1
|
Valentini P, Akula S, Alvarado-Vazquez A, Hallgren J, Fu Z, Racicot B, Braasch I, Thorpe M, Hellman L. Extended Cleavage Specificity of two Hematopoietic Serine Proteases from a Ray-Finned Fish, the Spotted Gar ( Lepisosteus oculatus). Int J Mol Sci 2024; 25:1669. [PMID: 38338947 PMCID: PMC10855939 DOI: 10.3390/ijms25031669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The extended cleavage specificities of two hematopoietic serine proteases originating from the ray-finned fish, the spotted gar (Lepisosteus oculatus), have been characterized using substrate phage display. The preference for particular amino acids at and surrounding the cleavage site was further validated using a panel of recombinant substrates. For one of the enzymes, the gar granzyme G, a strict preference for the aromatic amino acid Tyr was observed at the cleavable P1 position. Using a set of recombinant substrates showed that the gar granzyme G had a high selectivity for Tyr but a lower activity for cleaving after Phe but not after Trp. Instead, the second enzyme, gar DDN1, showed a high preference for Leu in the P1 position of substrates. This latter enzyme also showed a high preference for Pro in the P2 position and Arg in both P4 and P5 positions. The selectivity for the two Arg residues in positions P4 and P5 suggests a highly specific substrate selectivity of this enzyme. The screening of the gar proteome with the consensus sequences obtained by substrate phage display for these two proteases resulted in a very diverse set of potential targets. Due to this diversity, a clear candidate for a specific immune function of these two enzymes cannot yet be identified. Antisera developed against the recombinant gar enzymes were used to study their tissue distribution. Tissue sections from juvenile fish showed the expression of both proteases in cells in Peyer's patch-like structures in the intestinal region, indicating they may be expressed in T or NK cells. However, due to the lack of antibodies to specific surface markers in the gar, it has not been possible to specify the exact cellular origin. A marked difference in abundance was observed for the two proteases where gar DDN1 was expressed at higher levels than gar granzyme G. However, both appear to be expressed in the same or similar cells, having a lymphocyte-like appearance.
Collapse
Affiliation(s)
- Paolo Valentini
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Centre (BMC), P.O. Box 582, SE-751 23 Uppsala, Sweden; (A.A.-V.); (J.H.)
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Centre (BMC), P.O. Box 582, SE-751 23 Uppsala, Sweden; (A.A.-V.); (J.H.)
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Brett Racicot
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48825, USA; (B.R.); (I.B.)
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48825, USA; (B.R.); (I.B.)
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI 48825, USA
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| |
Collapse
|
2
|
Thorpe M, Akula S, Fu Z, Hellman L. The Extended Cleavage Specificity of Channel Catfish Granzyme-like II, A Highly Specific Elastase, Expressed by Natural Killer-like Cells. Int J Mol Sci 2023; 25:356. [PMID: 38203526 PMCID: PMC10778636 DOI: 10.3390/ijms25010356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The extended cleavage specificity of catfish granzyme-like II has been characterized using substrate phage display. The preference for particular amino acids at and surrounding the cleavage site was further validated by using a panel of recombinant substrates. This serine protease, which has previously been isolated as cDNA from a catfish natural killer-like cell line showed a preference for Ala in the P1 position of the substrate, and for multiple basic amino acids N-terminally of the cleavage site. A closely related zebrafish serine protease (zebrafish esterase-like) showed a very similar cleavage specificity, indicating an evolutionary conservation of this protease specificity among various fish species. Two catfish serine proteases, originating from NK-like cells, have now been isolated and characterized. One of them is highly specific met-ase with similar characteristics as the mammalian granzyme M. This enzyme may be involved in the induction of apoptosis in virus-infected cells, with a potential target in (catfish) caspase 6. In contrast to catfish granzyme-like I, the second enzyme analyzed here does not seem to have a direct counterpart in mammalian NK cells, and its role in the immune function of catfish NK cells is, therefore, still not known. However, this enzyme seems to be able to cleave a number of cytoskeletal proteins, indicating a separate strategy to induce apoptosis in target cells. Both of these enzymes are very interesting targets for further studies of their roles in catfish immunity, as enzymes with similar specificities have also been identified in zebrafish.
Collapse
Affiliation(s)
| | | | | | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden; (M.T.); (S.A.); (Z.F.)
| |
Collapse
|
3
|
Shimbori C, De Palma G, Baerg L, Lu J, Verdu EF, Reed DE, Vanner S, Collins SM, Bercik P. Gut bacteria interact directly with colonic mast cells in a humanized mouse model of IBS. Gut Microbes 2022; 14:2105095. [PMID: 35905313 PMCID: PMC9341375 DOI: 10.1080/19490976.2022.2105095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Both mast cells and microbiota play important roles in the pathogenesis of Irritable Bowel Syndrome (IBS), however the precise mechanisms are unknown. Using microbiota-humanized IBS mouse model, we show that colonic mast cells and mast cells co-localized with neurons were higher in mice colonized with IBS microbiota compared with those with healthy control (HC) microbiota. In situ hybridization showed presence of IBS, but not control microbiota, in the lamina propria and RNAscope demonstrated frequent co-localization of IBS bacteria and mast cells. TLR4 and H4 receptor expression was higher in mice with IBS microbiota, and in peritoneal-derived and bone marrow-derived mast cells (BMMCs) stimulated with IBS bacterial supernatant, which also increased BMMCs degranulation, chemotaxis, adherence and histamine release. While both TLR4 and H4 receptor inhibitors prevented BMMCs degranulation, only the latter attenuated their chemotaxis. We provide novel insights into the mechanisms, which contribute to gut dysfunction and visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Lauren Baerg
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | - Stephen M. Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada,CONTACT Premysl Bercik Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Hellman L, Akula S, Fu Z, Wernersson S. Mast Cell and Basophil Granule Proteases - In Vivo Targets and Function. Front Immunol 2022; 13:918305. [PMID: 35865537 PMCID: PMC9294451 DOI: 10.3389/fimmu.2022.918305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are stored in very large amounts within abundant cytoplasmic granules of mast cells (MCs), and in lower amounts in basophils. These proteases are stored in their active form in complex with negatively charged proteoglycans, such as heparin and chondroitin sulfate, ready for rapid release upon MC and basophil activation. The absolute majority of these proteases belong to the large family of chymotrypsin related serine proteases. Three such enzymes are found in human MCs, a chymotryptic enzyme, the chymase, a tryptic enzyme, the tryptase and cathepsin G. Cathepsin G has in primates both chymase and tryptase activity. MCs also express a MC specific exopeptidase, carboxypeptidase A3 (CPA3). The targets and thereby the functions of these enzymes have for many years been the major question of the field. However, the fact that some of these enzymes have a relatively broad specificity has made it difficult to obtain reliable information about the biologically most important targets for these enzymes. Under optimal conditions they may cleave a relatively large number of potential targets. Three of these enzymes, the chymase, the tryptase and CPA3, have been shown to inactivate several venoms from snakes, scorpions, bees and Gila monster. The chymase has also been shown to cleave several connective tissue components and thereby to be an important player in connective tissue homeostasis. This enzyme can also generate angiotensin II (Ang II) by cleavage of Ang I and have thereby a role in blood pressure regulation. It also display anticoagulant activity by cleaving fibrinogen and thrombin. A regulatory function on excessive TH2 immunity has also been observed for both the chymase and the tryptase by cleavage of a highly selective set of cytokines and chemokines. The chymase also appear to have a protective role against ectoparasites such as ticks, mosquitos and leeches by the cleavage of their anticoagulant proteins. We here review the data that has accumulated concerning the potential in vivo functions of these enzymes and we discuss how this information sheds new light on the role of MCs and basophils in health and disease.
Collapse
Affiliation(s)
- Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Uppsala, Sweden
- *Correspondence: Lars Hellman,
| | - Srinivas Akula
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Fu Z, Akula S, Olsson AK, Hellman L. Chicken cathepsin G-like - A highly specific serine protease with a peculiar tryptase specificity expressed by chicken thrombocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104337. [PMID: 34919980 DOI: 10.1016/j.dci.2021.104337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Serine proteases are major granule constituents of cells from several mammalian hematopoietic cell lineages. Despite the relatively extensive knowledge about these mammalian proteases, very little is known about their bird, reptile and amphibian homologs. In order to close this gap in our understanding of the evolution of these proteases, we have characterized the extended cleavage specificity and hematopoietic expression pattern of the chicken serine protease cathepsin G-like. This protease, which clusters in a separate subfamily of serine proteases among the vertebrate hematopoietic serine proteases, has been characterized using substrate phage display and further validated by using a panel of recombinant substrates. A preference for a lysine in the P1 position of a substrate, arginines in positions P2 and P3, and the aromatic amino acid tryptophane in the P4 position was observed. Based on the sequence alignment we could identify a consensus sequence for this protease as being PGGWRRK↓ALSV. Mass spectrometry analysis of a peptide with the consensus sequence obtained by phage display showed that cleavage of this peptide occurred after the conserved Lys (K) residue. A screening of potential in vivo substrates based on the derived P5-P3' consensus sequence resulted in a relatively limited number of potential substrates, due to the high selectivity of this enzyme. The most interesting of these were PDGF-A, coagulation factor V and low-density lipoprotein receptor like-8. Immunohistochemical analysis of chicken white blood cells with antisera produced against chicken cathepsin G-like and chicken egg lysozyme, as a reference protein known to be expressed by hematopoietic cells, showed presence of chicken cathepsin G-like almost exclusively in thrombocytes whereas lysozyme was found at very high amounts in heterophils, and lower amounts in monocytes and thrombocytes.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Ryu J, Fu Z, Akula S, Olsson AK, Hellman L. Extended cleavage specificity of a Chinese alligator granzyme B homologue, a strict Glu-ase in contrast to the mammalian Asp-ases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104324. [PMID: 34826501 DOI: 10.1016/j.dci.2021.104324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Granzyme B (GzmB) is primarily expressed by mammalian cytotoxic T cells and serves as one of the key components in the defense against viral infection by the induction of apoptosis in virus infected cells. By direct cell to cell contact and delivery into target cells by perforin, cytotoxic T cells activate apoptosis through the action of GzmB by both caspase-dependent and -independent pathways. In search for early ancestors of GzmB we have in the current study identified and characterized a GzmB homologue from a reptile, the Chinese alligator. This enzyme is encoded from the same locus as the mammalian counterparts, the chymase locus. Phage display analysis of the cleavage specificity of the recombinant alligator enzyme (named MCP1A-like) shows that it is a relatively strict Glu-ase, with strong preference for glutamic acid in the P1 position of a substrate. The majority of mammalian GzmB:s are, in marked contrast to the alligator enzyme, relatively strict Asp-ases. The alligator enzyme also showed strong preference for Ala, Pro and Gly in the P2 position and Val in the P3 position indicating that it has a narrow specificity, similar to the mammalian counterparts. Analysis of the three amino acids forming the substrate binding pocket (S1 pocket) in three amphibian homologues to MCP1A-like, from the frogs Xenopus laevis and Xenopus tropicalis, shows that these amphibian enzymes have similar substrate binding pocket as their mammalian counterparts. This finding, together with the apparent lack of GzmB homologs in fish, indicates that the ancestor of GzmB did appear with the amphibians at the base of tetrapod evolution. This study is a first step in a larger effort to understand the evolutionary processes involved in shaping anti-viral immunity in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Jinhye Ryu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, Box 589, SE-751 23, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
7
|
Fu Z, Akula S, Olsson AK, Kervinen J, Hellman L. Mast Cells and Basophils in the Defense against Ectoparasites: Efficient Degradation of Parasite Anticoagulants by the Connective Tissue Mast Cell Chymases. Int J Mol Sci 2021; 22:ijms222312627. [PMID: 34884431 PMCID: PMC8657707 DOI: 10.3390/ijms222312627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ticks, lice, flees, mosquitos, leeches and vampire bats need to prevent the host's blood coagulation during their feeding process. This is primarily achieved by injecting potent anticoagulant proteins. Basophils frequently accumulate at the site of tick feeding. However, this occurs only after the second encounter with the parasite involving an adaptive immune response and IgE. To study the potential role of basophils and mast cells in the defense against ticks and other ectoparasites, we produced anticoagulant proteins from three blood-feeding animals; tick, mosquito, and leech. We tested these anticoagulant proteins for their sensitivity to inactivation by a panel of hematopoietic serine proteases. The majority of the connective tissue mast cell proteases tested, originating from humans, dogs, rats, hamsters, and opossums, efficiently cleaved these anticoagulant proteins. Interestingly, the mucosal mast cell proteases that contain closely similar cleavage specificity, had little effect on these anticoagulant proteins. Ticks have been shown to produce serpins, serine protease inhibitors, upon a blood meal that efficiently inhibit the human mast cell chymase and cathepsin G, indicating that ticks have developed a strategy to inactivate these proteases. We show here that one of these tick serpins (IRS-2) shows broad activity against the majority of the mast cell chymotryptic enzymes and the neutrophil proteases from human to opossum. However, it had no effect on the mast cell tryptases or the basophil specific protease mMCP-8. The production of anticoagulants, proteases and anti-proteases by the parasite and the host presents a fascinating example of an arms race between the blood-feeding animals and the mammalian immune system with an apparent and potent role of the connective tissue mast cell chymases in the host defense.
Collapse
Affiliation(s)
- Zhirong Fu
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden; (Z.F.); (S.A.)
| | - Srinivas Akula
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden; (Z.F.); (S.A.)
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, SE-751 23 Uppsala, Sweden;
| | - Jukka Kervinen
- Tosoh Bioscience LLC., 3604 Horizon Drive, King of Prussia, PA 19406, USA;
| | - Lars Hellman
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden; (Z.F.); (S.A.)
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
8
|
The Evolutionary History of the Chymase Locus -a Locus Encoding Several of the Major Hematopoietic Serine Proteases. Int J Mol Sci 2021; 22:ijms222010975. [PMID: 34681635 PMCID: PMC8537139 DOI: 10.3390/ijms222010975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022] Open
Abstract
Several hematopoietic cells of the immune system store large amounts of proteases in cytoplasmic granules. The absolute majority of these proteases belong to the large family of chymotrypsin-related serine proteases. The chymase locus is one of four loci encoding these granule-associated serine proteases in mammals. The chymase locus encodes only four genes in primates, (1) the gene for a mast-cell-specific chymotryptic enzyme, the chymase; (2) a T-cell-expressed asp-ase, granzyme B; (3) a neutrophil-expressed chymotryptic enzyme, cathepsin G; and (4) a T-cell-expressed chymotryptic enzyme named granzyme H. Interestingly, this locus has experienced a number of quite dramatic expansions during mammalian evolution. This is illustrated by the very large number of functional protease genes found in the chymase locus of mice (15 genes) and rats (18 genes). A separate expansion has also occurred in ruminants, where we find a new class of protease genes, the duodenases, which are expressed in the intestinal region. In contrast, the opossum has only two functional genes in this locus, the mast cell (MC) chymase and granzyme B. This low number of genes may be the result of an inversion, which may have hindered unequal crossing over, a mechanism which may have been a major factor in the expansion within the rodent lineage. The chymase locus can be traced back to early tetrapods as genes that cluster with the mammalian genes in phylogenetic trees can be found in frogs, alligators and turtles, but appear to have been lost in birds. We here present the collected data concerning the evolution of this rapidly evolving locus, and how these changes in gene numbers and specificities may have affected the immune functions in the various tetrapod species.
Collapse
|
9
|
Duodenases are a small subfamily of ruminant intestinal serine proteases that have undergone a remarkable diversification in cleavage specificity. PLoS One 2021; 16:e0252624. [PMID: 34048501 PMCID: PMC8162674 DOI: 10.1371/journal.pone.0252624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/28/2021] [Indexed: 12/03/2022] Open
Abstract
Ruminants have a very complex digestive system adapted for the digestion of cellulose rich food. Gene duplications have been central in the process of adapting their digestive system for this complex food source. One of the new loci involved in food digestion is the lysozyme c locus where cows have ten active such genes compared to a single gene in humans and where four of the bovine copies are expressed in the abomasum, the real stomach. The second locus that has become part of the ruminant digestive system is the chymase locus. The chymase locus encodes several of the major hematopoietic granule proteases. In ruminants, genes within the chymase locus have duplicated and some of them are expressed in the duodenum and are therefore called duodenases. To obtain information on their specificities and functions we produced six recombinant proteolytically active duodenases (three from cows, two from sheep and one from pigs). Two of the sheep duodenases were found to be highly specific tryptases and one of the bovine duodenases was a highly specific asp-ase. The remaining two bovine duodenases were dual enzymes with potent tryptase and chymase activities. In contrast, the pig enzyme was a chymase with no tryptase or asp-ase activity. These results point to a remarkable flexibility in both the primary and extended specificities within a single chromosomal locus that most likely has originated from one or a few genes by several rounds of local gene duplications. Interestingly, using the consensus cleavage site for the bovine asp-ase to screen the entire bovine proteome, it revealed Mucin-5B as one of the potential targets. Using the same strategy for one of the sheep tryptases, this enzyme was found to have potential cleavage sites in two chemokine receptors, CCR3 and 7, suggesting a role for this enzyme to suppress intestinal inflammation.
Collapse
|
10
|
Vibhushan S, Bratti M, Montero-Hernández JE, El Ghoneimi A, Benhamou M, Charles N, Daugas E, Blank U. Mast Cell Chymase and Kidney Disease. Int J Mol Sci 2020; 22:E302. [PMID: 33396702 PMCID: PMC7795820 DOI: 10.3390/ijms22010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme's independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.
Collapse
Affiliation(s)
- Shamila Vibhushan
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Juan Eduardo Montero-Hernández
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Alaa El Ghoneimi
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Department of Pediatric Surgery and Urology, Hôpital Universitaire Robert Debré, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Marc Benhamou
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Eric Daugas
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Service de Néphrologie, Groupe Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| |
Collapse
|
11
|
Pastwińska J, Żelechowska P, Walczak-Drzewiecka A, Brzezińska-Błaszczyk E, Dastych J. The Art of Mast Cell Adhesion. Cells 2020; 9:E2664. [PMID: 33322506 PMCID: PMC7764012 DOI: 10.3390/cells9122664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cell adhesion is one of the basic phenomena occurring in a living organism, affecting many other processes such as proliferation, differentiation, migration, or cell viability. Mast cells (MCs) are important elements involved in defending the host against various pathogens and regulating inflammatory processes. Due to numerous mediators, they are contributing to the modulation of many basic cellular processes in a variety of cells, including the expression and functioning of different adhesive molecules. They also express themselves many adhesive proteins, including ICAM-1, ICAM-3, VCAM-1, integrins, L-selectin, E-cadherin, and N-cadherin. These molecules enable MCs to interact with other cells and components of the extracellular matrix (ECM), creating structures such as adherens junctions and focal adhesion sites, and triggering a signaling cascade. A thorough understanding of these cellular mechanisms can create a better understanding of MC biology and reveal new goals for MC targeted therapy. This review will focus on the current knowledge of adhesion mechanisms with the involvement of MCs. It also provides insight into the influence of MCs or MC-derived mediators on the adhesion molecule expression in different cells.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, 92-213 Lodz, Poland; (P.Ż.); (E.B.-B.)
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (A.W.-D.)
| |
Collapse
|
12
|
Berglund P, Akula S, Fu Z, Thorpe M, Hellman L. Extended Cleavage Specificity of the Rat Vascular Chymase, a Potential Blood Pressure Regulating Enzyme Expressed by Rat Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21228546. [PMID: 33198413 PMCID: PMC7697883 DOI: 10.3390/ijms21228546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Serine proteases constitute the major protein content of the cytoplasmic granules of several hematopoietic cell lineages. These proteases are encoded from four different loci in mammals. One of these loci, the chymase locus, has in rats experienced a massive expansion in the number of functional genes. The human chymase locus encodes 4 proteases, whereas the corresponding locus in rats contains 28 such genes. One of these new genes has changed tissue specificity and has been found to be expressed primarily in vascular smooth muscle cells, and therefore been named rat vascular chymase (RVC). This β-chymase has been claimed to be a potent angiotensin-converting enzyme by cleaving angiotensin (Ang) I into Ang II and thereby having the potential to regulate blood pressure. To further characterize this enzyme, we have used substrate phage display and a panel of recombinant substrates to obtain a detailed quantitative view of its extended cleavage specificity. RVC was found to show a strong preference for Phe and Tyr in the P1 position, but also to accept Leu and Trp in this position. A strong preference for Ser or Arg in the P1’ position, just C-terminally of the cleavage site, and a preference for aliphatic amino acids in most other positions surrounding the cleavage site was also seen. Interesting also was a relatively strict preference for Gly in positions P3’ and P4’. RVC thereby shares similarity in its specificity to the mouse mucosal mast cell chymase mMCP-1, which efficiently converts Ang I to Ang II. This similarity adds support for the role of β-chymases as potent angiotensin converters in rodents, as their α-chymases, which have the capacity to efficiently convert Ang I into Ang II in other mammalian lineages, have become elastases. However, interestingly we found that RVC cleaved both after Arg2 and Phe8 in Ang I. Furthermore this cleavage was more than two hundred times less efficient than the consensus site obtained from the phage display analysis, indicating that RVC has a very low ability to cleave Ang I, raising serious doubts about its role in Ang I conversion.
Collapse
Affiliation(s)
| | | | | | | | - Lars Hellman
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
13
|
Extended cleavage specificities of two mast cell chymase-related proteases and one granzyme B-like protease from the platypus, a monotreme. Int J Mol Sci 2020; 21:ijms21010319. [PMID: 31906570 PMCID: PMC6981407 DOI: 10.3390/ijms21010319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022] Open
Abstract
Mast cells (MCs) are inflammatory cells primarily found in tissues in close contact with the external environment, such as the skin and the intestinal mucosa. They store large amounts of active components in cytoplasmic granules, ready for rapid release. The major protein content of these granules is proteases, which can account for up to 35 % of the total cellular protein. Depending on their primary cleavage specificity, they can generally be subdivided into chymases and tryptases. Here we present the extended cleavage specificities of two such proteases from the platypus. Both of them show an extended chymotrypsin-like specificity almost identical to other mammalian MC chymases. This suggests that MC chymotryptic enzymes have been conserved, both in structure and extended cleavage specificity, for more than 200 million years, indicating major functions in MC-dependent physiological processes. We have also studied a third closely related protease, originating from the same chymase locus whose cleavage specificity is closely related to the apoptosis-inducing protease from cytotoxic T cells, granzyme B. The presence of both a chymase and granzyme B in all studied mammals indicates that these two proteases bordering the locus are the founding members of this locus.
Collapse
|
14
|
Abstract
During degranulation, mast cells secrete a specific set of mediators defined as "secretome" including the preformed mediators that have already been synthesized by a cell and contained in the cytoplasmic granules. This group includes serine proteases, in particular, chymase and tryptase. Biological significance of chymase depends on the mechanisms of degranulation and is characterized by selective effects on the cellular and non-cellular components of the specific tissue microenvironment. Chymase is known to be closely involved in the mechanisms of inflammation and allergy, angiogenesis, and oncogenesis, remodeling of the extracellular matrix of the connective tissue and changes in organ histoarchitectonics. Number of chymase-positive mast cells in the intra-organ population, and the mechanisms of biogenesis and secretome degranulation appear to be the informative criteria for interpreting the state of the internal organs, characterizing not only the diagnostic efficacy but also the properties of targets of pharmacotherapy. In this review, we discussed the current state of knowledge about mast cell chymase as one of the mast cell secretome proteases. Main issues of the reviewed publications are highlighted with our microscopic images of mast cell chymase visualized using immunohistochemical staining.
Collapse
|
15
|
Coeliac Disease and Mast Cells. Int J Mol Sci 2019; 20:ijms20143400. [PMID: 31373285 PMCID: PMC6678566 DOI: 10.3390/ijms20143400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
Over the last decades, there has been an impressive progress in our understanding of coeliac disease pathogenesis and it has become clear that the disorder is the final result of complex interactions of environmental, genetic, and immunological factors. Coeliac disease is now considered a prototype of T-cell-mediated disease characterized by loss of tolerance to dietary gluten and the targeted killing of enterocytes by T-cell receptor αβ intraepithelial lymphocytes. Accumulating evidence, however, indicates that the induction of a gluten-specific T helper-1 response must be preceded by the activation of the innate immune system. Mast cells are key players of the innate immune response and contribute to the pathogenesis of a multitude of diseases. Here, we review the results of studies aimed at investigating the role of mast cells in the pathogenesis of coeliac disease, showing that these cells increase in number during the progression of the disease and contribute to define a pro-inflammatory microenvironment.
Collapse
|
16
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
17
|
Dell'Italia LJ, Collawn JF, Ferrario CM. Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 2019; 122:319-336. [PMID: 29348253 DOI: 10.1161/circresaha.117.310978] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chymase is the most efficient Ang II (angiotensin II)-forming enzyme in the human body and has been implicated in a wide variety of human diseases that also implicate its many other protease actions. Largely thought to be the product of mast cells, the identification of other cellular sources including cardiac fibroblasts and vascular endothelial cells demonstrates a more widely dispersed production and distribution system in various tissues. Furthermore, newly emerging evidence for its intracellular presence in cardiomyocytes and smooth muscle cells opens an entirely new compartment of chymase-mediated actions that were previously thought to be limited to the extracellular space. This review illustrates how these multiple chymase-mediated mechanisms of action can explain the residual risk in clinical trials of cardiovascular disease using conventional renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Louis J Dell'Italia
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.).
| | - James F Collawn
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| | - Carlos M Ferrario
- From the Department of Medicine, Division of Cardiology, Birmingham Veteran Affairs Medical Center (L.J.D.), Division of Cardiovascular Disease, Department of Medicine (L.J.D.), and Department of Cell, Developmental and Integrative Biology (J.F.C.), University of Alabama at Birmingham; and Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC (C.M.F.)
| |
Collapse
|
18
|
Powell PC, Wei CC, Fu L, Pat B, Bradley WE, Collawn JF, Dell'Italia LJ. Chymase uptake by cardiomyocytes results in myosin degradation in cardiac volume overload. Heliyon 2019; 5:e01397. [PMID: 30997426 PMCID: PMC6451194 DOI: 10.1016/j.heliyon.2019.e01397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022] Open
Abstract
Background Volume overload (VO) of isolated mitral regurgitation (MR) or aortocaval fistula (ACF) is associated with extracellular matrix degradation and cardiomyocyte myofibrillar and desmin breakdown. Left ventricular (LV) chymase activity is increased in VO and recent studies demonstrate chymase presence within cardiomyocytes. Here we test the hypothesis that chymase within the cardiomyocyte coincides with myosin and desmin breakdown in VO. Methods and results Aortocaval fistula (ACF) was induced in Sprague Dawley (SD) rats and was compared to age-matched sham-operated rats at 24 hours, 4 and 12 weeks. Immunohistochemistry (IHC) and transmission electron microscopy (TEM) immunogold of LV tissue demonstrate chymase within cardiomyocytes at all ACF time points. IHC for myosin demonstrates myofibrillar disorganization starting at 24 hours. Proteolytic presence of chymase in cardiomyocytes is verified by in situ chymotryptic tissue activity that is inhibited by pretreatment with a chymase inhibitor. Real-time PCR of isolated cardiomyocytes at all ACF time points and in situ hybridization demonstrate endothelial cells and fibroblasts as a major source of chymase mRNA in addition to mast cells. Chymase added to adult rat cardiomyocytes in vitro is taken up by a dynamin-mediated process and myosin breakdown is attenuated by dynamin inhibitor, suggesting that chymase uptake is essential for myosin breakdown. In a previous study in the dog model of chronic MR, the intracellular changes were attributed to extracellular effects. However, we now demonstrate intracellular effects of chymase in both species. Conclusion In response to VO, fibroblast and endothelial cells produce chymase and subsequent cardiomyocyte chymase uptake is followed by myosin degradation. The results demonstrate a novel intracellular chymase-mediated mechanism of cardiomyocyte dysfunction and adverse remodeling in a pure VO.
Collapse
Affiliation(s)
| | - Chih-Chang Wei
- Birmingham Veteran Affairs Medical Center, USA.,Division of Cardiovascular Disease, Department of Medicine, USA
| | - Lianwu Fu
- Birmingham Veteran Affairs Medical Center, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Betty Pat
- Birmingham Veteran Affairs Medical Center, USA.,Division of Cardiovascular Disease, Department of Medicine, USA
| | - Wayne E Bradley
- Birmingham Veteran Affairs Medical Center, USA.,Division of Cardiovascular Disease, Department of Medicine, USA
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louis J Dell'Italia
- Birmingham Veteran Affairs Medical Center, USA.,Division of Cardiovascular Disease, Department of Medicine, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Fu Z, Akula S, Thorpe M, Chahal G, de Garavilla L, Kervinen J, Hellman L. Extended cleavage specificity of sheep mast cell protease-2: A classical chymase with preference to aromatic P1 substrate residues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:160-169. [PMID: 30481523 DOI: 10.1016/j.dci.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Serine proteases constitute the major protein content of mammalian mast cell granules and the selectivity for substrates by these proteases is of major importance for the role of mast cells in immunity. In order to address this subject, we present here the extended cleavage specificity of sheep mast cell protease-2 (MCP2), a chymotrypsin-type serine protease. Comparison of the extended specificity results to a panel of mammalian mast cell chymases show, in almost all aspects, the same cleavage characteristics. This includes preference for aromatic residues (Phe, Tyr, Trp) in the P1 position of substrates and a preference for aliphatic residues in most other substrate positions around the cleavage site. MCP2 also cleaved, albeit relatively low efficiency, after Leu in the P1 position. In contrast to the human, mouse, hamster and opossum chymases that show a relatively strong preference for negatively charged amino acids in the P2'position, the sheep MCP2, however, lacked that preference. Therefore, together with the rat chymase (rMCP1), sheep MCP2 can be grouped to a small subfamily of mammalian chymases that show fairly unspecific preference in the P2'position. In summary, the results here support the view of a strong evolutionary conservation of a potent chymotrypsin-type protease as a key feature of mammalian mast cells.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Gurdeep Chahal
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | | | - Jukka Kervinen
- Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA, 19406, USA
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
20
|
Japanese encephalitis virus neuropenetrance is driven by mast cell chymase. Nat Commun 2019; 10:706. [PMID: 30742008 PMCID: PMC6370868 DOI: 10.1038/s41467-019-08641-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a leading cause of viral encephalitis. However, the mechanisms of JEV penetration of the blood-brain-barrier (BBB) remain poorly understood. Mast cells (MCs) are granulated innate immune sentinels located perivascularly, including at the BBB. Here we show that JEV activates MCs, leading to the release of granule-associated proteases in vivo. MC-deficient mice display reduced BBB permeability during JEV infection compared to congenic wild-type (WT) mice, indicating that enhanced vascular leakage in the brain during JEV infection is MC-dependent. Moreover, MCs promoted increased JEV infection in the central nervous system (CNS), enhanced neurological deficits, and reduced survival in vivo. Mechanistically, chymase, a MC-specific protease, enhances JEV-induced breakdown of the BBB and cleavage of tight-junction proteins. Chymase inhibition reversed BBB leakage, reduced brain infection and neurological deficits during JEV infection, and prolonged survival, suggesting chymase is a novel therapeutic target to prevent JEV encephalitis. How Japanese encephalitis virus (JEV) penetrates the blood-brain barrier (BBB) remains unclear. Here, using a genetic mouse model and a virulent JEV strain, the authors show that perivascular mast cells (MC) mediate JEV neuroinvasion and identify the MC-protease chymase as a potential therapeutic target.
Collapse
|
21
|
Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis. Cells 2019; 8:cells8020135. [PMID: 30744042 PMCID: PMC6407111 DOI: 10.3390/cells8020135] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell⁻enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.
Collapse
|
22
|
Wang H, Sun X, Ahmad S, Su J, Ferrario CM, Groban L. Estrogen modulates the differential expression of cardiac myocyte chymase isoforms and diastolic function. Mol Cell Biochem 2019; 456:85-93. [PMID: 30712071 DOI: 10.1007/s11010-018-03492-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/22/2018] [Indexed: 01/21/2023]
Abstract
Chymases, a family of serine proteases with chymotryptic activity, play a significant role in cardiac angiotensin II (Ang II) formation from its substrate Ang-(1-12) in both human and rodent models. No studies, to date, have assessed the differences in enzymatic activity among these isoforms in Ang II formation, particularly in the cardiomyocyte (CM). Using PCR and DNA sequencing, we demonstrated that MCP-1, MCP-2, MCP-4, and MCP-5 mRNAs are expressed in the CM of both spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). While rMCP-1 and rMCP-5 gene transcripts were higher than that of other isoforms in both rat strains, WKY CM exhibits higher levels of rMCP-1 and rMCP-5 mRNAs compared to the SHR CM. Ovariectomy (OVX) increased the expression of rMCP-1 and rMCP-5 mRNAs in WKY. In SHR, OVX was associated with a blunted increase in rMCP-1 mRNA compared to OVX normotensive WKY. Chymase activity, measured as Ang II formation from Ang-(1-12), significantly correlated with rMCP-1 and rMCP-5 mRNA expression in both rat strains. Both rMCP-1 and rMCP-5 mRNA expressions were positively correlated with progressive diastolic dysfunction (increasing the ratio of early mitral inflow velocity-to-early mitral annular velocity, E/e') and expanding chamber dimensions or increasing left ventricular internal diameter end diastole. These data show rMCP-1 and rMCP-5 as the Ang II forming chymase isoforms participating in the loss of normal cardiac function due to OVX in rodents.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA. .,Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jing Su
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Blvd, 27157, Winston-Salem, NC, USA
| | - Carlos Maria Ferrario
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| |
Collapse
|
23
|
Extended cleavage specificities of mast cell proteases 1 and 2 from golden hamster: Classical chymase and an elastolytic protease comparable to rat and mouse MCP-5. PLoS One 2018; 13:e0207826. [PMID: 30521603 PMCID: PMC6283551 DOI: 10.1371/journal.pone.0207826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022] Open
Abstract
Serine proteases constitute the major protein content of mast cell secretory granules. Here we present the extended cleavage specificity of two such proteases from the golden hamster, Mesocricetus auratus. Analysis by phage display technique showed that one of them (HAM1) is a classical chymase with a specificity similar to the human mast cell chymase. However, in contrast to the human chymase, it does not seem to have a particular preference for any of the three aromatic amino acids, Phe, Tyr and Trp, in the P1 position of substrates. HAM1 also efficiently cleaved after Leu similarly to human and many other mast cell chymases. We observed only a 3-fold lower cleavage activity on Leu compared to substrates with P1 aromatic amino acids. Chymotryptic enzymes seem to be characteristic for connective tissue mast cells in mammalian species from opossums to humans, which indicates a very central role of these enzymes in mast cell biology. HAM1 also seems to have the strongest preference for negatively charged amino acids in the P2´position of all mast cell chymases so far characterized. The second hamster chymase, HAM2, is an elastolytic in its activity, similarly to the α-chymases in rats and mice (rMCP-5 and mMCP-5, respectively). The presence of an α-chymase that developed elastase activity thereby seems to be a relatively early modification of the α-chymase within the rodent branch of the mammalian evolutionary tree.
Collapse
|
24
|
Fu Z, Thorpe M, Akula S, Chahal G, Hellman LT. Extended Cleavage Specificity of Human Neutrophil Elastase, Human Proteinase 3, and Their Distant Ortholog Clawed Frog PR3-Three Elastases With Similar Primary but Different Extended Specificities and Stability. Front Immunol 2018; 9:2387. [PMID: 30459762 PMCID: PMC6232827 DOI: 10.3389/fimmu.2018.02387] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023] Open
Abstract
Serine proteases are major granule constituents of several of the human hematopoietic cell lineages. Four proteolytically active such proteases have been identified in human neutrophils: cathepsin G (hCG), N-elastase (hNE), proteinase 3 (hPR-3), and neutrophil serine protease 4 (hNSP-4). Here we present the extended cleavage specificity of two of the most potent and most abundant of these enzymes, hNE and hPR-3. Their extended specificities were determined by phage display and by the analysis of a panel of chromogenic and recombinant substrates. hNE is an elastase with a relatively broad specificity showing a preference for regions containing several aliphatic amino acids. The protease shows self-cleaving activity, which results in the loss of activity during storage even at +4°C. Here we also present the extended cleavage specificity of hPR-3. Compared with hNE, it shows considerably lower proteolytic activity. However, it is very stable, shows no self-cleaving activity and is actually more active in the presence of SDS, possibly by enhancing the accessibility of the target substrate. This enables specific analysis of hPR-3 activity even in the presence of all the other neutrophil enzymes with addition of 1% SDS. Neutrophils are the most abundant white blood cell in humans and one of the key players in our innate immune defense. The neutrophil serine proteases are very important for the function of the neutrophils and therefore also interesting from an evolutionary perspective. In order to study the origin and functional conservation of these neutrophil proteases we have identified and cloned an amphibian ortholog, Xenopus PR-3 (xPR-3). This enzyme was found to have a specificity very similar to hPR-3 but did not show the high stability in the presence of SDS. The presence of an elastase in Xenopus closely related to hPR-3 indicates a relatively early appearance of these enzymes during vertebrate evolution.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Gurdeep Chahal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lars T Hellman
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Extended cleavage specificity of human neutrophil cathepsin G: A low activity protease with dual chymase and tryptase-type specificities. PLoS One 2018; 13:e0195077. [PMID: 29652924 PMCID: PMC5898719 DOI: 10.1371/journal.pone.0195077] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Human neutrophils express at least four active serine proteases, cathepsin G, N-elastase, proteinase 3 and neutrophil serine protease 4 (NSP4). They have all been extensively studied due to their importance in neutrophil biology and immunity. However, their extended cleavage specificities have never been determined in detail. Here we present a detailed cleavage specificity analysis of human cathepsin G (hCG). The specificity was determined by phage display analysis and the importance of individual amino acids in and around the cleavage site was then validated using novel recombinant substrates. To provide a broader context to this serine protease, a comparison was made to the related mast cell protease, human chymase (HC). hCG showed similar characteristics to HC including both the primary and extended specificities. As expected, Phe, Tyr, Trp and Leu were preferred in the P1 position. In addition, both proteases showed a preference for negatively charged amino acids in the P2´ position of substrates and a preference for aliphatic amino acids both upstream and downstream of the cleavage site. However, overall the catalytic activity of hCG was ~10-fold lower than HC. hCG has previously been reported to have a dual specificity consisting of chymase and tryptase-type activities. In our analysis, tryptase activity against substrates with Lys in P1 cleavage position was indeed only 2-fold less efficient as compared to optimal chymase substrates supporting strong dual-type specificity. We hope the information presented here on extended cleavage specificities of hCG and HC will assist in the search for novel in vivo substrates for these proteases as well as aid in the efforts to better understand the role of hCG in immunity and bacterial defence.
Collapse
|
26
|
Hellman LT, Akula S, Thorpe M, Fu Z. Tracing the Origins of IgE, Mast Cells, and Allergies by Studies of Wild Animals. Front Immunol 2017; 8:1749. [PMID: 29312297 PMCID: PMC5742104 DOI: 10.3389/fimmu.2017.01749] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
In most industrialized countries, allergies have increased in frequency quite dramatically during the past 50 years. Estimates show that 20–30% of the populations are affected. Allergies have thereby become one of the major medical challenges of the twenty-first century. Despite several theories including the hygiene hypothesis, there are still very few solid clues concerning the causes of this increase. To trace the origins of allergies, we have studied cells and molecules of importance for the development of IgE-mediated allergies, including the repertoire of immunoglobulin genes. These studies have shown that IgE and IgG most likely appeared by a gene duplication of IgY in an early mammal, possibly 220–300 million years ago. Receptors specific for IgE and IgG subsequently appeared in parallel with the increase in Ig isotypes from a subfamily of the recently identified Fc receptor-like molecules. Circulating IgE levels are generally very low in humans and laboratory rodents. However, when dogs and Scandinavian wolfs were analyzed, IgE levels were found to be 100–200 times higher compared to humans, indicating a generally much more active IgE synthesis in free-living animals, most likely connected to intestinal parasite infections. One of the major effector molecules released upon IgE-mediated activation by mast cells are serine proteases. These proteases, which belong to the large family of hematopoietic serine proteases, are extremely abundant and can account for up to 35% of the total cellular protein. Recent studies show that several of these enzymes, including the chymases and tryptases, are old. Ancestors for these enzymes were most likely present in an early mammal more than 200 million years ago before the separation of the three extant mammalian lineages; monotremes, marsupials, and placental mammals. The aim is now to continue these studies of mast cell biology and IgE to obtain additional clues to their evolutionary conserved functions. A focus concerns why the humoral immune response involving IgE and mast cells have become so dysregulated in humans as well as several of our domestic companion animals.
Collapse
Affiliation(s)
- Lars Torkel Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Asp-ase Activity of the Opossum Granzyme B Supports the Role of Granzyme B as Part of Anti-Viral Immunity Already during Early Mammalian Evolution. PLoS One 2016; 11:e0154886. [PMID: 27152961 PMCID: PMC4859502 DOI: 10.1371/journal.pone.0154886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
Granzyme B is one of the key effector molecules in our defense against viruses and intracellular bacteria. This serine protease together with the pore forming protein perforin, induces caspase or Bid-dependent apoptosis in target cells. Here we present the first characterization of a granzyme B homolog, the grathepsodenase, in a non-placental mammal, the American opossum (Monodelphis domestica). The recombinant enzyme was produced in a human cell line and used to study its primary and extended cleavage specificity using a panel of chromogenic substrates and recombinant protein substrates. The opossum granzyme B was found to have a specificity similar to human granzyme B, although slightly less restrictive in its extended specificity. The identification of a granzyme B homolog with asp-ase (cleaving after aspartic acid) specificity in a non-placental mammal provides strong indications that caspase or Bid-dependent apoptosis by a serine protease with a conserved primary specificity has been part of anti-viral immunity since early mammalian evolution. This finding also indicates that an asp-ase together with a chymase were the first two serine protease genes to appear in the mammalian chymase locus.
Collapse
|
28
|
Akula S, Thorpe M, Boinapally V, Hellman L. Granule Associated Serine Proteases of Hematopoietic Cells - An Analysis of Their Appearance and Diversification during Vertebrate Evolution. PLoS One 2015; 10:e0143091. [PMID: 26569620 PMCID: PMC4646688 DOI: 10.1371/journal.pone.0143091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/20/2015] [Indexed: 12/02/2022] Open
Abstract
Serine proteases are among the most abundant granule constituents of several hematopoietic cell lineages including mast cells, neutrophils, cytotoxic T cells and NK cells. These proteases are stored in their active form in the cytoplasmic granules and in mammals are encoded from four different chromosomal loci: the chymase locus, the met-ase locus, the T cell tryptase and the mast cell tryptase locus. In order to study their appearance during vertebrate evolution we have performed a bioinformatic analysis of related genes and gene loci from a large panel of metazoan animals from sea urchins to placental mammals for three of these loci: the chymase, met-ase and granzyme A/K loci. Genes related to mammalian granzymes A and K were the most well conserved and could be traced as far back to cartilaginous fish. Here, the granzyme A and K genes were found in essentially the same chromosomal location from sharks to humans. However in sharks, no genes clearly identifiable as members of the chymase or met-ase loci were found. A selection of these genes seemed to appear with bony fish, but sometimes in other loci. Genes related to mammalian met-ase locus genes were found in bony fish. Here, the most well conserved member was complement factor D. However, genes distantly related to the neutrophil proteases were also identified in this locus in several bony fish species, indicating that this locus is also old and appeared at the base of bony fish. In fish, a few of the chymase locus-related genes were found in a locus with bordering genes other than the mammalian chymase locus and some were found in the fish met-ase locus. This indicates that a convergent evolution rather than divergent evolution has resulted in chymase locus-related genes in bony fish.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Vamsi Boinapally
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
- * E-mail:
| |
Collapse
|