1
|
Wang HH, Huang CR, Lin HC, Lin HA, Chen YJ, Tsai KJ, Shih CT, Huang KY, Ojcius DM, Tsai MH, Tseng KW, Chen LC. Magnesium-enriched deep-sea water inhibits NLRP3 inflammasome activation and dampens inflammation. Heliyon 2024; 10:e35136. [PMID: 39157306 PMCID: PMC11327587 DOI: 10.1016/j.heliyon.2024.e35136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The NLRP3 inflammasome is an essential component of the innate immune system, but excessive activation can lead to inflammatory diseases. Ion fluxes across the plasma membrane or from intracellular stores are known to regulate NLRP3 inflammasome activation. Deep-sea water (DSW) contains high concentrations of many mineral ions, which could potentially influence NLRP3 inflammasome activation. However, the impact of DSW on NLRP3 inflammasome activation has not been investigated. Here, we demonstrated that DSW with water hardness levels up to 500 mg/L did not affect cell viability or the expression of NLRP3 inflammasome components in macrophages derived from THP-1 cells. However, the DSW significantly inhibited IL-1β secretion and caspase-1 activation in response to NLRP3 activators such as nigericin, ATP, or monosodium urate (MSU) crystals. Mechanically, it was discovered that the presence of 5 mM magnesium ions (Mg2+), equivalent to the Mg2+ concentration found in the DSW with a water hardness of 500 mg/L, inhibits NLRP3 inflammasome activation. This indicates that Mg2+ contributes to the mechanism by which DSW mitigates NLRP3 inflammasome activation. Moreover, DSW administration effectively lessens MSU-triggered peritonitis in mice, a commonly used model for examining the impacts of NLRP3 inflammasome activation. These results show that DSW enriched with Mg2+ could potentially be beneficial in modulating NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Hsueh-Hsiao Wang
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
| | - Chi-Ruei Huang
- Master Program in Biomedicine, College of Science and Engineering, National Taitung University, Taitung County, China
- Biomedicine, Agriculture and Food Sciences Research Center, College of Science and Engineering, National Taitung University, Taitung County, China
| | - Hsin-Chung Lin
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital SongShan Branch, National Defense Medical Center, Taipei City, 105, Taiwan
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei City, 106, Taiwan
| | - Yu-Jen Chen
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, 251, Taiwan
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, 104, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing and Management, Taipei, 112, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan
| | - Kuen-Jou Tsai
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, 104, Taiwan
- Department of Nursing, MacKay Medical College, New Taipei City, 252, Taiwan
| | - Chieh-Tien Shih
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, 94103, USA
| | - Ming-Hang Tsai
- Department of Medicine, Tri-Service General Hospital SongShan Branch, National Defense Medical Center, Taipei City, 105, Taiwan
| | - Kuang-Wen Tseng
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
| |
Collapse
|
2
|
Park SY, Im JA, Kim JY. Exploring the Effect of Deep-Sea Water on the Therapeutic Potential of the Anti-Inflammatory Response in an Indomethacin-Induced Gastric Ulcer Rat Model. Int J Mol Sci 2023; 24:17430. [PMID: 38139257 PMCID: PMC10743565 DOI: 10.3390/ijms242417430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastric ulcers are often exacerbated by factors such as nonsteroidal anti-inflammatory drugs (NSAIDs) and inflammation, and they have a substantial impact on a significant portion of the population. Notably, indomethacin is recognized as a prominent contributor to ulcers. This study investigated this potential method, with normalization to the anti-inflammatory and antiulcer properties of deep-sea water (DSW)-derived mineral water, using an indomethacin-induced gastric ulcer model in rats. The study involved four groups (n = 6 rats/group): normal control group (CON), indomethacin-only group (IND), indomethacin with trace mineral water group (TM), and indomethacin with high magnesium low sodium water group (HMLS). For three weeks, the CON and IND groups consumed tap water, while the TM and HMLS groups had access to mineral water. Gastric ulcers were induced on the final day using indomethacin, for all groups except the CON group. The results demonstrated that HMLS intake significantly improved gastric mucosal damage, preserved mucin stability, and increased gastric thickness, indicating its potential to prevent and alleviate indomethacin-induced gastric ulcers. Furthermore, HMLS consumption led to the upregulation of key genes associated with inflammation and a reduction in inflammatory cytokines. These findings suggest that DSW-derived mineral water, and particularly its high Mg2+ content, may offer promising health benefits including anti-inflammatory and anti-ulcer properties.
Collapse
Affiliation(s)
- Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (S.-y.P.); (J.A.I.)
| | - Jin A Im
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (S.-y.P.); (J.A.I.)
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (S.-y.P.); (J.A.I.)
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
3
|
Aragón-Vela J, González-Acevedo O, Plaza-Diaz J, Casuso RA, Huertas JR. Physiological Benefits and Performance of Sea Water Ingestion for Athletes in Endurance Events: A Systematic Review. Nutrients 2022; 14:4609. [PMID: 36364871 PMCID: PMC9657671 DOI: 10.3390/nu14214609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
In different endurance events, athletes have limited access to fluid intake, such as ultra-endurance running. For this reason, it is necessary to establish an adequate hydration strategy for this type of long-duration sporting event. Indeed, it seems that the intake of seawater is a suitable hydration alternative to improve post-exercise recovery in this type of endurance event. This seawater is characterized by being a deep natural mineral water of moderate mineralization, which is usually extracted from a depth of about 700 m. Therefore, the aim of this systematic review is to evaluate the efficacy of seawater consumption in both performance and post-exercise recovery in long-duration sport events. A systematic and comprehensive literature search was performed in PubMed, Scopus, and Web of Science in September 2022. Initially, 8 out of 558 articles met the inclusion criteria. Among these eight studies, six were randomized clinical trials, and two were observational studies (one cross-sectional and one prospective study in well-conditioned student athletes). The results showed that deep sea water consumption accelerated the recovery of aerobic capacity and leg muscle capacity on running performance. In addition, the lactate production after the running exercise in seawater was significantly lower than in pure water. In conclusion, the present review demonstrates that seawater consumption could significantly improve the capacity of recovery after exercise.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Olivia González-Acevedo
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Granada, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Rafael A. Casuso
- Departamento de Ciencias de la Salud, Universidad Loyola Andalucía, 41704 Sevilla, Spain
| | - Jesús R. Huertas
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18016 Granada, Spain
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Acevedo OG, Aragón-Vela J, De la Cruz Márquez JC, Marín MM, Casuso RA, Huertas JR. Seawater Hydration Modulates IL-6 and Apelin Production during Triathlon Events: A Crossover Randomized Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159581. [PMID: 35954937 PMCID: PMC9368587 DOI: 10.3390/ijerph19159581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/11/2022]
Abstract
A triathlon is an endurance event in which athletes need an efficient hydration strategy since hydration is restricted at different stages. However, it seems that seawater intake can be a suitable hydration alternative for this type of endurance event. Therefore, the aim of this study was to evaluate the efficacy of seawater hydration during a triathlon on cytokine production. Fifteen trained male triathletes (age = 38.8 ± 5.62 years old; BMI = 22.58 ± 2.51 kg/m2) randomly performed three triathlons, one of them consuming seawater (Totum SPORT, Laboratories Quinton International, S.L., Valencia, Spain), the other one consuming tap water ad libitum, and the last a physiologic saline solution as placebo. The triathlon consisted of an 800 m swim, a 90 km bike ride, and a 10 km run. Blood samples were taken at rest and after training, where markers of inflammation, hemoglobin, and hematocrit concentration were assessed. While the seawater was not ergogenic, it significantly increased the release of IL-6 and apelin post-exercise. However, no differences were found between the fractalkine, IL-15, EPO, osteonectin, myostatin, oncostatin, irisin, FSTL1, osteocrin, BDNF, and FGF-21 values over those of the placebo group. The present study demonstrates that hydration with seawater stimulates myokine production, which could lead to improved performance recovery after exercise.
Collapse
Affiliation(s)
- Olivia González Acevedo
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
| | - Jerónimo Aragón-Vela
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Correspondence: (J.A.-V.); (J.R.H.)
| | | | - Manuel Martínez Marín
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18001 Granada, Spain
| | - Rafael A. Casuso
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
- Department of Health Sciences, Loyola Andalucía University, 41704 Sevilla, Spain
| | - Jesús R. Huertas
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, 18106 Granada, Spain
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Correspondence: (J.A.-V.); (J.R.H.)
| |
Collapse
|
5
|
Hosseini Dastgerdi A, Ghanbari Rad M, Soltani N. The Therapeutic Effects of Magnesium in Insulin Secretion and Insulin Resistance. Adv Biomed Res 2022; 11:54. [PMID: 35982863 PMCID: PMC9379913 DOI: 10.4103/abr.abr_366_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin resistance (IR) is a chronic pathological condition that is related to reduce the rates of glucose uptake, especially in the liver, muscle, and adipose tissue as target tissues. Metabolic syndrome and type 2 diabetes mellitus can occur following progression of the disease. The majority of prior research has applied that some cations such as magnesium (Mg2+) have important physiological role in insulin metabolism. Mg2+ is the fourth most abundant mineral in the human body that gets involved as a cofactor of various enzymes in several metabolic events, such as carbohydrate oxidation, and it has a fundamental role in glucose transporting mechanism of the cell membrane. This cation has numerous duties in the human body such as regulation of insulin secretion in pancreatic beta-cells and phosphorylation of the insulin receptors in target cells and also gets involved in other downstream signal kinases as intracellular cation. On this basis, intracellular Mg2+ balancing is vital for adequate carbohydrate metabolism. This paper summarizes the present knowledge about the therapeutic effects of Mg2+ in reducing IR in liver, muscle, and pancreases with different mechanisms. For this, the search was performed in Google Scholar, PubMed, Scopus, and Web of Science by insulin resistance, skeletal muscle, liver, pancreases, magnesium, Mg2+, and inflammation keywords.
Collapse
Affiliation(s)
| | - Mahtab Ghanbari Rad
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Prof. Nepton Soltani, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
6
|
Lee CY, Lee CL. Comparison of the Improvement Effect of Deep Ocean Water with Different Mineral Composition on the High Fat Diet-Induced Blood Lipid and Nonalcoholic Fatty Liver Disease in a Mouse Model. Nutrients 2021; 13:nu13051732. [PMID: 34065270 PMCID: PMC8160870 DOI: 10.3390/nu13051732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulated lipid droplets in liver cause nonalcoholic fatty liver disease (NAFLD). Deep ocean water (DOW) containing high levels of magnesium, calcium, and potassium, etc. was proven to suppress hepatic lipid in obese rats fed high fat diet in the previous study. However, the effect of mineral compositions of DOW on the prevention of NAFLD is still unclear. This study removed calcium and potassium from DOW for modulating the mineral composition, and further compared the effects of DOW (D1(Mg + Ca + K)), DOW with low potassium (D2(Mg + Ca)), and DOW with low calcium and potassium (D3(Mg)) on the prevention of NAFLD in the mice model fed with high fat diet. In these results, DOW with high magnesium levels reduced serum and liver triglyceride and cholesterol levels and serum AST and ALT activities. However, when the calcium and/or potassium minerals were removed from DOW, the effects of reduction of triglyceride level, inhibition of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor-alpha (PPAR-α) expressions, and activation of superoxide dismutase, catalase, and glutathione reductase activities would be weaker. In conclusion, DOW including magnesium, calcium and potassium minerals has the strongest preventive effect on NAFLD in a mouse model by increasing the antioxidant system and inhibiting fatty acid biosynthesis.
Collapse
|
7
|
Nam J, Kim KJ, Park G, Kim BG, Jeong GH, Jeon JE, Hurh BS, Kim JY. Anti-Inflammatory Properties of Mineral-Balanced Deep Sea Water in In-Vitro and In-Vivo Models of Inflamed Intestinal Epithelium. APPLIED SCIENCES 2020; 10:5183. [DOI: 10.3390/app10155183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
This study aimed to determine the effect of deep-sea water (DSW)-derived mineral waters on intestinal health, using a cell model and a dextran sulfate sodium (DSS)-induced enteritis mouse model. DSW was desalted and minerals were added to generate mineral waters that were classified as trace mineral (TM), high magnesium (HM), high magnesium low salt (HMLS), and high magnesium high calcium (HMHC), using a tabletop electrodialysis device. Caco-2 cells cocultured with Raw264.7 cells were either pre-treated or not with the four water groups, and inflammation was induced by treatment with lipopolysaccharide (LPS). Compared to LPS-treated Caco-2 cells, HMLS-cotreated cells maintained high transepithelial electrical resistance, similar to control cells. FITC-dextran permeability was lower in HMLS-treated than in other cells. In vivo, in comparison to DSS-treated mice, colon shortening was inhibited, and disease activity and colon injury were suppressed in HMLS-cotreated mice. RNA-seq of colonic tissues revealed that inflammatory gene expression was similar among the control and HMLS mice, and DSS-induced expression of inflammation-related genes such as TNF-α and NOS2 and inflammatory chemokine genes was suppressed. Our findings suggest that DSW-derived mineral water intake can help reduce colitis symptoms, and the effects may be partially regulated by magnesium and other minerals.
Collapse
Affiliation(s)
- Jain Nam
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Kyeong Jin Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Geonhee Park
- Sempio Fermentation Research Center, 183, Osongsaengmyeong 4-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28156, Korea
| | - Byeong Goo Kim
- Sempio Fermentation Research Center, 183, Osongsaengmyeong 4-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28156, Korea
| | - Gwi-Hwa Jeong
- Sempio Fermentation Research Center, 183, Osongsaengmyeong 4-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28156, Korea
| | - Jong-eun Jeon
- Sempio Fermentation Research Center, 183, Osongsaengmyeong 4-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28156, Korea
| | - Byung Serk Hurh
- Sempio Fermentation Research Center, 183, Osongsaengmyeong 4-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28156, Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
8
|
Ha BG, Jung SS, Jang YK, Jeon BY, Shon YH. Mineral-Enriched Deep-Sea Water Modulates Lactate Metabolism via PGC-1α-Mediated Metabolic Reprogramming. Mar Drugs 2019; 17:md17110611. [PMID: 31717879 PMCID: PMC6891778 DOI: 10.3390/md17110611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Metabolic disorders such as diabetes and obesity are serious global health issues. These diseases are accelerated by mineral deficiencies, emphasizing the importance of addressing these deficiencies in disease management plans. Lactate metabolism is fundamentally linked to glucose metabolism, and several clinical studies have reported that blood lactate levels are higher in obese and diabetic patients than in healthy subjects. Balanced deep-sea water contains various minerals and exhibits antiobesity and antidiabetic activities in mice; however, the impact of balanced deep-sea water on lactate metabolism is unclear. Thus, we evaluated the effects of balanced deep-sea water on lactate metabolism in C2C12 myotubes, and found that balanced deep-sea water mediated lactate metabolism by regulating the gene expression levels of lactate dehydrogenases A and B, a monocarboxylate transporter, and a mitochondrial pyruvate carrier. The activities of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and signaling molecules involved in PGC-1α activation were also upregulated by treatment with balanced deep-sea water. These results suggest that balanced deep-sea water, which can mediate lactate metabolism, may be used to prevent or treat obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Byung Geun Ha
- Biomedical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu 41944, Korea; (B.G.H.); (S.S.J.)
| | - Sung Suk Jung
- Biomedical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu 41944, Korea; (B.G.H.); (S.S.J.)
| | | | | | - Yun Hee Shon
- Biomedical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu 41944, Korea; (B.G.H.); (S.S.J.)
- Correspondence: ; Tel.: +82-53-200-6952
| |
Collapse
|
9
|
Chen R, Chen M, Xiao Y, Liang Q, Cai Y, Chen L, Fang M. Bioinformatics analysis of microRNAs related to blood stasis syndrome in diabetes mellitus patients. Biosci Rep 2018; 38:BSR20171208. [PMID: 29437903 PMCID: PMC5861324 DOI: 10.1042/bsr20171208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
In traditional Chinese medicine (TCM), blood stasis syndrome (BSS) is mainly manifested by the increase of blood viscosity, platelet adhesion rate and aggregation, and the change of microcirculation, resulting in vascular endothelial injury. It is an important factor in the development of diabetes mellitus (DM). The aim of the present study was to screen out the potential candidate microRNAs (miRNAs) in DM patients with BSS by high-throughput sequencing (HTS) and bioinformatics analysis. Human umbilical vein endothelial cells (HUVECs) were incubated with 10% human serum to establish models of DM with BSS, DM without BSS (NBS), and normal control (NC). Total RNA of each sample was extracted and sequenced by the Hiseq2000 platform. Differentially expressed miRNAs (DE-miRNAs) were screened between samples and compared with known changes in mRNA abundance. Target genes of miRNAs were predicted by softwares. Gene Ontology (GO) and pathway enrichment analysis of the target genes were conducted. According to the significantly enriched GO annotations and pathways (P-value ≤ 0.001), we selected the key miRNAs of DM with BSS. It showed that the number of DE-miRNAs in BSS was 32 compared with non-blood stasis syndrome (NBS) and NC. The potential candidate miRNAs were chosen from GO annotations in which target genes were significantly enriched (-log10 (P-value) > 5), which included miR-140-5p, miR-210, miR-362-5p, miR-590-3p, and miR-671-3p. The present study screened out the potential candidate miRNAs in DM patients with BSS by HTS and bioinformatics analysis. The miRNAs will be helpful to provide valuable suggestions on clinical studies of DM with BSS at the gene level.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Minghao Chen
- Reproductive Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511400, China
| | - Ya Xiao
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qiuer Liang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yunfei Cai
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Liguo Chen
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Meixia Fang
- Institute of Laboratory Animals, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
10
|
Rourke JL, Hu Q, Screaton RA. AMPK and Friends: Central Regulators of β Cell Biology. Trends Endocrinol Metab 2018; 29:111-122. [PMID: 29289437 DOI: 10.1016/j.tem.2017.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 02/08/2023]
Abstract
If left unchecked, prediabetic hyperglycemia can progress to diabetes and often life-threatening attendant secondary complications. Central to the process of glucose homeostasis are pancreatic β cells, which sense elevations in plasma glucose and additional dietary components and respond by releasing the appropriate quantity of insulin, ensuring the arrest of hepatic glucose output and glucose uptake in peripheral tissues. Given that β cell failure is associated with the transition from prediabetes to diabetes, improved β cell function ('compensation') has a central role in preventing type 2 diabetes mellitus (T2DM). Recent data have shown that both insulin secretion and β cell mass dynamics are regulated by the liver kinase B1-AMP-activated kinase (LKB1-AMPK) pathway and related kinases of the AMPK family; thus, an improved understanding of the biological roles of AMPK in the β cell is now of considerable interest.
Collapse
Affiliation(s)
- Jillian L Rourke
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ONT, M4N 3M5, Canada
| | - Queenie Hu
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ONT, M4N 3M5, Canada
| | - Robert A Screaton
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ONT, M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
11
|
Ha BG, Jung SS, Shon YH. Effects of proton beam irradiation on mitochondrial biogenesis in a human colorectal adenocarcinoma cell line. Int J Oncol 2017; 51:859-866. [PMID: 28713989 DOI: 10.3892/ijo.2017.4067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Proton beam therapy has recently been used to improve local control of tumor growth and reduce side-effects by decreasing the global dose to normal tissue. However, the regulatory mechanisms underlying the physiological role of proton beam radiation are not well understood, and many studies are still being conducted regarding these mechanisms. To determine the effects of proton beams on mitochondrial biogenesis, we investigated: mitochondrial DNA (mtDNA) mass; the gene expression of mitochondrial transcription factors, functional regulators, and dynamic-related regulators; and the phosphorylation of the signaling molecules that participate in mitochondrial biogenesis. Both the mtDNA/nuclear DNA (nDNA) ratio and the mitochondria staining assays showed that proton beam irradiation increases mitochondrial biogenesis in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced aggressive HT-29 cells. Simultaneously, proton beam irradiation increases the gene expression of the mitochondrial transcription factors PGC-1α, NRF1, ERRα, and mtTFA, the dynamic regulators DRP1, OPA1, TIMM44, and TOM40, and the functional regulators CytC, ATP5B and CPT1-α. Furthermore, proton beam irradiation increases the phosphorylation of AMPK, an important molecule involved in mitochondrial biogenesis that is an energy sensor and is regulated by the AMP/ATP ratio. Based on these findings, we suggest that proton beam irradiation inhibits metastatic potential by increasing mitochondrial biogenesis and function in TPA-induced aggressive HT-29 cells.
Collapse
Affiliation(s)
- Byung Geun Ha
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Sung Suk Jung
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Yun Hee Shon
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| |
Collapse
|
12
|
Potential Health Benefits of Deep Sea Water: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6520475. [PMID: 28105060 PMCID: PMC5221345 DOI: 10.1155/2016/6520475] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023]
Abstract
Deep sea water (DSW) commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.
Collapse
|
13
|
Lin CH, Chen YH, Tsai TY, Pan TM. Effects of deep sea water and Lactobacillus paracasei subsp. paracasei NTU 101 on hypercholesterolemia hamsters gut microbiota. Appl Microbiol Biotechnol 2016; 101:321-329. [DOI: 10.1007/s00253-016-7868-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023]
|
14
|
Ha BG, Moon DS, Kim HJ, Shon YH. Magnesium and calcium-enriched deep-sea water promotes mitochondrial biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes. Biomed Pharmacother 2016; 83:477-484. [PMID: 27434863 DOI: 10.1016/j.biopha.2016.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022] Open
Abstract
Recent studies showed that deficiencies of essential minerals including Mg, Ca, and K, and trace minerals including Se, Zn, and V, have implications for the development, prevention, and treatment of several chronic diseases including obesity and type 2 diabetes. Our previous studies revealed that balanced deep-sea water (BDSW), which is composed of desalinated water enriched with Mg and Ca, has potential as a treatment for diabetes and obesity. In this study, to determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, expression of key transcription factors and mitochondria-specific genes, phosphorylation of signaling molecules associated with mitochondrial biogenesis, and mitochondrial function in 3T3-L1 preadipocytes. BDSW increased mitochondrial biogenesis in a dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances expression of PGC1-α, NRF1, and TFAM genes. Upregulation of these genes was supported by increased mitochondria staining, CytC oxidase activity, and AMPK phosphorylation. The stimulatory effect of BDSW on mitochondrial biogenesis and function suggests a novel mechanism for BDSW-induced anti-diabetic and anti-obesity action.
Collapse
Affiliation(s)
- Byung Geun Ha
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea
| | - Deok-Soo Moon
- Seawater Utilization Plant Research Center, Korea Research Institute of Ships & Ocean Engineering (KRISO), Goseong, Gangwon-do, South Korea
| | - Hyeon Ju Kim
- Seawater Utilization Plant Research Center, Korea Research Institute of Ships & Ocean Engineering (KRISO), Goseong, Gangwon-do, South Korea
| | - Yun Hee Shon
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
15
|
Abstract
Over the past decades, hypomagnesemia (serum Mg(2+) <0.7 mmol/L) has been strongly associated with type 2 diabetes mellitus (T2DM). Patients with hypomagnesemia show a more rapid disease progression and have an increased risk for diabetes complications. Clinical studies demonstrate that T2DM patients with hypomagnesemia have reduced pancreatic β-cell activity and are more insulin resistant. Moreover, dietary Mg(2+) supplementation for patients with T2DM improves glucose metabolism and insulin sensitivity. Intracellular Mg(2+) regulates glucokinase, KATP channels, and L-type Ca(2+) channels in pancreatic β-cells, preceding insulin secretion. Moreover, insulin receptor autophosphorylation is dependent on intracellular Mg(2+) concentrations, making Mg(2+) a direct factor in the development of insulin resistance. Conversely, insulin is an important regulator of Mg(2+) homeostasis. In the kidney, insulin activates the renal Mg(2+) channel transient receptor potential melastatin type 6 that determines the final urinary Mg(2+) excretion. Consequently, patients with T2DM and hypomagnesemia enter a vicious circle in which hypomagnesemia causes insulin resistance and insulin resistance reduces serum Mg(2+) concentrations. This Perspective provides a systematic overview of the molecular mechanisms underlying the effects of Mg(2+) on insulin secretion and insulin signaling. In addition to providing a review of current knowledge, we provide novel directions for future research and identify previously neglected contributors to hypomagnesemia in T2DM.
Collapse
Affiliation(s)
- Lisanne M M Gommers
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| |
Collapse
|