1
|
Ali S, Aslam MA, Kanwar R, Mehmood Z, Arshad MI, Hussain S. Phage-antibiotic synergism against Salmonella typhi isolated from stool samples of typhoid patients. Ir J Med Sci 2024; 193:1377-1384. [PMID: 38158479 DOI: 10.1007/s11845-023-03599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Typhoid fever is a fatal disease in humans that is caused by Salmonella typhi. S. typhi infections need immediate antibiotic therapy, and their extensive use has led to multidrug-resistant (MDR) pathogens. The use of bacteriophages is becoming a new way to treat these resistant bacteria. This research was directed to bacteriophage isolation against S. typhi and to determine phage-antibiotic synergism. AIMS To isolate bacteriophages targeting S. typhi, the causative agent of typhoid fever, and investigate their potential synergistic effects when combined with antibiotics. STUDY DESIGN A cross-sectional study. METHODS The Widal test was positive; twenty diarrheal stool samples were taken, and for confirmation of S. typhi, different biochemical tests were performed. The disc-diffusion technique was used to determine antimicrobial resistance, and the double agar overlay method was used for bacteriophage isolation from sewage water against S. typhi. To test antibiotic-phage synergism, the S. typhi bacteria was treated by phages together with varying antibiotic concentrations. RESULTS Eleven samples were positive for S. typhi with black colonies on SS-agar. These were catalase and MR positive with alkali butt on TSI. Clear plaques were observed after the agar overlay. Isolated phages were stable at various pH and temperature levels. Synergism was observed on agar plate. The zone was enlarged when phages were combined with bacterial lawn culture and ciprofloxacin disk. Bacterial growth inhibition had a significant p-value of 0.03 in titration plates, with the phage-ciprofloxacin combination being more effective than the phage and antibiotic alone. CONCLUSION The study highlights the synergistic effects of isolated bacteriophages with antibiotics, which are not only effective against S. typhi infection but also decrease antibiotic resistance.
Collapse
Affiliation(s)
- Saqib Ali
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rabia Kanwar
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Zain Mehmood
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sarfaraz Hussain
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China.
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Chen Z, Yang Y, Li G, Huang Y, Luo Y, Le S. Effective elimination of bacteria on hard surfaces by the combined use of bacteriophages and chemical disinfectants. Microbiol Spectr 2024; 12:e0379723. [PMID: 38483478 PMCID: PMC10986474 DOI: 10.1128/spectrum.03797-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Hospital-acquired infections (HAIs) represent one of the significant causes of morbidity and mortality worldwide, and controlling pathogens in the hospital environment is of great importance. Currently, the standard disinfection method in the hospital environment is chemical disinfection. However, disinfectants are usually not used strictly according to the label, making them less effective in disinfection. Therefore, there is an emergent need to find a better approach that can be used in hospitals to control pathogenic bacteria in the clinical environment. Bacteriophages (phages) are effective in killing bacteria and have been applied in the treatment of bacterial infections but have not received enough attention regarding the control of contamination in the clinical environment. In this study, we found that various phages remain active in the presence of chemical disinfectants. Moreover, the combined use of specific phages and chemical disinfectants is more effective in removing bacterial biofilms and eliminating bacteria on hard surfaces. Thus, this proof-of-concept study indicates that adding phages directly to chemical disinfectants might be an effective and economical approach to enhance clinical environment disinfection. IMPORTANCE In this study, we investigated whether the combination of bacteriophages and chemical disinfectants can enhance the efficacy of reducing bacterial contamination on hard surfaces in the clinical setting. We found that specific phages are active in chemical disinfectants and that the combined use of phages and chemical disinfectants was highly effective in reducing bacterial presence on hard surfaces. As a proof-of-concept, we demonstrated that adding specific phages directly to chemical disinfectants is an effective and cost-efficient strategy for clinical environment disinfection.
Collapse
Affiliation(s)
- Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, China
| | - Gaoming Li
- Disease Surveillance Division, Center for Disease Control and Prevention of Central Theater Command, Shijingshan, Beijing, China
| | - Youying Huang
- Biomedical Analysis Center, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Luo
- School of Nursing, Army Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Nawaz A, Zafar S, Alessa AH, Khalid NA, Shahzadi M, Majid A, Badshah M, Shah AA, Khan S. Characterization of ES10 lytic bacteriophage isolated from hospital waste against multidrug-resistant uropathogenic E. coli. Front Microbiol 2024; 15:1320974. [PMID: 38525078 PMCID: PMC10957765 DOI: 10.3389/fmicb.2024.1320974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Escherichia coli is the major causative agent of urinary tract infections worldwide and the emergence of multi-drug resistant determinants among clinical isolates necessitates the development of novel therapeutic agents. Lytic bacteriophages efficiently kill specific bacteria and seems promising approach in controlling infections caused by multi-drug resistant pathogens. This study aimed the isolation and detailed characterization of lytic bacteriophage designated as ES10 capable of lysing multidrug-resistant uropathogenic E. coli. ES10 had icosahedral head and non-contractile tail and genome size was 48,315 base pairs long encoding 74 proteins. Antibiotics resistance, virulence and lysogenic cycle associated genes were not found in ES10 phage genome. Morphological and whole genome analysis of ES10 phage showed that ES10 is the member of Drexlerviridae. Latent time of ES10 was 30 min, burst size was 90, and optimal multiplicity of infection was 1. ES10 was stable in human blood and subsequently caused 99.34% reduction of host bacteria. Calcium chloride shortened the adsorption time and latency period of ES10 and significantly inhibited biofilm formation of host bacteria. ES10 caused 99.84% reduction of host bacteria from contaminated fomites. ES10 phage possesses potential to be utilized in standard phage therapy.
Collapse
Affiliation(s)
- Aneela Nawaz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sabeena Zafar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Nauman Ahmed Khalid
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muqaddas Shahzadi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alina Majid
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
4
|
Barrero-Canosa J, Wang L, Oyugi A, Klaes S, Fischer P, Adrian L, Szewzyk U, Cooper M. Characterization of phage vB_EcoS-EE09 infecting E. coli DSM613 Isolated from Wastewater Treatment Plant Effluent and Comparative Proteomics of the Infected and Non-Infected Host. Microorganisms 2023; 11:2688. [PMID: 38004701 PMCID: PMC10673088 DOI: 10.3390/microorganisms11112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Phages influence microbial communities, can be applied in phage therapy, or may serve as bioindicators, e.g., in (waste)water management. We here characterized the Escherichia phage vB_EcoS-EE09 isolated from an urban wastewater treatment plant effluent. Phage vB_EcoS-EE09 belongs to the genus Dhillonvirus, class Caudoviricetes. It has an icosahedral capsid with a long non-contractile tail and a dsDNA genome with an approximate size of 44 kb and a 54.6% GC content. Phage vB_EcoS-EE09 infected 12 out of the 17 E. coli strains tested. We identified 16 structural phage proteins, including the major capsid protein, in cell-free lysates by protein mass spectrometry. Comparative proteomics of protein extracts of infected E. coli cells revealed that proteins involved in amino acid and protein metabolism were more abundant in infected compared to non-infected cells. Among the proteins involved in the stress response, 74% were less abundant in the infected cultures compared to the non-infected controls, with six proteins showing significant less abundance. Repressing the expression of these proteins may be a phage strategy to evade host defense mechanisms. Our results contribute to diversifying phage collections, identifying structural proteins to enable better reliability in annotating taxonomically related phage genomes, and understanding phage-host interactions at the protein level.
Collapse
Affiliation(s)
- Jimena Barrero-Canosa
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Luyao Wang
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Angelah Oyugi
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Simon Klaes
- Institute of Biotechnology, Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (S.K.)
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Pascal Fischer
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Lorenz Adrian
- Institute of Biotechnology, Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (S.K.)
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Myriel Cooper
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| |
Collapse
|
5
|
Ioannou P, Baliou S, Samonis G. Bacteriophages in Infectious Diseases and Beyond-A Narrative Review. Antibiotics (Basel) 2023; 12:1012. [PMID: 37370331 PMCID: PMC10295561 DOI: 10.3390/antibiotics12061012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of antibiotics has revolutionized medicine and has changed medical practice, enabling successful fighting of infection. However, quickly after the start of the antibiotic era, therapeutics for infectious diseases started having limitations due to the development of antimicrobial resistance. Since the antibiotic pipeline has largely slowed down, with few new compounds being produced in the last decades and with most of them belonging to already-existing classes, the discovery of new ways to treat pathogens that are resistant to antibiotics is becoming an urgent need. To that end, bacteriophages (phages), which are already used in some countries in agriculture, aquaculture, food safety, and wastewater plant treatments, could be also used in clinical practice against bacterial pathogens. Their discovery one century ago was followed by some clinical studies that showed optimistic results that were limited, however, by some notable obstacles. However, the rise of antibiotics during the next decades left phage research in an inactive status. In the last decades, new studies on phages have shown encouraging results in animals. Hence, further studies in humans are needed to confirm their potential for effective and safe treatment in cases where there are few or no other viable therapeutic options. This study reviews the biology and applications of phages for medical and non-medical uses in a narrative manner.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
D’Accolti M, Soffritti I, Bini F, Mazziga E, Arnoldo L, Volta A, Bisi M, Antonioli P, Laurenti P, Ricciardi W, Vincenti S, Mazzacane S, Caselli E. Potential Use of a Combined Bacteriophage–Probiotic Sanitation System to Control Microbial Contamination and AMR in Healthcare Settings: A Pre-Post Intervention Study. Int J Mol Sci 2023; 24:ijms24076535. [PMID: 37047510 PMCID: PMC10095405 DOI: 10.3390/ijms24076535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Microbial contamination in the hospital environment is a major concern for public health, since it significantly contributes to the onset of healthcare-associated infections (HAIs), which are further complicated by the alarming level of antimicrobial resistance (AMR) of HAI-associated pathogens. Chemical disinfection to control bioburden has a temporary effect and can favor the selection of resistant pathogens, as observed during the COVID-19 pandemic. Instead, probiotic-based sanitation (probiotic cleaning hygiene system, PCHS) was reported to stably abate pathogens, AMR, and HAIs. PCHS action is not rapid nor specific, being based on competitive exclusion, but the addition of lytic bacteriophages that quickly and specifically kill selected bacteria was shown to improve PCHS effectiveness. This study aimed to investigate the effect of such combined probiotic–phage sanitation (PCHSφ) in two Italian hospitals, targeting staphylococcal contamination. The results showed that PCHSφ could provide a significantly higher removal of staphylococci, including resistant strains, compared with disinfectants (−76%, p < 0.05) and PCHS alone (−50%, p < 0.05). Extraordinary sporadic chlorine disinfection appeared compatible with PCHSφ, while frequent routine chlorine usage inactivated the probiotic/phage components, preventing PCHSφ action. The collected data highlight the potential of a biological sanitation for better control of the infectious risk in healthcare facilities, without worsening pollution and AMR concerns.
Collapse
Affiliation(s)
- Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Luca Arnoldo
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Antonella Volta
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Matteo Bisi
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Paola Antonioli
- Department of Infection Prevention Control and Risk Management, S. Anna University Hospital, 44124 Ferrara, Italy
| | - Patrizia Laurenti
- Department of Health Sciences and Public Health, Section of Hygiene, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Walter Ricciardi
- Department of Health Sciences and Public Health, Section of Hygiene, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Vincenti
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
- Correspondence:
| |
Collapse
|
7
|
Lehman SM, Kongari R, Glass AM, Koert M, Ray MD, Plaut RD, Stibitz S. Phage K gp102 Drives Temperature-Sensitive Antibacterial Activity on USA300 MRSA. Viruses 2022; 15:17. [PMID: 36680060 PMCID: PMC9861931 DOI: 10.3390/v15010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is widespread interest in using obligately lytic bacteriophages ("phages") to treat human bacterial infections. Among Staphylococcus aureus infections, the USA300 lineage is a frequent cause of invasive disease. We observed that phage K, a model S. aureus myophage, exhibits temperature-sensitive growth on USA300 strains, with the wild-type phage providing poorer growth suppression in broth and forming smaller and fainter plaques at 37 °C vs. 30 °C. We isolated 65 mutants of phage K that had improved plaquing characteristics at 37 °C when compared to the parental phage. In all 65 mutants, this phenotype was attributable to loss-of-function (LoF) mutations in gp102, which encodes a protein of unknown function that has homologs only among the Herelleviridae (SPO1-like myophages infecting gram-positive bacteria). Additional experiments with representative mutants consistently showed that the temperature-sensitive plaque phenotype was specific to USA300 MRSA strains and that Gp102 disruption was correlated with improved suppression of bacterial growth in broth and improved antibacterial activity in a mouse model of upper respiratory tract infection. The same genotype and in vitro phenotypes could be replicated in close relatives of phage K. Gp102 disruption did not have a detectable effect on adsorption but did delay cell culture lysis relative to wild-type under permissive infection conditions, suggesting that gp102 conservation might be maintained by selective pressure for more rapid replication. Expression of gp102 on a plasmid was toxic to both an MSSA and a USA300 MRSA strain. Molecular modeling predicts a protein with two helix-turn-helix domains that displays some similarity to DNA-binding proteins such as transcription factors. While its function remains unclear, gp102 is a conserved gene that is important to the infection process of Kayvirus phages, and it appears that the manner in which USA300 strains defend against them at 37 °C can be overcome by gp102 LoF mutations.
Collapse
|
8
|
Zhao M, Xie R, Wang S, Huang X, Yang H, Wu W, Lin L, Chen H, Fan J, Hua L, Liang W, Zhang J, Wang X, Chen H, Peng Z, Wu B. Identification of a broad-spectrum lytic Myoviridae bacteriophage using multidrug resistant Salmonella isolates from pig slaughterhouses as the indicator and its application in combating Salmonella infections. BMC Vet Res 2022; 18:270. [PMID: 35821025 PMCID: PMC9277904 DOI: 10.1186/s12917-022-03372-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Salmonella is a leading foodborne and zoonotic pathogen, and is widely distributed in different nodes of the pork supply chain. In recent years, the increasing prevalence of antimicrobial resistant Salmonella poses a threat to global public health. The purpose of this study is to the prevalence of antimicrobial resistant Salmonella in pig slaughterhouses in Hubei Province in China, and explore the effect of using lytic bacteriophages fighting against antimicrobial resistant Salmonella. Results We collected a total of 1289 samples including anal swabs of pigs (862/1289), environmental swabs (204/1289), carcass surface swabs (36/1289) and environmental agar plates (187/1289) from eleven slaughterhouses in seven cities in Hubei Province and recovered 106 Salmonella isolates. Antimicrobial susceptibility testing revealed that these isolates showed a high rate of antimicrobial resistance; over 99.06% (105/106) of them were multidrug resistant. To combat these drug resistant Salmonella, we isolated 37 lytic phages using 106 isolates as indicator bacteria. One of them, designated ph 2–2, which belonged to the Myoviridae family, displayed good capacity to kill Salmonella under different adverse conditions (exposure to different temperatures, pHs, UV, and/or 75% ethanol) and had a wide lytic spectrum. Evaluation in mouse models showed that ph 2–2 was safe and saved 80% (administrated by gavage) and 100% (administrated through intraperitoneal injection) mice from infections caused by Salmonella Typhimurium. Conclusions The data presented herein demonstrated that Salmonella contamination remains a problem in some pig slaughter houses in China and Salmonella isolates recovered in slaughter houses displayed a high rate of antimicrobial resistance. In addition, broad-spectrum lytic bacteriophages may represent a good candidate for the development of anti-antimicrobial resistant Salmonella agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03372-8.
Collapse
Affiliation(s)
- Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqing Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.,Present address: Hubei Jin Xu Agricultural Development Limited by Share Ltd., Wuhan, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Bactericidal Synergism between Phage YC#06 and Antibiotics: a Combination Strategy to Target Multidrug-Resistant Acinetobacter baumannii In Vitro and In Vivo. Microbiol Spectr 2022; 10:e0009622. [PMID: 35736241 PMCID: PMC9430793 DOI: 10.1128/spectrum.00096-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phage-antibiotic combination (PAC) therapy is a potential new alternative to treat infections caused by pathogenic bacteria, particularly those caused by antibiotic-resistant bacteria. In the present study, phage YC#06 against highly multidrug-resistant Acinetobacter baumannii 4015 was isolated, identified, and characterized. Compared with antibiotics alone, the time-kill experiments in vitro showed that YC#06 and antibiotic mixtures that include the chloramphenicol, imipenem, and cefotaxime combination could produce phage-antibiotic synergy (PAS), which reduced the ultimate effective concentration of antibiotics. No phage-resistant bacteria have been isolated during the whole time-kill experiments in vitro. Of note, PAS was dose dependent, requiring a moderate phage dose to achieve maximum PAS effect. In addition, PAS could effectively inhibit biofilm formation and remove mature biofilms in vitro. Furthermore, PAS between the combination of YC#06 and antibiotic mixtures in vivo was validated using a zebrafish infection model. Overall, the results of this study demonstrate that PAC could be a viable strategy to treat infection caused by high-level multidrug-resistant Acinetobacter baumannii or other drug-resistant bacteria through switching to other types of phage and antibiotic mixtures. IMPORTANCE The treatment of multidrug-resistant bacterial infection is an urgent clinical problem. The combination of bacteriophages and antibiotics could produce synergistic bactericidal effects, which could reduce the emergence of antibiotic resistance and antibiotic consumption in antibiotic-sensitive bacteria, restore efficacy to antibiotics in antibiotic-resistant bacteria, and prevent the occurrence of phage-resistant bacteria. Phage-antibiotic combination (PAC) might be a potential new alternative for clinical treatment of multidrug-resistant bacterial infections.
Collapse
|
10
|
Isolation and Analysis of the Biological Characteristics of a Novel Bacteriophage vB_SauP_P992 Against Staphylococcus aureus. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Staphylococcus aureus is one of the most virulent pathogens inducing various diseases in humans and animals. Disturbingly, the degree and rate of drug resistance in this pathogen have sharply increased and have become a global concern. Objectives: This study analyzed the lytic activity and the biological characteristics of a mitomycin C-induced bacteriophage from S. aureus isolated and identified from hospital sewage to explore novel antibacterial therapeutic strategies for the clinical treatment of drug-resistant S. aureus, including urinary tract infections caused by MRSA strains. Methods: The new bacteriophage vB_SauP_P992, which can effectively lyse the MRSA strain, was successfully isolated and purified using the double agar plate method. In this regard, pH sensitivity, one-step growth curve, the optimal multiplicity of infection (MOI), thermo-sensitivity, phage host range, and the effects of organic reagents on phage activity were determined. Results: Electron microscopic results showed that the bacteriophage head was hexagonal with a non-contractile tail and could form a single, neatly-bordered plaque. Moreover, the optimal MOI was 0.1. The one-step growth curve showed a bacteriophage incubation period of about 20 min, a lysis period of 90 min, and a burst size of about 65.8 PFU per infected cell. The bacteriophage vB_SauP_P992 had acceptable thermal stability, pH stability, and resistance to physical and chemical factors, indicating a bacteriophage with no capsule. Conclusions: With an intense lytic activity and acceptable stability, this novel bacteriophage lays a solid foundation to enrich the bacteriophage library and better prevent and control drug-resistant S. aureus infections.
Collapse
|
11
|
Chen LK, Chang JC, Chu HT, Chen YT, Jiang HL, Wang LS, Teh SH, Yang HH, Chen DS, Li YZ, Chang CC, Sankhla D, Tseng CC. Preoptimized phage cocktail for use in aerosols against nosocomial transmission of carbapenem-resistant Acinetobacter baumannii: A 3-year prospective intervention study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113476. [PMID: 35367880 DOI: 10.1016/j.ecoenv.2022.113476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Using bacteriophages (phages) as environmental sanitizers has been recognized as a potential alternative method to remove bacterial contamination in vitro; however, very few studies are available on the application of phages for infection control in hospitals. Here, we performed a 3-year prospective intervention study using aerosolized phage cocktails as biocontrol agents against carbapenem-resistant Acinetobacter baumannii (CRAB) infection in the hospital. When a CRAB-infected patient was identified in an intensive care unit (ICU), their surrounding environment was chosen for phage aerosol decontamination. Before decontamination, 501 clinical specimens from the patients were subjected to antibiotic resistance analysis and phage typing. The optimal phage cocktails were a combination of different phage families or were constructed by next-evolutionary phage typing with the highest score for the host lysis zone to prevent the development of environmental CRAB phage resistance. The phage infection percentage of the antibiotic-resistant A. baumannii strains was 97.1%, whereas the infection percentage in the antibiotic-susceptible strains was 79.3%. During the phage decontamination periods from 2017 to 2019, the percentage of carbapenem-resistant A. baumannii in test ICUs decreased significantly from 65.3% to 55%. The rate of new acquisitions of CRAB infection over the three years was 4.4 per 1000 patient-days, which was significantly lower than that in the control wards (8.9 per 1000 patient-days) where phage decontamination had never been performed. In conclusion, our results support the potential of phage cocktails to decrease CRAB infection rates, and the aerosol generation process may make this approach more comprehensive and time-saving.
Collapse
Affiliation(s)
- Li-Kuang Chen
- Institute of Medical Sciences, Department of Laboratory Diagnostic, College of Medicine, Tzu Chi University, Hualien, Taiwan; Branch of Clinical Pathology, Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Jui-Chih Chang
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Section 3, Zhongyang Rd., Hualien, Taiwan; Department of Surgery, School of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, Taiwan.
| | - Hsiu-Tzu Chu
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan.
| | - Yi-Ting Chen
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan.
| | - Hui-Li Jiang
- Unit of Infection Control and Management, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Hui-Hua Yang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Dar-Sen Chen
- School of Pharmacy, China Medical University, Taiwan.
| | - Yu-Zhong Li
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Chin-Cheng Chang
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Debangana Sankhla
- Department of Laboratory Medicine, Clinical Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
12
|
Samir S, El-Far A, Okasha H, Mahdy R, Samir F, Nasr S. Isolation and characterization of lytic bacteriophages from sewage at an egyptian tertiary care hospital against methicillin-resistant Staphylococcus aureus clinical isolates. Saudi J Biol Sci 2022; 29:3097-3106. [PMID: 35360502 PMCID: PMC8961222 DOI: 10.1016/j.sjbs.2022.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen to humans causing life-threatening infections. MRSA have the capability to grow resistance to many antibiotics, and phage therapy is one treatment option for this infection. Objectives The aim of the present study was to isolate and characterize the lytic bacteriophages specific to MRSA from domestic sewage water at a tertiary care hospital in Egypt. Methods Thirty MRSA strains were isolated from different clinical samples admitted to the microbiology lab at Theodor Bilharz Research institute (TBRI) hospital, Giza, Egypt. They were confirmed to be MRSA through phenotypic detection and conventional PCR for mecA gene. They were used for the isolation of phages from sewage water of TBRI hospital. Plaque assay was applied to purify and quantify the titer of the isolated phages. The host range of the isolated phages was detected using the spot test assay. The morphology of phages was confirmed using transmission electron microscope (TEM). Digestion of DNA extracted from phages with endonuclease enzymes including EcoRI and SmaI was performed. SDS-PAGE was performed to analyze MRSA specific phage proteins. As a positive control prophages were isolated from a mitomycin C (MitC) treated culture of S. aureus strain ATCC25923. Further characterization using conventional polymerase chain reaction (PCR) was used to select three known Staphylophages by detecting the endolysin gene of phage K, the polymerase gene of phage 44AHJD, and the minor tail gene of phage P68. Results Isolated phages in this research displayed a wide host range against MRSA using the spot test, out of thirty tested MRSA isolates 24 were sensitive and got lysed (80%). The titer of the phages was estimated to be 1.04 × 106 pfu/ml using plaque test. Identification of head and tail morphology of the phages was achieved using TEM and they were designated to tailed phages of order Caudovirales, they composed an icosahedral capsid. Prophages were isolated through MitC induction. DNA of phages was digested by endonuclease enzymes. Conventional PCR yielded 341 bp of phage K endolysin gene and phage P68 minor tail protein gene 501 bp. Protein analysis using SDS-PAGE showed 4 proteins of sizes between 42 kDa and 140 kDa. Conclusion Phages isolated here are alike to others mentioned in previous studies. The high broad host range of the isolated phages is promising to control MRSA and can be in the future commercially suitable for treatment as lysate preparations. Animal models of phage-bacterial interaction will be our next step that may help in resolving the multidrug resistant crisis of MRSA in Egypt.
Collapse
Key Words
- AMR, antimicrobial resistance
- CLSI, clinical and laboratory standards institute
- Caudovirales
- ESKAPE, (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species)
- FOX, Cefoxitin
- ITS, Internal transcribed spacer
- LB, Luria-Bertani
- Lytic bacteriophages
- MDR, Multidrug-resistant
- MRSA
- MRSA, Methicillin Resistant Staphylococcus aureus
- MitC, mitomycin C
- Mitomycin C
- NGS, double-stranded, ds, next generation sequencing
- OX, Oxacillin
- PCR, Polymerase chain reaction
- PFU, Plaque forming unit
- PTA, phosphotungstic acid
- Polymerase chain reaction
- Restriction digestion
- S. aureus, Staphylococcus aureus
- SDS-polyacrylamide gel electrophoresis
- Sewage
- TBRI, Theodor Bilharz research Institute
- TEM, Transmission electron microscopy
- Transmission electron microscopy
Collapse
Affiliation(s)
- Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Amira El-Far
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Rania Mahdy
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Fatima Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Sami Nasr
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| |
Collapse
|
13
|
Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus aureus Biofilms. Int J Mol Sci 2022; 23:ijms23031274. [PMID: 35163197 PMCID: PMC8836238 DOI: 10.3390/ijms23031274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Problems connected with biofilm-related infections and antibiotic resistance necessitate the investigation and development of novel treatment strategies. Given their unique characteristics, one of the most promising alternatives to conventional antibiotics are bacteriophages. In the in vitro and in vivo larva model study, we demonstrate that phages vB_SauM-A, vB_SauM-C, and vB_SauM-D are effective antibiofilm agents. The exposure of biofilm to phages vB_SauM-A and vB_SauM-D led to 2-3 log reductions in the colony-forming unit number in most of the multidrug-resistant S. aureus strains. It was found that phage application reduced the formed biofilms independently of the used titer. Moreover, the study demonstrated that bacteriophages are more efficient in biofilm biomass removal and reduction in staphylococci count when compared to the antibiotics used. The scanning electron microscopy analysis results are in line with colony forming unit (CFU) counting but not entirely consistent with crystal violet (CV) staining. Additionally, phages vB_SauM-A, vB_SauM-C, and vB_SauM-D can significantly increase the survival rate and extend the survival time of Galleria mellonella larvae.
Collapse
|
14
|
Farooq T, Hussain MD, Shakeel MT, Tariqjaveed M, Aslam MN, Naqvi SAH, Amjad R, Tang Y, She X, He Z. Deploying Viruses against Phytobacteria: Potential Use of Phage Cocktails as a Multifaceted Approach to Combat Resistant Bacterial Plant Pathogens. Viruses 2022; 14:171. [PMID: 35215763 PMCID: PMC8879233 DOI: 10.3390/v14020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Rizwa Amjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| |
Collapse
|
15
|
Characterization of N4-like Pseudomonas Phage vB_Pae-PA14 Isolated from Seawater Sampled in Thailand. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage, a predator virus of bacteria, is an abundant biological entity in the biosphere. With ultimate applications in medicine and biotechnology, new phages are extensively being isolated and characterized. The objective of the present study was to characterize lytic bacteriophage vB_Pae-PA14 infecting Pseudomonas aeruginosa ATCC 27853 that was isolated from seawater in Thailand. vB_Pae-PA14 was subjected to whole genome phylogenetic analysis, host range test, biofilm test and characterization. Results showed that the phage belonged to a group of N4-like viruses, could infect P. aeruginosa isolates including carbapenem-resistant P. aeruginosa. The burst size of vB_Pae-PA14 was 86 plaque-forming unit/infected cells. Also, the phage showed a greater ability to control planktonic P. aeruginosa cells than the biofilm cells. Phage could withstand physical stresses especially the high salt concentration. In brief, lytic bacteriophage vB_Pae-PA14 infecting P. aeruginosa was isolated and characterized, which might be useful in further bacteriophage lytic applications.
Collapse
|
16
|
Isolation and Characterization of Bacteriophage Against Wastewater Isolates of Methicillin-resistant Staphylococcus aureus. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.119291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) not only is a notorious pathogen in clinical settings but also is an environmental issue that its presence in environmental wastewater is highlighted by several reports. Due to the negative impacts of antibiotics, alternatives like bacteriophages, as biocontrol, are considered safe. However, not all bacteriophages are safe. Thus, the characterization of bacteriophages is necessary. Objectives: This study aimed to, firstly isolate MRSA from wastewater and, secondly to perform bacteriophage isolation from the water samples to investigate its physical and genomic characteristics. Methods: Water samples were collected from seven locations across Nagpur city, India, bacteria were isolated on the S. aureus specific agar. For detecting MRSA, we followed the disc diffusion method. Isolation of bacteriophage against MRSA was performed by a modified enrichment method. We investigated its physical characteristics by the one-step growth rate, adsorption rate, host range, survivability, electron microscopy, and genomic sequencing for bioinformatics analysis. Results: Four MRSA were isolated from wastewater samples. We got a bacteriophage against an MRSA from the river Ganga. The bacteriophage belongs to the Podoviridae family, subfamily Autographivirinae. It was stable till 40°C and could survive at a highly alkaline pH. It is specific to its host. The bacteriophage DNA encodes 52 ORF, and all predicted genes are on the same strand; it also encodes a phage RNA polymerase. Conclusions: It is the first report of an S. aureus bacteriophage that belongs to the sub-family Autographivirinae. Our study and literature survey conclude that S. aureus bacteriophages of the Podoviridae family are safe for various downstream applications.
Collapse
|
17
|
Sharma S, Datta S, Chatterjee S, Dutta M, Samanta J, Vairale MG, Gupta R, Veer V, Dwivedi SK. Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa. Sci Rep 2021; 11:19393. [PMID: 34588479 PMCID: PMC8481504 DOI: 10.1038/s41598-021-98457-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
In recent years, the use of bacteriophages (or 'phages') against multidrug-resistant (MDR) bacteria including Pseudomonas aeruginosa has drawn considerable attention, globally. In this work, we report the isolation and detailed characterization of a highly lytic Pseudomonasphage DRL-P1 isolated from wastewater. Under TEM, DRL-P1 appeared as a member of the phage family Myoviridae. DRL-P1 featured rapid adsorption (~ 5 min), short-latency (~ 30 min), and large burst size (~ 100 PFU per infected cell). DRL-P1 can withstand a wide temperature range (4 °C to 40 °C) and pH (5.0 to 10.0) conditions. The 66,243 bp DRL-P1 genome (MN564818) encodes at least 93 ORFs, of which 36 were functionally annotated based on homology with similar phage proteins available in the databases. Comparative analyses of related genomes suggest an independent evolutionary history and discrete taxonomic position of DRL-P1 within genus Pbunavirus. No toxin or antibiotic resistance genes was identified. DRL-P1 is tolerant to lyophilization and encapsulation techniques and retained lytic activity even after 18 months of storage. We also demonstrated decontaminating potentials of DRL-P1 in vitro, on an artificially contaminated cover-slip model. To the best of our knowledge, this is the first Pbunavirus to be reported from India. Our study suggests DRL-P1 as a potential candidate for various applications.
Collapse
Affiliation(s)
- Sonika Sharma
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Sibnarayan Datta
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Soumya Chatterjee
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Moumita Dutta
- grid.419566.90000 0004 0507 4551National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, West Bengal India
| | - Jhuma Samanta
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Mohan G. Vairale
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Rajeev Gupta
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Vijay Veer
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Sanjai K. Dwivedi
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| |
Collapse
|
18
|
Horiuk Y, Kukhtyn M, Kernychnyi S, Laiter-Moskaliuk S, Prosyanyi S, Boltyk N. Sensitivity of Staphylococcus aureus cultures of different biological origin to commercial bacteriophages and phages of Staphylococcus aureus var . bovis. Vet World 2021; 14:1588-1593. [PMID: 34316207 PMCID: PMC8304437 DOI: 10.14202/vetworld.2021.1588-1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Mastitis, an inflammation of the mammary gland, is an ongoing problem in dairy herds. In this study, we determined the sensitivity of Staphylococcus aureus cultures of different biological origins to commercial bacteriophages and phages of S. aureus var. bovis which were isolated on dairy farms, to create a drug for the treatment of mastitis in cows. Materials and Methods: We used cultures of S. aureus isolated from different habitats, and other types of staphylococci isolated on dairy farms. As antibacterial agents, the commercially available bacteriophages staphylococcal bacteriophage and Intestifag and field strains of phages Phage SAvB07, Phage SAvB08, Phage SAvB12, and Phage SAvB14 were used. Evaluation of their lytic properties was performed using the drip method. Results: The drug Intestifag lysed cultures isolated from human habitats and archival strains of S. aureus No.209-P and S. aureus (ATCC 25923) in 91.8%–100% of cases. Staphylococcal bacteriophage killed 3.6 times fewer cultures of S. aureus isolated from humans than Intestifag and did not affect the growth of archival strains. Neither drug lysed cultures isolated from cows or cultures isolated from dairy products sold in agri-food markets. Phage SAvB14 lysed 92.7±8.3% of S. aureus isolated from the mammary glands of cows and 69.2±6.4% of cultures isolated from dairy products sold in agri-food markets. Phage SAvB12, Phage SAvB08, and Phage SAvB07 lysed 1.2-1.7 times fewer cultures isolated from the mammary glands of cows and 6-18 times fewer cultures isolated from dairy products, compared with Phage SAvB14. Phages of S. aureus var. bovis can infect staphylococcal species such as Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus, and Staphylococcus xylosus. The widest range of hosts was found for Phage SAvB14, which indicates its polyvalence. Conclusion: The biological origin of staphylococcal strains must be considered when developing effective phage therapy. Phage SAvB14 appears to be a good candidate for the development of a drug for the treatment of mastitis in cows.
Collapse
Affiliation(s)
- Yulia Horiuk
- Department of Infectious and Parasitic Diseases, State Agrarian and Engineering University in Podilya, Kamianets-Podilskyi, Ukraine
| | - Mykola Kukhtyn
- Department of Food Biotechnology and Chemistry, Ternopil Ivan Pului National Technical University, Ternopil, Ukraine
| | - Serhiy Kernychnyi
- Department of Veterinary Obstetrics, Pathology and Surgery, State Agrarian and Engineering University in Podilya, Kamianets-Podilskyi, Ukraine
| | - Svitlana Laiter-Moskaliuk
- Department of Animal Hygiene and Veterinary Support of the Cynological Service of the National Police of Ukraine, State Agrarian and Engineering University in Podilia, Kamianets-Podilskyi, Ukraine
| | - Sergiy Prosyanyi
- Department of Infectious and Parasitic Diseases, State Agrarian and Engineering University in Podilya, Kamianets-Podilskyi, Ukraine
| | - Nataliia Boltyk
- Research Station of the Institute of Veterinary Medicine of NAAS, Ternopil, Ukraine
| |
Collapse
|
19
|
Asif M, Naseem H, Alvi IA, Basit A, Rehman SU. Characterization of a lytic EBP bacteriophage with large size genome against Enterobacter cloacae. APMIS 2021; 129:461-469. [PMID: 33950561 DOI: 10.1111/apm.13138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
Enterobacter cloacae (E. cloacae) is an emerging nosocomial pathogen that had acquired antibiotic resistance against multiple classes of antibiotics. The current study was aimed to isolate and characterize lytic bacteriophage against E. cloacae. The bacteriophage EBP was isolated from a sewage water sample using E. cloacae as a host strain by double-layer agar technique. EBP was found stabile at a wide range of temperatures (25, 37, 60, and 80°C) and pH (5, 6, 7, 8, and 9) with antibacterial activity up to 24 h of infection. The latent period of EBP was 20 min with a burst size of 252 phages per cell. It showed a narrow host range and infected 12/21 (57%) isolates of E. cloacae tested. It has helical symmetry with a head size of 105 and 120 nm long tail with contractile sheath. The EBP has 179.1 kb long double-stranded DNA genome with 44.8% GC content. Majority of identified ORFs (187/281) were encoding putative proteins with unknown function. Necessary replication enzymes, structural proteins, and lytic enzymes were detected in the genome of EBP. Phylogenetic analysis revealed that EBP closely resembles with Coronobacter phage vB_CsaM_IeN, vB_CsaM_IeE, vB_CsaM_IeB, and Citrobacter phage Margaery. Based on electron microscopy and molecular characterization, EBP was classified as a Myoviridae phage.
Collapse
Affiliation(s)
- Muhammad Asif
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan.,Department of Pathology, King Edward Medical University, Lahore, Pakistan
| | - Hafsa Naseem
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan
| | - Iqbal Ahmad Alvi
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan.,Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan
| | - Shafiq-Ur- Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan
| |
Collapse
|
20
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
21
|
Wu N, Zhu T. Potential of Therapeutic Bacteriophages in Nosocomial Infection Management. Front Microbiol 2021; 12:638094. [PMID: 33633717 PMCID: PMC7901949 DOI: 10.3389/fmicb.2021.638094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
Nosocomial infections (NIs) are hospital-acquired infections which pose a high healthcare burden worldwide. The impact of NIs is further aggravated by the global spread of antimicrobial resistance (AMR). Conventional treatment and disinfection agents are often insufficient to catch up with the increasing AMR and tolerance of the pathogenic bacteria. This has resulted in a need for alternative approaches and raised new interest in therapeutic bacteriophages (phages). In contrast to the limited clinical options available against AMR bacteria, the extreme abundance and biodiversity of phages in nature provides an opportunity to establish an ever-expanding phage library that collectively provides sustained broad-spectrum and poly microbial coverage. Given the specificity of phage-host interactions, phage susceptibility testing can serve as a rapid and cost-effective method for bacterial subtyping. The library can also provide a database for routine monitoring of nosocomial infections as a prelude to preparing ready-to-use phages for patient treatment and environmental sterilization. Despite the remaining obstacles for clinical application of phages, the establishment of phage libraries, pre-stocked phage vials prepared to good manufacturing practice (GMP) standards, and pre-optimized phage screening technology will facilitate efforts to make phages available as modern medicine. This may provide the breakthrough needed to demonstrate the great potential in nosocomial infection management.
Collapse
Affiliation(s)
- Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
D’Accolti M, Soffritti I, Mazzacane S, Caselli E. Bacteriophages as a Potential 360-Degree Pathogen Control Strategy. Microorganisms 2021; 9:261. [PMID: 33513949 PMCID: PMC7911525 DOI: 10.3390/microorganisms9020261] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are viruses that exclusively kill bacteria and are the most ubiquitous organisms on the planet. Since their discovery, bacteriophages have been considered an important weapon to fight human and animal infections of bacterial origin due to their specific ability to attack the associated target bacteria. With the discovery of antibiotics, phage treatment was progressively abandoned in Western countries. However, due to the recent emergence of growing antimicrobial resistance (AMR) to antibiotics, interest in phage use in human therapy has once again grown. Similarly, at the environmental level, the extensive use of disinfectants based on chemicals, including biocides in agriculture, has been associated with the emergence of resistance against disinfectants themselves, besides having a high environmental impact. Due to these issues, the applications of phages with biocontrol purposes have become an interesting option in several fields, including farms, food industry, agriculture, aquaculture and wastewater plants. Notably, phage action is maintained even when the target bacteria are multidrug resistant (MDR), rendering this option extremely interesting in counteracting AMR emergence both for therapeutical and decontamination purposes. Based on this, bacteriophages have been interestingly proposed as environmental routine sanitizers in hospitals, to counteract the spread of the pathogenic MDR bacteria that persistently contaminate hard surfaces. This review summarizes the studies aimed at evaluating the potential use of phages as decontaminants, with a special focus on hospital sanitation.
Collapse
Affiliation(s)
- Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Sante Mazzacane
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.)
- CIAS Research Centre, Department of Architecture and Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
23
|
Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S. Bacteriophages for ESKAPE: role in pathogenicity and measures of control. Expert Rev Anti Infect Ther 2021; 19:845-865. [PMID: 33261536 DOI: 10.1080/14787210.2021.1858800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The quest to combat bacterial infections has dreaded humankind for centuries. Infections involving ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) impose therapeutic challenges due to the emergence of antimicrobial drug resistance. Recently, investigations with bacteriophages have led to the development of novel strategies against ESKAPE infections. Also, bacteriophages have been demonstrated to be instrumental in the dissemination of virulence markers in ESKAPE pathogens. AREAS COVERED The review highlights the potential of bacteriophage in and against the pathogenicity of antibiotic-resistant ESKAPE pathogens. The review also emphasizes the challenges of employing bacteriophage in treating ESKAPE pathogens and the knowledge gap in the bacteriophage mediated antibiotic resistance and pathogenicity in ESKAPE infections. EXPERT OPINION Bacteriophage infection can kill the host bacteria but in survivors can transfer genes that contribute toward the survival of the pathogens in the host and resistance toward multiple antimicrobials. The knowledge on the dual role of bacteriophages in the treatment and pathogenicity will assist in the prediction and development of novel therapeutics targeting antimicrobial-resistant ESKAPE. Therefore, extensive investigations on the efficacy of synthetic bacteriophage, bacteriophage cocktails, and bacteriophage in combination with antibiotics are needed to develop effective therapeutics against ESKAPE infections.
Collapse
Affiliation(s)
- Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Sunil Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| |
Collapse
|
24
|
Sofy AR, Abd El Haliem NF, Refaey EE, Hmed AA. Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods 2020; 9:E673. [PMID: 32456227 PMCID: PMC7278617 DOI: 10.3390/foods9050673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Naglaa F. Abd El Haliem
- Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| |
Collapse
|
25
|
Skaradzińska A, Ochocka M, Śliwka P, Kuźmińska-Bajor M, Skaradziński G, Friese A, Roschanski N, Murugaiyan J, Roesler U. Bacteriophage amplification - A comparison of selected methods. J Virol Methods 2020; 282:113856. [PMID: 32198027 DOI: 10.1016/j.jviromet.2020.113856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/28/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
The bactericidal properties of bacteriophages have been used almost since the moment of the discovery of bacterial viruses. In the light of the rapidly growing number of antibiotic-resistant bacteria, phage therapy is considered one of the most promising alternatives to classical treatment. Phage amplification is one of the most common procedures of working with phages, and high-titer preparations are beneficial at the experimental stage of studies as well as in practice. The objective of this study was to compare five commonly applied methods of phage amplification: (i) pooled plaques method, (ii) the plate wash method, (iii) the agar culture method, (iv) the two-stage culture method, and (v) in liquid culture. All methods were tested for fifteen different phages. The results described herein indicate that there is no optimal, universal method for phage amplification, and the most effective method has to be established individually for each phage.
Collapse
Affiliation(s)
- Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Grzegorz Skaradziński
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universitaet Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Nicole Roschanski
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universitaet Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universitaet Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Freie Universitaet Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| |
Collapse
|
26
|
Characterizing a Lytic Bacteriophage Infecting Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated From Burn Patients. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.91634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus. Appl Environ Microbiol 2019; 85:AEM.01209-19. [PMID: 31492663 DOI: 10.1128/aem.01209-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococci are frequent agents of health care-associated infections and include methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to first-line antibiotic treatments. Bacteriophage (phage) therapy is a promising alternative antibacterial option to treat MRSA infections. S. aureus-specific phage Sb-1 has been widely used in Georgia to treat a variety of human S. aureus infections. Sb-1 has a broad host range within S. aureus, including MRSA strains, and its host range can be further expanded by adaptation to previously resistant clinical isolates. The susceptibilities of a panel of 25 genetically diverse clinical MRSA isolates to Sb-1 phage were tested, and the phage had lytic activity against 23 strains (92%). The adapted phage stock (designated Sb-1A) was tested in comparison with the parental phage (designated Sb-1P). Sb-1P had lytic activity against 78/90 strains (87%) in an expanded panel of diverse global S. aureus isolates, while eight additional strains in this panel were susceptible to Sb-1A (lytic against 86/90 strains [96%]). The Sb-1A stock was shown to be a mixed population of phage clones, including approximately 4% expanded host range mutants, designated Sb-1M. In an effort to better understand the genetic basis for this host range expansion, we sequenced the complete genomes of the parental Sb-1P and two Sb-1M mutants. Comparative genomic analysis revealed a hypervariable complex repeat structure in the Sb-1 genome that had a distinct allele that correlated with the host range expansion. This hypervariable region was previously uncharacterized in Twort-like phages and represents a novel putative host range determinant.IMPORTANCE Because of limited therapeutic options, infections caused by methicillin-resistant Staphylococcus aureus represent a serious problem in both civilian and military health care settings. Phages have potential as alternative antibacterial agents that can be used in combination with antibiotic drugs. For decades, phage Sb-1 has been used in former Soviet Union countries for antistaphylococcal treatment in humans. The therapeutic spectrum of activity of Sb-1 can be increased by selecting mutants of the phage with expanded host ranges. In this work, the host range of phage Sb-1 was expanded in the laboratory, and a hypervariable region in its genome was identified with a distinct allele state that correlated with this host range expansion. These results provide a genetic basis for better understanding the mechanisms of phage host range expansion.
Collapse
|
28
|
Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus aureus. Microorganisms 2019; 7:microorganisms7100471. [PMID: 31635437 PMCID: PMC6843549 DOI: 10.3390/microorganisms7100471] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022] Open
Abstract
The development of antimicrobial resistance has become a global concern. One approach to overcome the problem of drug resistance is the application of bacteriophages. This study aimed at characterizing three phages isolated from sewage, which show lytic activity against clinical isolates of multidrug-resistant Staphylococcus aureus. Morphology, genetics and biological properties, including host range, adsorption rate, latent time, phage burst size and lysis profiles, were studied in all three phages. As analyzed by transmission electron microscopy (TEM), phages vB_SauM-A, vB_SauM-C, vB_SauM-D have a myovirion morphology. One of the tested phages, vB_SauM-A, has relatively rapid adsorption (86% in 17.5 min), short latent period (25 min) and extremely large burst size (~500 plaque-forming units (PFU) per infected cell). The genomic analysis revealed that vB_SauM-A, vB_SauM-C, vB_SauM-D possess large genomes (vB_SauM-A 139,031 bp, vB_SauM-C 140,086 bp, vB_SauM-D 139,088 bp) with low G+C content (~30.4%) and are very closely related to the phage K (95-97% similarity). The isolated bacteriophages demonstrate broad host range against MDR S. aureus strains, high lytic activity corresponding to strictly virulent life cycle, suggesting their potential to treat S. aureus infections.
Collapse
|
29
|
D'Accolti M, Soffritti I, Lanzoni L, Bisi M, Volta A, Mazzacane S, Caselli E. Effective elimination of Staphylococcal contamination from hospital surfaces by a bacteriophage-probiotic sanitation strategy: a monocentric study. Microb Biotechnol 2019; 12:742-751. [PMID: 31025530 PMCID: PMC6559196 DOI: 10.1111/1751-7915.13415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent contamination of hospital surfaces and antimicrobial resistance (AMR) is recognized as major causes of healthcare‐associated infections (HAI). We recently showed that probiotic‐based sanitation (PCHS) can stably decrease surface pathogens and reduce AMR and HAIs. However, PCHS action is slow and non‐specific. By contrast, bacteriophages have been proposed as a decontamination method as they can rapidly attack specific targets, but their routine application has never been tested. Here, we analysed the feasibility and effectiveness of phage addition to PCHS sanitation, aiming to obtain a rapid and stable abatement of specific pathogens in the hospital environment. Staphylococcal contamination in the bathrooms of General Medicine wards was analysed, being those areas the most contaminated and Staphylococci the most prevalent bacteria in such settings. Results showed that a daily phage application by nebulization induced a rapid and significant decrease in Staphylococcus spp. load on treated surfaces, up to 97% more than PCHS alone (P < 0.001), suggesting that such a system might be considered as a part of prevention and control strategies, to counteract outbreaks of specific pathogens and prevent associated infections.
Collapse
Affiliation(s)
- Maria D'Accolti
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Architecture and Department of Medical Sciences, CIAS, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Architecture and Department of Medical Sciences, CIAS, University of Ferrara, Ferrara, Italy
| | - Luca Lanzoni
- Department of Architecture and Department of Medical Sciences, CIAS, University of Ferrara, Ferrara, Italy
| | - Matteo Bisi
- Department of Architecture and Department of Medical Sciences, CIAS, University of Ferrara, Ferrara, Italy
| | - Antonella Volta
- Department of Architecture and Department of Medical Sciences, CIAS, University of Ferrara, Ferrara, Italy
| | - Sante Mazzacane
- Department of Architecture and Department of Medical Sciences, CIAS, University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Architecture and Department of Medical Sciences, CIAS, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Isolation of a T7-Like Lytic Pasteurella Bacteriophage vB_PmuP_PHB01 and Its Potential Use in Therapy against Pasteurella multocida Infections. Viruses 2019; 11:v11010086. [PMID: 30669600 PMCID: PMC6356340 DOI: 10.3390/v11010086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
A lytic bacteriophage PHB01 specific for Pasteurella multocida type D was isolated from the sewage water collected from a pig farm. This phage had the typical morphology of the family Podoviridae, order Caudovirales, presenting an isometric polyhedral head and a short noncontractile tail. PHB01 was able to infect most of the non-toxigenic P. multocida type D strains tested, but not toxigenic type D strains and those belonging to other capsular types. Phage PHB01, the first lytic phage specific for P. multocida type D sequenced thus far, presents a 37,287-bp double-stranded DNA genome with a 223-bp terminal redundancy. The PHB01 genome showed the highest homology with that of PHB02, a lytic phage specific for P. multocida type A. Phylogenetic analysis showed that PHB01 and PHB02 were composed of a genus that was close to the T7-virus genus. In vivo tests using mouse models showed that the administration of PHB01 was safe to the mice and had a good effect on treating the mice infected with different P. multocida type D strains including virulent strain HN05. These findings suggest that PHB01 has a potential use in therapy against infections caused by P. multocida type D.
Collapse
|
31
|
Jurač K, Nabergoj D, Podgornik A. Bacteriophage production processes. Appl Microbiol Biotechnol 2018; 103:685-694. [DOI: 10.1007/s00253-018-9527-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
|
32
|
D'Accolti M, Soffritti I, Piffanelli M, Bisi M, Mazzacane S, Caselli E. Efficient removal of hospital pathogens from hard surfaces by a combined use of bacteriophages and probiotics: potential as sanitizing agents. Infect Drug Resist 2018; 11:1015-1026. [PMID: 30104889 PMCID: PMC6071622 DOI: 10.2147/idr.s170071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose Many hospital-acquired infections (HAIs) can be transmitted by pathogens contaminating hospital surfaces, not efficiently controlled by conventional sanitation, which can indeed contribute to the selection of MDR strains. Bacteriophages have been suggested as decontaminating agents, based on their selective ability to kill specific bacteria. However, there are no data on their stability in detergents and their potential use in routine sanitation. On the other hand, a probiotic-based sanitation system (Probiotic Cleaning Hygiene System, PCHS) was recently shown to stably reduce pathogens on treated surfaces. However, its action is not specific and slow, being based on competitive antagonism. This work aimed to assess the effectiveness of a combined use of phages and PCHS in removing HAI-associated pathogens from different hard surfaces. Materials and methods The decontamination ability of phages in PCHS was tested in vitro and in situ, against drug-susceptible or resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, and using bacterial densities similar to those detected on hospital surfaces. Results Phages targeted efficiently all tested bacteria, maintaining their full activity when added to the PCHS detergent. Notably, the combined use of phages and PCHS not only resulted in a rapid reduction (up to >90%) of the targeted pathogens, but also, due to the stabilizing effect of probiotics, the pathogens were maintained at low levels (>99%) at later times too, when instead the effect of phages tends to diminish. Conclusion These results suggest that a combined biological system might be successfully used in hospital sanitation protocols, potentially leading to effective and safe elimination of MDR pathogens from the hospital environment.
Collapse
Affiliation(s)
- Maria D'Accolti
- CIAS Interdepartmental Centre, Department of Medical Sciences, University of Ferrara, Ferrara, Italy,
| | - Irene Soffritti
- CIAS Interdepartmental Centre, Department of Medical Sciences, University of Ferrara, Ferrara, Italy,
| | - Micol Piffanelli
- CIAS Interdepartmental Centre, Department of Medical Sciences, University of Ferrara, Ferrara, Italy,
| | - Matteo Bisi
- CIAS Interdepartmental Centre, Department of Medical Sciences, University of Ferrara, Ferrara, Italy,
| | - Sante Mazzacane
- CIAS Interdepartmental Centre, Department of Medical Sciences, University of Ferrara, Ferrara, Italy,
| | - Elisabetta Caselli
- CIAS Interdepartmental Centre, Department of Medical Sciences, University of Ferrara, Ferrara, Italy, .,Section of Microbiology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy,
| |
Collapse
|
33
|
Squires RA. Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again. N Z Vet J 2018; 66:229-235. [PMID: 29925297 DOI: 10.1080/00480169.2018.1491348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteriophages (or phages) are naturally-occurring viruses that can infect and kill bacteria. They are remarkably diverse, numerous and widespread. Each phage has a narrow host range yet a large majority of bacteria studied so far play host to bacteriophages, hence the remarkable phage diversity. Phages were discovered just over 100 years ago and they have been used for treatment of bacterial infections in humans and other animals since the 1920s. They have also been studied intensively and this has led to, and continues to lead to, major insights in the fields of molecular biology and recombinant DNA technology, including that DNA is the genetic material, nucleotides are arranged in triplets to make codons, and messenger RNA is needed for protein synthesis. This article begins with a description of bacteriophages and explains why there has recently been a strong resurgence of interest in their clinical use for treatment of bacterial infections, particularly those caused by organisms resistant to multiple antimicrobial compounds. The history of bacteriophage therapy is briefly reviewed, followed by a review and critique of promising but very limited clinical research on the use of bacteriophages to treat bacterial infections in dogs. Other potential veterinary uses and benefits of bacteriophage therapy are also briefly discussed. There are important practical challenges that will have to be overcome before widespread implementation and commercialisation of bacteriophage therapy can be achieved, which are also considered.
Collapse
Affiliation(s)
- R A Squires
- a Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Australia
| |
Collapse
|
34
|
Affiliation(s)
- Stephen Mathew
- Department of Microbiology, Pondicherry Institute of Medical Sciences, Kalapet, Puducherry 605 014, India
| |
Collapse
|
35
|
Wang L, Qu K, Li X, Cao Z, Wang X, Li Z, Song Y, Xu Y. Use of Bacteriophages to Control Escherichia coli O157:H7 in Domestic Ruminants, Meat Products, and Fruits and Vegetables. Foodborne Pathog Dis 2017. [PMID: 28636835 DOI: 10.1089/fpd.2016.2266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli O157:H7 is an important foodborne pathogen that causes severe bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Ruminant manure is a primary source of E. coli O157:H7 contaminating the environment and food sources. Therefore, effective interventions targeted at reducing the prevalence of fecal excretion of E. coli O157:H7 by cattle and sheep and the elimination of E. coli O157:H7 contamination of meat products as well as fruits and vegetables are required. Bacteriophages offer the prospect of sustainable alternative approaches against bacterial pathogens with the flexibility of being applied therapeutically or for biological control purposes. This article reviews the use of phages administered orally or rectally to ruminants and by spraying or immersion of fruits and vegetables as an antimicrobial strategy for controlling E. coli O157:H7. The few reports available demonstrate the potential of phage therapy to reduce E. coli O157:H7 carriage in cattle and sheep, and preparation of commercial phage products was recently launched into commercial markets. However, a better ecological understanding of the phage E. coli O157:H7 will improve antimicrobial effectiveness of phages for elimination of E. coli O157:H7 in vivo.
Collapse
Affiliation(s)
- Lili Wang
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,2 Center for Food Safety of Animal Origin , Ministry of Education, Dalian, China
| | - Kunli Qu
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China
| | - Xiaoyu Li
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,2 Center for Food Safety of Animal Origin , Ministry of Education, Dalian, China
| | - Zhenhui Cao
- 3 Faculty of Animal Science and Technology, Yunnan Agricultural University , Kunming, China
| | - Xitao Wang
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,4 Research and Development Department, Dalian SEM Bio-Engineering Technology Company , Dalian, China
| | - Zhen Li
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China
| | - Yaxiong Song
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China
| | - Yongping Xu
- 1 School of Life Science and Biotechnology, Dalian University of Technology , Dalian, China .,2 Center for Food Safety of Animal Origin , Ministry of Education, Dalian, China
| |
Collapse
|
36
|
Skaradzińska A, Śliwka P, Kuźmińska-Bajor M, Skaradziński G, Rząsa A, Friese A, Roschanski N, Murugaiyan J, Roesler UH. The Efficacy of Isolated Bacteriophages from Pig Farms against ESBL/AmpC-Producing Escherichia coli from Pig and Turkey Farms. Front Microbiol 2017; 8:530. [PMID: 28405193 PMCID: PMC5370273 DOI: 10.3389/fmicb.2017.00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases are plasmid (but also chromosomally) encoded enzymes found in Enterobacteriaceae, determining resistance to a variety of important antibiotics including penicillins, cephalosporins, and monobactams. In recent decades, the prevalence of ESBL/AmpC-producing bacteria has increased rapidly across the world. Here, we evaluate the potential use of bacteriophages in terms of a reduction of antibiotic-resistant bacteria in healthy animals. The aim of our studies was to isolate bacteriophages capable of destroying ESBL/AmpC-producing Escherichia coli isolated from livestock habitats. The efficacy of isolated phages against ESBL/AmpC E. coli strains varies, but creation of a phage cocktail with broad activity spectrum is possible. This may indicate that the role of phages may not be limited to phage therapy, but bacterial viruses may also be applied against spread of bacteria with antibiotic resistance genes in the environment. We also addressed the hypothesis, that phages, effective for therapeutic purposes may be isolated from distant places and even from different environments other than the actual location of the targeted bacteria. This may be beneficial for practical purposes, as the construction of effective phage preparations does not require access to disease outbreaks.
Collapse
Affiliation(s)
- Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Grzegorz Skaradziński
- Department of Fermentation and Cereals Technology, Faculty of Food Science, Wrocław University of Environmental and Life Sciences Wrocław, Poland
| | - Anna Rząsa
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences Wrocław, Poland
| | - Anika Friese
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| | - Nicole Roschanski
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| | - Jayaseelan Murugaiyan
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| | - Uwe H Roesler
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin Berlin, Germany
| |
Collapse
|
37
|
Ross A, Ward S, Hyman P. More Is Better: Selecting for Broad Host Range Bacteriophages. Front Microbiol 2016; 7:1352. [PMID: 27660623 PMCID: PMC5014875 DOI: 10.3389/fmicb.2016.01352] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria. In this perspective, we discuss several aspects of a characteristic feature of bacteriophages, their host range. Each phage has its own particular host range, the range of bacteria that it can infect. While some phages can only infect one or a few bacterial strains, other phages can infect many species or even bacteria from different genera. Different methods for determining host range may give different results, reflecting the multiple mechanisms bacteria have to resist phage infection and reflecting the different steps of infection each method depends on. This makes defining host range difficult. Another difficulty in describing host range arises from the inconsistent use of the words "narrow" and especially "broad" when describing the breadth of the host range. Nearly all bacteriophages have been isolated using a single host strain of bacteria. While this procedure is fairly standard, it may more likely produce narrow rather than broad host range phage. Our results and those of others suggest that using multiple host strains during isolation can more reliably produce broader host range phages. This challenges the common belief that most bacteriophages have a narrow host range. We highlight the implications of this for several areas that are affected by host range including horizontal gene transfer and phage therapy.
Collapse
Affiliation(s)
- Alexa Ross
- Department of Biology and Toxicology, Ashland University, Ashland OH, USA
| | - Samantha Ward
- Department of Biology and Toxicology, Ashland University, Ashland OH, USA
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, Ashland OH, USA
| |
Collapse
|
38
|
Detection and Characterization of a Novel Lytic Bacteriophage (vB-KpneM-Isf48) Against Klebsiella pneumoniae Isolates from Infected Wounds Carrying Antibiotic-Resistance Genes (TEM, SHV, and CTX-M). IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.34475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Estrella LA, Quinones J, Henry M, Hannah RM, Pope RK, Hamilton T, Teneza-Mora N, Hall E, Biswajit B. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system. BACTERIOPHAGE 2016; 6:e1219440. [PMID: 27738555 PMCID: PMC5056778 DOI: 10.1080/21597081.2016.1219440] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/21/2023]
Abstract
Skin and soft tissue infections (SSTI) caused by methicillin resistant Staphylococcus aureus (MRSA) are difficult to treat. Bacteriophage (phage) represent a potential alternate treatment for antibiotic resistant bacterial infections. In this study, 7 novel phage with broad lytic activity for S. aureus were isolated and identified. Screening of a diverse collection of 170 clinical isolates by efficiency of plating (EOP) assays shows that the novel phage are virulent and effectively prevent growth of 70–91% of MRSA and methicillin sensitive S. aureus (MSSA) isolates. Phage K, which was previously identified as having lytic activity on S. aureus was tested on the S. aureus collection and shown to prevent growth of 82% of the isolates. These novel phage group were examined by electron microscopy, the results of which indicate that the phage belong to the Myoviridae family of viruses. The novel phage group requires β-N-acetyl glucosamine (GlcNac) moieties on cell wall teichoic acids for infection. The phage were distinct from, but closely related to, phage K as characterized by restriction endonuclease analysis. Furthermore, growth rate analysis via OmniLog® microplate assay indicates that a combination of phage K, with phage SA0420ᶲ1, SA0456ᶲ1 or SA0482ᶲ1 have a synergistic phage-mediated lytic effect on MRSA and suppress formation of phage resistance. These results indicate that a broad spectrum lytic phage mixture can suppress the emergence of resistant bacterial populations and hence have great potential for combating S. aureus wound infections.
Collapse
Affiliation(s)
- Luis A Estrella
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick , Fort Detrick, MD USA
| | - Javier Quinones
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick , Fort Detrick, MD USA
| | - Matthew Henry
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick , Fort Detrick, MD USA
| | - Ryan M Hannah
- National Biofoerensic Analysis and Countermeasures Center , Fort Detrick, Frederick, MD, USA
| | - Robert K Pope
- National Biofoerensic Analysis and Countermeasures Center , Fort Detrick, Frederick, MD, USA
| | - Theron Hamilton
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick , Fort Detrick, MD USA
| | - Nimfa Teneza-Mora
- Wound Infections Department, Naval Medical Research Center-Silver Spring , Silver Spring, MD, USA
| | - Eric Hall
- Wound Infections Department, Naval Medical Research Center-Silver Spring , Silver Spring, MD, USA
| | - Biswas Biswajit
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick , Fort Detrick, MD USA
| |
Collapse
|