1
|
Phochantachinda S, Photcharatinnakorn P, Chatchaisak D, Sakcamduang W, Chansawhang A, Buranasinsup S, Suemanotham N, Chantong B. Plasma-based proteomics analysis of molecular pathways in canine diabetes mellitus after astaxanthin supplementation. PLoS One 2025; 20:e0321509. [PMID: 40333882 PMCID: PMC12057883 DOI: 10.1371/journal.pone.0321509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/06/2025] [Indexed: 05/09/2025] Open
Abstract
The hyperglycemic state in diabetes mellitus induces oxidative stress and inflammation, contributing to diabetic tissue damage and associated complications. Astaxanthin, a potent antioxidant carotenoid, has been investigated for its potential to prevent and manage diabetes across various species; however, its effect on client-owned dogs remains poorly studied. This study explored the impact of astaxanthin supplementation on canine diabetes mellitus using a proteomics approach. A total of 18 client-owned dogs were enrolled: 6 dogs with diabetes mellitus and 12 clinically healthy dogs. The diabetic dogs received their standard treatment regimen along with daily oral supplementation of 12 mg of astaxanthin (1.5-2.4 mg/kg) for 90 days. Plasma samples were collected at the beginning and end of the study period for proteomics analysis. After astaxanthin supplementation, significant alterations in the expression of proteins associated with the complement system, coagulation cascade, JAK-STAT signaling, and protein kinase C signaling (all of which contribute to inflammation and oxidative stress) were observed. Astaxanthin exhibited potential for reducing diabetes-associated complications, such as insulin resistance, vascular dysfunction, nephropathy, and cardiac issues, even though it did not affect clinical parameters (hematology, plasma biochemistry, blood glucose, and serum fructosamine). These findings suggest that astaxanthin may be a valuable complementary therapy for managing diabetes-related complications in canines.
Collapse
Affiliation(s)
- Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Namphung Suemanotham
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Tran HT, Rodprasert W, Padeta I, Oontawee S, Purbantoro SD, Thongsit A, Siriarchavatana P, Srisuwatanasagul S, Egusa H, Osathanon T, Sawangmake C. Establishment of subcutaneous transplantation platform for delivering induced pluripotent stem cell-derived insulin-producing cells. PLoS One 2025; 20:e0318204. [PMID: 39883721 PMCID: PMC11781742 DOI: 10.1371/journal.pone.0318204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study. With a multi-step induction protocol, the functional and matured IPCs were generated by 13 days with a long-term survival capability. Further double encapsulation of mGF-iPSC-derived IPCs (mGF-iPSC-IPCs) could preserve the insulin secretion capacity and the transplantation potential of the generated IPCs. To address the potential on IPC transplantation, a 2-step subcutaneous transplantation procedure was established, comprising 1) vascularized subcutaneous pocket formation and 2) encapsulated IPC bead transplantation. The in vivo testing confirmed the safety and efficiency of the platform along with less inflammatory response which may help minimize tissue reaction and graft rejection. Further preliminary in vivo testing on subcutaneous IPC-bead transplantation in an induced type I diabetic mouse model showed beneficial trends on blood glucose control and survival rate sustainability of diabetic mice. Taken together, an established mGF-iPSC-IPC generation protocol in this study will be the potential backbone for developing the iPSC-derived IPC production employing human and animal cell resources. As well as the potential further development of IPC transplantation platform for diabetes treatment in human and veterinary practices using an established subcutaneous encapsulated IPC-bead transplantation platform presented in this study.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Second Century Fund (C2F) Chulalongkorn University for Doctoral Scholarship, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, The International Graduate Program of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Irma Padeta
- Second Century Fund (C2F) Chulalongkorn University for Doctoral Scholarship, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, The International Graduate Program of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Saranyou Oontawee
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Steven dwi Purbantoro
- Second Century Fund (C2F) Chulalongkorn University for Doctoral Scholarship, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, The International Graduate Program of Veterinary Science and Technology (VST), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Anatcha Thongsit
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
| | - Parkpoom Siriarchavatana
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Medicine, Western University, Kanchanaburi, Thailand
| | - Sayamon Srisuwatanasagul
- Faculty of Veterinary Science, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Thanaphum Osathanon
- Faculty of Dentistry, Dental Stem Cell Biology Research Unit and Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, Center of Excellence in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Department of Pharmacology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Johnson-Pitt A, Catchpole B, Davison LJ. Exocrine pancreatic inflammation in canine diabetes mellitus - An active offender? Vet J 2024; 308:106241. [PMID: 39243807 DOI: 10.1016/j.tvjl.2024.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The purpose of this review is to examine the current scientific literature regarding the interplay between the exocrine and endocrine pancreas, specifically the role of the exocrine pancreas in the pathogenesis of canine diabetes mellitus. β-cell death caused by exocrine pancreatic inflammation is thought to be an under-recognised contributor to diabetes mellitus in dogs, with up to 30 % of canine diabetic patients with concurrent evidence of pancreatitis at post-mortem examination. Current diagnostics for pancreatitis are imprecise, and treatments for both diseases individually have their own limitations: diabetes through daily insulin injections, which has both welfare and financial implications for the stakeholders, and pancreatitis through treatment of clinical signs, such as analgesia and anti-emetics, rather than targeted treatment of the underlying cause. This review will consider the evidence for exocrine pancreatic inflammation making an active contribution to pancreatic β-cell loss and insulin-deficiency diabetes in the dog and explore current and potential future diagnostic and treatment avenues to improve outcomes for these patients.
Collapse
Affiliation(s)
- Arielle Johnson-Pitt
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire AL9 7TA, UK.
| | - Brian Catchpole
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Lucy J Davison
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire AL9 7TA, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
4
|
Rak MB, Gilor C, Niessen SJM, Furrow E. Spontaneous remission and relapse of diabetes mellitus in a male dog. J Vet Intern Med 2024; 38:1152-1156. [PMID: 38240130 PMCID: PMC10937483 DOI: 10.1111/jvim.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024] Open
Abstract
An 8-year-old male neutered Miniature Schnauzer was diagnosed with diabetes mellitus based on fasting hyperglycemia and glucosuria after a 2-week history of polydipsia and periuria, in line with the Agreeing Language in Veterinary Endocrinology consensus definition. Treatment of insulin and dietary management was initiated. The insulin dose was gradually reduced and eventually discontinued over the next year based on spot blood glucose concentrations that revealed euglycemia or hypoglycemia. After discontinuation, the dog remained free of clinical signs for 1 year until it was again presented for polyuria/polydipsia with fasting hyperglycemia and glucosuria. Insulin therapy was resumed and continued for the remainder of the dog's life. Although diabetic remission often occurs in cats and humans, the presumed etiopathogenesis of pancreatic beta cell loss makes remission rare in dogs, except for cases occurring with diestrus or pregnancy. This case demonstrates that diabetic remission is possible in dogs, even in cases without an identifiable reversible trigger.
Collapse
Affiliation(s)
- Mariola B. Rak
- Department of Small Animal Clinical Sciences at the College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Chen Gilor
- Department of Small Animal Clinical SciencesCollege of Veterinary Medicine, University of FloridaGainesvilleFloridaUSA
| | - Stijn J. M. Niessen
- Department of Clinical Science and ServicesRoyal Veterinary College, University of LondonHertfordshireUK
- Veterinary Specialist Consultations & VIN EuropeHilversumThe Netherlands
| | - Eva Furrow
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, University of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
5
|
Vaitaitis G, Webb T, Webb C, Sharkey C, Sharkey S, Waid D, Wagner DH. Canine diabetes mellitus demonstrates multiple markers of chronic inflammation including Th40 cell increases and elevated systemic-immune inflammation index, consistent with autoimmune dysregulation. Front Immunol 2024; 14:1319947. [PMID: 38318506 PMCID: PMC10839093 DOI: 10.3389/fimmu.2023.1319947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction Canine diabetes mellitus (CDM) is a relatively common endocrine disease in dogs. Many CDM clinical features resemble human type 1 diabetes mellitus (T1DM), but lack of autoimmune biomarkers makes calling the disease autoimmune controversial. Autoimmune biomarkers linking CDM and T1DM would create an alternative model for drug development impacting both human and canine disease. Methods We examined peripheral blood of diagnosed CDM dog patients comparing it to healthy control (HC) dogs. Dogs were recruited to a study at the Colorado State University Veterinary Teaching Hospital and blood samples collected for blood chemistry panels, complete blood counts (CBC), and immunologic analysis. Markers of disease progression such as glycated albumin (fructosamine, the canine equivalent of human HbA1c) and c-peptide were addressed. Results Significant differences in adaptive immune lymphocytes, innate immune macrophages/monocytes and neutrophils and differences in platelets were detected between CDM and HC based on CBC. Significant differences in serum glucose, cholesterol and the liver function enzyme alkaline phosphatase were also detected. A systemic immune inflammation index (SII) and chronic inflammation index (CII) as measures of dynamic changes in adaptive and innate cells between inflammatory and non-inflammatory conditions were created with highly significant differences between CDM and HC. Th40 cells (CD4+CD40+ T cells) that are demonstrably pathogenic in mouse T1DM and able to differentiate diabetic from non-diabetic subjects in human T1DM were significantly expanded in peripheral blood mononuclear cells. Conclusions Based on each clinical finding, CDM can be categorized as an autoimmune condition. The association of significantly elevated Th40 cells in CDM when compared to HC or to osteoarthritis, a chronic but non-autoimmune disease, suggests peripheral blood Th40 cell numbers as a biomarker that reflects CDM chronic inflammation. The differences in SII and CII further underscore those findings.
Collapse
Affiliation(s)
- Gisela Vaitaitis
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tracy Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Craig Webb
- Department of Clinical Sciences, The Colorado State University Veterinary Teaching Hospital, Fort Collins, CO, United States
| | - Christina Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Steve Sharkey
- Department of Clinical Sciences, Montclaire Animal Clinic, Denver, CO, United States
| | - Dan Waid
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| | - David H. Wagner
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Op-T, LLC, Fitzsimmons Innovation Bioscience, Aurora, CO, United States
| |
Collapse
|
6
|
Heeley AM, Brodbelt DC, O'Neill DG, Church DB, Davison LJ. Assessment of glucocorticoid and antibiotic exposure as risk factors for diabetes mellitus in selected dog breeds attending UK primary-care clinics. Vet Rec 2023; 192:e2785. [PMID: 37004211 PMCID: PMC10952602 DOI: 10.1002/vetr.2785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is an important endocrine disorder in dogs. This study explored prior exposure to glucocorticoids or antibiotic treatment as risk factors for developing DM in dogs attending primary-care VetCompass clinics in the UK. METHODS A breed frequency matched case-control study nested in a cohort of dogs (n = 480,469) aged 3 years or over was used to explore associations between glucocorticoid and antibiotic exposure and the odds of developing DM. RESULTS A total of 565 cases and 2179 controls were included. Dogs with DM had over four times the odds of exposure to glucocorticoids within 6 weeks prior to diagnosis (odds ratio [OR] 4.07, 95% confidence interval [CI] 2.41-6.89, p < 0.001) compared to controls within 6 weeks prior to a randomly selected quasi-date of diagnosis. Dogs that had only one unique documented antibiotic course had a decreased odds of developing DM (OR 0.65, 95% CI 0.46-0.91, p = 0.012) compared to dogs that had no documented courses of antibiotics. LIMITATIONS This study only included selected breeds, so the results may not be generalisable to all dog breeds. CONCLUSIONS Exposure to glucocorticoids is associated with a substantial increase in the risk of developing DM for the dog breeds included in this analysis.
Collapse
Affiliation(s)
- Angela M. Heeley
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dave C. Brodbelt
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dan G. O'Neill
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - David B. Church
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| | - Lucy J. Davison
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| |
Collapse
|
7
|
Fleeman L, Gilor C. Insulin Therapy in Small Animals, Part 3: Dogs. Vet Clin North Am Small Anim Pract 2023; 53:645-656. [PMID: 36906466 DOI: 10.1016/j.cvsm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Insulin therapy should ideally mimic a basal-bolus pattern. Lente, NPH, NPH/regular mixes, PZI, glargine U100, and detemir are intermediate-acting formulations that are administered twice daily in dogs. To minimize hypoglycemia, intermediate-acting insulin protocols are usually geared towards alleviating (but not eliminating) clinical signs. Insulin glargine U300 and insulin degludec meet the criteria for an effective and safe basal insulin in dogs. In most dogs, good control of clinical signs is achieved when using a basal insulin alone. In a small minority, bolus insulin at the time of at least one meal per day may be added to optimize glycemic control.
Collapse
Affiliation(s)
- Linda Fleeman
- Animal Diabetes Australia, Melbourne, Victoria, Australia.
| | - Chen Gilor
- Small Animal Internal Medicine, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32608, USA
| |
Collapse
|
8
|
O'Kell AL, Davison LJ. Etiology and Pathophysiology of Diabetes Mellitus in Dogs. Vet Clin North Am Small Anim Pract 2023; 53:493-510. [PMID: 36854636 DOI: 10.1016/j.cvsm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Canine diabetes results from a wide spectrum of clinical pathophysiological processes that cause a similar set of clinical signs. Various causes of insulin deficiency and beta cell loss, insulin resistance, or both characterize the disease, with genetics and environment playing a role. Understanding the genetic and molecular causes of beta cell loss will provide future opportunities for precision medicine, both from a therapeutic and preventative perspective. This review presents current knowledge of the etiology and pathophysiology of canine diabetes, including the importance of disease classification. Examples of potential targets for future precision medicine-based approaches to therapy are discussed.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32610, USA.
| | - Lucy J Davison
- Royal Veterinary College, Clinical Sciences and Services, Hawkshead Lane, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
9
|
Seasonality and geography of diabetes mellitus in United States of America dogs. PLoS One 2022; 17:e0272297. [PMID: 35930583 PMCID: PMC9355170 DOI: 10.1371/journal.pone.0272297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
The diagnosis of type 1 diabetes mellitus (DM) in humans is associated with high altitude, few sunshine hours, cold climate, and winter. The goals of this study were to investigate seasonal and geographic patterns of DM diagnosis in United States of America (USA) dogs with juvenile and mature onset DM. Data were collected by means of an online survey widely distributed in the USA through breed clubs, academic veterinary institutions, private veterinary referral practices, social media outlets, and the American Kennel Club. Juvenile DM (JDM) and mature onset DM were defined as DM with an age of onset <365 days and DM with an age of onset ≥365 days, respectively. Meteorological seasons were defined as: winter from December through February, spring from March through May, summer from June through August, and fall from September through November. Four geographic regions were also defined as the West, North, South, and Central regions of the USA. Nonoverlapping 95% confidence intervals (CI) for season, geographic region, and breed specific proportions of dogs with JDM were considered statistically significantly different. The study included 933 dogs with mature onset DM and 27 dogs with JDM. Dogs were diagnosed with DM significantly more in the winter and northern USA compared to all other seasons and all other geographic regions, respectively. The prevalence of JDM among dogs with DM was 2.8%. The proportion of dogs with JDM among pure breeds was not significantly different than the proportion of JDM in mixed breed dogs. It is concluded that winter and cold climate could be shared environmental factors influencing DM expression in dogs and humans. Additionally, pure breed dogs do not appear to be at increased risk for JDM compared to mixed breed dogs, indicating that factors other than genetics could influence spontaneous JDM development in dogs.
Collapse
|
10
|
Gonzlez-Villar F, Pérez-Bravo F. Analysis of insulin resistance using the non-linear homeostatic model assessment index in overweight canines. Vet World 2022; 15:1408-1412. [PMID: 35993079 PMCID: PMC9375204 DOI: 10.14202/vetworld.2022.1408-1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Diabetes mellitus is a carbohydrate metabolism disorder produced mainly by a deficit in insulin production or insulin resistance. The homeostatic model assessment (HOMA) is a broad method for estimating insulin resistance and β-cell function. This study aimed to evaluate the stages of insulin resistance using non-linear HOMA index analysis in normoglycemic normal weight and obese canines. Materials and Methods: Insulin resistance was evaluated using the mathematical HOMA non-linear model in canines with different body and glycemic conditions. Forty canines were studied, including 20 normoglycemic normal weight canines and 20 normoglycemic obese canines. Chi-square statistical test was applied, in which the body condition and HOMA non-linear index were evaluated. The Spearman correlation test was conducted to evaluate the glycemic and insulin variables in both types of canines. Results: The Spearman correlation presented a correlation between increased blood glucose levels and insulin in obese canines, with a correlation of 0.79, while no significant changes in insulin were found in normal weight canines with different blood glucose levels, with a correlation of −0.11. The analysis of the non-linear HOMA index showed significant differences between non-linear HOMA insulin resistance in normal weight and obese canines, with a Chi-square statistic of 16.9424 and p = 0.000039. Canine with increased HOMA 2 showed higher levels of insulin with increasing blood glucose compared to those with normal HOMA 2. Conclusion: The HOMA 2 is a marker for evaluating increased insulin resistance in obese dogs and can be used to determine patients at risk for glycemic alterations.
Collapse
Affiliation(s)
- Franco Gonzlez-Villar
- Doctoral Program in Forestry, Agricultural and Veterinary Sciences, South Campus, University of Chile. Santa Rosa 11315, La Pintana, Santiago, CP 8820808, Chile
| | - Francisco Pérez-Bravo
- Institute of Nutrition and Food Technology INTA, University of Chile, Santiago, Chile
| |
Collapse
|
11
|
González-Villar F, Pérez-Bravo F. Determination of autoantibodies in dogs with diabetes mellitus. Vet World 2021; 14:2694-2698. [PMID: 34903927 PMCID: PMC8654766 DOI: 10.14202/vetworld.2021.2694-2698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The classification of diabetes mellitus (DM) in dogs has been controversial as currently canine insulin-dependent DM is classified together with absolute insulin deficiency, non-insulin-dependent DM, and relative insulin deficiency. Studies on human autoantibodies evaluated in canines with DM, such as anti-glutamic acid decarboxylase (GAD65), anti-islet antigen 2 (IA2), and anti-zinc transporter isoform 8 (ZnT8), have been inconclusive. Thus, this study was designed to establish the serological profile of anti-GAD65, anti-IA2, and anti-ZnT8 antibodies in a group of dogs with and without DM. Materials and Methods: Sixty-one dogs, including 31 patients with DM (with and without insulin treatment) and 30 patients without DM (normal weight and obese), were included for determining autoantibodies using a human enzyme-linked immunosorbent assay (ELISA) detection system for type 1 DM. Results: This study found the presence of anti-IA2 antibodies in 58% of the sample (18/31 patients with DM); however, the presence of anti-GAD65 was not detected, and anti-ZnT8 was found in 3 (9.6%) patients with DM. Conclusion: This study showed a higher positive frequency of anti-IA2 antibodies in a sample of canine with DM, indicating that alterations in the signaling vesicle tyrosine phosphatase 2 lead to lower insulin release and thus to an increase in patients’ glycemia. These preliminary results should be taken with caution and corroborated by a canine-specific assay when an ELISA is available for such determination.
Collapse
Affiliation(s)
- Franco González-Villar
- Doctoral Program in Silvoagropecuary and Veterinary Sciences, University of Chile, South Campus, 11315 Santa Rosa, La Pintana, Santiago, Chile
| | - Francisco Pérez-Bravo
- Department of Nutrition, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| |
Collapse
|
12
|
Czernichow P, Reynaud K, Ravassard P. Production and Characterization of a Conditionally Immortalized Dog Beta-Cell Line from Fetal Canine Pancreas. Cell Transplant 2021; 29:963689720971204. [PMID: 33150791 PMCID: PMC7784601 DOI: 10.1177/0963689720971204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the 1970s, rodent and human insulin-secreting pancreatic beta-cell lines have been developed and found useful for studying beta-cell biology. Surprisingly, although the dog has been widely used as a translational model for diabetes, no canine insulin-secreting beta cells have ever been produced. Here, a targeted oncogenesis protocol previously described by some of us for generating human beta cells was adapted to produce canine beta cells. Canine fetal pancreata were obtained by cesarean section between 42 and 55 days of gestation, and fragments of fetal glands were transduced with a lentiviral vector expressing SV40LT under the control of the insulin promoter. Two Lox P sites flanking the sequence allowed subsequent transgene excision by Cre recombinase expression. When grafted into SCID mice, these transduced pancreata formed insulinomas. ACT-164 is the cell line described in this report. Insulin mRNA expression and protein content were lower than reported with adult cells, but the ACT-164 cells were functional, and their insulin production in vitro increased under glucose stimulation. Transgene excision upon Cre expression arrested proliferation and enhanced insulin expression and production. When grafted in SCID mice, intact and excised cells reversed chemically induced diabetes. We have thus produced an excisable canine beta-cell line. These cells may play an important role in the study of several aspects of the cell transplantation procedure including the encapsulation process, which is difficult to investigate in rodents. Although much more work is needed to improve the excision procedure and achieve 100% removal of large T antigen expression, we have shown that functional cells can be obtained and might in the future be used for replacement therapy in diabetic dogs.
Collapse
Affiliation(s)
- P Czernichow
- Animal Cell Therapy, Sorbonne Universités, Campus des Cordeliers, Paris, France
| | - K Reynaud
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.,PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | - P Ravassard
- Paris Brain Institute (ICM) Sorbonne Universités, Inserm, CNRS - Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris, France
| |
Collapse
|
13
|
Hamilton K, O'Kell AL, Gilor C. Serum trypsin-like immunoreactivity in dogs with diabetes mellitus. J Vet Intern Med 2021; 35:1713-1719. [PMID: 34196025 PMCID: PMC8295701 DOI: 10.1111/jvim.16208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Concurrent exocrine pancreatic dysfunction and decreased pancreatic organ size are common findings in various stages of human type 1 diabetes mellitus (DM). Exocrine pancreatic insufficiency (EPI) is incompletely described in diabetic dogs. Objective To compare canine trypsin‐like immunoreactivity (cTLI) of diabetic dogs with that of healthy controls. A secondary aim was to evaluate the correlation between duration of DM and cTLI. Animals Thirty client‐owned diabetic dogs and thirty client‐owned control dogs. Methods Cross‐sectional study. Diabetic and healthy control dogs were included if they had no clinical evidence of pancreatitis and if serum samples obtained after food was withheld were available. Serum cTLI was measured at a reference laboratory and compared between groups. Canine pancreatic lipase immunoreactivity (cPLI) was analyzed concurrently as an indicator of pancreatitis. Results The median cTLI concentration in all diabetic dogs (36.4 μg/L [range, 7.0‐288 μg/L]) did not differ from control dogs (28.7 μg/L [range, 12.8‐58.6 μg/L]) (P = .07; difference −7.8 μg/L [95% Confidence Interval (CI), −23.5 to 0.6 μg/L]). There was still no difference in cTLI between groups after exclusion of dogs with cPLI consistent with pancreatitis (n = 8 diabetic dogs). There was no correlation between cTLI and DM duration in all diabetic dogs (r = −0.07, [95% CI, −0.43 to 0.3], P = .7). Conclusions and Clinical Importance There was no evidence of EPI as evaluated using cTLI in this cohort of diabetic dogs, but concurrent increases in cPLI suggest cTLI might not be the optimal indicator of exocrine pancreatic dysfunction in dogs with DM.
Collapse
Affiliation(s)
- Kristen Hamilton
- Small Animal Hospital, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Chen Gilor
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Brito-Casillas Y, Melián C, Holder A, Wiebe JC, Navarro A, Quesada-Canales Ó, Expósito-Montesdeoca AB, Catchpole B, Wägner AM. Studying the heterogeneous pathogenesis of canine diabetes: Observational characterization of an island population. Vet Med Sci 2021; 7:1071-1081. [PMID: 33621402 PMCID: PMC8294365 DOI: 10.1002/vms3.452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Canine diabetes mellitus has mostly been studied in northern European, Australian and American populations, whereas other regions have received less attention. OBJECTIVES We evaluated the epidemiological, clinical and histopathological features of diabetic dogs in Gran Canaria, Spain. METHODS Prevalence and incidence were estimated. Clinical features were analysed, and serum and genomic DNA were obtained. Dogs with presumed idiopathic or immune-mediated diabetes, were DLA-typed and antibodies against GAD65 and IA-2 were assessed. Pancreases from ten diabetic dogs were examined and compared with pancreases from non-diabetic dogs. RESULTS AND CONCLUSIONS Twenty-nine diabetic dogs were identified in a population of 5,213 (prevalence: 0.56%; incidence: 0.37%). Most were female (79%) and sexually intact (87% of females, 83% of males). Diabetes secondary to dioestrus (55.2%) and insulin-deficient diabetes (20.7%) were the most frequent types. Antibodies against GAD65 and IA-2 were identified in two out of five cases and DLA-genotyping revealed novel haplotypes. Breed distribution differed between diabetic and non-diabetic dogs. Reduced number of pancreatic islets and β-cell mass were observed, with vacuolation of islet cells and ductal epithelium. In this population, where neutering is not standard practice, diabetes secondary to dioestrus is the most frequent diabetes subtype. Genetic susceptibility also differed from previous studies. These results support the heterogeneous pathogenesis of canine diabetes.
Collapse
Affiliation(s)
- Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos, ULPGC, Arucas, Spain
| | - Angela Holder
- Department of Pathology & Pathogen Biology, Royal Veterinary College, University of London, London, UK
| | - Julia C Wiebe
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Navarro
- Grupo de Investigación en Acuicultura (GIA), ULPGC, Arucas, Spain
| | - Óscar Quesada-Canales
- Unidad de Histología y Patología Veterinaria, Instituto Universitario de Sanidad Animal (IUSA), ULPGC, Arucas, Canarias, Spain
| | - Ana B Expósito-Montesdeoca
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Brian Catchpole
- Department of Pathology & Pathogen Biology, Royal Veterinary College, University of London, London, UK
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.,Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
15
|
Rhew SY, Park SM, Li Q, An JH, Chae HK, Lee JH, Ahn JO, Song WJ, Youn HY. Efficacy and safety of allogenic canine adipose tissue-derived mesenchymal stem cell therapy for insulin-dependent diabetes mellitus in four dogs: A pilot study. J Vet Med Sci 2021; 83:592-600. [PMID: 33551441 PMCID: PMC8111340 DOI: 10.1292/jvms.20-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess regenerative and immunomodulatory properties and
can control the immune dysregulation that leads to β-cell destruction. Stem-cell
transplantation could thus manage insulin-dependent diabetes mellitus (IDDM) in dogs. In
this pilot study, we aimed to assess canine adipose tissue-derived MSCs (cAT-MSCs)
transplantation as a treatment for canine diabetes mellitus. This study included four dogs
with over a year of insulin treatment for IDDM, following diagnosis at the Veterinary
Medicine Teaching Hospital of Seoul National University. Allogenic cAT-MSCs were infused
intravenously three or five times monthly to dogs with IDDM. Blood and urine samples were
obtained monthly. General clinical symptoms, including changes in body weight, vitality,
appetite, and water intake were assessed. Three of the four owners observed improvement of
vitality after stem cell treatment. Two of the four dogs showed improvement in appetite
and body weight, polyuria, and polydipsia. C-peptide has increased by about 5–15% in three
of the cases, and fructosamine and HbA1c levels have improved in two of the cases.
Hyperlipidemia was resolved in two of the dogs, and there was no concurrent bacterial
cystitis in any of the dogs. C-peptide secretion and lipid metabolism are associated with
diabetic complications. Improvement in these parameters following the treatment suggests
that cAT-MSC transplantation in dogs with IDDM might help to improve their insulin
secretory capacity and prevent diabetic complications.
Collapse
Affiliation(s)
- Sung-Yong Rhew
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, YanBian University, YanJi, JiLin, 133000, China
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Ok Ahn
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Kangwon National University, Gangwon-do 24341, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Genetics of canine diabetes mellitus part 1: Phenotypes of disease. Vet J 2021; 270:105611. [PMID: 33641807 DOI: 10.1016/j.tvjl.2021.105611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/09/2023]
Abstract
This two-part article discusses the mechanisms by which genetic variation can influence the risk of complex diseases, with a focus on canine diabetes mellitus. In Part 1, presented here, the importance of accurate methods for classifying different types of diabetes will be discussed, since this underpins the selection of cases and controls for genetic studies. Part 2 will focus on our current understanding of the genes involved in diabetes risk, and the way in which new genome sequencing technologies are poised to reveal new diabetes genes in veterinary species.
Collapse
|
17
|
Delicano RA, Hammar U, Egenvall A, Westgarth C, Mubanga M, Byberg L, Fall T, Kennedy B. The shared risk of diabetes between dog and cat owners and their pets: register based cohort study. BMJ 2020; 371:m4337. [PMID: 33303475 PMCID: PMC7726310 DOI: 10.1136/bmj.m4337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate whether dog and cat owners and their pets share a risk of developing diabetes. DESIGN Cohort study. SETTING Register based longitudinal study, Sweden. PARTICIPANTS 208 980 owner-dog pairs and 123 566 owner-cat pairs identified during a baseline assessment period (1 January 2004 to 31 December 2006). MAIN OUTCOME MEASURES Type 2 diabetes events in dog and cat owners and diabetes events in their pets, including date of diagnosis during the follow-up period (1 January 2007 to 31 December 2012). Owners with type 2 diabetes were identified by combining information from the National Patient Register, the Cause of Death Register, and the Swedish Prescribed Drug Register. Information on diabetes in the pets was extracted from veterinary care insurance data. Multi-state models were used to assess the hazard ratios with 95% confidence intervals and to adjust for possible shared risk factors, including personal and socioeconomic circumstances. RESULTS The incidence of type 2 diabetes during follow-up was 7.7 cases per 1000 person years at risk in dog owners and 7.9 cases per 1000 person years at risk in cat owners. The incidence of diabetes in the pets was 1.3 cases per 1000 dog years at risk and 2.2 cases per 1000 cat years at risk. The crude hazard ratio for type 2 diabetes in owners of a dog with diabetes compared with owners of a dog without diabetes was 1.38 (95% confidence interval 1.10 to 1.74), with a multivariable adjusted hazard ratio of 1.32 (1.04 to 1.68). Having an owner with type 2 diabetes was associated with an increased hazard of diabetes in the dog (crude hazard ratio 1.28, 1.01 to 1.63), which was attenuated after adjusting for owner's age, with the confidence interval crossing the null (1.11, 0.87 to 1.42). No association was found between type 2 diabetes in cat owners and diabetes in their cats (crude hazard ratio 0.99, 0.74 to 1.34, and 1.00, 0.78 to 1.28, respectively). CONCLUSIONS Data indicated that owners of a dog with diabetes were more likely to develop type 2 diabetes during follow-up than owners of a dog without diabetes. It is possible that dogs with diabetes could serve as a sentinel for shared diabetogenic health behaviours and environmental exposures.
Collapse
Affiliation(s)
- Rachel Ann Delicano
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Agneta Egenvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carri Westgarth
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Mwenya Mubanga
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Liisa Byberg
- Department of Surgical Sciences, Orthopaedics, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Beatrice Kennedy
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
18
|
Gilor C, Duesberg C, Elliott DA, Feldman EC, Mundinger TO, Taborsky GJ, Nelson RW, Havel PJ. Co-impairment of autonomic and glucagon responses to insulin-induced hypoglycemia in dogs with naturally occurring insulin-dependent diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 319:E1074-E1083. [PMID: 33044845 PMCID: PMC7792666 DOI: 10.1152/ajpendo.00379.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aimed to investigate the contributions of two factors potentially impairing glucagon response to insulin-induced hypoglycemia (IIH) in insulin-deficient diabetes: 1) loss of paracrine disinhibition by intra-islet insulin and 2) defects in the activation of the autonomic inputs to the islet. Plasma glucagon responses during hyperinsulinemic-hypoglycemic clamps ([Formula: see text]40 mg/dL) were assessed in dogs with spontaneous diabetes (n = 13) and in healthy nondiabetic dogs (n = 6). Plasma C-peptide responses to intravenous glucagon were measured to assess endogenous insulin secretion. Plasma pancreatic polypeptide, epinephrine, and norepinephrine were measured as indices of parasympathetic and sympathoadrenal autonomic responses to IIH. In 8 of the 13 diabetic dogs, glucagon did not increase during IIH (diabetic nonresponder [DMN]; ∆ = -6 ± 12 pg/mL). In five other diabetic dogs (diabetic responder [DMR]), glucagon responses (∆ = +26 ± 12) were within the range of nondiabetic control dogs (∆ = +27 ± 16 pg/mL). C-peptide responses to intravenous glucagon were absent in diabetic dogs. Activation of all three autonomic responses were impaired in DMN dogs but remained intact in DMR dogs. Each of the three autonomic responses to IIH was positively correlated with glucagon responses across the three groups. The study conclusions are as follows: 1) Impairment of glucagon responses in DMN dogs is not due to generalized impairment of α-cell function. 2) Loss of tonic inhibition of glucagon secretion by insulin is not sufficient to produce loss of the glucagon response; impairment of autonomic activation is also required. 3) In dogs with major β-cell function loss, activation of the autonomic inputs is sufficient to mediate an intact glucagon response to IIH.NEW & NOTEWORTHY In dogs with naturally occurring, insulin-dependent (C-peptide negative) diabetes mellitus, impairment of glucagon responses is not due to generalized impairment of α-cell function. Loss of tonic inhibition of glucagon secretion by insulin is not sufficient, by itself, to produce loss of the glucagon response. Rather, impaired activation of the parasympathetic and sympathoadrenal autonomic inputs to the pancreas is also required. Activation of the autonomic inputs to the pancreas is sufficient to mediate an intact glucagon response to insulin-induced hypoglycemia in dogs with naturally occurring diabetes mellitus. These results have important implications that include leading to a greater understanding and insight into the pathophysiology, prevention, and treatment of hypoglycemia during insulin treatment of diabetes in companion dogs and in human patients.
Collapse
Affiliation(s)
- Chen Gilor
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida
| | - Cynthia Duesberg
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Denise A Elliott
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Edward C Feldman
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | | | - Gerald J Taborsky
- Department of Medicine, University of Washington, Seattle, Washington
| | - Richard W Nelson
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
- Department of Nutrition, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
19
|
Fibroblast growth factor 21: a novel long-acting hypoglycemic drug for canine diabetes. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:1031-1043. [PMID: 33219471 DOI: 10.1007/s00210-020-02023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Currently, insulin is commonly used in the clinical management of canine diabetes. However, it must be injected preprandially causing much inconvenience to the owners. Therefore, the development of long-acting hypoglycemic agents has attracted much attention in the scientific community. This study aimed to investigate the long-acting hypoglycemic effect of canine fibroblast growth factor 21 (cFGF-21) in diabetic dogs. Diabetic dogs were administered with cFGF-21, polyethylene glycol-modified cFGF-21 (PEG-cFGF-21), or insulin once a day, once every 2, 3, or 4 days subcutaneously. The results showed that cFGF-21 and PEG-cFGF-21 maintained blood glucose comparable to normal levels for 2 and 3 days respectively while insulin maintained the blood glucose for only 2 h after a single injection. After treatment with cFGF-21, oral glucose tolerance test (OGTT) was significantly improved with glycosylated hemoglobin (HbA1c) close to the normal levels. In addition, cFGF-21 significantly repaired islet β cells, increased insulin content, and protected the pancreas from streptozotocin-induced injury. Furthermore, cFGF-21 exhibited both antioxidant and anti-inflammatory properties in the pancreas. We conclude, therefore, that cFGF-21 and PEG-cFGF-21 can maintain blood glucose comparable to normal levels for 2 and 3 days respectively after a single dose. The long-acting efficacy of cFGF-21 can be attributed to improvement in oxidative stress and the reduction of inflammation in the pancreas.
Collapse
|
20
|
Gilor C, Pires J, Greathouse R, Horn R, Huising MO, Marks SL, Murphy B, Kol A. Loss of sympathetic innervation to islets of Langerhans in canine diabetes and pancreatitis is not associated with insulitis. Sci Rep 2020; 10:19187. [PMID: 33154408 PMCID: PMC7645777 DOI: 10.1038/s41598-020-76091-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Canine diabetes mellitus (DM) affects 0.6% of the canine population and yet, its etiology is poorly understood. Most affected dogs are diagnosed as adults and are insulin-dependent. We compared pan-leukocyte and sympathetic innervation markers in pancreatic islets of adult dogs with spontaneous DM (sDM), spontaneous pancreatitis (sPanc), both (sDMPanc), toxin-induced DM (iDM) and controls. We found evidence of decreased islet sympathetic innervation but no significant infiltration of islets with leukocytes in all disease groups. We show that loss of sympathetic innervation is ongoing in canine DM and does not necessarily precede it. We further found selective loss of islet-associated beta cells in dogs with sDM and sDMPanc, suggesting that collateral damage from inflammation in the exocrine pancreas is not a likely cause of DM in these dogs. The cause of this selective loss of beta cells needs to be further elucidated but overall, our findings are not supportive of an autoimmune process as a cause of sDM in adult dogs. The loss of sympathetic innervation in sPanc in dogs that do not suffer from DM links the disease in the exocrine pancreas to a pathological process in the endocrine pancreas, suggesting pancreatitis might be a potential precursor to DM.
Collapse
Affiliation(s)
- Chen Gilor
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA. .,Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32610, USA.
| | - Jully Pires
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Rachel Greathouse
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Rebecca Horn
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Stanley L Marks
- Department of Veterinary Medicine and Epidemiology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Brian Murphy
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, College of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Denyer AL, Massey JP, Davison LJ, Ollier WER, Catchpole B, Kennedy LJ. Dog leucocyte antigen (DLA) class II haplotypes and risk of canine diabetes mellitus in specific dog breeds. Canine Med Genet 2020; 7:15. [PMID: 33292601 PMCID: PMC7603736 DOI: 10.1186/s40575-020-00093-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Canine diabetes mellitus (DM) is a common endocrine disease in domestic dogs. A number of pathological mechanisms are thought to contribute to the aetiopathogenesis of relative or absolute insulin deficiency, including immune-mediated destruction of pancreatic beta cells. DM risk varies considerably between different dog breeds, suggesting that genetic factors are involved and contribute susceptibility or protection. Associations of particular dog leucocyte antigen (DLA) class II haplotypes with DM have been identified, but investigations to date have only considered all breeds pooled together. The aim of this study was to analyse an expanded data set so as to identify breed-specific diabetes-associated DLA haplotypes. Methods The 12 most highly represented breeds in the UK Canine Diabetes Register were selected for study. DLA-typing data from 646 diabetic dogs and 912 breed-matched non-diabetic controls were analysed to enable breed-specific analysis of the DLA. Dogs were genotyped for allelic variation at DLA-DRB1, -DQA1, -DQB1 loci using DNA sequence-based typing. Genotypes from all three loci were combined to reveal three-locus DLA class II haplotypes, which were evaluated for statistical associations with DM. This was performed for each breed individually and for all breeds pooled together. Results Five dog breeds were identified as having one or more DLA haplotype associated with DM susceptibility or protection. Four DM-associated haplotypes were identified in the Cocker Spaniel breed, of which one haplotype was shared with Border Terriers. In the three breeds known to be at highest risk of DM included in the study (Samoyed, Tibetan Terrier and Cairn Terrier), no DLA haplotypes were found to be associated with DM. Conclusions Novel DLA associations with DM in specific dog breeds provide further evidence that immune response genes contribute susceptibility to this disease in some cases. It is also apparent that DLA may not be contributing obvious or strong risk for DM in some breeds, including the seven breeds analysed for which no associations were identified.
Collapse
Affiliation(s)
- A L Denyer
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - J P Massey
- Centre for Integrated Genomic Medical Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - L J Davison
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, UK
| | - W E R Ollier
- Centre for Integrated Genomic Medical Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - B Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - L J Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Mui ML, Famula TR, Henthorn PS, Hess RS. Heritability and complex segregation analysis of naturally-occurring diabetes in Australian Terrier Dogs. PLoS One 2020; 15:e0239542. [PMID: 32970763 PMCID: PMC7514011 DOI: 10.1371/journal.pone.0239542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
The Australian Terrier breed is the breed at highest risk for naturally-occurring diabetes mellitus in the United States, where it is 32 times more likely to develop diabetes compared to mixed breed dogs. However, the heritability and mode of inheritance of spontaneous diabetes in Australian Terriers has not been reported. The aim of this study was therefore to investigate the heritability and mode of inheritance of diabetes in Australian Terriers. A cohort of related Australian Terriers including 383 Australian Terriers without diabetes, 86 Australian Terriers with spontaneous diabetes, and 14 Australian Terriers with an unknown phenotype, was analyzed. A logistic regression model including the effects of sex was formulated to evaluate the heritability of diabetes. The inheritance pattern of spontaneous diabetes in Australian Terriers was investigated by use of complex segregation analysis. Six possible inheritance models were studied, and the Akaike Information Criterion was used to determine the best model for diabetes inheritance in Australian Terriers, among the models deemed biologically feasible. Heritability of diabetes in Australian Terriers was estimated at 0.18 (95% confidence interval 0.0-0.67). There was no significant difference in the effect of males and females on disease outcome. Complex segregation analysis suggested that the mode of diabetes inheritance in Australian Terriers is polygenic, with no evidence for a large effect single gene influencing diabetes. It is concluded that in the population of Australian Terriers bred in the United States, a relatively small degree of genetic variation contributes to spontaneous diabetes. A genetic uniformity for diabetes-susceptible genes within the population of Australian Terriers bred in the Unites States could increase the risk of diabetes in this cohort. These findings hold promise for future genetic studies of canine diabetes focused on this particular breed.
Collapse
Affiliation(s)
- Mei Lun Mui
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas R. Famula
- Department of Animal Science, University of California–Davis, Davis, California, United States of America
| | - Paula S. Henthorn
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecka S. Hess
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
23
|
Gooch A, Zhang P, Hu Z, Loy Son N, Avila N, Fischer J, Roberts G, Sellon R, Westenfelder C. Interim report on the effective intraperitoneal therapy of insulin-dependent diabetes mellitus in pet dogs using "Neo-Islets," aggregates of adipose stem and pancreatic islet cells (INAD 012-776). PLoS One 2019; 14:e0218688. [PMID: 31536503 PMCID: PMC6752848 DOI: 10.1371/journal.pone.0218688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022] Open
Abstract
We previously reported that allogeneic, intraperitoneally administered “Neo-Islets,” composed of cultured pancreatic islet cells co-aggregated with high numbers of immunoprotective and cytoprotective Adipose-derived Stem Cells, reestablished, through omental engraftment, redifferentiation and splenic and omental up-regulation of regulatory T-cells, normoglycemia in autoimmune Type-1 Diabetic Non-Obese Diabetic (NOD) mice without the use of immunosuppressive agents or encapsulation devices. Based on these observations, we are currently testing this Neo-Islet technology in an FDA guided pilot study (INAD 012–776) in insulin-dependent, spontaneously diabetic pet dogs by ultrasound-guided, intraperitoneal administration of 2x10e5 Neo-Islets/kilogram body weight to metabolically controlled (blood glucose, triglycerides, thyroid and adrenal functions) and sedated animals. We report here interim observations on the first 4 canine Neo-Islet-treated, insulin-dependent pet dogs that are now in the early to intermediate-term follow-up phase of the planned 3 year study (> 6 months post treatment). Current results from this translational study indicate that in dogs, Neo-Islets appear to engraft, redifferentiate and physiologically produce insulin, and are rejected by neither auto- nor allo-immune responses, as evidenced by (a) an absent IgG response to the allogeneic cells contained in the administered Neo-Islets, and (b) progressively improved glycemic control that achieves up to a 50% reduction in daily insulin needs paralleled by a statistically significant decrease in serum glucose concentrations. This is accomplished without the use of anti-rejection drugs or encapsulation devices. No adverse or serious adverse events related to the Neo-Islet administration have been observed to date. We conclude that this minimally invasive therapy has significant translational relevance to veterinary and clinical Type 1 diabetes mellitus by achieving complete and at this point partial glycemic control in two species, i.e., diabetic mice and dogs, respectively.
Collapse
Affiliation(s)
- Anna Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Ping Zhang
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Zhuma Hu
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
| | - Natasha Loy Son
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Nicole Avila
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Julie Fischer
- Veterinary Specialty Hospital, San Diego, California, United States of America
| | - Gregory Roberts
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Rance Sellon
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
| | - Christof Westenfelder
- SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ahn SH, Granger A, Rankin MM, Lam CJ, Cox AR, Kushner JA. Tamoxifen suppresses pancreatic β-cell proliferation in mice. PLoS One 2019; 14:e0214829. [PMID: 31490929 PMCID: PMC6731016 DOI: 10.1371/journal.pone.0214829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen is a mixed agonist/antagonist estrogen analogue that is frequently used to induce conditional gene deletion in mice using Cre-loxP mediated gene recombination. Tamoxifen is routinely employed in extremely high-doses relative to typical human doses to induce efficient gene deletion in mice. Although tamoxifen has been widely assumed to have no influence upon β-cells, the acute developmental and functional consequences of high-dose tamoxifen upon glucose homeostasis and adult β-cells are largely unknown. We tested if tamoxifen influences glucose homeostasis in male mice of various genetic backgrounds. We then carried out detailed histomorphometry studies of mouse pancreata. We also performed gene expression studies with islets of tamoxifen-treated mice and controls. Tamoxifen had modest effects upon glucose homeostasis of mixed genetic background (F1 B6129SF1/J) mice, with fasting hyperglycemia and improved glucose tolerance but without overt effects on fed glucose levels or insulin sensitivity. Tamoxifen inhibited proliferation of β-cells in a dose-dependent manner, with dramatic reductions in β-cell turnover at the highest dose (decreased by 66%). In sharp contrast, tamoxifen did not reduce proliferation of pancreatic acinar cells. β-cell proliferation was unchanged by tamoxifen in 129S2 mice but was reduced in C57Bl6 genetic background mice (decreased by 59%). Gene expression studies revealed suppression of RNA for cyclins D1 and D2 within islets of tamoxifen-treated mice. Tamoxifen has a cytostatic effect on β-cells, independent of changes in glucose homeostasis, in mixed genetic background and also in C57Bl6 mice. Tamoxifen should be used judiciously to inducibly inactivate genes in studies of glucose homeostasis.
Collapse
Affiliation(s)
- Surl-Hee Ahn
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anne Granger
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Matthew M. Rankin
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Carol J. Lam
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Aaron R. Cox
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Jake A. Kushner
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
25
|
Czernichow P, Reynaud K, Kerr-Conte J, Furthner E, Ravassard P. Production, Characterization, and Function of Pseudoislets from Perinatal Canine Pancreas. Cell Transplant 2019; 28:1641-1651. [PMID: 31450972 PMCID: PMC6923560 DOI: 10.1177/0963689719869004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We evaluated the cell composition and function of canine pancreatic pseudoislets (PIs)
produced from 42- to 55-day-old fetuses, 1- to 21-day-old pups, and an adult dog pancreas.
After mild collagenase treatment, partially digested tissues were cultured for 2–3 weeks.
PI production started on culture day 3, was marked for 6 to 9 days, and then stopped. PI
production was greatest with the neonatal specimens, reaching about 12 million aggregates
per litter (55-day-old fetus) or per pancreas (1-day-old pup). Cell composition at all
stages was similar to that in adult pancreatic islets, with predominant β cells, scant α
cells and, most importantly, presence of δ cells. Among pancreatic markers assessed by
quantitative real-time PCR (qRT-PCR) mRNA assay, insulin showed the highest expression
levels in PIs from newborn and adult pancreas, although these were more than 1000 times
lower than in adult islets. Pdx1 mRNA expression was high in PIs from 55-day-old
pancreases and was lower at later stages. Consistent with the qRT-PCR results, the insulin
content was far lower than reported in adult dog pancreatic islets. However, insulin
release by PIs from 1-day-old pups was demonstrated and was stimulated by a high-glucose
medium. PIs were transplanted into euglycemic and diabetic SCID mice. In euglycemic
animals, the transplant cell composition underwent maturation and transplants were still
viable after 6 months. In diabetic mice, the PI transplants produced insulin and partially
controlled the hyperglycemia. These data indicate that PIs can be produced ex vivo from
canine fetal or postnatal pancreases. Although functional PIs can be obtained, the
production yield is most likely insufficient to meet the requirements for diabetic dog
transplantation without further innovation in cell culture amplification.
Collapse
Affiliation(s)
- P Czernichow
- Animal Cell Therapy, University Pierre et Marie Curie, Paris, France
| | - K Reynaud
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.,PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| | - J Kerr-Conte
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, Lille, France
| | - E Furthner
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - P Ravassard
- Institut du cerveau et de la moelle (ICM), Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Paris, France
| |
Collapse
|
26
|
Moshref M, Tangey B, Gilor C, Papas KK, Williamson P, Loomba-Albrecht L, Sheehy P, Kol A. Concise Review: Canine Diabetes Mellitus as a Translational Model for Innovative Regenerative Medicine Approaches. Stem Cells Transl Med 2019; 8:450-455. [PMID: 30719867 PMCID: PMC6476992 DOI: 10.1002/sctm.18-0163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus (DM) is a common spontaneous endocrine disorder in dogs, which is defined by persistent hyperglycemia and insulin deficiency. Like type 1 diabetes (T1D) in people, canine DM is a complex and multifactorial disease in which genomic and epigenomic factors interact with environmental cues to induce pancreatic β‐cell loss and insulin deficiency, although the pathogenesis of canine DM is poorly defined and the role of autoimmunity is further controversial. Both diseases are incurable and require life‐long exogenous insulin therapy to maintain glucose homeostasis. Human pancreatic islet physiology, size, and cellular composition is further mirrored by canine islets. Although pancreatic or isolated islets transplantation are the only clinically validated methods to achieve long‐term normoglycemia and insulin independence, their availability does not meet the clinical need; they target a small portion of patients and have significant potential adverse effects. Therefore, providing a new source for β‐cell replacement is an unmet need. Naturally occurring DM in pet dogs, as a translational platform, is an untapped resource for various regenerative medicine applications that may offer some unique advantages given dogs' large size, longevity, heterogenic genetic background, similarity to human physiology and pathology, and long‐term clinical management. In this review, we outline different strategies for curative approaches, animal models used, and consider the value of canine DM as a translational animal/disease model for T1D in people. stem cells translational medicine2019;8:450–455
Collapse
Affiliation(s)
- Maryam Moshref
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Bonnie Tangey
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Chen Gilor
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Klearchos K Papas
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Lindsey Loomba-Albrecht
- Department of Pediatric Endocrinology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Paul Sheehy
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
27
|
Aguiar BA, Orechio D, Fratini P, Carreira ACO, Castelucci P, Miglino MA. Isolation and Characterization of Pancreatic Canine Fetal Cells at the Final Stage of Gestation. Anat Rec (Hoboken) 2018; 302:1409-1418. [PMID: 30332726 DOI: 10.1002/ar.23995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
The incidence of diabetes mellitus in dogs is increasing in recent years, mainly because of genetic and/or environmental factors, including endocrine disorders (like in humans); failure of suitable control of blood sugar levels, which triggers hyperglycemia; glycosuria and weight loss, which demands the development of innovative treatments to cure or treat this complex disease in dogs. The present study established for the first time a protocol to obtain and characterize cells derived from pancreas of canine fetuses. Those fetuses do not have a defined breed and were at the final stage of gestation. The protocol aims to provide morphological data to enable future applications of these cells for therapeutic approaches. In cell culture, pancreatic cells showed a fibroblast-like appearance with a mono-layered growth pattern and were not tumorigenic. They exhibited a positive expression for the pluripotent proliferation markers NANOG and PCNA and expressed PDX1, a transcription factor that is important for activation of the insulin gene promoter. In addition, Tyrosine Hydroxylase-positive (TH+) sympathetic nerve fibers were identified. Histologically, the pancreatic epithelium was developed, pancreatic glands in the fetuses were like those in the parenchyma of postconception dogs and pancreatic islets were unevenly distributed and organized in small clusters along the glands close to the vasculature. Staining with dithizone indicated the presence of insulin in the cells. A large number of beta cells were confirmed by immunofluorescence. In conclusion, the canine fetal pancreas cells could be an alternative and adequate source of cell lineages for stem cell therapies for diabetes treatment. Anat Rec, 302:1409-1418, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bruna Andrade Aguiar
- Department of Surgery Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Dailiany Orechio
- Department of Surgery Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,NUCEL (Cell and Molecular Therapy Center), Internal Medical Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,Interunits Graduate Program in Biotechnology, Institute of Biosciences, University of São Paulo University of São Paulo, São Paulo, Brazil
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Thompson EM, Sollinger JL, Opara EC, Adin CA. Selective Osmotic Shock for Islet Isolation in the Cadaveric Canine Pancreas. Cell Transplant 2018; 27:542-550. [PMID: 29869518 PMCID: PMC6038033 DOI: 10.1177/0963689717752947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently, islet isolation is performed using harsh collagenases that cause nonspecific injury to both islets and exocrine tissue, negatively affecting the outcome of cell transplantation. We evaluated a novel islet isolation protocol utilizing high concentrations of glucose to cause selective osmotic shock (SOS). Islets have a membrane glucose transporter that allows adaptation to changes in glucose concentrations while exocrine tissue can be selectively destroyed by these osmolar shifts. Canine pancreata were obtained within 15 min after euthanasia from animals ( n = 6) euthanized for reasons unrelated to this study. Each pancreas was divided into 4 segments that were randomized to receive 300 mOsm glucose for 20 min (group 1), 600 mOsm for 20 min (group 2), 300 mOsm for 40 min (group 3), or 600 mOsm for 40 min (group 4). Islet yield, purity, and viability were compared between groups. Mean ± standard error of the mean islet yield for groups 1 to 4 was 428 ± 159, 560 ± 257, 878 ± 443, and 990 ± 394 islet equivalents per gram, respectively. Purity ranged from 37% to 45% without the use of density gradient centrifugation and was not significantly different between groups. Islet cell viability was excellent overall (89%) and did not differ between treatment protocol. Islet function was best in groups treated with 300 mOsm of glucose (stimulation index [SI] = 3.3), suggesting that the lower concentration of glucose may be preferred for use in canine islet isolation. SOS provides a widely available means for researchers to isolate canine islets for use in islet transplantation or in studies of canine islet physiology.
Collapse
Affiliation(s)
- Elizabeth M Thompson
- 1 Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jennifer L Sollinger
- 1 Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Emmanuel C Opara
- 2 Institute for Regenerative Medicine Center on Diabetes, Obesity, and Metabolism Biomedical Engineering, Wake Forest University, Winston Salem, NC, USA
| | - Christopher A Adin
- 1 Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
29
|
Adin CA, Gilor C. The Diabetic Dog as a Translational Model for Human Islet Transplantation. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:509-515. [PMID: 28955189 PMCID: PMC5612193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The dog model has served as the primary method for early development of many diabetes therapies, including pancreatic islet transplantation techniques and immunosuppressive protocols. Recent trends towards the use of monoclonal antibody therapies for immunosuppression in human islet transplantation have led to the increasing use of primate models with induced diabetes. In addition to induced-disease models in large animals, scientists in many fields are considering the use of naturally-occurring disease models in client-owned pets. This article will review the applicability of naturally-occurring diabetes in dogs as a translational model for developing islet transplantation in the human diabetic patient.
Collapse
Affiliation(s)
- Christopher A. Adin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC,To whom all correspondence should be addressed: Christopher A. Adin, DVM, DACVS, Associate Professor, Soft Tissue and Oncologic Surgery, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, Phone: 919-513-6050, .
| | - Chen Gilor
- Department of Medicine and Epidemiology, College of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
30
|
O'Kell AL, Wasserfall C, Catchpole B, Davison LJ, Hess RS, Kushner JA, Atkinson MA. Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked? Diabetes 2017; 66:1443-1452. [PMID: 28533295 PMCID: PMC5440022 DOI: 10.2337/db16-1551] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of research in humans and mouse models of disease, substantial gaps remain in our understanding of pathogenic mechanisms underlying the development of type 1 diabetes. Furthermore, translation of therapies from preclinical efforts capable of delaying or halting β-cell destruction has been limited. Hence, a pressing need exists to identify alternative animal models that reflect human disease. Canine insulin deficiency diabetes is, in some cases, considered to follow autoimmune pathogenesis, similar to NOD mice and humans, characterized by hyperglycemia requiring lifelong exogenous insulin therapy. Also similar to human type 1 diabetes, the canonical canine disorder appears to be increasing in prevalence. Whereas islet architecture in rodents is distinctly different from humans, canine pancreatic endocrine cell distribution is more similar. Differences in breed susceptibility alongside associations with MHC and other canine immune response genes parallel that of different ethnic groups within the human population, a potential benefit over NOD mice. The impact of environment on disease development also favors canine over rodent models. Herein, we consider the potential for canine diabetes to provide valuable insights for human type 1 diabetes in terms of pancreatic histopathology, impairment of β-cell function and mass, islet inflammation (i.e., insulitis), and autoantibodies specific for β-cell antigens.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, U.K
| | - Lucy J Davison
- Department of Veterinary Medicine, University of Cambridge, Cambridge, U.K., and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Rebecka S Hess
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jake A Kushner
- McNair Medical Institute and Department of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
31
|
Goemans AF, Spence SJ, Ramsey IK. Validation and determination of a reference interval for canine HbA1c using an immunoturbidimetric assay. Vet Clin Pathol 2017; 46:227-237. [DOI: 10.1111/vcp.12477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ian K. Ramsey
- Small Animal Hospital; University of Glasgow; Glasgow UK
| |
Collapse
|
32
|
Gilor C, Niessen S, Furrow E, DiBartola S. What's in a Name? Classification of Diabetes Mellitus in Veterinary Medicine and Why It Matters. J Vet Intern Med 2016; 30:927-40. [PMID: 27461721 PMCID: PMC5108445 DOI: 10.1111/jvim.14357] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/07/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes Mellitus (DM) is a syndrome caused by various etiologies. The clinical manifestations of DM are not indicative of the cause of the disease, but might be indicative of the stage and severity of the disease process. Accurately diagnosing and classifying diabetic dogs and cats by the underlying disease process is essential for current and future studies on early detection, prevention, and treatment of underlying disease. Here, we review the current etiology-based classification of DM and definitions of DM types in human medicine and discuss key points on the pathogenesis of each DM type and prediabetes. We then review current evidence for application of this etiology-based classification scheme in dogs and cats. In dogs, we emphasize the lack of consistent evidence for autoimmune DM (Type 1) and the possible importance of other DM types such as DM associated with exocrine pancreatic disease. While most dogs are first examined because of DM in an insulin-dependent state, early and accurate diagnosis of the underlying disease process could change the long-term outcome and allow some degree of insulin independence. In cats, we review the appropriateness of using the umbrella term of Type 2 DM and differentiating it from DM secondary to other endocrine disease like hypersomatotropism. This differentiation could have crucial implications on treatment and prognosis. We also discuss the challenges in defining and diagnosing prediabetes in cats.
Collapse
Affiliation(s)
- C. Gilor
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOH
| | - S.J.M. Niessen
- Department of Clinical Science and ServicesRoyal Veterinary CollegeUniversity of LondonNorth MymmsHertfordshireUK
| | - E. Furrow
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMN
| | - S.P. DiBartola
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOH
| |
Collapse
|
33
|
Kim JH, Furrow E, Ritt MG, Utz PJ, Robinson WH, Yu L, Eckert A, Stuebner K, O’Brien TD, Steinman L, Modiano JF. Anti-Insulin Immune Responses Are Detectable in Dogs with Spontaneous Diabetes. PLoS One 2016; 11:e0152397. [PMID: 27031512 PMCID: PMC4816536 DOI: 10.1371/journal.pone.0152397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus occurs spontaneously in dogs. Although canine diabetes shares many features with human type-1 diabetes, there are differences that have cast doubt on the immunologic origin of the canine disease. In this study, we examined whether peripheral immune responses directed against islet antigens were present in dogs with diabetes. Routine diagnostics were used to confirm diabetic status, and serum samples from dogs with (N = 15) and without (N = 15) diabetes were analyzed for the presence of antibodies against islet antigens (insulin, glutamic acid decarboxylase, insulinoma-associated protein tyrosine phosphatase, and islet beta-cell zinc cation efflux transporter) using standard radioassays. Interferon-γ production from peripheral blood T cells stimulated by porcine insulin and by human insulin was tested using Elispot assays. Anti-insulin antibodies were detectable in a subset of diabetic dogs receiving insulin therapy. Pre-activated T cells and incipient insulin-reactive T cells in response to porcine or human insulin were identified in non-diabetic dogs and in dogs with diabetes. The data show that humoral and cellular anti-insulin immune responses are detectable in dogs with diabetes. This in turn provides support for the potential to ethically use dogs with diabetes to study the therapeutic potential of antigen-specific tolerance.
Collapse
Affiliation(s)
- Jong-Hyuk Kim
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Michelle G. Ritt
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States of America
| | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Andrea Eckert
- Clinical Investigation Center, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Kathleen Stuebner
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Clinical Investigation Center, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
| | - Timothy D. O’Brien
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Lawrence Steinman
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jaime F. Modiano
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States of America
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|