1
|
Hu M, Chua SL. Antibiotic-Resistant Pseudomonas aeruginosa: Current Challenges and Emerging Alternative Therapies. Microorganisms 2025; 13:913. [PMID: 40284749 PMCID: PMC12029751 DOI: 10.3390/microorganisms13040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is a pathogen notorious for its resilience in clinical settings due to biofilm formation, efflux pumps, and the rapid acquisition of resistance genes. With traditional antibiotic therapy rendered ineffective against Pseudomonas aeruginosa infections, we explore alternative therapies that have shown promise, including antimicrobial peptides, nanoparticles and quorum sensing inhibitors. While these approaches offer potential, they each face challenges, such as specificity, stability, and delivery, which require careful consideration and further study. We also delve into emerging alternative strategies, such as bacteriophage therapy and CRISPR-Cas gene editing that could enhance targeted treatment for personalized medicine. As most of them are currently in experimental stages, we highlight the need for clinical trials and additional research to confirm their feasibility. Hence, we offer insights into new therapeutic avenues that could help address the pressing issue of antibiotic-resistant Pseudomonas aeruginosa, with an eye toward practical applications in future healthcare.
Collapse
Affiliation(s)
- Minqi Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Raftopoulou O, Barrangou R. Bacterial evolution: CRISPR out and virulence in. Curr Biol 2025; 35:R182-R185. [PMID: 40068613 DOI: 10.1016/j.cub.2024.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The loss of CRISPR-Cas immune systems may drive bacterial evolution by increasing genome plasticity and acquisition of virulence factors. A new study explores this in Xanthomonas campestris, highlighting its adaptation into a virulent pathogenic pathovar infecting Brassica vasculature and mesophyll tissues.
Collapse
Affiliation(s)
- Ourania Raftopoulou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Kadkhoda H, Gholizadeh P, Ghotaslou R, Nabizadeh E, Pirzadeh T, Ahangarzadeh Rezaee M, Feizi H, Samadi Kafil H, Aghazadeh M. Role of CRISPR-cas system on virulence traits and carbapenem resistance in clinical Klebsiella pneumoniae isolates. Microb Pathog 2025; 199:107151. [PMID: 39615707 DOI: 10.1016/j.micpath.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND OBJECTIVES The bacterial adaptive immune system known as CRISPR-Cas (clustered regularly interspersed short palindromic repeats-CRISPR-associated protein) is engaged in defense against various mobile genetic elements (MGEs) such as plasmids and bacteriophages. The purpose of this study was to characterize the CRISPR-Cas systems in carbapenem-resistant Klebsiella pneumoniae isolates and assess any possible correlation between these systems with antibiotic susceptibility, biofilm formation, and bacterial virulence. MATERIALS AND METHODS A total of 156 CRKP isolates were collected from different specimens of the inpatients. Biofilm formation and antibiotic susceptibility testing were evaluated using standard methods. Furthermore, the CRISPR-Cas system subtype genes, 11 carbapenemase genes, and 17 virulence genes were identified using separate standard PCR reactions. The diversity of the isolates was determined by random amplified polymorphic DNA (RAPD)-PCR. RESULTS The development of biofilms and antibiotic susceptibility of several CRKP isolates were significantly correlated with the absence or presence of the CRISPR-Cas system. PCR analysis of carbapenemase genes revealed that the frequency of the blaNDM-1 gene was significantly higher in the isolates with the subtype I-E CRISPR-Cas system. Moreover, the isolates with the subtype I-E CRISPR-Cas system exhibited a propensity to possess more virulence genes such as allS, k2A, wcaG, aerobactin, rmpA, iroN, magA, rmpA2, kfu, iutA, iucB, ybtS, repA, and terW. CONCLUSION CRISPR-Cas systems could affect the antibiotic susceptibility, capacity for biofilm formation, and virulence of Klebsiella pneumoniae. Our findings showed that the isolates containing the CRISPR-Cas system were moderate or strong biofilm producers and had a higher frequency of virulence genes.
Collapse
Affiliation(s)
- Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Ghotaslou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pirzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hossein Samadi Kafil
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Bogut A, Kołodziejek A, Minnich SA, Hovde CJ. CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic Escherichia coli. Arch Immunol Ther Exp (Warsz) 2025; 73:aite-2025-0003. [PMID: 39773393 DOI: 10.2478/aite-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic Escherichia coli (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS). Advancements in the application of CRISPR methodology include laboratory detection and identification of EHEC, genotyping, screening for pathogenic potential, and engineering probiotics to reduce microbial shedding by cattle, the primary source of human infection. Genetically engineered phages or conjugative plasmids have been designed to target and inactivate genes whose products are critical for EHEC virulence.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Anna Kołodziejek
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A Minnich
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Carolyn J Hovde
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
5
|
Karpenko A, Shelenkov A, Petrova L, Gusarov V, Zamyatin M, Mikhaylova Y, Akimkin V. Two multidrug-resistant Proteus mirabilis clones carrying extended spectrum beta-lactamases revealed in a single hospital department by whole genome sequencing. Heliyon 2024; 10:e40821. [PMID: 39687096 PMCID: PMC11648881 DOI: 10.1016/j.heliyon.2024.e40821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Proteus mirabilis bacteria is a component of normal intestinal microflora of humans and animals, but can also be found in hospital settings causing urinary tract infections and sepsis. The problem of treating such infections is complicated by multidrug-resistant isolates producing extended spectrum beta-lactamases (ESBL), and the number of ESBL-carrying P. mirabilis strains has significantly increased recently. This study presents a detailed analysis of 12 multidrug-resistant P. mirabilis isolates obtained from the wounds of different patients in one surgical department of a multidisciplinary hospital in Moscow, Russia, using the short- and long-read whole genome sequencing. The isolates under investigation divided into two clusters (clones) C1 and C2 based on their genomic profiles and carried antimicrobial resistance (AMR) genes corresponding well with phenotypic profiles, which was the first case of reporting two different P. mirabilis clones obtained simultaneously from the same specimens at one hospital, to the best of our knowledge. Some genes, including ESBL encoding ones, were specific for either C1 or C2 (aac(6')-Ib10, ant(2″)-Ia, qnrA1, bla VEB-6 and fosA3, bla CTX -M-65 , correspondingly). Additionally, the Salmonella genomic islands 1 were found that differed in composition of multiple antibiotic resistance regions between C1 and C2 groups. CRISPR-Cas system type I-E was revealed only in C2 isolates, while the same set of virulence factors was determined for both P. mirabilis clones. Diversity of all genetic factors found in case of simultaneous existence of two clones collected from the same source at one department indicates high pathogenic potential of P. mirabilis and poses a requirement of proper spreading monitoring. The data obtained will facilitate the understanding of AMR transfer and dynamics within clinical P. mirabilis isolates and contribute to epidemiological surveillance of this pathogen.
Collapse
Affiliation(s)
- Anna Karpenko
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Lyudmila Petrova
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Vitaly Gusarov
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Mikhail Zamyatin
- National Medical and Surgical Center named after N.I. Pirogov, Nizhnyaya Pervomayskaya str., 70, 105203, Moscow, Russia
| | - Yulia Mikhaylova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123, Moscow, Russia
| |
Collapse
|
6
|
Dion MB, Shah SA, Deng L, Thorsen J, Stokholm J, Krogfelt KA, Schjørring S, Horvath P, Allard A, Nielsen DS, Petit MA, Moineau S. Escherichia coli CRISPR arrays from early life fecal samples preferentially target prophages. THE ISME JOURNAL 2024; 18:wrae005. [PMID: 38366192 PMCID: PMC10910852 DOI: 10.1093/ismejo/wrae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Ling Deng
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
| | - Philippe Horvath
- IFF Danisco, Health & Biosciences, Dangé-Saint-Romain 86220, France
| | - Antoine Allard
- Département de physique, de génie physique et d’optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dennis S Nielsen
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Micalis, Jouy-en-Josas 78350, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Dziuba A, Dzierżak S, Sodo A, Wawszczak-Kasza M, Zegadło K, Białek J, Zych N, Kiebzak W, Matykiewicz J, Głuszek S, Adamus-Białek W. Comparative study of virulence potential, phylogenetic origin, CRISPR- Cas regions and drug resistance of Escherichia coli isolates from urine and other clinical materials. Front Microbiol 2023; 14:1289683. [PMID: 38094634 PMCID: PMC10716328 DOI: 10.3389/fmicb.2023.1289683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION Urinary tract infections (UTI), among which the main etiological factor is uropathogenic Escherichia coli (UPEC, E. coli), remain an important issue for clinicians. The aim of the study was to demonstrate clear differences in the pathogenic properties of urine-derived E. coli compared to other extraintestinal E. coli clinical isolates (derived from: blood, lower respiratory tracts, sputum, reproductive tract, body fluids, perianal pus, other pus, wound, postoperative wound and other sources). METHODS The collection of 784 E. coli isolates was collected from various materials of hospitalized patients. They were analyzed in terms of virulence-associated genes (papC, sfaD/sfaE, cnf1, usp., fimG/H, hlyA), belonging to phylogenetic groups and the presence of CRISPR-Cas regions using PCR. In addition, the epidemiological data and the antibiotic resistance profiles provided by the hospital's microbiology department were included for statistical analyses. RESULTS Urine-derived E. coli showed significantly greater virulence potential compared to other isolates, but they were generally unremarkable in terms of drug resistance. The isolates most often belonged to phylogenetic group B2. Drug resistance was negatively correlated with CRISPR 2 presence and high average virulence score, but positively correlated with CRISPR 4 presence. To the best of our knowledge, we are the first to report significant differences in sputum-derived isolates-they revealed the lowest virulence potential and, at the same time, the highest drug resistance. DISCUSSION In conclusion, we demonstrated significant differences of urinary-derived E. coli compared to other clinical E. coli isolates. We would like to suggest excluding penicillins from use in E. coli infection at this time and monitoring strains with a high pathogenicity potential.
Collapse
Affiliation(s)
- Anna Dziuba
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Sylwia Dzierżak
- Department of Microbiology, Regional Hospital, Kielce, Poland
| | - Anna Sodo
- Department of Microbiology, Regional Hospital, Kielce, Poland
| | | | - Katarzyna Zegadło
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Jakub Białek
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Natalia Zych
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Wojciech Kiebzak
- Institute of Health Science, Jan Kochanowski University, Kielce, Poland
| | | | - Stanisław Głuszek
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | | |
Collapse
|
8
|
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat 2023; 68:100948. [PMID: 36780840 DOI: 10.1016/j.drup.2023.100948] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The phenomenon of antibiotic resistance (AR) and its increasing global trends and destructive waves concerns patients and the healthcare system. In order to combat AR, it is necessary to explore new strategies when the current antibiotics fail to be effective. Thus, knowing the resistance mechanisms and appropriate diagnosis of bacterial infections may help enhance the sensitivity and specificity of novel strategies. On the other hand, resistance to antimicrobial compounds can spread from resistant populations to susceptible ones. Antimicrobial resistance genes (ARGs) significantly disseminate AR via horizontal and vertical gene transfer. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is a member of the bacterial immune system with the ability to remove the ARGs; therefore, it can be introduced as an effective and innovative strategy in the battle against AR. Here, we reviewed CRISPR-based bacterial diagnosis technologies. Moreover, the strategies to battle AR based on targeting bacterial chromosomes and resistance plasmids using the CRISPR-Cas system have been explained. Besides, we have presented the limitations of CRISPR delivery and potential solutions to help improve the future development of CRISPR-based platforms.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Melika Hoseinzadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Mansoor Kodori
- Non communicable Diseases Research Center, Bam University of Medical sciences, Bam, the Islamic Republic of Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
9
|
Iordache D, Baci GM, Căpriță O, Farkas A, Lup A, Butiuc-Keul A. Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa. Int J Mol Sci 2022; 23:12766. [PMID: 36361556 PMCID: PMC9658729 DOI: 10.3390/ijms232112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
CRISPR-Cas is an adaptive immunity system of prokaryotes, composed of CRISPR arrays and the associated proteins. The successive addition of spacer sequences in the CRISPR array has made the system a valuable molecular marker, with multiple applications. Due to the high degree of polymorphism of the CRISPR loci, their comparison in bacteria from various sources may provide insights into the evolution and spread of the CRISPR-Cas systems. The aim of this study was to establish a correlation between the enterobacterial CRISPR loci, the sequence of direct repeats (DR), and the number of spacer units, along with the geographical origin and collection source. For this purpose, 3474 genomes containing CRISPR loci from the CRISPRCasdb of Salmonella enterica, Escherichia coli, and Klebsiella pneumoniae were analyzed, and the information regarding the isolates was recorded from the NCBI database. The most prevalent was the I-E CRISPR-Cas system in all three studied taxa. E. coli also presents the I-F type, but in a much lesser percentage. The systems found in K. pneumoniae can be classified into I-E and I-E*. The I-E and I-F systems have two CRISPR loci, while I-E* has only one locus upstream of the Cas cluster. PCR primers have been developed in this study for each CRISPR locus. Distinct clustering was not evident, but statistically significant relationships occurred between the different CRISPR loci and the number of spacer units. For each of the queried taxa, the number of spacers was significantly different (p < 0.01) by origin (Africa, Asia, Australia and Oceania, Europe, North America, and South America) but was not linked to the isolation source type (human, animal, plant, food, or laboratory strains).
Collapse
Affiliation(s)
- Dumitrana Iordache
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 44 Republicii street, 400015 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Oana Căpriță
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Andreea Lup
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Kushwaha SK, Narasimhan LP, Chithananthan C, Marathe SA. Clustered regularly interspaced short palindromic repeats-Cas system: diversity and regulation in Enterobacteriaceae. Future Microbiol 2022; 17:1249-1267. [PMID: 36006039 DOI: 10.2217/fmb-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Insights into the arms race between bacteria and invading mobile genetic elements have revealed the intricacies of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system and the counter-defenses of bacteriophages. Incredible spacer diversity but significant spacer conservation among species/subspecies dictates the specificity of the CRISPR-Cas system. Researchers have exploited this feature to type/subtype the bacterial strains, devise targeted antimicrobials and regulate gene expression. This review focuses on the nuances of the CRISPR-Cas systems in Enterobacteriaceae that predominantly harbor type I-E and I-F CRISPR systems. We discuss the systems' regulation by the global regulators, H-NS, LeuO, LRP, cAMP receptor protein and other regulators in response to environmental stress. We further discuss the regulation of noncanonical functions like DNA repair pathways, biofilm formation, quorum sensing and virulence by the CRISPR-Cas system. The review comprehends multiple facets of the CRISPR-Cas system in Enterobacteriaceae including its diverse attributes, association with genetic features, regulation and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Simran K Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Lakshmi P Narasimhan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Chandrananthi Chithananthan
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| | - Sandhya A Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, 333031, India
| |
Collapse
|
11
|
Review of CRISPR-Cas Systems in Listeria Species: Current Knowledge and Perspectives. Int J Microbiol 2022; 2022:9829770. [PMID: 35502187 PMCID: PMC9056214 DOI: 10.1155/2022/9829770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria spp. are pathogens widely distributed in the environment and Listeria monocytogenes is associated with food-borne illness in humans. Food facilities represent an adverse environment for this bacterium, mainly due to the disinfection and cleaning processes included in good hygiene practices, and its virulence is related to stress responses. One of the recently described stress-response systems is CRISPR-Cas. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes have been found in several bacteria. CRISPR-Cas has revolutionized biotechnology since it acts as an adaptive immune system of bacteria, which also helps in the evasion of the host immune response. There are three CRISPR systems described on Listeria species. Type II is present in many pathogenic bacteria and characterized by the presence of cas9 that becomes the main target of some anti-CRISPR proteins, such as AcrIIA1, encoded on Listeria phages. The presence of Cas9, either alone or in combination with anti-CRISPR proteins, suggests having a main role on the virulence of bacteria. In this review, we describe the most recent information on CRISPR-Cas systems in Listeria spp., particularly in L. monocytogenes, and their relationship with the virulence and pathogenicity of those bacteria. Besides, some applications of CRISPR systems and future challenges in the food processing industry, bacterial vaccination, antimicrobial resistance, pathogens biocontrol by phage therapy, and regulation of gene expression have been explored.
Collapse
|
12
|
Kang HJ, Lee YJ. Distribution of CRISPR in Escherichia coli Isolated from Bulk Tank Milk and Its Potential Relationship with Virulence. Animals (Basel) 2022; 12:503. [PMID: 35203211 PMCID: PMC8868466 DOI: 10.3390/ani12040503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli is one of the most common causes of mastitis on dairy farms around the world, but its clinical severity is determined by a combination of virulence factors. Recently, clustered regularly interspaced short palindromic repeat (CRISPR) arrays have been reported as a novel typing method because of their usefulness in discriminating pathogenic bacterial isolates. Therefore, this study aimed to investigate the virulence potential of E. coli isolated from bulk tank milk, not from mastitis, and to analyze its pathogenic characterization using the CRISPR typing method. In total, 164 (89.6%) out of 183 E. coli isolated from the bulk tank milk of 290 farms carried one or more of eighteen virulence genes. The most prevalent virulence gene was fimH (80.9%), followed by iss (38.3%), traT (26.8%), ompT (25.7%), afa/draBC (24.0%), and univcnf (21.9%). Moreover, the phylogenetic group with the highest prevalence was B1 (64.0%), followed by A (20.1%), D (8.5%), and C (7.3%) (p < 0.05). Among the four CRISPR loci, only two, CRISPR 1 and CRISPR 2, were found. Interestingly, the distribution of CRISPR 1 was significantly higher in groups A and B1 compared to that of CRISPR 2 (p < 0.05), but there were no significant differences in groups C and D. The prevalence of CRISPR 1 by virulence gene ranged from 91.8% to 100%, whereas that of CRISPR 2 ranged from 57.5% to 93.9%. The distribution of CRISPR 1 was significantly higher in fimH, ompT, afa/draBC, and univcnf genes than that of CRISPR 2 (p < 0.05). The most prevalent E. coli sequence types (EST) among 26 ESTs was EST 22 (45.1%), followed by EST 4 (23.2%), EST 16 (20.1%), EST 25 (19.5%), and EST 24 (18.3%). Interestingly, four genes, fimH, ompT, afa/draBC, and univcnf, had a significantly higher prevalence in both EST 4 and EST 22 (p < 0.05). Among the seven protospacers derived from CRISPR 1, protospacer 163 had the highest prevalence (20.4%), and it only existed in EST 4 and EST 22. This study suggests that the CRISPR sequence-typing approach can help to clarify and trace virulence potential, although the E. coli isolates were from normal bulk tank milk and not from mastitis.
Collapse
Affiliation(s)
| | - Young-Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
13
|
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19:401. [PMID: 34863214 PMCID: PMC8642896 DOI: 10.1186/s12951-021-01132-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is spreading rapidly around the world and seriously impeding efforts to control microbial infections. Although nucleic acid testing is widely deployed for the detection of antibiotic resistant bacteria, the current techniques-mainly based on polymerase chain reaction (PCR)-are time-consuming and laborious. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance (AMR). The CRISPR-Cas system is an adaptive immune system found in many prokaryotes that presents attractive opportunities to target and edit nucleic acids with high precision and reliability. Engineered CRISPR-Cas systems are reported to effectively kill bacteria or even revert bacterial resistance to antibiotics (resensitizing bacterial cells to antibiotics). Strategies for combating antimicrobial resistance using CRISPR (i.e., Cas9, Cas12, Cas13, and Cas14) can be of great significance in detecting bacteria and their resistance to antibiotics. This review discusses the structures, mechanisms, and detection methods of CRISPR-Cas systems and how these systems can be engineered for the rapid and reliable detection of bacteria using various approaches, with a particular focus on nanoparticles. In addition, we summarize the most recent advances in applying the CRISPR-Cas system for virulence modulation of bacterial infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Mohammed J Hakeem
- Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Venkatarao Selamneni
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
15
|
López-Porras A, Griffin MJ, Armwood AR, Camus AC, Waldbieser GC, Ware C, Richardson B, Greenway TE, Rosser TG, Aarattuthodiyil S, Wise DJ. Genetic variability of Edwardsiella piscicida isolates from Mississippi catfish aquaculture with an assessment of virulence in channel and channel × blue hybrid catfish. JOURNAL OF FISH DISEASES 2021; 44:1725-1751. [PMID: 34251059 DOI: 10.1111/jfd.13491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The bacterium Edwardsiella piscicida causes significant losses in global aquaculture, particularly channel (Ictalurus punctatus) × blue (I. furcatus) hybrid catfish cultured in the south-eastern United States. Emergence of E. piscicida in hybrid catfish is worrisome given current industry trends towards increased hybrid production. The project objectives were to assess intraspecific genetic variability of E. piscicida isolates recovered from diseased channel and hybrid catfish in Mississippi; and determine virulence associations among genetic variants. Repetitive extragenic palindromic sequence-based PCR (rep-PCR) using ERIC I and II primers was used to screen 158 E. piscicida diagnostic case isolates. A subsample of 39 E. piscicida isolates, representing predominant rep-PCR profiles, was further characterized using BOX and (GTG)5 rep-PCR primers, virulence gene assessment and multilocus sequence analysis (MLSA) targeting housekeeping genes gyrb, pgi and phoU. The MLSA provided greater resolution than rep-PCR, revealing 5 discrete phylogroups that correlated similarly with virulence gene profiles. Virulence assessments using E. piscicida representatives from each MLSA group resulted in 14-day cumulative mortality ranging from 22% to 54% and 63 to 72% in channel and hybrid fingerlings, respectively. Across all phylogroups, mortality was higher in hybrid catfish (p < .05), supporting previous work indicating E. piscicida is an emerging threat to hybrid catfish aquaculture in the south-eastern United States.
Collapse
Affiliation(s)
- Adrián López-Porras
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Starkville, MS, USA
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
- Aquatic Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, MS, USA
| | - Abigail R Armwood
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Alvin C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Geoffrey C Waldbieser
- United States Department of Agriculture, Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, MS, USA
| | - Cynthia Ware
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
- Aquatic Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, MS, USA
| | - Bradley Richardson
- United States Department of Agriculture, Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, MS, USA
| | - Terrence E Greenway
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Starkville, MS, USA
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
| | - Thomas Graham Rosser
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - Suja Aarattuthodiyil
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Starkville, MS, USA
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
| | - David J Wise
- Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, Starkville, MS, USA
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS, USA
| |
Collapse
|
16
|
Butiuc-Keul A, Farkas A, Carpa R, Iordache D. CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes. Microb Physiol 2021; 32:2-17. [PMID: 34192695 DOI: 10.1159/000516643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (cas)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system's impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus - SARS-CoV-2; thus, the newest and promising applications are reviewed as well.
Collapse
Affiliation(s)
- Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dumitrana Iordache
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Steinum TM, Turgay E, Yardımcı RE, Småge SB, Karataş S. Tenacibaculum maritimum CRISPR loci analysis and evaluation of isolate spoligotyping. J Appl Microbiol 2021; 131:1848-1857. [PMID: 33905598 DOI: 10.1111/jam.15116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/27/2022]
Abstract
AIMS We performed in silico analysis of CRISPRcas loci from Tenacibaculum maritimum, evaluated spoligotyping as a subtyping method and genotyped uncharacterized Turkish isolates from European sea bass by multilocus sequence typing (MLST). METHODS AND RESULTS Spoligotyping was performed with primers designed to allow amplification and sequencing of whole CRISPR-arrays from 23 T. maritimum isolates. Twenty-three completed/draft genomes were also downloaded from the NCBI database and analysed. MLST of Turkish isolates was achieved with a well-established 7-gene scheme. Tenacibaculum maritimum genomes carry a structurally complete but partially defective class II CRISPRcas locus due to known amino acid substitutions in encoded Cas9 proteins. Our spacer identification suggests that the host range of bacteriophage P2559Y and Vibrio phage nt-1 include T. maritimum and that the most recurrent infection recorded by isolates has been with Tenacibaculum phage PTm5. Thirty-eight isolates with this CRISPRcas locus belonged to 25 spoligotypes and to 24 sequence types by MLST, respectively. According to MLST, T. maritimum isolates from Turkey are most related to previously defined sequence types ST3, ST40 and ST41 isolates from Spain, Malta and France. CONCLUSIONS The evaluated spoligotyping offers discriminatory power comparable to MLST. SIGNIFICANCE AND IMPACT OF THE STUDY Spoligotyping has potential as a quick, easy and cheap tool for subtyping of T. maritimum isolates.
Collapse
Affiliation(s)
- T M Steinum
- Department of Molecular Biology and Genetics, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - E Turgay
- Department of Aquaculture and Fish Diseases, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Turkey
| | - R E Yardımcı
- Department of Aquaculture and Fish Diseases, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Turkey
| | | | - S Karataş
- Department of Aquaculture and Fish Diseases, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
18
|
Alawneh JI, Vezina B, Ramay HR, Al-Harbi H, James AS, Soust M, Moore RJ, Olchowy TWJ. Survey and Sequence Characterization of Bovine Mastitis-Associated Escherichia coli in Dairy Herds. Front Vet Sci 2020; 7:582297. [PMID: 33365333 PMCID: PMC7750360 DOI: 10.3389/fvets.2020.582297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli is frequently associated with mastitis in cattle. "Pathogenic" and "commensal" isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.
Collapse
Affiliation(s)
- John I. Alawneh
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ben Vezina
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Hena R. Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hulayyil Al-Harbi
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ameh S. James
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Timothy W. J. Olchowy
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C, Marathe SA. The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella. Sci Rep 2020; 10:21156. [PMID: 33273523 PMCID: PMC7712790 DOI: 10.1038/s41598-020-77890-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/18/2020] [Indexed: 01/26/2023] Open
Abstract
Salmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition and/or exchange of various virulence factors influences the evolutionary framework. To gain insights into evolution of Salmonella in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars. The strains differed in their CRISPR1-leader and cas operon features assorting into two main clades, CRISPR1-STY/cas-STY and CRISPR1-STM/cas-STM, comprising majorly typhoidal and non-typhoidal Salmonella serovars respectively. Serovars of these two clades displayed better relatedness, concerning CRISPR1-leader and cas operon, across genera than between themselves. This signifies the acquisition of CRISPR1/Cas region could be through a horizontal gene transfer event owing to the presence of mobile genetic elements flanking CRISPR1 array. Comparison of CRISPR and cas phenograms with that of multilocus sequence typing (MLST) suggests differential evolution of CRISPR/Cas system. As opposed to broad-host-range, the host-specific serovars harbor fewer spacers. Mapping of protospacer sources suggested a partial correlation of spacer content with habitat diversity of the serovars. Some serovars like serovar Enteritidis and Typhimurium that inhabit similar environment/infect similar hosts hardly shared their protospacer sources.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Narra Lakshmi Sai Bhavesh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Bahaa Abdella
- Department of Biological Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia.,Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
20
|
Bourgeois J, Lazinski DW, Camilli A. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System. mSphere 2020; 5:e00813-20. [PMID: 33208517 PMCID: PMC7677007 DOI: 10.1128/msphere.00813-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022] Open
Abstract
The prokaryotic adaptive immune system CRISPR/Cas serves as a defense against bacteriophage and invasive nucleic acids. A type I-E CRISPR/Cas system has been detected in classical biotype isolates of Vibrio cholerae, the causative agent of the disease cholera. Experimental characterization of this system revealed a functional immune system that operates using a 5'-TT-3' protospacer-adjacent motif (PAM) for interference. However, several designed spacers against the 5'-TT-3' PAM do not interfere as expected, indicating that further investigation of this system is necessary. In this study, we identified additional conserved sequences, including a pyrimidine in the 5' position of the spacer and a purine in the complementary position of the protospacer using 873 unique spacers and 2,267 protospacers mined from CRISPR arrays in deposited sequences of V. cholerae We present bioinformatic evidence that during acquisition the protospacer purine is captured in the prespacer and that a 5'-RTT-3' PAM is necessary for spacer acquisition. Finally, we demonstrate experimentally, by designing and manipulating spacer and cognate PAMs in a plasmid conjugation assay, that a 5'-RTT-3' PAM is necessary for CRISPR interference, and we discover functional consequences for spacer efficacy related to the identity of the 5' spacer pyrimidine.IMPORTANCE Bacterial CRISPR/Cas systems provide immunity by defending against phage and other invading elements. A thorough comprehension of the molecular mechanisms employed by these diverse systems will improve our understanding of bacteriophage-bacterium interactions and bacterial adaptation to foreign DNA. The Vibrio cholerae type I-E system was previously identified in an extinct classical biotype and was partially characterized for its function. Here, using both bioinformatic and functional assays, we extend that initial study. We have found that the type I-E system still exists in modern strains of V. cholerae Furthermore, we defined additional sequence elements both in the CRISPR array and in target DNA that are required for immunity. CRISPR/Cas systems are now commonly used as precise and powerful genetic engineering tools. Knowledge of the sequences required for CRISPR/Cas immunity is a prerequisite for the effective design and experimental use of these systems. Our results greatly facilitate the effective use of one such system. Furthermore, we provide a publicly available software program that assists in the detection and validation of CRISPR/Cas immunity requirements when such a system exists in a bacterial species.
Collapse
Affiliation(s)
- Jacob Bourgeois
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University, School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Cooper RM, Hasty J. One-Day Construction of Multiplex Arrays to Harness Natural CRISPR-Cas Systems. ACS Synth Biol 2020; 9:1129-1137. [PMID: 32271547 DOI: 10.1021/acssynbio.9b00489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems are prokaryotic immune systems that have proliferated widely not only in bacteria and archaea, but also much more recently, in human biological research and applications. Much work to date has utilized synthetic sgRNAs along with the CRISPR nuclease Cas9, but the discovery of array-processing nucleases now allows the use of more compact, natural CRISPR arrays in heterologous hosts, in addition to organisms with endogenous systems. Unfortunately, the construction of multiplex natural CRISPR arrays remains technically challenging, expensive, and/or time-consuming. This limitation hampers research involving natural CRISPR arrays in both native and heterologous hosts. To address this problem, we present a method to assemble CRISPR arrays that is simple, rapid, affordable, and highly scalable-we assembled 9-spacer arrays with 1 day's worth of work. We used this method to harness the endogenous CRISPR-Cas system of the highly competent bacterium Acinetobacter baylyi, showing that while single spacers are not always completely effective at blocking DNA acquisition through natural competence, multiplex natural CRISPR arrays enable both nearly complete DNA exclusion and genome editing, including with multiple targets for both. In addition to demonstrating a CRISPR array assembly method that will benefit a variety of applications, we also find a potential bet-hedging strategy for balancing CRISPR defense versus DNA acquisition in naturally competent A. baylyi.
Collapse
Affiliation(s)
- Robert M. Cooper
- BioCircuits Institute, University of California, San Diego, La Jolla, California 92093, United States
- San Diego Center for Systems Biology, La Jolla, California 92093, United States
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, California 92093, United States
- San Diego Center for Systems Biology, La Jolla, California 92093, United States
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Chen S, Liu H, Liang W, Hong L, Zhang B, Huang L, Guo X, Duan G. Insertion sequences in the CRISPR-Cas system regulate horizontal antimicrobial resistance gene transfer in Shigella strains. Int J Antimicrob Agents 2019; 53:109-115. [PMID: 30290202 DOI: 10.1016/j.ijantimicag.2018.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
Multidrug-resistant (MDR) Shigella strains are an enormous threat to public health. Antimicrobial resistance genes are frequently located on plasmids, phages and integrons, which enter bacterial cells by horizontal gene transfer (HGT). CRISPR-Cas systems are adaptive prokaryotic immune systems in bacteria that confer resistance to foreign genetic material such as phages and other mobile genetic elements. However, this may come at a cost of inhibiting the acquisition of other beneficial genes through HGT. This study investigated how Shigella strains regulate the activity of the CRISPR-Cas system spontaneously when they require an exogenous gene necessary for survival. Insertion sequence (IS) elements were identified in cas genes, such as IS600 in cse2, ISSfl2 in cas6e and IS629 in cse1-cas3. The number of spacers in CRISPR-Cas arrays in strains containing an IS was less than that for strains with no IS. Interestingly, fewer spacers were also found in MDR Shigella isolates. Furthermore, an antimicrobial-resistant strain was constructed by electrotransformation of a resistance plasmid in order to detect changes in the CRISPR-Cas system. It was found that the cse2 gene had a new IS (IS600) in the antimicrobial-resistant strain. Bioinformatics analyses showed that the IS600 insertion hotspot was TGC-GGC in the cse2 gene, and the tertiary structure of the Cse2 protein was different with IS600. IS600 caused a five-order of magnitude decrease in relative expression of the cse2 gene. This study sheds mechanistic light on CRISPR-Cas-mediated HGT of antimicrobial resistance genes in Shigella spp. isolates.
Collapse
Affiliation(s)
- Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Huiying Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenjuan Liang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Lijuan Hong
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Bing Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lu Huang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiangjiao Guo
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, People's Republic of China.
| |
Collapse
|
23
|
García-Zea JA, de la Herrán R, Robles Rodríguez F, Navajas-Pérez R, Ruiz Rejón C. Detection and variability analyses of CRISPR-like loci in the H. pylori genome. PeerJ 2019; 7:e6221. [PMID: 30648020 PMCID: PMC6330956 DOI: 10.7717/peerj.6221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a human pathogenic bacterium with a high genomic plasticity. Although the functional CRISPR-Cas system has not been found in its genome, CRISPR-like loci have been recently identified. In this work, 53 genomes from different geographical areas are analyzed for the search and analysis of variability of this type of structure. We confirm the presence of a locus that was previously described in the VlpC gene in al lgenomes, and we characterize new CRISPR-like loci in other genomic locations. By studying the variability and gene location of these loci, the evolution and the possible roles of these sequences are discussed. Additionally, the usefulness of this type of sequences as a phylogenetic marker has been demonstrated, associating the different strains by geographical area.
Collapse
Affiliation(s)
| | - Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Carmelo Ruiz Rejón
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
24
|
Chakraborty S, von Mentzer A, Begum YA, Manzur M, Hasan M, Ghosh AN, Hossain MA, Camilli A, Qadri F. Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains. PLoS One 2018; 13:e0209357. [PMID: 30571788 PMCID: PMC6301781 DOI: 10.1371/journal.pone.0209357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Diarrhea due to infection of enterotoxigenic Escherichia coli (ETEC) is of great concern in several low and middle-income countries. ETEC infection is considered to be the most common cause of diarrhea in Bangladesh and is mainly spread through contaminated water and food. ETEC pathogenesis is mediated by the expression of enterotoxins and colonization factors (CFs) that target the intestinal mucosa. ETEC can survive for extended time periods in water, where they are likely to be attacked by bacteriophages. Antibiotic resistance is common amongst enteric pathogens and therefore is the use of bacteriophages (phage) as a therapeutic tool an interesting approach. This study was designed to identify novel phages that specifically target ETEC virulence factors. In total, 48 phages and 195 ETEC isolates were collected from water sources and stool samples. Amongst the identified ETEC specific phages, an enterobacteria phage T7, designated as IMM-002, showed a significant specificity towards colonization factor CS3-expressing ETEC isolates. Antibody-blocking and phage-neutralization assays revealed that CS3 is used as a host receptor for the IMM-002 phage. The bacterial CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated) defence mechanism can invoke immunity against phages. Genomic analyses coupled with plaque assay experiments indicate that the ETEC CRISPR-Cas system is involved in the resistance against the CS3-specific phage (IMM-002) and the previously identified CS7-specific phage (IMM-001). As environmental water serves as a reservoir for ETEC, it is important to search for new antimicrobial agents such as phages in environmental water as well as the human gut. A better understanding of how the interplay between ETEC-specific phages and ETEC isolates affects the ETEC diversity, both in environmental ecosystems and within the host, is important for the development of new treatments for ETEC infections.
Collapse
Affiliation(s)
- Sajib Chakraborty
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| | - Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yasmin Ara Begum
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| | - Mehnaz Manzur
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mahmudul Hasan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Amar N Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - M Anwar Hossain
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, and Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, United States of America
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
25
|
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 2018; 76:4794941. [PMID: 29325038 DOI: 10.1093/femspd/fty002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
In nature, microorganisms are constantly exposed to multiple viral infections and thus have developed many strategies to survive phage attack and invasion by foreign DNA. One of such strategies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) bacterial immunological system. This defense mechanism is widespread in prokaryotes including several families such as Enterobacteriaceae. Much knowledge about the CRISPR-Cas system has been generated, including its biological functions, transcriptional regulation, distribution, utility as a molecular marker and as a tool for specific genome editing. This review focuses on these aspects and describes the state of the art of the CRISPR-Cas system in the Enterobacteriaceae bacterial family.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sonia Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Cuernavaca, Morelos 62209, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
26
|
García-Martínez J, Maldonado RD, Guzmán NM, Mojica FJM. The CRISPR conundrum: evolve and maybe die, or survive and risk stagnation. MICROBIAL CELL 2018; 5:262-268. [PMID: 29850463 PMCID: PMC5972030 DOI: 10.15698/mic2018.06.634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CRISPR-Cas represents a prokaryotic defense mechanism against invading genetic elements. Although there is a diversity of CRISPR-Cas systems, they all share similar, essential traits. In general, a CRISPR-Cas system consists of one or more groups of DNA repeats named CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), regularly separated by unique sequences referred to as spacers, and a set of functionally associated cas (CRISPR associated) genes typically located next to one of the repeat arrays. The origin of spacers is in many cases unknown but, when ascertained, they usually match foreign genetic molecules. The proteins encoded by some of the cas genes are in charge of the incorporation of new spacers upon entry of a genetic element. Other Cas proteins participate in generating CRISPR-spacer RNAs and perform the task of destroying nucleic acid molecules carrying sequences similar to the spacer. In this way, CRISPR-Cas provides protection against genetic intruders that could substantially affect the cell viability, thus acting as an adaptive immune system. However, this defensive action also hampers the acquisition of potentially beneficial, horizontally transferred genes, undermining evolution. Here we cover how the model bacterium Escherichia coli deals with CRISPR-Cas to tackle this major dilemma, evolution versus survival.
Collapse
Affiliation(s)
- Jesús García-Martínez
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| | - Rafael D Maldonado
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| | - Noemí M Guzmán
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| | - Francisco J M Mojica
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain.,I.M.E.M. Ramón Margalef. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| |
Collapse
|
27
|
Ogrodzki P, Forsythe SJ. DNA-Sequence Based Typing of the Cronobacter Genus Using MLST, CRISPR- cas Array and Capsular Profiling. Front Microbiol 2017; 8:1875. [PMID: 29033918 PMCID: PMC5626840 DOI: 10.3389/fmicb.2017.01875] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors.
Collapse
Affiliation(s)
- Pauline Ogrodzki
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | | |
Collapse
|
28
|
Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE, Souza V. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes? Pathog Dis 2017; 75:3861975. [DOI: 10.1093/femspd/ftx059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
|
29
|
Militello KT, Lazatin JC. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:262-269. [PMID: 27677251 DOI: 10.1002/bmb.21025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017.
Collapse
Affiliation(s)
- Kevin T Militello
- Biology Department, State University of New York at Geneseo, Geneseo, New York, 14454
| | - Justine C Lazatin
- Biology Department, State University of New York at Geneseo, Geneseo, New York, 14454
| |
Collapse
|
30
|
Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli. Res Microbiol 2016; 168:147-156. [PMID: 27789334 DOI: 10.1016/j.resmic.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 11/21/2022]
Abstract
In order to investigate the diverse characteristics of clustered, regularly interspaced short palindromic repeat (CRISPR) arrays and the distribution of virulence factor genes in avian Escherichia coli, 80 E. coli isolates obtained from chickens with avian pathogenic E. coli (APEC) or avian fecal commensal E. coli (AFEC) were identified. Using the multiplex polymerase chain reaction (PCR), five genes were subjected to phylogenetic typing and examined for CRISPR arrays to study genetic relatedness among the strains. The strains were further analyzed for CRISPR loci and virulence factor genes to determine a possible association between their CRISPR elements and their potential virulence. The strains were divided into five phylogenetic groups: A, B1, B2, D and E. It was confirmed that two types of CRISPR arrays, CRISPR1 and CRISPR2, which contain up to 246 distinct spacers, were amplified in most of the strains. Further classification of the isolates was achieved by sorting them into nine CRISPR clusters based on their spacer profiles, which indicates a candidate typing method for E. coli. Several significant differences in invasion-associated gene distribution were found between the APEC isolates and the AFEC isolates. Our results identified the distribution of 11 virulence genes and CRISPR diversity in 80 strains. It was demonstrated that, with the exception of iucD and aslA, there was no sharp demarcation in the gene distribution between the pathogenic (APEC) and commensal (AFEC) strains, while the total number of indicated CRISPR spacers may have a positive correlation with the potential pathogenicity of the E. coli isolates.
Collapse
|
31
|
Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems. Nat Microbiol 2016; 1:16081. [PMID: 27573106 DOI: 10.1038/nmicrobiol.2016.81] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/28/2016] [Indexed: 11/09/2022]
Abstract
Archaea and bacteria harbour clustered regularly interspaced short palindromic repeats (CRISPR) loci. These arrays encode RNA molecules (crRNA), each containing a sequence of a single repeat-intervening spacer. The crRNAs guide CRISPR-associated (Cas) proteins to cleave nucleic acids complementary to the crRNA spacer, thus interfering with targeted foreign elements. Notably, pre-existing spacers may trigger the acquisition of new spacers from the target molecule by means of a primed adaptation mechanism. Here, we show that naturally occurring orphan CRISPR arrays that contain spacers matching sequences of the cognate (absent) cas genes are able to elicit both primed adaptation and direct interference against genetic elements carrying those genes. Our findings show the existence of an anti-cas mechanism that prevents the transfer of a fully equipped CRISPR-Cas system. Hence, they suggest that CRISPR immunity may be undesired by particular prokaryotes, potentially because they could limit possibilities for gaining favourable sequences by lateral transfer.
Collapse
|
32
|
Delannoy S, Beutin L, Fach P. Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8163-8174. [PMID: 26449676 DOI: 10.1007/s11356-015-5446-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world's largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.
Collapse
Affiliation(s)
- Sabine Delannoy
- ANSES, Food Safety Laboratory, Platform IdentyPath, Université Paris-Est, Maisons-Alfort, France.
| | - Lothar Beutin
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Patrick Fach
- ANSES, Food Safety Laboratory, Platform IdentyPath, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
33
|
Tymensen LD. CRISPR1 analysis of naturalized surface water and fecal Escherichia coli suggests common origin. Microbiologyopen 2016; 5:527-33. [PMID: 27004771 PMCID: PMC4906003 DOI: 10.1002/mbo3.348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are part of an acquired bacterial immune system that functions as a barrier to exogenous genetic elements. Since naturalized Escherichia coli are likely to encounter different genetic elements in aquatic environments compared to enteric strains, we hypothesized that such differences would be reflected within the hypervariable CRISPR alleles of these two populations. Comparison of CRISPR1 alleles from naturalized and fecal phylogroup B1 E. coli strains revealed that the alleles could be categorized into four major distinct groups (designated G6–G9), and all four allele groups were found among naturalized strains and fecal strains. The distribution of CRIPSR G6 and G8 alleles was similar among strains of both ecotypes, while naturalized strains tended to have CRISPR G7 alleles rather than G9 alleles. Since CRISPR G7 alleles were not specific to naturalized strains, they, however, would not be useful as a marker for identifying naturalized strains. Notably, CRISPR alleles from naturalized and fecal strains also had similar spacer repertoires. This indicates a shared history of encounter with mobile genetic elements and suggests that the two populations were derived from common ancestors.
Collapse
Affiliation(s)
- Lisa D Tymensen
- Irrigation and Farm Water Division, Alberta Agriculture and Forestry, Alberta, Canada
| |
Collapse
|
34
|
Lyons C, Raustad N, Bustos MA, Shiaris M. Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent. PLoS One 2015; 10:e0143544. [PMID: 26600384 PMCID: PMC4658022 DOI: 10.1371/journal.pone.0143544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas systems, which obstruct both viral infection and incorporation of mobile genetic elements by horizontal transfer, are a specific immune response common to prokaryotes. Antiviral protection by CRISPR-Cas comes at a cost, as horizontally-acquired genes may increase fitness and provide rapid adaptation to habitat change. To date, investigations into the prevalence of CRISPR have primarily focused on pathogenic and clinical bacteria, while less is known about CRISPR dynamics in commensal and environmental species. We designed PCR primers and coupled these with DNA sequencing of products to detect and characterize the presence of cas1, a universal CRISPR-associated gene and proxy for the Type II CRISPR1-Cas system, in environmental and non-clinical Enterococcus isolates. CRISPR1-cas1 was detected in approximately 33% of the 275 strains examined, and differences in CRISPR1 carriage between species was significant. Incidence of cas1 in E. hirae was 73%, nearly three times that of E. faecalis (23.6%) and 10 times more frequent than in E. durans (7.1%). Also, this is the first report of CRISPR1 presence in E. durans, as well as in the plant-associated species E. casseliflavus and E. sulfureus. Significant differences in CRISPR1-cas1 incidence among Enterococcus species support the hypothesis that there is a tradeoff between protection and adaptability. The differences in the habitats of enterococcal species may exert varying selective pressure that results in a species-dependent distribution of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Casandra Lyons
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Nicole Raustad
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Mario A. Bustos
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Michael Shiaris
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01286-15. [PMID: 26543119 PMCID: PMC4645204 DOI: 10.1128/genomea.01286-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183T (= DSM 16839T = NCIMB 14029T), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host-microbe interaction are identified.
Collapse
|
36
|
Correction: CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli. PLoS One 2015. [PMID: 26218764 PMCID: PMC4517746 DOI: 10.1371/journal.pone.0134138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|