1
|
Macias-Ceja DC, Barrachina MD, Ortiz-Masià D. Autophagy in intestinal fibrosis: relevance in inflammatory bowel disease. Front Pharmacol 2023; 14:1170436. [PMID: 37397491 PMCID: PMC10307973 DOI: 10.3389/fphar.2023.1170436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic inflammation is often associated with fibrotic disorders in which an excessive deposition of extracellular matrix is a hallmark. Long-term fibrosis starts with tissue hypofunction and finally ends in organ failure. Intestinal fibrosis is not an exception, and it is a frequent complication of inflammatory bowel disease (IBD). Several studies have confirmed the link between deregulated autophagy and fibrosis and the presence of common prognostic markers; indeed, both up- and downregulation of autophagy are presumed to be implicated in the progression of fibrosis. A better knowledge of the role of autophagy in fibrosis may lead to it becoming a potential target of antifibrotic therapy. In this review we explore novel advances in the field that highlight the relevance of autophagy in fibrosis, and give special focus to fibrosis in IBD patients.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - María D. Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBER, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina y Odontología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
2
|
Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review. Inflamm Res 2022; 71:1501-1517. [DOI: 10.1007/s00011-022-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
|
3
|
Paik S, Kim KT, Kim IS, Kim YJ, Kim HJ, Choi S, Kim HJ, Jo EK. Mycobacterial acyl carrier protein suppresses TFEB activation and upregulates miR-155 to inhibit host defense. Front Immunol 2022; 13:946929. [PMID: 36248815 PMCID: PMC9559204 DOI: 10.3389/fimmu.2022.946929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to suppress host cell death during mycobacterial infection. This study reports that mycobacterial AcpM works as an effector to subvert host defense and promote bacterial growth by increasing microRNA (miRNA)-155-5p expression. In murine bone marrow-derived macrophages (BMDMs), AcpM protein prevented transcription factor EB (TFEB) from translocating to the nucleus in BMDMs, which likely inhibited transcriptional activation of several autophagy and lysosomal genes. Although AcpM did not suppress autophagic flux in BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in BMDMs, AcpM-induced increased intracellular survival of Mtb was suppressed. In addition, AcpM overexpression significantly reduced mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M. smegmatis strains. Collectively, our findings point to AcpM as a novel mycobacterial effector to regulate antimicrobial host defense and a potential new therapeutic target for Mtb infection.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| | - Kyeong Tae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seunga Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| |
Collapse
|
4
|
Roufayel R, Younes K, Al-Sabi A, Murshid N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life (Basel) 2022; 12:life12020256. [PMID: 35207544 PMCID: PMC8875537 DOI: 10.3390/life12020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic Bcl-2 family protein, Mcl-1, and other protein members leading to Bax and Bak activation and MOMP. On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. This study was also the chance to recapitulate the different reactional mechanisms investigated for caspases.
Collapse
|
5
|
Kořánová T, Dvořáček L, Grebeňová D, Röselová P, Obr A, Kuželová K. PAK1 and PAK2 in cell metabolism regulation. J Cell Biochem 2021; 123:375-389. [PMID: 34750857 DOI: 10.1002/jcb.30175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
P21-activated kinases (PAKs) regulate processes associated with cytoskeletal rearrangements, such as cell division, adhesion, and migration. The possible regulatory role of PAKs in cell metabolism has not been well explored, but increasing evidence suggests that a cell metabolic phenotype is related to cell interactions with the microenvironment. We analyzed the impact of PAK inhibition by small molecule inhibitors, small interfering RNA, or gene knockout on the rates of mitochondrial respiration and aerobic glycolysis. Pharmacological inhibition of PAK group I by IPA-3 induced a strong decrease in metabolic rates in human adherent cancer cell lines, leukemia/lymphoma cell lines, and primary leukemia cells. The immediate effect of FRAX597, which inhibits PAK kinase activity, was moderate, indicating that PAK nonkinase functions are essential for cell metabolism. Selective downregulation or deletion of PAK2 was associated with a shift toward oxidative phosphorylation. In contrast, PAK1 knockout resulted in increased glycolysis. However, the overall metabolic capacity was not substantially reduced by PAK1 or PAK2 deletion, possibly due to partial redundancy in PAK1/PAK2 regulatory roles or to activation of other compensatory mechanisms.
Collapse
Affiliation(s)
- Tereza Kořánová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Lukáš Dvořáček
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
6
|
Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, Hong SH, Yon DK, Lee SW, Kim MS, Wasuwanich P, Karnsakul W, Shin JI, Kronbichler A. Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci 2021; 17:2112-2123. [PMID: 34131410 PMCID: PMC8193269 DOI: 10.7150/ijbs.59904] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that mainly affects young people. IBD is associated with various gastrointestinal symptoms, and thus, affects the quality of life of patients. Currently, the pathogenesis of IBD is poorly understood. Although intestinal bacteria and host immune response are thought to be major factors in its pathogenesis, a sufficient explanation of their role in its pathophysiologic mechanism has not been presented. MicroRNAs (miRNAs), which are small RNA molecules that regulate gene expression, have gained attention as they are known to participate in the molecular interactions of IBD. Recent studies have confirmed the important role of miRNAs in targeting certain molecules in signaling pathways that regulate the homeostasis of the intestinal barrier, inflammatory reactions, and autophagy of the intestinal epithelium. Several studies have identified the specific miRNAs associated with IBD from colon tissues or serum samples of IBD patients and have attempted to use them as useful diagnostic biomarkers. Furthermore, some studies have attempted to treat IBD through intracolonic administration of specific miRNAs in the form of nanoparticle. This review summarizes the latest findings on the role of miRNAs in the pathogenesis, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- HyunTaek Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kalthoum Tizaoui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
| | - Paul Wasuwanich
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev 2021; 67:101260. [PMID: 33516915 DOI: 10.1016/j.arr.2021.101260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.
Collapse
|
8
|
miR-155 indicates the fate of CD4 + T cells. Immunol Lett 2020; 224:40-49. [PMID: 32485191 DOI: 10.1016/j.imlet.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate the translation of target messenger RNA (mRNA) and consequently participate in a variety of biological processes at the posttranscriptional level. miR-155, encoded within a region known as the B cell integration cluster (BIC), plays multifunctional roles in shaping lymphocytes ranging from biological development to adaptive immunity. It has been revealed that miR-155 plays a key role in fine-tuning the regulation of lymphocyte subsets, including dendritic cells (DCs), macrophages, B cells, and CD8+ and CD4+ T cells. Antigen-specific CD4+ T lymphocytes are critical for host defense against pathogens and prevention of damage resulting from excessive inflammation. Over the past years, various studies have shown that miR-155 plays a critical role in CD4+ T cells function. Therefore, we summarize multiple target genes of miR-155 that regulate aspects of CD4+ T cells immunity, particularly CD4+ T cells differentiation, in this review. In addition, we also focus on the role of miR-155 in the regulation of immunological diseases, suggesting it as a potential disease biomarker and therapeutic target.
Collapse
|
9
|
Dios-Esponera A, Melis N, Subramanian BC, Weigert R, Samelson LE. Pak1 Kinase Promotes Activated T Cell Trafficking by Regulating the Expression of L-Selectin and CCR7. Front Immunol 2019; 10:370. [PMID: 30891040 PMCID: PMC6411651 DOI: 10.3389/fimmu.2019.00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 01/13/2023] Open
Abstract
Normal function of the adaptive immune system requires trafficking of T cells between the blood and lymphoid organs. Lymphocyte homing to lymph nodes requires that they cross endothelial barriers present in blood vessels and lymphatics. This multi-step process requires a remodeling of the lymphocyte plasma membrane, which is mediated by the dynamic re-arrangement of the actin cytoskeleton. Pak1 plays a central role in cell morphology, adhesion and migration in various cell types. Here we demonstrate that Pak1 is required for activated CD4+ T cell trafficking to lymph nodes. Pak1 deficiency in T cells causes a defect in the transcription of CCR7 and L-selectin, thereby altering lymphocyte trafficking. Additionally, we report an increase in L-selectin shedding in Pak1-deficient T cells, which correlates with a decrease in the recruitment of calmodulin to the cytoplasmic tail of L-selectin during T cell activation. Overall, our findings demonstrate that by regulating the expression of two major lymph node homing molecules, L-selectin and CCR7, Pak1 mediates activated CD4+ T cell trafficking.
Collapse
Affiliation(s)
- Ana Dios-Esponera
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Kong J, Li L, Lu Z, Song J, Yan J, Yang J, Gu Z, Da Z. MicroRNA-155 Suppresses Mesangial Cell Proliferation and TGF-β1 Production via Inhibiting CXCR5-ERK Signaling Pathway in Lupus Nephritis. Inflammation 2019; 42:255-263. [PMID: 30209639 PMCID: PMC6394596 DOI: 10.1007/s10753-018-0889-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increasing evidence shows miR-155 plays an important role in regulating inflammatory processes in systemic lupus erythematosus (SLE), especially in lupus nephritis (LN). Because the chemokine CXCL13 is implicated in the pathogenesis of LN, here we examined whether miR-155 can modulate the activity of CXCL13 or its receptor CXCR5. We determined the expression of CXCL13 in normal and MRL/lpr mice and found elevated levels of CXCL13 in the kidneys of MRL/lpr mice compared with normal kidneys. Besides, CXCL13 expression was mainly detected in the glomerulus, specifically to mesangial areas. We then transfected a miR-155 mimic in human renal mesangial cells (HRMCs) to overexpress miR-155 and detected decreased protein levels of CXCR5 by western blot analysis. Transfection of the miR-155 mimic into CXCL13-treated HRMCs resulted in a significantly reduced proliferation rate of HRMCs as measured by the cell-counting assay and flow cytometry. Moreover, increased intracellular miR-155 also led to decreased phosphorylation of ERK and TGF-β1 production. Together, these results revealed that miR-155 may play a role in the pathogenesis of LN.
Collapse
Affiliation(s)
- Jie Kong
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Liuxia Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhimin Lu
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiamin Song
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiaxin Yan
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Zhang R, Li J, Yan X, Jin K, Li W, Liu X, Zhao J, Shang W, Zhao X. Long non‑coding RNA MLK7‑AS1 promotes proliferation in human colorectal cancer via downregulation of p21 expression. Mol Med Rep 2018; 19:1210-1221. [PMID: 30535460 DOI: 10.3892/mmr.2018.9702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 04/06/2018] [Indexed: 11/05/2022] Open
Abstract
Current studies have highlighted long non‑coding RNAs (lncRNAs) as critical regulators in various cancers, including colorectal cancer (CRC). By utilizing publicly available data from The Cancer Genome Atlas dataset, MLK7 antisense RNA 1 (MLK7‑AS1) was identified as a novel lncRNA that correlated with CRC progression. The results of reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) revealed a significant upregulation of MLK7‑AS1 in both CRC tissue samples and cell lines. In addition, a positive correlation was observed between increased MLK7‑AS1 expression and several clinicopathological factors in patients with CRC. Importantly, MLK7‑AS1 knockdown suppressed CRC cell proliferation and promoted G1/G0 phase arrest and apoptosis in vitro, whereas MLK7‑AS1 overexpression exhibited opposite effects. Consistently, decreased MLK7‑AS1 expression inhibited tumor growth in vivo. Furthermore, RT‑qPCR and western blot assays revealed that p21 may be a potential downstream target of MLK7‑AS1. To the best of the authors' knowledge, this is the first study to report that MLK7‑AS1 has potential as a biomarker and may promote proliferation in CRC partially through downregulating p21 expression.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jibin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaofei Yan
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Keer Jin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Wenya Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jianfeng Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Wen Shang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiang Zhao
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
12
|
Knolle MD, Chin SB, Rana BMJ, Englezakis A, Nakagawa R, Fallon PG, Git A, McKenzie ANJ. MicroRNA-155 Protects Group 2 Innate Lymphoid Cells From Apoptosis to Promote Type-2 Immunity. Front Immunol 2018; 9:2232. [PMID: 30356668 PMCID: PMC6189280 DOI: 10.3389/fimmu.2018.02232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022] Open
Abstract
Group-2 innate lymphoid cells (ILC2) play critical roles in the initiation and maintenance of type-2 immune responses, predominantly through their production of the type-2 cytokines IL-5, IL-9, and IL-13. ILC2 are essential for the efficient elimination of helminth parasites, but also contribute to the detrimental type-2 immune responses that underlie diseases such as asthma and allergy. While several transcription factors have been identified that regulate the development and function of ILC2, less is known about the post-transcriptional mechanisms that regulate these processes. We identified micro-RNAs (miRNAs) that are co-ordinately regulated in ILC2 from mice exposed to two different stimuli, namely IL-33 “alarmin” administration or Nippostrongylus brasiliensis parasitic worm infection. miR-155 is upregulated in ILC2 in response to both stimuli and miR-155−/− mice had impaired IL-33-driven ILC2 responses. Using mixed bone marrow chimeras, we demonstrate that this deficit is intrinsic to ILC2 and that miR-155 protects ILC2 from apoptosis, while having little impact on ILC2 proliferation or cytokine production. These data reveal a subset of miRNAs that are regulated upon ILC2 activation and establish a specific role for miR-155 in regulating ILC2 survival following activation.
Collapse
Affiliation(s)
- Martin D Knolle
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Shau Bing Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Batika M J Rana
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Rinako Nakagawa
- Immunity and Cancer Laboratory, Francis Crick Institute, London, United Kingdom
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Anna Git
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrew N J McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
13
|
Rodríguez-Galán A, Fernández-Messina L, Sánchez-Madrid F. Control of Immunoregulatory Molecules by miRNAs in T Cell Activation. Front Immunol 2018; 9:2148. [PMID: 30319616 PMCID: PMC6167432 DOI: 10.3389/fimmu.2018.02148] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 01/01/2023] Open
Abstract
MiRNA targeting of key immunoregulatory molecules fine-tunes the immune response. This mechanism boosts or dampens immune functions to preserve homeostasis while supporting the full development of effector functions. MiRNA expression changes during T cell activation, highlighting that their function is constrained by a specific spatiotemporal frame related to the signals that induce T cell-based effector functions. Here, we update the state of the art regarding the miRNAs that are differentially expressed during T cell stimulation. We also revisit the existing data on miRNA function in T cell activation, with a special focus on the modulation of the most relevant immunoregulatory molecules.
Collapse
Affiliation(s)
- Ana Rodríguez-Galán
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Lola Fernández-Messina
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
14
|
The Role of Autophagy and Related MicroRNAs in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7565076. [PMID: 30046303 PMCID: PMC6038472 DOI: 10.1155/2018/7565076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA- (miR-) mediated posttranscriptional regulation plays an important role in autophagy in inflammatory bowel disease (IBD), a disease that is difficult to manage clinically because of the associated chronic recurrent nonspecific inflammation. Research indicates that microRNAs regulate autophagy via different pathways, playing an important role in the IBD process and providing a new perspective for IBD research. Related studies have shown that miR-142-3p, miR-320, miR-192, and miR-122 target NOD2, an IBD-relevant autophagy gene, to modulate autophagy in IBD. miR-142-3p, miR-93, miR-106B, miR-30C, miR-130a, miR-346, and miR-20a regulate autophagy by targeting ATG16L1 through several different pathways. miR-196 can downregulate IRGM and suppress autophagy by inhibiting the accumulation of LC3II. During the endoplasmic reticulum stress response, miR-665, miR-375, and miR-150 modulate autophagy by regulating the unfolded protein response, which may play an important role in IBD intestinal fibrosis. Regarding autophagy-related pathways, miR-146b, miR-221-5p, miR-132, miR-223, miR-155, and miR-21 regulate NF-κB or mTOR signaling to induce or inhibit autophagy in intestinal cells by releasing anti- or proinflammatory factors, respectively.
Collapse
|
15
|
Zhou Y, Song Y, Shaikh Z, Li H, Zhang H, Caudle Y, Zheng S, Yan H, Hu D, Stuart C, Yin D. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2. Oncotarget 2018; 8:47317-47329. [PMID: 28525390 PMCID: PMC5564567 DOI: 10.18632/oncotarget.17636] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of β-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Song
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Zahir Shaikh
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Hui Li
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Haiju Zhang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shouhua Zheng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Yan
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Charles Stuart
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
16
|
Wang Z, Jia G, Li Y, Liu J, Luo J, Zhang J, Xu G, Chen G. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget 2017; 8:22563-22580. [PMID: 28186966 PMCID: PMC5410245 DOI: 10.18632/oncotarget.15124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors in men. The etiology and pathogenesis of PCa remain unclear. P21-activated kinase 1 (PAK1) is a member of a family of serine/threonine kinases and regulates cell growth and contributes to tumor invasion and metastasis. However, the association of PAK1 with PCa tumorigenesis and in particular with cell autophagy remains unknown. We found that the positive expression of PAK1 was significantly increased in PCa patients compared with BPH patients (P < 0.05). The expression of PAK1, p-PAK1 and LC3B1 in DU145 was increased by the activator of mTOR MYH1485. The expression of PAK1, p-PAK1, mTOR and Beclin1 decreased in PAK1-shRNA expressing DU145 cell. Knocking down of PAK1 inhibited DU145 cell growth, invasion and migration in vitro, and inhibited tumor growth in vivo. Our study demonstrated that PAK1 is upregulated in PCa and regulated by the mTOR signaling pathway and contributes to tumor autophagy. Thus, PAK1 may be a potential tumor marker and therapeutic target of PCa.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Guojin Jia
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Yan Li
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jikai Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jinfang Luo
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jihong Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|
17
|
Urbánek P, Klotz L. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017; 174:1514-1532. [PMID: 26920226 PMCID: PMC5446586 DOI: 10.1111/bph.13471] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
Forkhead box, class O (FOXO) transcription factors are major regulators of diverse cellular processes, including fuel metabolism, oxidative stress response and redox signalling, cell cycle progression and apoptosis. Their activities are controlled by multiple posttranslational modifications and nuclear-cytoplasmic shuttling. Recently, post-transcriptional regulation of FOXO synthesis has emerged as a new regulatory level of their functions. Accumulating evidence suggests that this post-transcriptional mode of regulation of FOXO activity operates in response to stressful stimuli, including oxidative stress. Here, we give a brief overview on post-transcriptional regulation of FOXO synthesis by microRNAs (miRNAs) and by RNA-binding regulatory proteins, human antigen R (HuR) and quaking (QKI). Aberrant post-transcriptional regulation of FOXOs is frequently connected with various disease states. We therefore discuss characteristic examples of FOXO regulation at the post-transcriptional level under various physiological and pathophysiological conditions, including oxidative stress and cancer. The picture emerging from this summary points to a diversity of interactions between miRNAs/miRNA-induced silencing complexes and RNA-binding regulatory proteins. Better insight into these complexities of post-transcriptional regulatory interactions will add to our understanding of the mechanisms of pathological processes and the role of FOXO proteins. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- P Urbánek
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| | - L‐O Klotz
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|
18
|
Li F, Li L, Hao J, Liu S, Duan H. Src Homology 2 Domain-Containing Inositol 5'-Phosphatase Ameliorates High Glucose-Induced Extracellular Matrix Deposition via the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway in Renal Tubular Epithelial Cells. J Cell Biochem 2017; 118:2271-2284. [PMID: 28075049 DOI: 10.1002/jcb.25881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023]
Abstract
A typical hallmark of diabetic kidney disease (DKD) is an excessive deposition of extracellular matrix (ECM) in the glomerulus and renal tubulointerstitium, leading to glomerulosclerosis and tubular interstitial fibrosis. Src homology 2 domain-containing inositol 5'-phosphatase (SHIP) is a negative regulator of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling. Here, we investigated the effect of SHIP on ECM deposition in diabetic mice and high glucose-stimulated human renal tubular epithelial cells (HK2 cells). The decreased SHIP and increased phospho-Akt (Ser 473, Thr 308) were found in the renal tubular cells of diabetic mice, which were accompanied by overexpression of transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), and secreted collagen type 3 (Col 3) and a low expression of E-cadherin compared to that in normal mice. In vitro research revealed that high glucose-attenuated SHIP expression accompanied the activation of the PI3K/Akt signaling and ECM production. Knocking down SHIP in HK2 cells caused an increase in the levels of phospho-Akt (Ser 473), phospho-Akt (Thr 308), TGF-β1, α-SMA, and secreted Col 3 and a decrease in E-cadherin. Again, either the M90-SHIP plasmid or the PI3K/Akt pathway inhibitor LY294002 could significantly prevent the high glucose-induced increase in TGF-β1, α-SMA, and secreted Col 3 and decreased E-cadherin. Furthermore, we confirmed that inhibition of the TGF-β1 pathway with SB431542 blocked the effect of SHIP knockdown on ECM production in HK2 cells. In summary, our study suggests that decreased SHIP mediates high glucose-induced TGF-β1 upregulation and ECM deposition through activation of the PI3K/Akt pathway in renal tubular cells. J. Cell. Biochem. 118: 2271-2284, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lisha Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Cai YD, Zhang Q, Zhang YH, Chen L, Huang T. Identification of Genes Associated with Breast Cancer Metastasis to Bone on a Protein–Protein Interaction Network with a Shortest Path Algorithm. J Proteome Res 2017; 16:1027-1038. [DOI: 10.1021/acs.jproteome.6b00950] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu-Dong Cai
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Qing Zhang
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Yu-Hang Zhang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Lei Chen
- College
of Information Engineering, Shanghai Maritime University, Shanghai 201306, People’s Republic of China
| | - Tao Huang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| |
Collapse
|
20
|
Yi J, Manna A, Barr VA, Hong J, Neuman KC, Samelson LE. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell 2016; 27:3591-3600. [PMID: 27708141 PMCID: PMC5221591 DOI: 10.1091/mbc.e16-05-0330] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
A highly multiplexed superresolution imaging strategy with single-molecule accuracy enabled by fluorescent nanodiamonds called madSTORM affords the ability to define spatial relationships among constituent molecules within structures. It makes it possible to probe the molecular topology of complex signaling cascades and other heterogeneous networks. Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and <0.01% cross-talk. Combining these technical advances affords the ability to move beyond obtaining superresolved structures to defining spatial relationships among constituent molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM.
Collapse
Affiliation(s)
- Jason Yi
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Asit Manna
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Valarie A Barr
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer Hong
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Bacchelli C, Moretti FA, Carmo M, Adams S, Stanescu HC, Pearce K, Madkaikar M, Gilmour KC, Nicholas AK, Woods CG, Kleta R, Beales PL, Qasim W, Gaspar HB. Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol 2016; 139:634-642.e5. [PMID: 27522155 DOI: 10.1016/j.jaci.2016.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.
Collapse
Affiliation(s)
- Chiara Bacchelli
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Federico A Moretti
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Marlene Carmo
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Bone Marrow Transplantation, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Horia C Stanescu
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Kerra Pearce
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Manisha Madkaikar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohematology, ICMR, Mumbai, India
| | - Kimberly C Gilmour
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adeline K Nicholas
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - C Geoffrey Woods
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert Kleta
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Phil L Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Waseem Qasim
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom.
| |
Collapse
|
22
|
Wang W, Liu Z, Su J, Chen WS, Wang XW, Bai SX, Zhang JZ, Yu SQ. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats. Am J Physiol Lung Cell Mol Physiol 2016; 311:L494-506. [PMID: 27371731 DOI: 10.1152/ajplung.00001.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023] Open
Abstract
Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.
Collapse
Affiliation(s)
- Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhi Liu
- Department of Otolaryngology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China; and
| | - Jie Su
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao-Wu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - San-Xing Bai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jin-Zhou Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shi-Qiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
23
|
Halova I, Draber P. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case. Front Cell Dev Biol 2016; 4:43. [PMID: 27243007 PMCID: PMC4861716 DOI: 10.3389/fcell.2016.00043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
24
|
Tiago DM, Conceição N, Caiado H, Laizé V, Cancela ML. Matrix Gla protein repression by miR-155 promotes oncogenic signals in breast cancer MCF-7 cells. FEBS Lett 2016; 590:1234-41. [PMID: 27009385 DOI: 10.1002/1873-3468.12155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022]
Abstract
MGP is a protein that was initially associated with the inhibition of calcification in skeleton, soft tissues, and arteries, but more recently also implicated in cancer. In breast cancer, higher levels of MGP mRNA were associated with poor prognosis, but since this deregulation was never demonstrated at the protein level, we postulated the involvement of a post-transcriptional regulatory mechanism. In this work we show that MGP is significantly repressed by miR-155 in breast cancer MCF-7 cells, and concomitantly there is a stimulation of cell proliferation and cell invasiveness. This study brings new insights into the putative involvement of MGP and oncomiR-155 in breast cancer, and may contribute to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Daniel M Tiago
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Helena Caiado
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
25
|
Béres NJ, Szabó D, Kocsis D, Szűcs D, Kiss Z, Müller KE, Lendvai G, Kiss A, Arató A, Sziksz E, Vannay Á, Szabó AJ, Veres G. Role of Altered Expression of miR-146a, miR-155, and miR-122 in Pediatric Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:327-35. [PMID: 26752469 DOI: 10.1097/mib.0000000000000687] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Evidence suggests the central role of tumor necrosis factor (TNF)-α in the pathomechanism of inflammatory bowel disease (IBD); however, its effect on epigenetic factors, including small non-coding microRNAs (miRs), is less known. Our present aim was the comparative investigation of the expression of TNF-α and immune response-related miRs in children with Crohn's disease (CD) and ulcerative colitis (UC). METHODS Fresh-frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) biopsies were used to analyze the expression of miR-146a, -155, -122, and TNF-α by real-time reverse transcription polymerase chain reaction in macroscopically inflamed (CD: 12 FFPE and 24 FF; UC: 10 FF) and intact (CD: 12 FFPE; 14 FF) colonic biopsies of children with IBD and controls (16 FFPE; 23 FF). The expression of miR-146a, -155, and -122 was also determined in TNF-α-treated HT-29 colonic epithelial cells. RESULTS Increased expression of TNF-α was observed in the colonic mucosa of children with CD and UC in comparison with controls. Expression of miR-146a and -155 was higher in the inflamed mucosa of children with CD and UC than in the intact mucosa. Expression of miR-122 elevated in the macroscopically intact colonic regions of CD compared with controls and patients with UC. In HT-29 cells, TNF-α treatment increased the expression of miR-146a and -155, but not that of miR-122. CONCLUSIONS Our results showed altered expression of miR-146a, -155, and -122 in the colonic mucosa of children with IBD and in TNF-α-treated colonic epithelial cells. Our data suggest the TNF-α-related involvement of these miRs in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Nóra J Béres
- *1st Department of Pediatrics, Semmelweis University, Budapest, Hungary; †2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary; ‡Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary; §2nd Department of Pathology, Semmelweis University, Budapest, Hungary; ‖MTA-SE, Tumor Progression Research Group, Budapest, Hungary; and ¶MTA-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ji Y, Hocker JD, Gattinoni L. Enhancing adoptive T cell immunotherapy with microRNA therapeutics. Semin Immunol 2015; 28:45-53. [PMID: 26710685 DOI: 10.1016/j.smim.2015.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Adoptive T cell-based immunotherapies can mediate complete and durable regressions in patients with advanced cancer, but current response rates remain inadequate. Maneuvers to improve the fitness and antitumor efficacy of transferred T cells have been under extensive exploration in the field. Small non-coding microRNAs have emerged as critical modulators of immune system homeostasis and T cell immunity. Here, we summarize recent advances in our understanding of the role of microRNAs in regulating T cell activation, differentiation, and function. We also discuss how microRNA therapeutics could be employed to fine-tune T cell receptor signaling and enhance T cell persistence and effector functions, paving the way for the next generation of adoptive immunotherapies.
Collapse
Affiliation(s)
- Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
27
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|