and microbiologic characteristics or long-term outcome in early LB.
Collapse
Affiliation(s)
- Daša Stupica
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| | - Fajko F. Bajrović
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Rok Blagus
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar Kišek
- Institute for Microbiology and Immunology Ljubljana, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Stefan Collinet-Adler
- Department of Infectious Diseases, Park Nicollet/Health Partners, Methodist Hospital, Saint Louis Park, Minnesota, United States of America
| | - Eva Ružić-Sabljić
- Institute for Microbiology and Immunology Ljubljana, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Velušček
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
34
|
Pant N, Eisen DP. Non-Antimicrobial Adjuvant Strategies to Tackle Biofilm-Related Staphylococcus aureus Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:antibiotics10091060. [PMID: 34572641 PMCID: PMC8465242 DOI: 10.3390/antibiotics10091060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus frequently causes community- and hospital-acquired infections. S. aureus attachment followed by biofilm formation on tissues and medical devices plays a significant role in the establishment of chronic infections. Staphylococcal biofilms encase bacteria in a matrix and protect the cells from antimicrobials and the immune system, resulting in infections that are highly resistant to treatment. The biology of biofilms is complex and varies between organisms. In this review, we focus our discussion on S. aureus biofilms and describe the stages of their formation. We particularly emphasize genetic and biochemical processes that may be vulnerable to novel treatment approaches. Against this background, we discuss treatment strategies that have been successful in animal models of S. aureus biofilm-related infection and consider their possible use for the prevention and eradication of biofilm-related S. aureus prosthetic joint infection.
Collapse
|
35
|
Garg A, Singh A, Kumar A. Selective estrogen receptor modulators against Gram-positive and Gram-negative bacteria: an experimental study. Future Microbiol 2021; 16:987-1001. [PMID: 34406075 DOI: 10.2217/fmb-2020-0310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was conducted to explore the antibacterial potential of selective estrogen receptor modulators (SERMs). Materials & methods: The percentage growth retardation, bacterial growth kinetics, biofilm, checkerboard and bacterial burden assays were conducted to check antibacterial potential of SERMs. Finally, docking study was also conducted to predict possible antibacterial mechanism of SERMs. Results:In vitro and in vivo studies have shown the antibacterial activity of SERMs against different tested strains of bacteria. The synergistic activity of SERMs in combination with standard antibacterial agents was also observed and tested further under in vivo conditions. In vivo results have shown decreased bacterial bioburden. Docking studies have predicted the multimodal antibacterial mechanism of SERMs. Conclusion: SERMs can be considered as promising broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
- Aakriti Garg
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anoop Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Department of Pharmacology & Clinical Research, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| |
Collapse
|
36
|
Algal polysaccharide's potential to combat respiratory infections caused by Klebsiella pneumoniae and Serratia marcescens biofilms. Appl Biochem Biotechnol 2021; 194:671-693. [PMID: 34449042 PMCID: PMC8390546 DOI: 10.1007/s12010-021-03632-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
The growth of respiratory diseases, as witnessed through the SARS and COVID-19 outbreaks, and antimicrobial-resistance together pose a serious threat to humanity. One reason for antimicrobial resistance is formation of bacterial biofilms. In this study the sulphated polysaccharides from green algae Chlamydomonas reinhardtii (Cr-SPs) is tested for its antibacterial and antibiofilm potential against Klebsiella pneumoniae and Serratia marcescens. Agar cup assay clearly indicated the antibacterial potential of Cr-SPs. Minimum inhibitory concentration (MIC50) of Cr-SPs against Klebsiella pneumoniae was found to be 850 µg/ml, and it is 800 µg/ml in Serratia marcescens. Time-kill and colony-forming ability assays suggest the concentration-dependent bactericidal potential of Cr-SPs. Cr-SPs showed 74–100% decrease in biofilm formation in a concentration-dependent manner by modifying the cell surface hydrophobic properties of these bacteria. Cr-SPs have also distorted preformed-biofilms by their ability to interact and destroy the extra polymeric substance and eDNA of the matured biofilm. Scanning electron microscopy analysis showed that Cr-SPs effectively altered the morphology of these bacterial cells and distorted the bacterial biofilms. Furthermore reduced protease, urease and prodigiosin pigment production suggest that Cr-SPs interferes the quorum sensing mechanism in these bacteria. The current study paves way towards developing Cr-SPs as a control strategy for treatment of respiratory tract infections.
Collapse
|
37
|
Abstract
Lipopeptides are an exceptional example of amphiphilic molecules that self-assemble into functional structures with applications in the areas of nanotechnology, catalysis or medicinal chemistry. Herein, we report a library of 21 short lipopeptides, together with their supramolecular characterization and antimicrobial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) strains. This study shows that simple lipoamino acids self-assemble into micellar or vesicular structures, while incorporating dipeptides capable of stablishing hydrogen bonds results in the adoption of advanced fibrilar structures. The self-assembly effect has proven to be key to achieve antimicrobial activity.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA Nanociencia, Faraday 9, Campus UAM, 28049 Madrid, Spain and Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
38
|
Parsamanesh N, Karami-Zarandi M, Banach M, Penson PE, Sahebkar A. Effects of statins on myocarditis: A review of underlying molecular mechanisms. Prog Cardiovasc Dis 2021; 67:53-64. [PMID: 33621589 DOI: 10.1016/j.pcad.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
Myocarditis refers to the clinical and histological characteristics of a diverse range of inflammatory cellular pathophysiological conditions which result in cardiac dysfunction. Myocarditis is a major cause of mortality in individuals less than 40 years of age and accounts for approximately 20% of cardiovascular disease (CVD) events. Myocarditis contributes to dilated cardiomyopathy in 30% of patients and can progress to cardiac arrest, which has a poor prognosis of <40% survival over 10 years. Myocarditis has also been documented after infection with SARS-CoV-2. The most commonly used lipid-lowering therapies, HMG-CoA reductase inhibitors (statins), decrease CVD-related morbidity and mortality. In addition to their lipid-lowering effects, increasing evidence supports the existence of several additional beneficial, 'pleiotropic' effects of statins. Recently, several studies have indicated that statins may attenuate myocarditis. Statins modify the lipid oxidation, inflammation, immunomodulation, and endothelial activity of the pathophysiology and have been recommended as adjuvant treatment. In this review, we focus on the mechanisms of action of statins and their effects on myocarditis, SARS-CoV-2 and CVD.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Foletto VS, da Rosa TF, Serafin MB, Bottega A, Hörner R. Repositioning of non-antibiotic drugs as an alternative to microbial resistance: a systematic review. Int J Antimicrob Agents 2021; 58:106380. [PMID: 34166776 DOI: 10.1016/j.ijantimicag.2021.106380] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/10/2021] [Accepted: 06/10/2021] [Indexed: 01/19/2023]
Abstract
The global spread of microbial resistance coupled with high costs and slow pace in the discovery of a new antibiotic have made drug repositioning an attractive and promising alternative in the treatment of infections caused by multidrug resistant (MDR) microorganisms. The reuse involves the production of compounds with lower costs and development time, using diversified production technologies. The present systematic review aimed to present a selection of studies published in the last 20 years, which report the antimicrobial activity of non-antibiotic drugs that are candidates for repositioning, which could be used against the current microbial multidrug resistance. A search was performed in the PubMed, SciELO and Google Scholar databases using the following search strategies: [(drug repurposing) OR (drug repositioning) OR (repositioning) AND (non-antibiotic) AND (antibacterial activity) AND (antimicrobial activity)]. Overall, 112 articles were included, which explored the antimicrobial activity in antidepressants, antihypertensives, anti-inflammatories, antineoplastics, hypoglycemic agents, among other drugs. It was concluded that they have significant antimicrobial activity in vitro and in vivo, against standard strain and clinical isolates (Gram-negative and Gram-positive) and fungi. When associated with antibacterials, most of these drugs had their antibacterial activity enhanced. It was also a consensus of the studies included in this review that the presence of aromatic rings in the molecular structure contributes to antimicrobial activity. This review highlights the potential repositioning of several classes of non-antibiotic drugs as promising candidates for repositioning in the treatment of severe bacterial infections of MDR bacteria, extensively resistant (XDR) and pan-resistant (PDR) to drugs.
Collapse
Affiliation(s)
- Vitória S Foletto
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Taciéli F da Rosa
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Marissa B Serafin
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Angelita Bottega
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Rosmari Hörner
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil; Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil.
| |
Collapse
|
40
|
de Carvalho RDP, Côrrea Viana Casarin R, Lima POD, Cogo-Müller K. STATINSWITH POTENTIAL TO CONTROL PERIODONTITIS: FROM BIOLOGICAL MECHANISMS TO CLINICAL STUDIES. J Oral Biosci 2021; 63:232-244. [PMID: 34146687 DOI: 10.1016/j.job.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Statins are widely used for the treatment of hyperlipidemia. However, these drugs have pleiotropic effects that can be promising for the prevention and treatment of oral diseases, such as periodontitis. HIGHLIGHT This review aimed to identify preclinical, observational, and clinical studies that evaluate the effects and biological mechanisms of statins on oral cells and tissues and those using these drugs to treat periodontitis. A LITERATURE SURVEY HAS BEEN CONDUCTED IN PUBMED USING COMBINATIONS OF THE UNITERMS: "statins," "dentistry," "periodontal disease," and "periodontal treatment." In vitro findings showed positive statin results in cell lines related to alveolar bone metabolism by altering the signaling pathway Osteoprotegerin/Receptor Activator of Nuclear Factor Kappa B/Receptor Activator of Nuclear Factor Kappa B Ligand (OPG/RANK/RANKL), stimulating the production of alkaline phosphatase and osteocalcin, and reducing the production of matrix metalloproteinases (MMPs). Animal studies have shown a reduction in alveolar bone loss and osteoclastic activity, in addition to a reduction in inflammatory markers, such as IL-1, IL-6, and TNF-α, when statins were used prophylactically. Clinical trials showed a positive impact on clinical parameters, leading to a higher reduction in probing depth and gain in clinical attachment when a local statin was adjunctively associated with mechanical therapy. CONCLUSION Statins were shown to be promising for regenerating and stimulating bone activity, with great potential for treating chronic periodontitis. However, further studies are required to confirm its effectiveness.
Collapse
Affiliation(s)
| | | | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
41
|
Kocak E, Nemutlu E, Kır S, Sagıroglu M, Özkul C. Integrative proteomics and metabolomics approach to elucidate the antimicrobial effect of simvastatin on Escherichia coli. Biomed Chromatogr 2021; 35:e5180. [PMID: 34043824 DOI: 10.1002/bmc.5180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/07/2022]
Abstract
Globally, simvastatin is one of the most commonly used statin drugs. Its antimicrobial properties have been investigated against various pathogens. However, its effect on biological processes in bacteria has been unclear. This study focused on altered biological and metabolic processes at protein and metabolite levels induced by simvastatin. MS-based proteomics and metabolomics were used to investigate the altered proteins and metabolites between experimental groups. Proteomics results showed that simvastatin induced various antimicrobial targets such as chaperon protein DnaK and cell division protein FtsZ. Metabolomics results revealed phenotypic changes in cells under simvastatin stress. Integrated proteomics and metabolomics result indicated that various metabolic processes were altered to adapt to stress conditions. Energy metabolism (glycolysis, tricarboxylic acid cycle, etc.), amino acid synthesis and ribosomal proteins, and purine and pyrimidine synthesis were induced by the effect of simvastatin. This study will contribute to the understanding of antimicrobial properties of statin drugs.
Collapse
Affiliation(s)
- Engin Kocak
- Department of Analytical Chemistry, Faculty of Gulhane Pharmacy, Health Sciences University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Meral Sagıroglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ceren Özkul
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
42
|
Valencia DY, Habila M, McClelland DJ, Degarege A, Madhivanan P, Krupp K. Infection-associated biofilms and statins: protocol for systematic review. BMJ Open 2021; 11:e046290. [PMID: 34035102 PMCID: PMC8154974 DOI: 10.1136/bmjopen-2020-046290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Owing to their propensity for being associated with infections, biofilms have become a focus in infectious disease research. There is evidence suggesting that statins, which are commonly used for prevention of cardiovascular disease, may prevent biofilm-associated infections, but this association has not been well-understood. METHODS AND ANALYSIS This systematic review protocol will include six database searches from their inception to 20 August 2020. A medical librarian will conduct the searches in PubMed, EMBASE, Web of Science, CINAHL, LILACS and CENTRAL, without any limits. Bibliographies of selected articles, previously published reviews and high-yield journals that publish on statins and/or biofilms will be searched to identify additional articles. The screening and data extraction will be conducted by two independent reviewers using DistillerSR. All included papers will also be evaluated for quality using Cochrane Risk of Bias Assessment tool, and we will examine for publication bias. If there are two or more studies with quantitative estimates that can be combined, we will conduct a meta-analysis after assessing for heterogeneity. We will report all findings according to the Preferred Reporting Items for Systematic reviews and Analyses-P framework. ETHICS AND DISSEMINATION There are conflicting results on the effect of statins on biofilm-associated infections. The rise of antibiotic resistance in medical settings warrants a deeper understanding of this association, especially if statins can be used as a novel antibiotic. The findings of this review will assess the association between statin use and biofilm-associated infection to inform future medical practice. No formal ethical review is required for this protocol. All findings will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42020193985.
Collapse
Affiliation(s)
- Dora Yesenia Valencia
- Clinical Translational Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Magdiel Habila
- Epidemiology and Biostatistics, The University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - D Jean McClelland
- Health Sciences, The University of Arizona Health Science Library, Tucson, Arizona, USA
| | - Abraham Degarege
- Epidemiology, College of Public Health, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Purnima Madhivanan
- Health Promotion Sciences, The University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
- Public Health Research Institute of India, Mysore, Karnataka, India
| | - Karl Krupp
- Health Promotion Sciences, The University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
43
|
Patel B, Mishra S, Priyadarsini IK, Vavilala SL. Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies. Biol Chem 2021; 402:769-783. [PMID: 33735944 DOI: 10.1515/hsz-2020-0375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/10/2021] [Indexed: 11/15/2022]
Abstract
Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 μg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30-60% inhibition of biofilm formation in K. pneumonia, and 44-70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.
Collapse
Affiliation(s)
- Bharti Patel
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Subrata Mishra
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Indira K Priyadarsini
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Sirisha L Vavilala
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| |
Collapse
|
44
|
Abdelaziz AA, El-Barrawy MA, El-Nagar RAM. Potent synergistic combination of rosuvastatin and levofloxacin against Staphylococcus aureus: in vitro and in vivo study. J Appl Microbiol 2020; 131:182-196. [PMID: 33326676 DOI: 10.1111/jam.14968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
AIMS The present study aims to evaluate the capability of rosuvastatin to synergize with levofloxacin against Staphylococcus aureus. METHODS AND RESULTS Rosuvastatin inhibited the growth of S. aureus with minimum inhibitory concentration of 16 μg ml-1 . Additionally, it showed a bactericidal effect at 4x minimum inhibition concentration. Using a checkerboard method, a synergistic effect was recorded when rosuvastatin was combined with levofloxacin showing against S. aureus isolate 28 (S 28). Furthermore, this combination was also able to display a significant reduction in biofilm formation (92·8%) and suppress the production of coagulase and β-haemolysin, and virulence factors of S. aureus isolate 28. An animal model for wound infection was used to assess the therapeutic effect of the test combination, in vivo. It was found that the test combination reduced the bacterial burden in the infected wounds by 91·3%. Pathological and histological analyses have revealed a decline in cell infiltration in the excisional wound skin tissue after treatment with rosuvastatin and levofloxacin combination. CONCLUSIONS Rosuvastatin combined with levofloxacin can be considered as a promising solution to combat S. aureus antibiotic resistance phenomenon. SIGNIFICANCE AND IMPACT OF THE STUDY This study unveils the potential effect of rosuvastatin when used in combination with levofloxacin can be used as a topical antibacterial agent to treat S. aureus skin infections.
Collapse
Affiliation(s)
- A A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - M A El-Barrawy
- Department of Medical Microbiology, High Institute of Public Health (HIPH), Alexandria University, Alexandria, Egypt
| | - R A M El-Nagar
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
45
|
Almeida VYG, Rocha JS, Felix DP, Oliveira GP, Lima MA, Farias RL, Zanetti RD, Netto AVG, Zambom CR, Garrido SS, Rocha FV. Cytotoxicity and Antibacterial Activity of Silver Complexes Bearing Semicarbazones and Triphenylphosphine. ChemistrySelect 2020. [DOI: 10.1002/slct.202004093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vitor Y. G. Almeida
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luis, Km 235 São Carlos, São Paulo ZIP 13565-905 Brazil
| | - Josias S. Rocha
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luis, Km 235 São Carlos, São Paulo ZIP 13565-905 Brazil
| | - Débora P. Felix
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luis, Km 235 São Carlos, São Paulo ZIP 13565-905 Brazil
| | - Gabriela P. Oliveira
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luis, Km 235 São Carlos, São Paulo ZIP 13565-905 Brazil
| | - Mauro A. Lima
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luis, Km 235 São Carlos, São Paulo ZIP 13565-905 Brazil
| | - Renan L. Farias
- Department of Analytical Chemistry Physicochemical and Inorganic Chemistry. UNESP – Univ Estadual Paulista, Institute of Chemistry, Av. Prof. Francisco Degni, 55, Araraquara São Paulo ZIP 14800-900 Brazil
| | - Renan D. Zanetti
- Department of Analytical Chemistry Physicochemical and Inorganic Chemistry. UNESP – Univ Estadual Paulista, Institute of Chemistry, Av. Prof. Francisco Degni, 55, Araraquara São Paulo ZIP 14800-900 Brazil
| | - Adelino V. G. Netto
- Department of Analytical Chemistry Physicochemical and Inorganic Chemistry. UNESP – Univ Estadual Paulista, Institute of Chemistry, Av. Prof. Francisco Degni, 55, Araraquara São Paulo ZIP 14800-900 Brazil
| | - Carolina R. Zambom
- Department of Biochemistry and Organic Chemistry. UNESP – Univ Estadual Paulista, Institute of Chemistry Av. Prof. Francisco Degni, 55 Araraquara, São Paulo ZIP 14800-900 Brazil
| | - Saulo S. Garrido
- Department of Biochemistry and Organic Chemistry. UNESP – Univ Estadual Paulista, Institute of Chemistry Av. Prof. Francisco Degni, 55 Araraquara, São Paulo ZIP 14800-900 Brazil
| | - Fillipe V. Rocha
- Chemistry Department, Federal University of São Carlos, Rod. Washington Luis, Km 235 São Carlos, São Paulo ZIP 13565-905 Brazil
| |
Collapse
|
46
|
Fan W, Duan M, Sun Q, Fan B. Simvastatin enhanced antimicrobial effect of Ag + against E. faecalis infection of dentine through PLGA co-delivery submicron particles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2331-2346. [PMID: 32880530 DOI: 10.1080/09205063.2020.1811188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enterococcus faecalis (E. faecalis) is one of the dominant bacteria for refractory infections of teeth. Silver ions (Ag+) have been proved to be a strong bactericide but with high cytotoxicity and discoloration property. Simvastatin is an agent used for dyslipidemia treatment and has anti-inflammatory property. In this study, Ag+ and simvastatin were for the first time used in combination, and poly (lactide-co-glycolide) (PLGA) submicron particles carrying both Ag+ and simvastatin (AgS-PLGA) were fabricated for further investigations. Results confirmed the enhanced antibacterial activity against E. faecalis of Ag+ by simvastatin. AgS-PLGA could release both Ag+ and simvastatin for 24 days and also showed enhanced antibacterial activities. On dentin slices, AgS-PLGA could enter dentinal tubules by ultrasonic activation and inhibit the colonization of E. faecalis. AgS-PLGA showed no cytotoxicity on MC3T3-E1 cells and slight suppressive effect on RAW-264.7 cells, and could reduce the secretion of IL-6 and IL-1β of RAW-264.7 cells. AgS-PLGA could be developed as a new biomaterial for infection and inflammation control for dental and related medical treatments.
Collapse
Affiliation(s)
- Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Mengting Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
47
|
Ghodake V, Vishwakarma J, Vavilala SL, Patravale V. Cefoperazone sodium liposomal formulation to mitigate P. aeruginosa biofilm in Cystic fibrosis infection: A QbD approach. Int J Pharm 2020; 587:119696. [DOI: 10.1016/j.ijpharm.2020.119696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
|
48
|
Righi D, Huber R, Koval A, Marcourt L, Schnee S, Le Floch A, Ducret V, Perozzo R, de Ruvo CC, Lecoultre N, Michellod E, Ebrahimi SN, Rivara-Minten E, Katanaev VL, Perron K, Wolfender JL, Gindro K, Queiroz EF. Generation of Stilbene Antimicrobials against Multiresistant Strains of Staphylococcus aureus through Biotransformation by the Enzymatic Secretome of Botrytis cinerea. JOURNAL OF NATURAL PRODUCTS 2020; 83:2347-2356. [PMID: 32705864 DOI: 10.1021/acs.jnatprod.0c00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biotransformation of a mixture of resveratrol and pterostilbene was performed by the protein secretome of Botrytis cinerea. Several reaction conditions were tested to overcome solubility issues and to improve enzymatic activity. Using MeOH as cosolvent, a series of unusual methoxylated compounds was generated. The reaction was scaled-up, and the resulting mixture purified by semipreparative HPLC-PDA-ELSD-MS. Using this approach, 15 analogues were isolated in one step. Upon full characterization by NMR and HRMS analyses, eight of the compounds were new. The antibacterial activities of the isolated compounds were evaluated in vitro against the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. The selectivity index was calculated based on cytotoxic assays performed against human liver carcinoma cells (HepG2) and the human breast epithelial cell line (MCF10A). Some compounds revealed remarkable antibacterial activity against multidrug-resistant strains of S. aureus with moderate human cell line cytotoxicity.
Collapse
Affiliation(s)
- Davide Righi
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Anaïs Le Floch
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Verena Ducret
- Microbiological Analysis Platform, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Remo Perozzo
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Concetta C de Ruvo
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Nicole Lecoultre
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Emilie Michellod
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Elisabeth Rivara-Minten
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Karl Perron
- Microbiological Analysis Platform, Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Katia Gindro
- Plant Protection Research Division, Mycology Group, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Emerson F Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
49
|
Vishwakarma J, V.L S. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Appl Microbiol Biotechnol 2020; 104:6299-6314. [DOI: 10.1007/s00253-020-10653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
|
50
|
Brilhante RSN, Fonseca XMQC, Pereira VS, Araújo GDS, Oliveira JSD, Garcia LGS, Rodrigues AM, Camargo ZPD, Pereira-Neto WA, Castelo-Branco DDSCM, Cordeiro RDA, Sidrim JJC, Rocha MFG. In vitro inhibitory effect of statins on planktonic cells and biofilms of the Sporothrix schenckii species complex. J Med Microbiol 2020; 69:838-843. [PMID: 32427094 DOI: 10.1099/jmm.0.001195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Sporotrichosis, caused by species of the Sporothrix schenckii complex, is the most prevalent subcutaneous mycosis in many areas of Latin America. Statins are a class of drugs widely used for lowering high sterol levels through their action on 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in the synthesis of sterol.Aim. In this study, the antifungal activity of statins (simvastatin, atorvastatin, pravastatin) against planktonic cells and biofilms of S. schenckii complex species was evaluated, as well as the interaction of pravastatin with classical antifungals (amphotericin B, itraconazole, terbinafine).Methodology. Eighteen strains of Sporothrix species were used. The antifungal susceptibility assay was performed using the broth microdilution method. Mature biofilms were exposed to statins and metabolic activity was measured by the XTT reduction assay.Results. MICs of statins ranged from 8 to 512 μg ml-1 and from 8 to 256 μg ml-1 for filamentous and yeast forms, respectively. Regarding mature biofilms, MICs of 50 % inhibition (SMIC50) were 128 μg ml-1 for simvastatin and atorvastatin and >2048 μg ml-1 for pravastatin. MICs of 90 % inhibition (SMIC90) were 512 μg ml-1 for simvastatin and >2048 μg ml-1 for atorvastatin and pravastatin.Conclusion. These results highlight the antifungal and antibiofilm potential of statins against S. schenckii complex species.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Xhaulla Maria Quariguasi Cunha Fonseca
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Vandbergue Santos Pereira
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil
| | - Jonathas Sales de Oliveira
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Lana Glerieide Silva Garcia
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Anderson Messias Rodrigues
- Cellular Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo, São Paulo, 04023-062, Brazil
| | - Zoilo Pires de Camargo
- Cellular Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo, São Paulo, 04023-062, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - José Júlio Costa Sidrim
- Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| | - Marcos Fábio Gadelha Rocha
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Fortaleza, Ceará, 60714-903, Brazil.,Specialized Center in Medical Mycology, Postgraduate Program in Medical Microbiology, Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil
| |
Collapse
|