1
|
Payne JL, Sabunciyan S. Liquid biopsies in psychiatric disorders: Identifying peripheral biomarkers of brain health. Neural Regen Res 2026; 21:691-692. [PMID: 39819865 DOI: 10.4103/nrr.nrr-d-24-00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Affiliation(s)
- Jennifer L Payne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA (Payne JL)
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA (Sabunciyan S)
| |
Collapse
|
2
|
Martella F, Caporali A, Macellaro M, Cafaro R, De Pasquale F, Dell'Osso B, D'Addario C. Biomarker identification in bipolar disorder. Pharmacol Ther 2025; 268:108823. [PMID: 39965667 DOI: 10.1016/j.pharmthera.2025.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Bipolar disorder (BD) is a severe psychiatric condition whose pathophysiology is complex and multifactorial. Genetic, environmental and social risk factors play a role in its development as well as in its progressive course. Research is currently focusing on the identification of the biological basis underlying these processes in order to suggest novel biomarkers capable to predict BD etiopathogenesis and staging. Staging has been recognized as of great value for the treatment and management of many illnesses and might also be suitable for mental health issues, particularly in disorders like BD, which progress from an initial mild phase to a more severe and thus difficult-to-treat situation. Thus, it would be of great help the characterization of to suggest better treatment requirements and improve prognosis across the different stages of the illness. Here, we summarize current research on the biological hypotheses of BD and the biomarkers associated with its progression, reviewing clinical studies available in the literature.
Collapse
Affiliation(s)
- Francesca Martella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Caporali
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Monica Macellaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Rita Cafaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Francesco De Pasquale
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, USA
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Zhu YN, Pan F, Gan XW, Liu Y, Wang WS, Sun K. The Role of DNMT1 and C/EBPα in the Regulation of CYP11A1 Expression During Syncytialization of Human Placental Trophoblasts. Endocrinology 2023; 165:bqad195. [PMID: 38146648 DOI: 10.1210/endocr/bqad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Progesterone synthesized in the placenta is essential for pregnancy maintenance. CYP11A1 is a key enzyme in progesterone synthesis, and its expression increases greatly during trophoblast syncytialization. However, the underlying mechanism remains elusive. Here, we demonstrated that passive demethylation of CYP11A1 promoter accounted for the upregulation of CYP11A1 expression during syncytialization with the participation of the transcription factor C/EBPα. We found that the methylation rate of a CpG locus in the CYP11A1 promoter was significantly reduced along with decreased DNA methyltransferase 1 (DNMT1) expression and its enrichment at the CYP11A1 promoter during syncytialization. DNMT1 overexpression not only increased the methylation of this CpG locus in the CYP11A1 promoter, but also decreased CYP11A1 expression and progesterone production. In silico analysis disclosed multiple C/EBPα binding sites in both CYP11A1 and DNMT1 promoters. C/EBPα expression and its enrichments at both the DNMT1 and CYP11A1 promoters were significantly increased during syncytialization. Knocking-down C/EBPα expression increased DNMT1 while it decreased CYP11A1 expression during syncytialization. Conclusively, C/EBPα plays a dual role in the regulation of CYP11A1 during syncytialization. C/EBPα not only drives CYP11A1 expression directly, but also indirectly through downregulation of DNMT1, which leads to decreased methylation in the CpG locus of the CYP11A1 promoter, resulting in increased progesterone production during syncytialization.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
- Center for Reproductive Medicine, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yun Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
4
|
Sharma V, Singh TG, Kaur A, Mannan A, Dhiman S. Brain-Derived Neurotrophic Factor: A Novel Dynamically Regulated Therapeutic Modulator in Neurological Disorders. Neurochem Res 2023; 48:317-339. [PMID: 36308619 DOI: 10.1007/s11064-022-03755-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 02/04/2023]
Abstract
The growth factor brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin-related kinase receptor type B (TrkB) play an active role in numerous areas of the adult brain, where they regulate the neuronal activity, function, and survival. Upregulation and downregulation of BDNF expression are critical for the physiology of neuronal circuits and functioning in the brain. Loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric disorders. This article reviews the BDNF gene structure, transport, secretion, expression and functions in the brain. This article also implicates BDNF in several brain-related disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, major depressive disorder, schizophrenia, epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| |
Collapse
|
5
|
Abdallah YEH, Chahal S, Jamali F, Mahmoud SH. Drug-disease interaction: Clinical consequences of inflammation on drugs action and disposition. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11137. [PMID: 36942294 PMCID: PMC9990632 DOI: 10.3389/jpps.2023.11137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Inflammation is a culprit in many conditions affecting millions of people worldwide. A plethora of studies has revealed that inflammation and inflammatory mediators such as cytokines and chemokines are associated with altered expression and activity of various proteins such as those involved in drug metabolism, specifically cytochrome P450 enzymes (CYPs). Emphasis of most available reports is on the inflammation-induced downregulation of CYPs, subsequently an increase in their substrate concentrations, and the link between the condition and the inflammatory mediators such as interleukin-6 and tumor necrosis factor alpha. However, reports also suggest that inflammation influences expression and/or activity of other proteins such as those involved in the drug-receptor interaction. These multifaced involvements render the clinical consequence of the inflammation unexpected. Such changes are shown in many inflammatory conditions including rheumatoid arthritis, Crohn's disease, acute respiratory illnesses as well as natural processes such as aging, among others. For example, some commonly used cardiovascular drugs lose their efficacy when patients get afflicted with inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Interestingly, this is despite increased concentration subsequent to reduced clearance. The observation is attributed to a simultaneous reduction in the expression of target receptor proteins such as the calcium and potassium channel and β-adrenergic receptor as well as the metabolic enzymes. This narrative review summarizes the current understanding and clinical implications of the inflammatory effects on both CYPs and drug-receptor target proteins.
Collapse
|
6
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Aytac HM, Pehlivan S, Pehlivan M, Oyaci Y. Quantitative detection of methylated SOCS-1 in schizophrenia and bipolar disorder considering SOCS-1 -1478CA/del polymorphism and clinical parameters. Ir J Med Sci 2022; 192:775-783. [PMID: 35593996 DOI: 10.1007/s11845-022-03030-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND We aimed to investigate the quantitative detection of methylated suppressor of cytokine signaling-1 (SOCS-1) in schizophrenia (SCZ) and bipolar disorder (BD), considering SOCS-1 -1478CA/del polymorphism and clinical parameters. METHODS Our research is a case-control study in which 114 patients with SCZ, 86 patients with BD, and 80 volunteers as a healthy group participated. Bisulfite-converted DNA samples were analyzed using the real-time quantitative methylation-specific PCR (qMS-PCR) method to measure the methylation level of the SOCS-1 gene. In addition, SOCS-1 -1478CA/del gene polymorphism was analyzed with the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS When the SOCS-1 promoter methylation levels of SCZ and BD patients were compared with the control group, the methylation levels of SCZ and BD were significantly lower than the control group. An earlier age of illness onset was significantly related to the SOCS-1 promoter hypermethylation in DNA samples of SCZ patients. Again, SOCS-1 promoter hypermethylation was significantly associated with the higher Young Mania Rating Scale (YMRS) score in BD patients. While the SOCS-1 CA/CA genotype frequency was significantly higher in the control group than in the BD group, the del/del genotype was significantly related to a higher frequency of rapid cycling and a lower frequency of family history in the BD patient group. CONCLUSION In summary, the methylated SOCS-1 quantity in DNA samples of SCZ and BD patients were significantly lower than in control samples. Whereas the SOCS-1 -1478CA/del polymorphism was not related to SCZ, it may be associated with the BD.
Collapse
Affiliation(s)
- Hasan Mervan Aytac
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Yasemin Oyaci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Song W, Wang W, Liu Z, Cai W, Yu S, Zhao M, Lin GN. A Comprehensive Evaluation of Cross-Omics Blood-Based Biomarkers for Neuropsychiatric Disorders. J Pers Med 2021; 11:1247. [PMID: 34945719 PMCID: PMC8703948 DOI: 10.3390/jpm11121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
The identification of peripheral multi-omics biomarkers of brain disorders has long been hindered by insufficient sample size and confounder influence. This study aimed to compare biomarker potential for different molecules and diseases. We leveraged summary statistics of five blood quantitative trait loci studies (N = 1980 to 22,609) and genome-wide association studies (N = 9725 to 500,199) from 14 different brain disorders, such as Schizophrenia (SCZ) and Alzheimer's Disease (AD). We applied summary-based and two-sample Mendelian Randomization to estimate the associations between blood molecules and brain disorders. We identified 524 RNA, 807 methylation sites, 29 proteins, seven cytokines, and 22 metabolites having a significant association with at least one of 14 brain disorders. Simulation analyses indicated that a cross-omics combination of biomarkers had better performance for most disorders, and different disorders could associate with different omics. We identified an 11-methylation-site model for SCZ diagnosis (Area Under Curve, AUC = 0.74) by analyzing selected candidate markers in published datasets (total N = 6098). Moreover, we constructed an 18-methylation-sites model that could predict the prognosis of elders with mild cognitive impairment (hazard ratio = 2.32). We provided an association landscape between blood cross-omic biomarkers and 14 brain disorders as well as a suggestion guide for future clinical discovery and application.
Collapse
Affiliation(s)
- Weichen Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (Z.L.); (W.C.)
| | - Weidi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (Z.L.); (W.C.)
| | - Zhe Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (Z.L.); (W.C.)
| | - Wenxiang Cai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (Z.L.); (W.C.)
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; (S.Y.); (M.Z.)
| | - Min Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China; (S.Y.); (M.Z.)
| | - Guan Ning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (Z.L.); (W.C.)
| |
Collapse
|
9
|
Yolken RH, Kinnunen PM, Vapalahti O, Dickerson F, Suvisaari J, Chen O, Sabunciyan S. Studying the virome in psychiatric disease. Schizophr Res 2021; 234:78-86. [PMID: 34016507 DOI: 10.1016/j.schres.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
An overlooked aspect of current microbiome studies is the role of viruses in human health. Compared to bacterial studies, laboratory and analytical methods to study the entirety of viral communities in clinical samples are rudimentary and need further refinement. In order to address this need, we developed Virobiome-Seq, a sequence capture method and an accompanying bioinformatics analysis pipeline, that identifies viral reads in human samples. Virobiome-Seq is able to enrich for and detect multiple types of viruses in human samples, including novel subtypes that diverge at the sequence level. In addition, Virobiome-Seq is able to detect RNA transcripts from DNA viruses and may provide a sensitive method for detecting viral activity in vivo. Since Virobiome-Seq also yields the viral sequence, it makes it possible to investigate associations between viral genotype and psychiatric illness. In this proof of concept study, we detected HIV1, Torque Teno, Pegi, Herpes and Papilloma virus sequences in Peripheral Blood Mononuclear Cells, plasma and stool samples collected from individuals with psychiatric disorders. We also detected the presence of numerous novel circular RNA viruses but were unable to determine whether these viruses originate from the sample or represent contaminants. Despite this challenge, we demonstrate that our knowledge of viral diversity is incomplete and opportunities for novel virus discovery exist. Virobiome-Seq will enable a more sophisticated analysis of the virome and has the potential of uncovering complex interactions between viral activity and psychiatric disease.
Collapse
Affiliation(s)
- Robert H Yolken
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Paula M Kinnunen
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HUS Diagnostic Center, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Jaana Suvisaari
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Ou Chen
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics 2021; 13:1231-1245. [PMID: 34318684 PMCID: PMC8738978 DOI: 10.2217/epi-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, 02218 MA, USA
| |
Collapse
|
11
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:ph14060514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
12
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021. [DOI: 10.3390/ph14060514
expr 938544256 + 801362328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
13
|
Moschny N, Hefner G, Grohmann R, Eckermann G, Maier HB, Seifert J, Heck J, Francis F, Bleich S, Toto S, Meissner C. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514&set/a 947965394+957477086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug's pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients' drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior-both clinically relevant in psychiatry-that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
Affiliation(s)
- Nicole Moschny
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
- Correspondence: ; Tel.: +49-511-532-3656
| | - Gudrun Hefner
- Department of Psychiatry and Psychotherapy, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Str. 4, 65346 Eltville, Germany;
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Nussbaum-Str. 7, 80336 Munich, Germany;
| | - Gabriel Eckermann
- Department of Forensic Psychiatry and Psychotherapy, Hospital Kaufbeuren, Kemnater-Str. 16, 87600 Kaufbeuren, Germany;
| | - Hannah B Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Flverly Francis
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Catharina Meissner
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| |
Collapse
|
14
|
Chavant A, Gautier-Veyret E, Chhun S, Guilhaumou R, Stanke-Labesque F. [Pharmacokinetic changes related to acute infection. Examples from the SARS-CoV-2 pandemic]. Therapie 2020; 76:319-333. [PMID: 33129512 PMCID: PMC7833468 DOI: 10.1016/j.therap.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
The knowledge of factors of pharmacokinetic variability is important in order to personalize pharmacological treatment, particularly for drugs with a narrow therapeutic range for which pharmacological therapeutic monitoring is recommended. Inflammation is a protective response against acute infections and injuries that contributes to intra- and inter-individual variability in drug exposure by modulating the activity of enzymes involved in drug metabolism, and by altering the binding of drugs to plasma proteins. The understanding of the impact of inflammation on drug metabolism and the related clinical consequences allow to better take into consideration the effect of inflammation on the variability of drug exposure. We first summarized the molecular mechanisms by which inflammation contributes to the inhibition of drug metabolism enzymes. We then presented an updated overview of the consequences of the outcome of acute infectious event on pharmacokinetic exposure of drugs with a narrow therapeutic range and that are substrates of cytochrome P450, and the related clinical consequences. Finally, in the context of the COVID-19 pandemic, we reported examples of drug overexposures in COVID- 19 infected patients.
Collapse
Affiliation(s)
- Anaëlle Chavant
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elodie Gautier-Veyret
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France
| | - Stéphanie Chhun
- UFR de médecine Paris centre, 75015 Paris, France; Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75015 Paris, France; Laboratoire d'immunologie biologique, département médico universitaire BioPhyGen, hôpital universitaire Necker-enfants malades, AP-HP, 75015 Paris, France
| | - Romain Guilhaumou
- Unité de pharmacologie clinique et pharmacovigilance AP-HM, 13354 Marseille, France; Aix Marseille Univ, Inserm, INS Inst Neurosci Syst, 13354 Marseille, France
| | - Françoise Stanke-Labesque
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France.
| |
Collapse
|
15
|
Watkeys OJ, Cohen-Woods S, Quidé Y, Cairns MJ, Overs B, Fullerton JM, Green MJ. Derivation of poly-methylomic profile scores for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109925. [PMID: 32194204 DOI: 10.1016/j.pnpbp.2020.109925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Schizophrenia and bipolar disorder share biological features and environmental risk factors that may be associated with altered DNA methylation. In this study we sought to: 1) construct a novel 'Poly-Methylomic Profile Score (PMPS)' by transforming schizophrenia-associated epigenome-wide methylation from a previously published epigenome-wide association study (EWAS) into a single quantitative metric; and 2) examine associations between the PMPS and clinical status in an independent sample of 57 schizophrenia (SZ) cases, 59 bipolar disorder (BD) cases and 55 healthy controls (HC) for whom blood-derived DNA methylation was quantified using the Illumina 450 K methylation beadchip. We constructed five PMPSs at different p-value thresholds by summing methylation beta-values weighted by individual-CpG effect sizes from the meta-analysis of a previously published schizophrenia EWAS (comprising three separate cohorts with 675 [353 SZ and 322 HC] discovery cohort participants, 847 [414 SZ and 433 HC] replication cohort participants, and 96 monozygotic twin-pairs discordant for SZ). All SZ PMPSs were elevated in SZ participants relative to HCs, with the score calculated at a p-value threshold of 1 × 10-5 accounting for the greatest amount of variance. All PMPSs were elevated in SZ relative to BD and none of the PMPSs were increased in BD, or in a combined cohort of BD and SZ cases, relative to HCs. PMPSs were also not associated with positive or negative symptom severity. That this SZ-derived PMPSs was elevated in SZ, but not BD, suggests that epigenome-wide methylation patterns may represent distinct pathophysiology that is yet to be elucidated.
Collapse
Affiliation(s)
- Oliver J Watkeys
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Sarah Cohen-Woods
- Discipline of Psychology, Flinders University, Adelaide, SA, Australia; Flinders Centre for Innovation in Cancer, Adelaide, SA, Australia; Centre for Neuroscience, Adelaide, SA, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Bronwyn Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol Ther 2020; 215:107627. [PMID: 32659304 PMCID: PMC7351663 DOI: 10.1016/j.pharmthera.2020.107627] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Inflammation is an evolutionary process that allows survival against acute infection or injury. Inflammation is also a pathophysiological condition shared by numerous chronic diseases. In addition, inflammation modulates important drug-metabolizing enzymes and transporters (DMETs), thus contributing to intra- and interindividual variability of drug exposure. A better knowledge of the impact of inflammation on drug metabolism and its related clinical consequences would help to personalize drug treatment. Here, we summarize the kinetics of inflammatory mediators and the underlying transcriptional and post-transcriptional mechanisms by which they contribute to the inhibition of important DMETs. We also present an updated overview of the effect of inflammation on the pharmacokinetic parameters of most of the drugs that are DMET substrates, for which therapeutic drug monitoring is recommended. Furthermore, we provide opinions on how to integrate the inflammatory status into pharmacogenetics, therapeutic drug monitoring, and population pharmacokinetic strategies to improve the personalization of drug treatment for each patient.
Collapse
Affiliation(s)
- Françoise Stanke-Labesque
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France.
| | - Elodie Gautier-Veyret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France
| | - Stephanie Chhun
- Faculty of Medicine, Paris University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; AP-HP, Paris Centre, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Romain Guilhaumou
- Clinical Pharmacology and Pharmacovigilance Unit, AP-HM, Marseille, France; Aix Marseille Univ, INSERM, INS Inst Neurosci Syst, Marseille, France
| |
Collapse
|
17
|
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol 2019; 56:3295-3312. [PMID: 30117106 PMCID: PMC6476855 DOI: 10.1007/s12035-018-1283-6] [Citation(s) in RCA: 492] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment. Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this review will address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
18
|
Fries GR, Walss-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav 2019; 177:12-19. [DOI: 10.1016/j.pbb.2018.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023]
|
19
|
Menezes IC, von Werne Baes C, Lacchini R, Juruena MF. Genetic biomarkers for differential diagnosis of major depressive disorder and bipolar disorder: A systematic and critical review. Behav Brain Res 2019; 357-358:29-38. [PMID: 29331712 DOI: 10.1016/j.bbr.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/20/2017] [Accepted: 01/08/2018] [Indexed: 02/05/2023]
Abstract
Depressive symptoms are present in the depressive mood state of bipolar disorder (BPD) and major depression disorder (MDD). Often, in clinical practice, BPD patients are misdiagnosed with MDD. Therefore, genetic biomarkers could contribute to the improvement of differential diagnosis between BPD and MDD. This systematic and critical review aimed to find in literature reliable genetic biomarkers that may show differences between BPD and MDD. This systematic review followed the PRISMA-P method. The terms used to search PubMed, Scopus, PsycINFO, and Web of Science were depress*, bipolar, diagnos*, genetic*, biomark*. After applying the selection criteria, N = 27 studies were selected, being n = 9 about biomarkers for BPD; n = 15, about MDD; and n = 3 for distinguishing MDD from BPD. A total of N = 3086 subjects were assessed in the selected studies (n = 486 in BPD group; n = 1212 in MDD group; and n = 1388, healthy control group). The articles were dated up to June 2017. Of the N = 27 studies, n = 16 assessed gene, n = 1 miRNA, n = 2 lcnRNA and n = 3 protein expressions, n = 4 methylation, and n = 4 polymorphisms. Some studies applied more than one of these genetic analyses. To find reliable genetic biomarkers we have taken into account the methodological care during the studies development and their validity. The genetic biomarkers selected are related to genes that play a fundamental role in synaptic plasticity, neurogenesis, mood control, brain ageing, immune-inflammatory processes and mitochondrial respiratory chain. BDNF gene expression was one of the genetic biomarkers that highlighted because of its capacity of distinguishing BPD and MDD groups, and being adequately reproduced by more than one selected study.
Collapse
Affiliation(s)
- Itiana Castro Menezes
- Stress and Affective Disorders (SAD) Programme, Department of Neurosciences and Behavior, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Cristiane von Werne Baes
- Stress and Affective Disorders (SAD) Programme, Department of Neurosciences and Behavior, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Riccardo Lacchini
- Departament of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of Sao Paulo, Brazil
| | - Mario Francisco Juruena
- Stress and Affective Disorders (SAD) Programme, Department of Neurosciences and Behavior, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil; Centre for Affective Disorders, Psychological Medicine, King's College London, UK.
| |
Collapse
|
20
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
21
|
Fiorito G, Vlaanderen J, Polidoro S, Gulliver J, Galassi C, Ranzi A, Krogh V, Grioni S, Agnoli C, Sacerdote C, Panico S, Tsai MY, Probst-Hensch N, Hoek G, Herceg Z, Vermeulen R, Ghantous A, Vineis P, Naccarati A. Oxidative stress and inflammation mediate the effect of air pollution on cardio- and cerebrovascular disease: A prospective study in nonsmokers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:234-246. [PMID: 29114965 DOI: 10.1002/em.22153] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/29/2017] [Accepted: 10/08/2017] [Indexed: 05/17/2023]
Abstract
Air pollution is associated with a broad range of adverse health effects, including mortality and morbidity due to cardio- and cerebrovascular diseases (CCVD), but the molecular mechanisms involved are not entirely understood. This study aims to investigate the involvement of oxidative stress and inflammation in the causal chain, and to identify intermediate biomarkers that are associated retrospectively with the exposure and prospectively with the disease. We designed a case-control study on CCVD nested in a cohort of 18,982 individuals from the EPIC-Italy study. We measured air pollution, inflammatory biomarkers, and whole-genome DNA methylation in blood collected up to 17 years before the diagnosis. The study sample includes all the incident CCVD cases among former- and never-smokers, with available stored blood sample, that arose in the cohort during the follow-up. We identified enrichment of altered DNA methylation in "ROS/Glutathione/Cytotoxic granules" and "Cytokine signaling" pathways related genes, associated with both air pollution (multiple comparisons adjusted p for enrichment ranging from 0.01 to 0.03 depending on pollutant) and with CCVD risk (P = 0.04 and P = 0.03, respectively). Also, Interleukin-17 was associated with higher exposure to NO2 (P = 0.0004), NOx (P = 0.0005), and CCVD risk (OR = 1.79; CI 1.04-3.11; P = 0.04 comparing extreme tertiles). Our findings indicate that chronic exposure to air pollution can lead to oxidative stress, which in turn activates a cascade of inflammatory responses mainly involving the "Cytokine signaling" pathway, leading to increased risk of CCVD. Inflammatory proteins and DNA methylation alterations can be detected several years before CCVD diagnosis in blood samples, being promising preclinical biomarkers. Environ. Mol. Mutagen. 59:234-246, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giovanni Fiorito
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Italy
| | - Jelle Vlaanderen
- Utrecht University, Institute for Risk Assessment Sciences, Environmental Epidemiology Division, Utrecht, Netherlands
| | | | - John Gulliver
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Claudia Galassi
- Unit of Cancer Epidemiology, Città Della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Modena, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Ming-Yi Tsai
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Gerard Hoek
- Utrecht University, Institute for Risk Assessment Sciences, Environmental Epidemiology Division, Utrecht, Netherlands
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Roel Vermeulen
- Utrecht University, Institute for Risk Assessment Sciences, Environmental Epidemiology Division, Utrecht, Netherlands
| | - Akram Ghantous
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | | |
Collapse
|
22
|
Pisanu C, Katsila T, Patrinos GP, Squassina A. Recent trends on the role of epigenomics, metabolomics and noncoding RNAs in rationalizing mood stabilizing treatment. Pharmacogenomics 2018; 19:129-143. [DOI: 10.2217/pgs-2017-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mood stabilizers are the cornerstone in treatment of mood disorders, but their use is characterized by high interindividual variability. This feature has stimulated intensive research to identify predictive biomarkers of response and disentangle the molecular bases of their clinical efficacy. Nevertheless, findings from studies conducted so far have only explained a small proportion of the observed variability, suggesting that factors other than DNA variants could be involved. A growing body of research has been focusing on the role of epigenetics and metabolomics in response to mood stabilizers, especially lithium salts. Studies from these approaches have provided new insights into the molecular networks and processes involved in the mechanism of action of mood stabilizers, promoting a systems-level multiomics synergy. In this article, we reviewed the literature investigating the involvement of epigenetic mechanisms, noncoding RNAs and metabolomic modifications in bipolar disorder and the mechanism of action and clinical efficacy of mood stabilizers.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Theodora Katsila
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
23
|
Kutlesic V, Brewinski Isaacs M, Freund LS, Hazra R, Raiten DJ. Executive Summary: Research Gaps at the Intersection of Pediatric Neurodevelopment, Nutrition, and Inflammation in Low-Resource Settings. Pediatrics 2017; 139:S1-S11. [PMID: 28562244 PMCID: PMC9924035 DOI: 10.1542/peds.2016-2828c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vesna Kutlesic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | | | - Lisa S Freund
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Rohan Hazra
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
24
|
Galler JR, Koethe JR, Yolken RH. Neurodevelopment: The Impact of Nutrition and Inflammation During Adolescence in Low-Resource Settings. Pediatrics 2017; 139:S72-S84. [PMID: 28562250 PMCID: PMC5374755 DOI: 10.1542/peds.2016-2828i] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Approximately 1 out of 5 children worldwide suffers from childhood malnutrition or stunting and associated health conditions, including an increased susceptibility to infections and inflammation. Due to improved early interventions, most children even in low-resource settings now survive early childhood malnutrition, yet exhibit continuing evidence of neurodevelopmental deficits, including poor school achievement and behavioral problems. These conditions are compounded in children who continue to be undernourished throughout the adolescent years. At present, these sequelae of malnutrition and infection are of major concern in the adolescent population, given that young people between the ages of 10 and 24 years represent nearly one-quarter of the world's population. Therefore, there is an urgent need to focus on the well-being of this age group and, in particular, on behavioral, cognitive, and brain disorders of adolescents who experienced malnutrition, infection, and inflammation prenatally, in early childhood, and during adolescence itself. Because one-third of all women globally become pregnant during their adolescent years, brain and behavioral disorders during this period can have an intergenerational impact, affecting the health and well-being of the next generation. This article summarizes the current state of knowledge and evidence gaps regarding childhood and adolescent malnutrition and inflammation and their impact on adolescent neurodevelopment, the limited evidence regarding nutrition and psychosocial interventions, and the role of resilience and protective factors in this age group. This overview should help to inform the development of new strategies to improve the neurodevelopmental outcomes of high risk adolescent populations.
Collapse
Affiliation(s)
- Janina R Galler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts;
- Chester M. Pierce, MD Division of Global Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Center on the Developing Child, Harvard University, Cambridge, Massachusetts
| | - John R Koethe
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Robert H Yolken
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Fries GR, Quevedo J, Zeni CP, Kazimi IF, Zunta-Soares G, Spiker DE, Bowden CL, Walss-Bass C, Soares JC. Integrated transcriptome and methylome analysis in youth at high risk for bipolar disorder: a preliminary analysis. Transl Psychiatry 2017; 7:e1059. [PMID: 28291257 PMCID: PMC5416675 DOI: 10.1038/tp.2017.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/20/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
First-degree relatives of patients with bipolar disorder (BD), particularly their offspring, have a higher risk of developing BD and other mental illnesses than the general population. However, the biological mechanisms underlying this increased risk are still unknown, particularly because most of the studies so far have been conducted in chronically ill adults and not in unaffected youth at high risk. In this preliminary study we analyzed genome-wide expression and methylation levels in peripheral blood mononuclear cells from children and adolescents from three matched groups: BD patients, unaffected offspring of bipolar parents (high risk) and controls (low risk). By integrating gene expression and DNA methylation and comparing the lists of differentially expressed genes and differentially methylated probes between groups, we were able to identify 43 risk genes that discriminate patients and high-risk youth from controls. Pathway analysis showed an enrichment of the glucocorticoid receptor (GR) pathway with the genes MED1, HSPA1L, GTF2A1 and TAF15, which might underlie the previously reported role of stress response in the risk for BD in vulnerable populations. Cell-based assays indicate a GR hyporesponsiveness in cells from adult BD patients compared to controls and suggest that these GR-related genes can be modulated by DNA methylation, which poses the theoretical possibility of manipulating their expression as a means to counteract the familial risk presented by those subjects. Although preliminary, our results suggest the utility of peripheral measures in the identification of biomarkers of risk in high-risk populations and further emphasize the potential role of stress and DNA methylation in the risk for BD in youth.
Collapse
Affiliation(s)
- G R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - J Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - C P Zeni
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - I F Kazimi
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - G Zunta-Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - D E Spiker
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - C L Bowden
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - C Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 5102A, Houston, TX 77054, USA. E-mail:
| | - J C Soares
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
26
|
Yolken R, Adamos M, Katsafanas E, Khushalani S, Origoni A, Savage C, Schweinfurth L, Stallings C, Sweeney K, Dickerson F. Individuals hospitalized with acute mania have increased exposure to antimicrobial medications. Bipolar Disord 2016; 18:404-9. [PMID: 27425597 PMCID: PMC5508736 DOI: 10.1111/bdi.12416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVES We have preciously documented that many individuals with acute mania have immune activation. However, the sources of immune activation have not been identified. We investigated whether individuals hospitalized with acute mania have evidence of bacterial infections as determined by the prescription of systemic antimicrobial agents. METHODS We assessed the recent prescription of systemic antimicrobial medications and the site of presumed bacterial infection in 234 individuals hospitalized for acute mania in either an inpatient unit or a day hospital. We also assessed individuals hospitalized for other psychiatric disorders (n=368) and controls (n=555). We employed logistic regression models to compare the rates of antibiotic prescription in individuals with the different diagnoses, employing demographic variables as covariates. RESULTS We found that individuals hospitalized with acute mania had a substantially increased rate of recent antimicrobial prescription, defined as exposure within three days of ascertainment (adjusted odds ratio=5.5, 95% confidence interval: 2.2-14.1, P<.0002). Overall, a total of 18 of the 234 (7.7%) individuals hospitalized for acute mania were prescribed antibiotics as opposed to seven of 555 (1.3%) controls. The prescription of antibiotics was associated with being on an inpatient unit as opposed to being in the day hospital, and having increased mania symptom severity but not with other clinical ratings, demographic variables, or psychiatric medications. Hospitalization for other psychiatric disorders was not associated with the recent prescription of antimicrobial medications. The urinary tract was the most common site of infection in women, while the respiratory tract and mucosal surfaces were the most common sites in men. CONCLUSIONS Individuals hospitalized with acute mania have a markedly increased rate of bacterial infections, as evidenced by the recent prescription of antimicrobial agents. The prevention and effective treatment of bacterial infections may be important interventions for the management of individuals with mania.
Collapse
Affiliation(s)
- Robert Yolken
- Stanley Neurovirology Laboratory, Johns Hopkins School of Medicine, Baltimore MD
| | - Maria Adamos
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Emily Katsafanas
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Sunil Khushalani
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Andrea Origoni
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Christina Savage
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Lucy Schweinfurth
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Cassie Stallings
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Kevin Sweeney
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| | - Faith Dickerson
- Stanley Research Program,, Sheppard Pratt Health System, Baltimore MD
| |
Collapse
|
27
|
Fries GR, Li Q, McAlpin B, Rein T, Walss-Bass C, Soares JC, Quevedo J. The role of DNA methylation in the pathophysiology and treatment of bipolar disorder. Neurosci Biobehav Rev 2016; 68:474-488. [PMID: 27328785 DOI: 10.1016/j.neubiorev.2016.06.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022]
Abstract
Bipolar disorder (BD) is a multifactorial illness thought to result from an interaction between genetic susceptibility and environmental stimuli. Epigenetic mechanisms, including DNA methylation, can modulate gene expression in response to the environment, and therefore might account for part of the heritability reported for BD. This paper aims to review evidence of the potential role of DNA methylation in the pathophysiology and treatment of BD. In summary, several studies suggest that alterations in DNA methylation may play an important role in the dysregulation of gene expression in BD, and some actually suggest their potential use as biomarkers to improve diagnosis, prognosis, and assessment of response to treatment. This is also supported by reports of alterations in the levels of DNA methyltransferases in patients and in the mechanism of action of classical mood stabilizers. In this sense, targeting specific alterations in DNA methylation represents exciting new treatment possibilities for BD, and the 'plastic' characteristic of DNA methylation accounts for a promising possibility of restoring environment-induced modifications in patients.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA.
| | - Qiongzhen Li
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA
| | - Blake McAlpin
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), 1941 East Rd, 77054, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|