1
|
Asadi R, Shadpour P, Nakhaei A. Non-dialyzable uremic toxins and renal tubular cell damage in CKD patients: a systems biology approach. Eur J Med Res 2024; 29:412. [PMID: 39123228 PMCID: PMC11311939 DOI: 10.1186/s40001-024-01951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease presents global health challenges, with hemodialysis as a common treatment. However, non-dialyzable uremic toxins demand further investigation for new therapeutic approaches. Renal tubular cells require scrutiny due to their vulnerability to uremic toxins. METHODS In this study, a systems biology approach utilized transcriptomics data from healthy renal tubular cells exposed to healthy and post-dialysis uremic plasma. RESULTS Differential gene expression analysis identified 983 up-regulated genes, including 70 essential proteins in the protein-protein interaction network. Modularity-based clustering revealed six clusters of essential proteins associated with 11 pathological pathways activated in response to non-dialyzable uremic toxins. CONCLUSIONS Notably, WNT1/11, AGT, FGF4/17/22, LMX1B, GATA4, and CXCL12 emerged as promising targets for further exploration in renal tubular pathology related to non-dialyzable uremic toxins. Understanding the molecular players and pathways linked to renal tubular dysfunction opens avenues for novel therapeutic interventions and improved clinical management of chronic kidney disease and its complications.
Collapse
Affiliation(s)
- Roya Asadi
- Industrial Engineering Department, Faculty of Technical and Engineering, University of Science and Culture (USC), Tehran, Iran
| | - Pejman Shadpour
- Hospital Management Research Center (HMRC), Hasheminejad Kidney Center (HKC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Akram Nakhaei
- Computer Engineering Department, Mazandaran University of Science and Technology (MUST), Babol, Iran.
| |
Collapse
|
2
|
Garbutt TA, Wang Z, Wang H, Ma H, Ruan H, Dong Y, Xie Y, Tan L, Phookan R, Stouffer J, Vedantham V, Yang Y, Qian L, Liu J. Epigenetic Regulation of Cardiomyocyte Maturation by Arginine Methyltransferase CARM1. Circulation 2024; 149:1501-1515. [PMID: 38223978 PMCID: PMC11073921 DOI: 10.1161/circulationaha.121.055738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND During the neonatal stage, the cardiomyocyte undergoes a constellation of molecular, cytoarchitectural, and functional changes known collectively as cardiomyocyte maturation to increase myocardial contractility and cardiac output. Despite the importance of cardiomyocyte maturation, the molecular mechanisms governing this critical process remain largely unexplored. METHODS We leveraged an in vivo mosaic knockout system to characterize the role of Carm1, the founding member of protein arginine methyltransferase, in cardiomyocyte maturation. Using a battery of assays, including immunohistochemistry, immuno-electron microscopy imaging, and action potential recording, we assessed the effect of loss of Carm1 function on cardiomyocyte cell growth, myofibril expansion, T-tubule formation, and electrophysiological maturation. Genome-wide transcriptome profiling, H3R17me2a chromatin immunoprecipitation followed by sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing were used to investigate the mechanisms by which CARM1 (coactivator-associated arginine methyltransferase 1) regulates cardiomyocyte maturation. Finally, we interrogated the human syntenic region to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks for single-nucleotide polymorphisms associated with human heart diseases. RESULTS We report that mosaic ablation of Carm1 disrupts multiple aspects of cardiomyocyte maturation cell autonomously, leading to reduced cardiomyocyte size and sarcomere thickness, severe loss and disorganization of T tubules, and compromised electrophysiological maturation. Genomics study demonstrates that CARM1 directly activates genes that underlie cardiomyocyte cytoarchitectural and electrophysiological maturation. Moreover, our study reveals significant enrichment of human heart disease-associated single-nucleotide polymorphisms in the human genomic region syntenic to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks. CONCLUSIONS This study establishes a critical and multifaceted role for CARM1 in regulating cardiomyocyte maturation and demonstrates that deregulation of CARM1-dependent cardiomyocyte maturation gene expression may contribute to human heart diseases.
Collapse
Affiliation(s)
- Tiffany A. Garbutt
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhenhua Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hong Ma
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Present address: Department of Cardiology, 2 Affiliated Hospital, School of Medicine, Zhejiang University. Hangzhou 310009, China
| | - Hongmei Ruan
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yanhan Dong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lianmei Tan
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ranan Phookan
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joy Stouffer
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasanth Vedantham
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Vineetha VP, Tejaswi HN, Sooraj NS, Das S, Pillai D. Implications of deltamethrin on hematology, cardiac pathology, and gene expression in Nile tilapia (Oreochromis niloticus) and its possible amelioration with Shatavari (Asparagus racemosus). Vet Res Commun 2024; 48:811-826. [PMID: 37930611 DOI: 10.1007/s11259-023-10251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Deltamethrin (DM) is one of the extensively used pyrethroids for controlling ectoparasites. Unfortunately, DM is highly toxic to fish as it primarily targets the sodium channels of the plasma membrane thereby affecting their cardiac and nervous systems. The present study investigated the protective efficacy of Shatavari (Asparagus racemosus) against DM-induced cardiotoxicity in Nile tilapia (Oreochromis niloticus). The fish were segregated into nine groups having 36 fish/group maintained in triplicates exposed to DM (1 µg/L) and fed with a diet containing three different concentrations (10 g, 20 g, and 30 g/kg feed) of aqueous extract of A. racemosus (ARE) for 21 days. DM caused significant alterations in the blood and serum parameters, and expression of cardiac and apoptotic genes compared to the control group. The ARE cotreatment significantly reduced the increase in serum transaminases, creatine kinase, and lactate dehydrogenase levels induced by DM. ARE facilitated the regain of electrolyte (sodium, potassium, chloride) homeostasis and antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, and glutathione in DM-exposed fish. The cardiac histology exhibited loose separation of the cardiomyocytes and myofibrillar loss in the DM group which was ameliorated in the DM-ARE cotreatment group. Significant modulations were observed in the expression of cardiac-specific genes (gata4, myh6, tnT, cox1) and apoptosis signaling genes and proteins (HSP70, bax, bcl-2, caspase3), in the cotreatment group compared to the DM-exposed group. The current study suggests that ARE possesses potential cardioprotective properties that are effective in mitigating the toxic effects induced by DM via ameliorating oxidative stress, electrolyte imbalance, and apoptosis in tilapia.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Hemla Naik Tejaswi
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Nediyirippil Suresh Sooraj
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Sweta Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India.
| |
Collapse
|
4
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Hedaya OM, Venkata Subbaiah KC, Jiang F, Xie LH, Wu J, Khor ES, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. Nat Commun 2023; 14:6166. [PMID: 37789015 PMCID: PMC10547706 DOI: 10.1038/s41467-023-41799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we data-mined human and mouse heart ribosome profiling analyses and identified a double-stranded RNA (dsRNA) structure within the GATA4 uORF that cooperates with the start codon to augment uORF translation and inhibits mORF translation. A trans-acting RNA helicase DDX3X inhibits the GATA4 uORF-dsRNA activity and modulates the translational balance of uORF and mORF. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the broad utility of uORF-dsRNA- or mORF-targeting ASO to regulate mORF translation for other mRNAs. This work demonstrates that the uORF-dsRNA element regulates the translation of multiple mRNAs as a generalizable translational control mechanism. Moreover, we develop a valuable strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon.
Collapse
Affiliation(s)
- Omar M Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Hedaya OM, Subbaiah KCV, Jiang F, Xie LH, Wu J, Khor E, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545153. [PMID: 37397986 PMCID: PMC10312771 DOI: 10.1101/2023.06.15.545153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we identified a double-stranded RNA (dsRNA) structure residing within the GATA4 uORF that augments uORF translation and inhibits mORF translation. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the general utility of uORF-dsRNA- or mORF- targeting ASO to regulate mORF translation for other mRNAs. Our work demonstrates a regulatory paradigm that controls translational efficiency and a useful strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon. Bullet points for discoveries dsRNA within GATA4 uORF activates uORF translation and inhibits mORF translation. ASOs that target the dsRNA can either inhibit or enhance GATA4 mORF translation. ASOs can be used to impede hypertrophy in human cardiomyocytes and mouse hearts.uORF- and mORF-targeting ASOs can be used to control translation of multiple mRNAs.
Collapse
Affiliation(s)
- Omar M. Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Kadiam C. Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - EngSoon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - David H. Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| |
Collapse
|
7
|
Singh BN, Yucel D, Garay BI, Tolkacheva EG, Kyba M, Perlingeiro RCR, van Berlo JH, Ogle BM. Proliferation and Maturation: Janus and the Art of Cardiac Tissue Engineering. Circ Res 2023; 132:519-540. [PMID: 36795845 PMCID: PMC9943541 DOI: 10.1161/circresaha.122.321770] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.
Collapse
Affiliation(s)
- Bhairab N. Singh
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
| | - Dogacan Yucel
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Bayardo I. Garay
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School, MN, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Rita C. R. Perlingeiro
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Jop H. van Berlo
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Brenda M. Ogle
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
- Masonic Cancer Center, University of Minnesota, MN, USA
| |
Collapse
|
8
|
Jiang Y, Geng N, Wang M, Wu W, Feng N, Zhang X. 5-HMF affects cardiovascular development in zebrafish larvae via reactive oxygen species and Wnt signaling pathways. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109452. [PMID: 36067963 DOI: 10.1016/j.cbpc.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a small molecule aldehyde compound produced by the Maillard reaction. As 5-HMF exists in a variety of foods and drugs and is easily ingested by humans, it has attracted extensive toxicological attention in recent years. Relevant research showed that 5-HMF has cytotoxicity, genotoxicity, and tumor effects. However, the cardiovascular effects of 5-HMF are unknown. To investigate the cardiovascular effects of 5-HMF in zebrafish, wild-type and transgenic embryos were treated with 10, 25, and 50 μg/mL of 5-HMF, followed by toxicological evaluation, histological observation, fluorescence observation, cell apoptosis staining, and gene quantitative analysis. High 5-HMF concentrations led to a significant increase in the heart rate and pericardial edema ratio, larger venous sinus-arterial bulb distance, more apoptosis of cardiac cells, cardiac linearization, defects in angiogenesis and cardiovascular development, and apoptosis-related gene expression disorders in zebrafish larvae. The abnormal phenotype caused by 5-HMF can be rescued by antioxidant N-acetyl-L-cysteine (NAC) and Wnt signaling pathway activator BML-284. It is inferred that high 5-HMF concentrations increased the level of reactive oxygen species, inhibited the transduction of the Wnt signaling pathway, and resulted in abnormal cardiovascular development in zebrafish larvae. This study provides a reference for understanding the mechanism of 5-HMF effects on cardiac development.
Collapse
Affiliation(s)
- Yu Jiang
- Department of General Practice, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, China; The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Nan Geng
- Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, No 11 Jinpu road, Suzhou, China
| | - Wen Wu
- Department of General Practice, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, China
| | - Ninghan Feng
- Department of General Practice, The Affiliated Wuxi Clinical College of Nantong University, Jiangsu, China.
| | - Xian Zhang
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Lorenzana-Carrillo MA, Gopal K, Byrne NJ, Tejay S, Saleme B, Das SK, Zhang Y, Haromy A, Eaton F, Mendiola Pla M, Bowles DE, Dyck JR, Ussher JR, Michelakis ED, Sutendra G. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure. Sci Transl Med 2022; 14:eabm3565. [DOI: 10.1126/scitranslmed.abm3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that translocates to the nucleus to regulate transcription factors in different tissues or pathologic states. Although studied extensively in cancer, its biological role in the heart remains unresolved. PKM1 is more abundant than the PKM2 isoform in cardiomyocytes, and thus, we speculated that PKM2 is not genetically redundant to PKM1 and may be critical in regulating cardiomyocyte-specific transcription factors important for cardiac survival. Here, we showed that nuclear PKM2 (
S37
P-PKM2) in cardiomyocytes interacts with prosurvival and proapoptotic transcription factors, including GATA4, GATA6, and P53. Cardiomyocyte-specific PKM2-deficient mice (
Pkm2
Mut Cre
+
) developed age-dependent dilated cardiac dysfunction and had decreased amounts of GATA4 and GATA6 (GATA4/6) but increased amounts of P53 compared to Control Cre
+
hearts. Nuclear PKM2 prevented caspase-1–dependent cleavage and degradation of GATA4/6 while also providing a molecular platform for MDM2-mediated reduction of P53. In a preclinical heart failure mouse model, nuclear PKM2 and GATA4/6 were decreased, whereas P53 was increased in cardiomyocytes. Loss of nuclear PKM2 was ubiquitination dependent and associated with the induction of the E3 ubiquitin ligase TRIM35. In mice, cardiomyocyte-specific TRIM35 overexpression resulted in decreased
S37
P-PKM2 and GATA4/6 along with increased P53 in cardiomyocytes compared to littermate controls and similar cardiac dysfunction to
Pkm2
Mut Cre
+
mice. In patients with dilated left ventricles, increase in TRIM35 was associated with decreased
S37
P-PKM2 and GATA4/6 and increased P53. This study supports a previously unrecognized role for PKM2 as a molecular platform that mediates cell signaling events essential for cardiac survival.
Collapse
Affiliation(s)
- Maria Areli Lorenzana-Carrillo
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Nikole J. Byrne
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Subhash K. Das
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Farah Eaton
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | | | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Jason R. B. Dyck
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - John R. Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Evangelos D. Michelakis
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
10
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
11
|
The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nat Commun 2022; 13:1991. [PMID: 35418170 PMCID: PMC9008061 DOI: 10.1038/s41467-022-29733-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Estrogen-related receptors (ERR) α and γ were shown recently to serve as regulators of cardiac maturation, yet the underlying mechanisms have not been delineated. Herein, we find that ERR signaling is necessary for induction of genes involved in mitochondrial and cardiac-specific contractile processes during human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) differentiation. Genomic interrogation studies demonstrate that ERRγ occupies many cardiomyocyte enhancers/super-enhancers, often co-localizing with the cardiogenic factor GATA4. ERRγ interacts with GATA4 to cooperatively activate transcription of targets involved in cardiomyocyte-specific processes such as contractile function, whereas ERRγ-mediated control of metabolic genes occurs independent of GATA4. Both mechanisms require the transcriptional coregulator PGC-1α. A disease-causing GATA4 mutation is shown to diminish PGC-1α/ERR/GATA4 cooperativity and expression of ERR target genes are downregulated in human heart failure samples suggesting that dysregulation of this circuitry may contribute to congenital and acquired forms of heart failure. Mature cardiac muscle requires high mitochondrial ATP production and specialized contractile proteins. Here the authors demonstrate that cardiomyocyte-specific contractile maturation involves cooperation between the nuclear receptor ERRγ and cardiogenic transcription factor GATA4, but ERRγ controls metabolic genes independently.
Collapse
|
12
|
Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat Commun 2021; 12:4442. [PMID: 34290256 PMCID: PMC8295283 DOI: 10.1038/s41467-021-24743-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
The forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.
Collapse
|
13
|
Fan C, Chen H, Liu K, Wang Z. Fibrinogen-like protein 2 contributes to normal murine cardiomyocyte maturation and heart development. Exp Physiol 2021; 106:1559-1571. [PMID: 33998085 DOI: 10.1113/ep089450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/07/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of fibrinogen-like protein 2 (FGL2) in murine cardiomyocyte maturation? What is the main finding and its importance? This is the first study showing both global Fgl2 knockout and cardiac-specific FGL2 deletion trigger early death and dilated cardiomyopathy. By using an adeno-associated virus (AAV)-mediated CRISPR/Cas9-based somatic mutagenesis system, it was demonstrated that cardiac-specific FGL2 depletion induces ventricular dilatation and remodelling, and disrupts the normal hypertrophic growth and polyploidization of cardiomyocytes. In addition, it was shown that modulation of signal transducer and activator of transcription 3, extracellular signal-regulated kinases 1 and 2 and fibroblast growth factor 2 signalling is associated with loss-of-FGL2-mediated cardiac dysfunction. These results suggest FGL2 is an important determinant of cardiomyocyte maturation. ABSTRACT In the first few weeks after birth in altricial mammals, postnatal cardiomyocytes (CMs) undergo dramatic changes, including cell volume enlargement, cell cycle withdrawal and polyploidization to become mature CMs. Aberrations in this process could disrupt the essential contractility and synchronization of adult CMs, leading to various heart diseases. However, the mechanism of CM maturation is poorly understood. Fibrinogen-like protein 2 (FGL2) is an immune coagulant which participates in maturation of multiple cell types. However, little evidence exists regarding a role of FGL2 in CM maturation. In this study, we observed that global Fgl2-/- pups had high lethality and suffered from cardiac dysfunction before P28. To further confirm the phenotype and study the mechanisms upon FGL2 deficiency, we used an adeno-associated virus (AAV)-mediated CRISPR/Cas9-based somatic mutagenesis system to generate loss-of-function mutations of Fgl2 specifically in CMs. We designed two guide RNAs (gRNAs) exclusively targeting Fgl2 exon1 and produced Fgl2-gRNA AAV9 to deliver to neonatal Cas9 mice. Here, we demonstrated the efficient FGL2 depletion in the heart after Fgl2-gRNA AAV9 delivery. Consistent with the findings in global Fgl2-/- mice, we observed AAV9-mediated FGL2 depletion triggered early death and dilated cardiomyopathy. In addition, FGL2 depletion perturbed the normal hypertrophic growth and polyploidization of maturing CMs. Furthermore, we found modulation of signal transducer and activator of transcription 3, extracellular signal-regulated kinases 1 and 2 and fibroblast growth factor 2 signalling was associated with FGL2 deficiency-mediated cardiac dysfunction. Here, we demonstrate the successful depletion of FGL2 in maturing CMs in vivo and show FGL2 is an important determinant for normal CM maturation.
Collapse
Affiliation(s)
- Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Chen
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Liu
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
14
|
Jin H, Liu K, Tang J, Huang X, Wang H, Zhang Q, Zhu H, Li Y, Pu W, Zhao H, He L, Li Y, Zhang S, Zhang Z, Zhao Y, Qin Y, Pflanz S, Kasmi KEI, Zhang W, Liu Z, Ginhoux F, Ji Y, He B, Wang L, Zhou B. Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nat Commun 2021; 12:2863. [PMID: 34001904 PMCID: PMC8129080 DOI: 10.1038/s41467-021-23197-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
During injury, monocytes are recruited from the circulation to inflamed tissues and differentiate locally into mature macrophages, with prior reports showing that cavity macrophages of the peritoneum and pericardium invade deeply into the respective organs to promote repair. Here we report a dual recombinase-mediated genetic system designed to trace cavity macrophages in vivo by intersectional detection of two characteristic markers. Lineage tracing with this method shows accumulation of cavity macrophages during lung and liver injury on the surface of visceral organs without penetration into the parenchyma. Additional data suggest that these peritoneal or pleural cavity macrophages do not contribute to tissue repair and regeneration. Our in vivo genetic targeting approach thus provides a reliable method to identify and characterize cavity macrophages during their development and in tissue repair and regeneration, and distinguishes these cells from other lineages.
Collapse
Grants
- This study was supported by the National key Research & Development Program of China (2019YFA0110403, 2019YFA0802000, 2018YFA0108100, 2018YFA0107900, 2019YFA0802803, 2020YFA0803202), National Science Foundation of China (8208810001, 31730112, 31625019, 91849202, 31922032, 81872241, 31900625, 32050087, 32070727, 31801215), Strategic Priority Research Program of the Chinese Academy of Sciences (CAS, XDA16010507, XDB19000000), Key Project of Frontier Sciences of CAS (QYZDB-SSW-SMC003), Shanghai Science and Technology Commission (19JC1415700, 19YF1455300, 19ZR1479800, 20QC1401000, 18YF1427600), Collaborative Innovation Program of Shanghai Municipal Health Commission (2020CXJQ01), the Pearl River Talent Recruitment Program of Guangdong Province (2017ZT07S347)
Collapse
Affiliation(s)
- Hengwei Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Juan Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuzhen Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haixiao Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qianyu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingjuan He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shaohua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yufei Zhao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanqing Qin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Stefan Pflanz
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Karim E I Kasmi
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Weiyi Zhang
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yong Ji
- The Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lixin Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
15
|
Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling. Proc Natl Acad Sci U S A 2021; 118:2008861118. [PMID: 33361330 DOI: 10.1073/pnas.2008861118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.
Collapse
|
16
|
Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, Li H, Wang J, Saleem A, Zhou P, Lan F. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater 2020; 109:949-960. [PMID: 33231364 DOI: 10.1002/jbm.b.34759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte like cells derived from human pluripotent stem cells (hPSC-CMs) have a good application perspective in many fields such as disease modeling, drug screening and clinical treatment. However, these are severely hampered by the fact that hPSC-CMs are immature compared to adult human cardiomyocytes. Therefore, many approaches such as genetic manipulation, biochemical factors supplement, mechanical stress, electrical stimulation and three-dimensional culture have been developed to promote the maturation of hPSC-CMs. Recently, establishing in vitro synthetic artificial microenvironments based on the in vivo development program of cardiomyocytes has achieved much attention due to their inherent properties such as stiffness, plasticity, nanotopography and chemical functionality. In this review, the achievements and deficiency of reported synthetic microenvironments that mainly discussed comprehensive biological, chemical, and physical factors, as well as three-dimensional culture were mainly discussed, which have significance to improve the microenvironment design and accelerate the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Rui Zhang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Han
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxuan Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hongjiao Li
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Amina Saleem
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Li J, Hua Y, Miyagawa S, Zhang J, Li L, Liu L, Sawa Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. Int J Mol Sci 2020; 21:E8893. [PMID: 33255277 PMCID: PMC7727666 DOI: 10.3390/ijms21238893] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Relevant, predictive normal, or disease model systems are of vital importance for drug development. The difference between nonhuman models and humans could contribute to clinical trial failures despite ideal nonhuman results. As a potential substitute for animal models, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) provide a powerful tool for drug toxicity screening, modeling cardiovascular diseases, and drug discovery. Here, we review recent hiPSC-CM disease models and discuss the features of hiPSC-CMs, including subtype and maturation and the tissue engineering technologies for drug assessment. Updates from the international multisite collaborators/administrations for development of novel drug discovery paradigms are also summarized.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Cell Design for Tissue Construction, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Design for Tissue Regeneration, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| |
Collapse
|
18
|
Yue P, Xia S, Wu G, Liu L, Zhou K, Liao H, Li J, Zheng X, Guo Y, Hua Y, Zhang D, Li Y. Attenuation of Cardiomyocyte Hypertrophy via Depletion Myh7 using CASAAV. Cardiovasc Toxicol 2020; 21:255-264. [PMID: 33098074 DOI: 10.1007/s12012-020-09617-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Myh7 is a classic biomarker for cardiac remodeling and a potential target to attenuate cardiomyocyte (CM) hypertrophy. This study aimed to identify the dominant function of Myh7 after birth and determine whether its removal would affect CM maturation or contribute to reversal of pathological hypertrophy phenotypes. The CASAAV (CRISPR/Cas9-AAV9-based somatic mutagenesis) technique was used to deplete Myh6 and Myh7, and an AAV dosage of 5 × 109 vg/g was used to generate a mosaic CM depletion model to explore the function of Myh7 in adulthood. CM hypertrophy was induced by transverse aortic constriction (TAC) in Rosa26Cas9-P2A-GFP mice at postnatal day 28 (PND28). Heart function was measured by echocardiography. Isolated CMs and in situ imaging were used to analyze the structure and morphology of CM. We discovered that CASAAV successfully silenced Myh6 and Myh7 in CMs, and early depletion of Myh7 led to mild adulthood lethality. However, the Myh7 PND28-knockout mice had normal heart phenotype and function, with normal cellular size and normal organization of sarcomeres and T-tubules. The TAC mice also received AAV-Myh7-Cre to produce Myh7-knockout CMs, which were also of normal size, and echocardiography demonstrated a reversal of cardiac hypertrophy. In conclusion, Myh7 has a role during the maturation period but rarely functions in adulthood. Thus, the therapeutic time should exceed the period of maturation. These results confirm Myh7 as a potential therapeutic target and indicate that its inhibition could help reverse CM hypertrophy.
Collapse
Affiliation(s)
- Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, Hubei, China
| | - Gang Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, Hubei, China.
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Lu F, Pu WT. The architecture and function of cardiac dyads. Biophys Rev 2020; 12:1007-1017. [PMID: 32661902 PMCID: PMC7429583 DOI: 10.1007/s12551-020-00729-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022] Open
Abstract
Cardiac excitation-contraction (EC) coupling, which links plasma membrane depolarization to activation of cardiomyocyte contraction, occurs at dyads, the nanoscopic microdomains formed by apposition of transverse (T)-tubules and junctional sarcoplasmic reticulum (jSR). In a dyadic junction, EC coupling occurs through Ca2+-induced Ca2+ release. Membrane depolarization opens voltage-gated L-type Ca2+ channels (LTCCs) in the T-tubule. The resulting influx of extracellular Ca2+ into the dyadic cleft opens Ca2+ release channels known as ryanodine receptors (RYRs) in the jSR, leading to the rapid increase in cytosolic Ca2+ that triggers sarcomere contraction. The efficacy of LTCC-RYR communication greatly affects a myriad of downstream intracellular signaling events, and it is controlled by many factors, including T-tubule and jSR structure, spatial distribution of ion channels, and regulatory proteins that closely regulate the activities of channels within dyads. Alterations in dyad architecture and/or channel activity are seen in many types of heart disease. This review will focus on the current knowledge regarding cardiac dyad structure and function, their alterations in heart failure, and new approaches to study the composition and function of dyads.
Collapse
Affiliation(s)
- Fujian Lu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
20
|
Sam J, Mercer EJ, Torregroza I, Banks KM, Evans T. Specificity, redundancy and dosage thresholds among gata4/5/6 genes during zebrafish cardiogenesis. Biol Open 2020; 9:9/6/bio053611. [PMID: 32580940 PMCID: PMC7327998 DOI: 10.1242/bio.053611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Gata4/5/6 sub-family of zinc finger transcription factors regulate many aspects of cardiogenesis. However, critical roles in extra-embryonic endoderm also challenge comprehensive analysis during early mouse cardiogenesis, while zebrafish models have previously relied on knockdown assays. We generated targeted deletions to disrupt each gata4/5/6 gene in zebrafish and analyzed cardiac phenotypes in single, double and triple mutants. The analysis confirmed that loss of gata5 causes cardia bifida and validated functional redundancies for gata5/6 in cardiac precursor specification. Surprisingly, we discovered that gata4 is dispensable for early zebrafish development, while loss of one gata4 allele can suppress the bifid phenotype of the gata5 mutant. The gata4 mutants eventually develop an age-dependent cardiomyopathy. By combining combinations of mutant alleles, we show that cardiac specification depends primarily on an overall dosage of gata4/5/6 alleles rather than a specific gene. We also identify a specific role for gata6 in controlling ventricle morphogenesis through regulation of both the first and second heart field, while loss of both gata4/6 eliminates the ventricle. Thus, different developmental programs are dependent on total dosage, certain pairs, or specific gata4/5/6 genes during embryonic cardiogenesis. This article has an associated First Person interview with the first author of the paper. Summary: Targeted mutations were generated for each of the three gata4/5/6 genes in zebrafish to define functions for individual or combinations of these related transcription factors during cardiogenesis.
Collapse
Affiliation(s)
- Jessica Sam
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily J Mercer
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
21
|
Sakamoto T, Matsuura TR, Wan S, Ryba DM, Kim J, Won KJ, Lai L, Petucci C, Petrenko N, Musunuru K, Vega RB, Kelly DP. A Critical Role for Estrogen-Related Receptor Signaling in Cardiac Maturation. Circ Res 2020; 126:1685-1702. [PMID: 32212902 PMCID: PMC7274895 DOI: 10.1161/circresaha.119.316100] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE The heart undergoes dramatic developmental changes during the prenatal to postnatal transition, including maturation of cardiac myocyte energy metabolic and contractile machinery. Delineation of the mechanisms involved in cardiac postnatal development could provide new insight into the fetal shifts that occur in the diseased heart and unveil strategies for driving maturation of stem cell-derived cardiac myocytes. OBJECTIVE To delineate transcriptional drivers of cardiac maturation. METHODS AND RESULTS We hypothesized that ERR (estrogen-related receptor) α and γ, known transcriptional regulators of postnatal mitochondrial biogenesis and function, serve a role in the broader cardiac maturation program. We devised a strategy to knockdown the expression of ERRα and γ in heart after birth (pn-csERRα/γ [postnatal cardiac-specific ERRα/γ]) in mice. With high levels of knockdown, pn-csERRα/γ knockdown mice exhibited cardiomyopathy with an arrest in mitochondrial maturation. RNA sequence analysis of pn-csERRα/γ knockdown hearts at 5 weeks of age combined with chromatin immunoprecipitation with deep sequencing and functional characterization conducted in human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CM) demonstrated that ERRγ activates transcription of genes involved in virtually all aspects of postnatal developmental maturation, including mitochondrial energy transduction, contractile function, and ion transport. In addition, ERRγ was found to suppress genes involved in fibroblast activation in hearts of pn-csERRα/γ knockdown mice. Disruption of Esrra and Esrrg in mice during fetal development resulted in perinatal lethality associated with structural and genomic evidence of an arrest in cardiac maturation, including persistent expression of early developmental and noncardiac lineage gene markers including cardiac fibroblast signatures. Lastly, targeted deletion of ESRRA and ESRRG in hiPSC-CM derepressed expression of early (transcription factor 21 or TCF21) and mature (periostin, collagen type III) fibroblast gene signatures. CONCLUSIONS ERRα and γ are critical regulators of cardiac myocyte maturation, serving as transcriptional activators of adult cardiac metabolic and structural genes, an.d suppressors of noncardiac lineages including fibroblast determination.
Collapse
Affiliation(s)
| | | | - Shibiao Wan
- Institute for Diabetes, Obesity and Metabolism, Dept. Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | | | - Junil Kim
- Institute for Diabetes, Obesity and Metabolism, Dept. Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kyoung Jae Won
- Institute for Diabetes, Obesity and Metabolism, Dept. Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Rick B. Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, 32827, USA
| | | |
Collapse
|
22
|
Abstract
Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - William Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
23
|
Lee DP, Tan WLW, Anene-Nzelu CG, Lee CJM, Li PY, Luu TDA, Chan CX, Tiang Z, Ng SL, Huang X, Efthymios M, Autio MI, Jiang J, Fullwood MJ, Prabhakar S, Lieberman Aiden E, Foo RSY. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response. Circulation 2020; 139:1937-1956. [PMID: 30717603 DOI: 10.1161/circulationaha.118.036726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The human genome folds in 3 dimensions to form thousands of chromatin loops inside the nucleus, encasing genes and cis-regulatory elements for accurate gene expression control. Physical tethers of loops are anchored by the DNA-binding protein CTCF and the cohesin ring complex. Because heart failure is characterized by hallmark gene expression changes, it was recently reported that substantial CTCF-related chromatin reorganization underpins the myocardial stress-gene response, paralleled by chromatin domain boundary changes observed in CTCF knockout. METHODS We undertook an independent and orthogonal analysis of chromatin organization with mouse pressure-overload model of myocardial stress (transverse aortic constriction) and cardiomyocyte-specific knockout of Ctcf. We also downloaded published data sets of similar cardiac mouse models and subjected them to independent reanalysis. RESULTS We found that the cardiomyocyte chromatin architecture remains broadly stable in transverse aortic constriction hearts, whereas Ctcf knockout resulted in ≈99% abolition of global chromatin loops. Disease gene expression changes correlated instead with differential histone H3K27-acetylation enrichment at their respective proximal and distal interacting genomic enhancers confined within these static chromatin structures. Moreover, coregulated genes were mapped out as interconnected gene sets on the basis of their multigene 3D interactions. CONCLUSIONS This work reveals a more stable genome-wide chromatin framework than previously described. Myocardial stress-gene transcription responds instead through H3K27-acetylation enhancer enrichment dynamics and gene networks of coregulation. Robust and intact CTCF looping is required for the induction of a rapid and accurate stress response.
Collapse
Affiliation(s)
- Dominic Paul Lee
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Wilson Lek Wen Tan
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Chukwuemeka George Anene-Nzelu
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Chang Jie Mick Lee
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Peter Yiqing Li
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Tuan Danh Anh Luu
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Cheryl Xueli Chan
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Zenia Tiang
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Shi Ling Ng
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Xingfan Huang
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (X.H., E.L.A.)
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX (X.H., E.L.A.)
| | - Motakis Efthymios
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Matias I Autio
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| | - Jianming Jiang
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
- Department of Biochemistry, School of Medicine (J.J.), National University of Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute (M.J.F.), National University of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore (M.J.F.)
| | - Shyam Prabhakar
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (X.H., E.L.A.)
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX (X.H., E.L.A.)
| | - Roger Sik-Yin Foo
- Genome Institute of Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., C.X.C., Z.T., S.L.N., M.E., M.I.A., S.P., R.S.-Y.F.)
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (D.P.L., W.L.W.T., C.G.A.-N., C.J.M.L., P.Y.L., T.L.D.A., C.X.C., Z.T., S.L.N., M.E., M.I.A., J.J., R.S.-Y.F.)
| |
Collapse
|
24
|
Affiliation(s)
- Yuxuan Guo
- From the Department of Cardiology, Boston Children's Hospital, MA
| | - William T Pu
- From the Department of Cardiology, Boston Children's Hospital, MA.
| |
Collapse
|
25
|
Chen J, Wang S, Pang S, Cui Y, Yan B, Hawley RG. Functional genetic variants of the GATA4 gene promoter in acute myocardial infarction. Mol Med Rep 2019; 19:2861-2868. [PMID: 30720078 DOI: 10.3892/mmr.2019.9914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/25/2019] [Indexed: 11/05/2022] Open
Abstract
Coronary artery disease (CAD), including acute myocardial infarction (AMI), is a common complex disease; however, the genetic causes remain largely unknown. Recent epidemiological investigations indicated that the incidence of CAD in patients with congenital heart diseases is markedly higher than that observed in healthy controls. It was therefore hypothesized that the dysregulated expression of cardiac developmental genes may be involved in CAD development. GATA binding protein 4 (GATA4) serves essential roles in heart development and coronary vessel formation. In the present study, the GATA4 gene promoter was analyzed in patients with AMI (n=395) and in ethnically‑matched healthy controls (n=397). A total of 14 DNA variants were identified, including two single‑nucleotide polymorphisms. Three novel heterozygous DNA variants (g.31806C>T, g.31900G>C and g.32241C>T) were reported in three patients with AMI. These DNA variants significantly increased the activity of the GATA4 gene promoter. The electrophoretic mobility shift assay revealed that the DNA variant g.32241C>T influenced the binding ability of transcription factors. Taken together, the DNA variants may alter GATA4 gene promoter activity and affect GATA4 levels, thus contributing to AMI development.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
26
|
Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 2019; 598:2941-2956. [PMID: 30571853 DOI: 10.1113/jp276754] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A primary limitation in the use of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) for both patient health and scientific investigation is the failure of these cells to achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive structural, functional and metabolic changes during maturation. By contrast, PSC-CMs fail to fully undergo these developmental processes, instead remaining arrested at an embryonic stage of maturation. There is thus a significant need to understand the biological processes underlying proper CM maturation in vivo. Here, we discuss what is known regarding the initiation and coordination of CM maturation. We postulate that there is a critical perinatal window, ranging from embryonic day 18.5 to postnatal day 14 in mice, in which the maturation process is exquisitely sensitive to perturbation. While the initiation mechanisms of this process are unknown, it is increasingly clear that maturation proceeds through interconnected regulatory circuits that feed into one another to coordinate concomitant structural, functional and metabolic CM maturation. We highlight PGC1α, SRF and the MEF2 family as transcription factors that may potentially mediate this cross-talk. We lastly discuss several emerging technologies that will facilitate future studies into the mechanisms of CM maturation. Further study will not only produce a better understanding of its key processes, but provide practical insights into developing a robust strategy to produce mature PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Chulan Kwon
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
27
|
Liu F, Han X, Li N, Liu K, Kang W. Aconitum alkaloids induce cardiotoxicity and apoptosis in embryonic zebrafish by influencing the expression of cardiovascular relative genes. Toxicol Lett 2019; 305:10-18. [PMID: 30639578 DOI: 10.1016/j.toxlet.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/27/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
Abstract
Aconitine (AC) and mesaconitine (MA) are major bioactive diterpenoid alkaloids derived from herbal aconitum plants. Emerging evidence indicates that AC plays a pivotal role in the cardiotoxicity for aconite poisoning. However, the cardiotoxicity data of MA, especially those on the difference between AC and MA are quite limited. Zebrafish embryos were used in this study for toxicological screening, and the cardiac morphology and function were observed. Embryos were analyzed by means of high-performance liquid chromatography (HPLC) after exposure and pharmacokinetic behaviors were also investigated. Results showed that 1.5% of the aconitum alkaloids penetrated into the zebrafish embryos. 2.5 μg/L AC and 20 μg/L MA caused a deficient cardiovascular system with yolk sac hemorrhage and early cardiac dysfunctions were observed in 96 h post-fertilization. AC showed greater cardiotoxicity than MA by comparing the EC50 of pericardium edema. Aconitum alkaloids exposure also resulted in a significant decrease in the expression of cardiac genes (Tbx5, Gata4, and Nkx2.5) from an early stage (12-24 hpf), which may partly explained that the death caused by aconitum is most likely to occur within the first 24 h. In addition, a high percentage of apoptotic cells was observed in the brain region, which identified another potential target of the DDA action in zebrafish embryos.
Collapse
Affiliation(s)
- Fei Liu
- School of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China; School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xu Han
- Institute of Viral Disease, Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Nan Li
- School of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Kun Liu
- School of Basic Medical, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
28
|
Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Ma Q, Guatimosim S, Hu Y, Varuzhanyan G, VanDusen NJ, Zhang D, Chan DC, Yuan GC, Seidman CE, Seidman JG, Pu WT. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun 2018; 9:3837. [PMID: 30242271 PMCID: PMC6155060 DOI: 10.1038/s41467-018-06347-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal's lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Isha Sethi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Christopher N Toepfer
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Radcliffe Department of Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yulan Ai
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Yongwu Hu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Wenzhou Medical University, School of Life Sciences, Wenzhou, China
| | - Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Nathan J VanDusen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Donghui Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD, 20815, USA
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
29
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
30
|
Sun C, Kontaridis MI. Physiology of Cardiac Development: From Genetics to Signaling to Therapeutic Strategies. CURRENT OPINION IN PHYSIOLOGY 2017. [PMID: 29532042 DOI: 10.1016/j.cophys.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The heart is one of the first organs to form and function during embryonic development. It is comprised of multiple cell lineages, each integral for proper cardiac development, and include cardiomyocytes, endothelial cells, epicardial cells and neural crest cells. The molecular mechanisms regulating cardiac development and morphogenesis are dependent on signaling crosstalk between multiple lineages through paracrine interactions, cell-ECM interactions, and cell-cell interactions, which together, help facilitate survival, growth, proliferation, differentiation and migration of cardiac tissue. Aberrant regulation of any of these processes can induce developmental disorders and pathological phenotypes. Here, we will discuss each of these processes, the genetic factors that contribute to each step of cardiac development, as well as the current and future therapeutic targets and mechanisms of heart development and disease. Understanding the complex interactions that regulate cardiac development, proliferation and differentiation is not only vital to understanding the causes of congenital heart defects, but to also finding new therapeutics that can treat both pediatric and adult cardiac disease in the near future.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Yu Y, Lei W, Yang J, Wei YC, Zhao ZL, Zhao ZA, Hu S. Functional mutant GATA4 identification and potential application in preimplantation diagnosis of congenital heart diseases. Gene 2017; 641:349-354. [PMID: 29111206 DOI: 10.1016/j.gene.2017.10.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Congenital heart diseases (CHDs) affect nearly 1% of all neonates and show an increasing tendency. The complex inheritance patterns and multifactorial etiologies make these defects difficult to be identified before complete manifestation. Genetic screening has identified hundreds of specific mutant sites for CHDs based on cardiac transcriptional factors. GATA4 is a master regulator required for ventral morphogenesis and heart tube formation. Its mutation is most widely studied in CHDs. In the past decades, over 100 GATA4 mutant sites have been reported, but only a few functional sites have been identified. Thus, it is important to distinguish deleterious sites from neutral sites. In silico prediction of functional sites using bioinformatics tools can provide the valuable information, but it is not solid enough. Here, the roles of GATA4 in heart development is discussed in detail and its mutation sites in protein coding region are summarized systematically, providing an integrated resource for GATA4 mutations. Furthermore, we discussed the advantage and disadvantage of different methods for functional mutation identification. Especially, the disease model of induced pluripotent stem cell is emerging as a powerful tool to assess GATA4 mutations in human. In the recent years, single-cell based high-throughput sequencing is being applied in preimplantation diagnosis and assisted reproduction progressively, providing a new strategy for the prevention of congenital diseases as we discussed. Based on functional mutant sites identification, preimplantation diagnosis will contribute to CHDs prevention eventually.
Collapse
Affiliation(s)
- You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China
| | - Junjie Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China
| | - Yan-Chang Wei
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zhen-Ling Zhao
- The People's Hospital of Bozhou Anhui, Bozhou 236800, China
| | - Zhen-Ao Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China; Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, China.
| |
Collapse
|
32
|
Zhang D, Li Y, Heims-Waldron D, Bezzerides V, Guatimosim S, Guo Y, Gu F, Zhou P, Lin Z, Ma Q, Liu J, Wang DZ, Pu WT. Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation. Circ Res 2017; 122:74-87. [PMID: 29021295 DOI: 10.1161/circresaha.117.311349] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. OBJECTIVE To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. METHODS AND RESULTS Tfam inactivation by Nkx2.5Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. CONCLUSIONS Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Donghui Zhang
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - Yifei Li
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Danielle Heims-Waldron
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Vassilios Bezzerides
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Silvia Guatimosim
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Fei Gu
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Pingzhu Zhou
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Zhiqiang Lin
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Qing Ma
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Jianming Liu
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Da-Zhi Wang
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - William T Pu
- From the Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., D.H.-W., V.B., S.G., Y.G., F.G., P.Z., Z.L., Q.M., J.L., D.-Z.W., W.T.P.); Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China (D.Z.); Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan (Y.L.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
33
|
VanDusen NJ, Guo Y, Gu W, Pu WT. CASAAV: A CRISPR-Based Platform for Rapid Dissection of Gene Function In Vivo. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2017; 120:31.11.1-31.11.14. [PMID: 28967995 PMCID: PMC5654550 DOI: 10.1002/cpmb.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vivo loss-of-function studies are currently limited by the need for appropriate conditional knockout alleles. CRISPR/Cas9 is a powerful tool commonly used to induce loss-of-function mutations in vitro. However, CRISPR components have been difficult to deploy in vivo. To address this problem, we developed the CASAAV (CRISPR/Cas9/AAV-based somatic mutagenesis) platform, in which recombinant adeno-associated virus (AAV) is used to deliver tandem guide RNAs and Cre recombinase to Cre-dependent Cas9-P2A-GFP mice. Because Cre is under the control of a tissue-specific promoter, this system allows temporally controlled, cell type-selective knockout of virtually any gene to be obtained within a month using only one mouse line. Here, we focus on gene disruption in cardiomyocytes, but the system could easily be adapted to inactivate genes in other cell types transduced by AAV. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nathan J VanDusen
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Weiliang Gu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
34
|
Guo Y, VanDusen NJ, Zhang L, Gu W, Sethi I, Guatimosim S, Ma Q, Jardin BD, Ai Y, Zhang D, Chen B, Guo A, Yuan GC, Song LS, Pu WT. Analysis of Cardiac Myocyte Maturation Using CASAAV, a Platform for Rapid Dissection of Cardiac Myocyte Gene Function In Vivo. Circ Res 2017; 120:1874-1888. [PMID: 28356340 PMCID: PMC5466492 DOI: 10.1161/circresaha.116.310283] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Loss-of-function studies in cardiac myocytes (CMs) are currently limited by the need for appropriate conditional knockout alleles. The factors that regulate CM maturation are poorly understood. Previous studies on CM maturation have been confounded by heart dysfunction caused by whole organ gene inactivation. OBJECTIVE To develop a new technical platform to rapidly characterize cell-autonomous gene function in postnatal murine CMs and apply it to identify genes that regulate transverse tubules (T-tubules), a hallmark of mature CMs. METHODS AND RESULTS We developed CRISPR/Cas9/AAV9-based somatic mutagenesis, a platform in which AAV9 delivers tandem guide RNAs targeting a gene of interest and cardiac troponin-T promoter-driven Cre to RosaCas9GFP/Cas9GFP neonatal mice. When directed against junctophilin-2 (Jph2), a gene previously implicated in T-tubule maturation, we achieved efficient, rapid, and CM-specific JPH2 depletion. High-dose AAV9 ablated JPH2 in 64% CMs and caused lethal heart failure, whereas low-dose AAV9 ablated JPH2 in 22% CMs and preserved normal heart function. In the context of preserved heart function, CMs lacking JPH2 developed T-tubules that were nearly morphologically normal, indicating that JPH2 does not have a major, cell-autonomous role in T-tubule maturation. However, in hearts with severe dysfunction, both adeno-associated virus-transduced and nontransduced CMs exhibited T-tubule disruption, which was more severe in the transduced subset. These data indicate that cardiac dysfunction disrupts T-tubule structure and that JPH2 protects T-tubules in this context. We then used CRISPR/Cas9/AAV9-based somatic mutagenesis to screen 8 additional genes for required, cell-autonomous roles in T-tubule formation. We identified RYR2 (Ryanodine Receptor-2) as a novel, cell-autonomously required T-tubule maturation factor. CONCLUSIONS CRISPR/Cas9/AAV9-based somatic mutagenesis is a powerful tool to study cell-autonomous gene functions. Genetic mosaics are invaluable to accurately define cell-autonomous gene function. JPH2 has a minor role in normal T-tubule maturation but is required to stabilize T-tubules in the failing heart. RYR2 is a novel T-tubule maturation factor.
Collapse
Affiliation(s)
- Yuxuan Guo
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Lina Zhang
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Weiliang Gu
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Isha Sethi
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Silvia Guatimosim
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Qing Ma
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Blake D Jardin
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Yulan Ai
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Donghui Zhang
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Biyi Chen
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Ang Guo
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Guo-Cheng Yuan
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - Long-Sheng Song
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| | - William T Pu
- From the Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., Q.M., B.D.J., Y.A., D.Z., W.T.P.); Institute of Basic Medicine (L.Z.) and Pharmacology, School of Pharmacy (W.G.), Shanghai University of Traditional Chinese Medicine, China; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (I.S., G.-C.Y.); Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (S.G.); Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City (B.C., A.G., L.-S.S.); Veterans Affairs Medical Center, Iowa City (L.-S.S.); and Harvard Stem Cell Institute, Cambridge, MA (W.T.P.).
| |
Collapse
|
35
|
Ai S, Yu X, Li Y, Peng Y, Li C, Yue Y, Tao G, Li C, Pu WT, He A. Divergent Requirements for EZH1 in Heart Development Versus Regeneration. Circ Res 2017; 121:106-112. [PMID: 28512107 DOI: 10.1161/circresaha.117.311212] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Polycomb repressive complex 2 is a major epigenetic repressor that deposits methylation on histone H3 on lysine 27 (H3K27me) and controls differentiation and function of many cells, including cardiac myocytes. EZH1 and EZH2 are 2 alternative catalytic subunits with partial functional redundancy. The relative roles of EZH1 and EZH2 in heart development and regeneration are unknown. OBJECTIVE We compared the roles of EZH1 versus EZH2 in heart development and neonatal heart regeneration. METHODS AND RESULTS Heart development was normal in Ezh1-/- (Ezh1 knockout) and Ezh2f/f::cTNT-Cre (Ezh2 knockout) embryos. Ablation of both genes in Ezh1-/-::Ezh2f/f::cTNT-Cre embryos caused lethal heart malformations, including hypertrabeculation, compact myocardial hypoplasia, and ventricular septal defect. Epigenome and transcriptome profiling showed that derepressed genes were upregulated in a manner consistent with total EZH dose. In neonatal heart regeneration, Ezh1 was required, but Ezh2 was dispensable. This finding was further supported by rescue experiments: cardiac myocyte-restricted re-expression of EZH1 but not EZH2 restored neonatal heart regeneration in Ezh1 knockout. In myocardial infarction performed outside of the neonatal regenerative window, EZH1 but not EZH2 likewise improved heart function and stimulated cardiac myocyte proliferation. Mechanistically, EZH1 occupied and activated genes related to cardiac growth. CONCLUSIONS Our work unravels divergent mechanisms of EZH1 in heart development and regeneration, which will empower efforts to overcome epigenetic barriers to heart regeneration.
Collapse
Affiliation(s)
- Shanshan Ai
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Xianhong Yu
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yumei Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yong Peng
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Chen Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yanzhu Yue
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Ge Tao
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Chuanyun Li
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - William T Pu
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Aibin He
- From the Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (S.A., Y.L., C.L., Y.Y., C.L., A.H.); Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, China (X.Y., Y.P., A.H.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX (G.T.); Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
36
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
37
|
Repair Injured Heart by Regulating Cardiac Regenerative Signals. Stem Cells Int 2016; 2016:6193419. [PMID: 27799944 PMCID: PMC5075315 DOI: 10.1155/2016/6193419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury.
Collapse
|
38
|
Haque ZK, Wang DZ. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci 2016; 74:983-1000. [PMID: 27714411 DOI: 10.1007/s00018-016-2373-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
In the past decades, the cardiovascular community has laid out the fundamental signaling cascades that become awry in the cardiomyocyte during the process of pathologic cardiac remodeling. These pathways are initiated at the cell membrane and work their way to the nucleus to mediate gene expression. Complexity is multiplied as the cardiomyocyte is subjected to cross talk with other cells as well as a barrage of extracellular stimuli and mechanical stresses. In this review, we summarize the signaling cascades that play key roles in cardiac function and then we proceed to describe emerging concepts of how the cardiomyocyte senses the mechanical and environmental stimuli to transition to the deleterious genetic program that defines pathologic cardiac remodeling. As a highlighting example of these processes, we illustrate the transition from a compensated hypertrophied myocardium to a decompensated failing myocardium, which is clinically manifested as decompensated heart failure.
Collapse
Affiliation(s)
- Zaffar K Haque
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
39
|
Wakimoto H, Seidman JG, Foo RSY, Jiang J. AAV9 Delivery of shRNA to the Mouse Heart. ACTA ACUST UNITED AC 2016; 115:23.16.1-23.16.9. [PMID: 27366889 DOI: 10.1002/cpmb.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA interference (RNAi) is a rapid approach to dissect loss-of-function phenotype for a gene of interest. However, it is challenging to perform RNAi in specific organs and tissues in vivo. Engineered viruses can provide a useful tool for delivery of small RNAs in vivo. Recombinant adeno-associated viruses (rAAVs) are the preferred method for delivering genes or gene modulators to target cells due to their high titer, low immune response, ability to transduce many types of cell, and overall safety. In this unit, we describe protocols for use of rAAVs as a cargo to deliver miRNA backbone-based shRNA controlled by a cardiac-specific promoter into the mouse heart. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Roger S Y Foo
- Cardiovascular Research Institute (CVRI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianming Jiang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Research Institute (CVRI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|