1
|
Ueda K, Imai T, Okayasu T, Tanaka T, Tatsumi K, Wanaka A, Kitahara T. Coenzyme Q10 and rikkunshito prevent age-related changes in mouse otolith morphology and function. Biochem Biophys Rep 2025; 42:102033. [PMID: 40384882 PMCID: PMC12084409 DOI: 10.1016/j.bbrep.2025.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Otoliths play an important role in maintaining body balance, and age-related decline in theis function and morphological integrity can lead to falls. In recent years, the herbal medicine rikkunshito (RKT) and the antioxidant coenzyme Q10 (CoQ10) have been studied for their anti-aging properties; however, their effects on otoliths remain unknown. Therefore, we aimed to investigate whether RKT and CoQ10 can prevent age-related functional and morphological changes in otoliths. To this end, 30 male and 30 female 8-week-old C57BL6N mice were used in this study. The mice were divided into three groups: a control group, CoQ10 group (0.2 % CoQ10 special diet), and RKT group (3 % RKT special diet). At 80 weeks of age, micro-computed tomography (μCT) images were taken and analyzed for otolith volume and CT number. Furthermore, eye movements induced by the linear vestibulo-ocular reflex (LVOR) were analyzed to assess otolith function. Results revealed that the RKT group had a significantly smaller volume of the 3 dimensional utriclar CT model (male mice; p = 0.0281, Steel test) and a significantly higher utricular CT number (male mice; p = 0.0104, Dunnett test) than the control group. The RKT group had a significantly weaker LVOR (male mice; lateral 1.3G stimulation; p = 0.00681, Dunnett test) (male mice; longitudinal 1.3G stimulation; p = 0.0183, Dunnett test) (male mice; longitudinal 0.7G stimulation; p = 0.00322, Dunnett test) than the control group. The CoQ10 group exhibited a significantly stronger utricle-induced LVOR than the control group (female mice; lateral 0.7G stimulation; p = 0.0133, Steel test).In conclusion, RKT prevented age-related utricular morphological changes, but did not prevent age-related otolith functional changes in male mice. CoQ10 prevented age-related utricular functional changes for low frequency stimulation in female mice.
Collapse
Affiliation(s)
- Keita Ueda
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Japan
| | - Takao Imai
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Japan
| | - Tadao Okayasu
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Japan
| |
Collapse
|
2
|
Ohshima K, Miyano K, Nonaka M, Aiso S, Fukuda M, Furuya S, Fujii H, Uezono Y. The Flavonoids and Monoterpenes from Citrus unshiu Peel Contained in Ninjinyoeito Synergistically Activate Orexin 1 Receptor: A Possible Mechanism of the Orexigenic Effects of Ninjinyoeito. Biomolecules 2025; 15:533. [PMID: 40305263 PMCID: PMC12025248 DOI: 10.3390/biom15040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer cachexia, often observed in patients with advanced-stage cancer, is characterized by the loss of body weight and appetite. The Japanese herbal medicine Ninjinyoeito (NYT), which is composed of 12 crude herbal components, has been used as a therapeutic in Japan to improve anorexia and fatigue, which are commonly observed in cancer patients with cachexia. We have previously reported that Citrus unshiu peel (CUP) contained in NYT can enhance food intake by activating the orexin 1 receptor (OX1R). Using the CellKey™ system, which offers detection of OXR activity in intracellular impedance changes, NYT and CUP were found to activate OX1R, which in turn was inhibited by SB-674042, a selective OX1R antagonist. Among the flavonoids contained in CUP, nobiletin and hesperidin, but not naringin, activated OX1R. Furthermore, some monoterpenes contained in CUP, including limonene and linalool, but not terpineol, activated OX1R. In addition, nobiletin and limonene synergistically activated OX1R when added simultaneously. However, neither NYT nor CUP induced OX2R activity. The results collectively suggested that the CUP contained in NYT activates OX1R, but not OX2R, and that flavonoids and monoterpenes in CUP can synergistically activate OX1R. These findings could provide evidence supporting the therapeutic potential of NYT in cancer patients with cachexia.
Collapse
Affiliation(s)
- Kaori Ohshima
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.O.); (K.M.); (M.N.); (S.A.); (M.F.); (S.F.)
- Department of Pathology, Immunology, and Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.O.); (K.M.); (M.N.); (S.A.); (M.F.); (S.F.)
- Laboratory of Pharmacotherapeutics, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.O.); (K.M.); (M.N.); (S.A.); (M.F.); (S.F.)
- Center for Neuroscience of Pain, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Sayaka Aiso
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.O.); (K.M.); (M.N.); (S.A.); (M.F.); (S.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan;
| | - Mao Fukuda
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.O.); (K.M.); (M.N.); (S.A.); (M.F.); (S.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan;
| | - Saho Furuya
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.O.); (K.M.); (M.N.); (S.A.); (M.F.); (S.F.)
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan;
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan;
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.O.); (K.M.); (M.N.); (S.A.); (M.F.); (S.F.)
- Center for Neuroscience of Pain, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Pharmacological Department of Herbal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
- Department of Comprehensive Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Yakabi K, Yamaguchi N, Takayama K, Hosomi E, Hori Y, Ro S, Ochiai M, Maezawa K, Yakabi S, Harada Y, Fujitsuka N, Nagoshi S. Rikkunshito improves anorexia through ghrelin- and orexin-dependent activation of the brain hypothalamus and mesolimbic dopaminergic pathway in rats. Neurogastroenterol Motil 2024; 36:e14900. [PMID: 39164871 DOI: 10.1111/nmo.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Rikkunshito (RKT), a traditional Japanese medicine, can relieve epigastric discomfort and anorexia in patients with functional dyspepsia. RKT enhances the orexigenic hormone, ghrelin. Ghrelin regulates food motivation by stimulating the appetite control center in the hypothalamus and the brain mesolimbic dopaminergic pathway (MDPW). However, the effect of RKT on MDPW remains unclear. Here, we aimed to investigate the central neural mechanisms underlying the orexigenic effects of RKT, focusing on the MDPW. METHODS We examined the effects of RKT on food intake and neuronal c-Fos expression in restraint stress- and cholecystokinin octapeptide-induced anorexia in male rats. KEY RESULTS RKT treatment significantly restored stress- and cholecystokinin octapeptide-induced decreased food intake. RKT increased c-Fos expression in the ventral tegmental area (VTA), especially in tyrosine hydroxylase-immunoreactive neurons, and nucleus accumbens (NAc). The effects of RKT were suppressed by the ghrelin receptor antagonist [D-Lys3]-GHRP-6. RKT increased the number of c-Fos/orexin-double-positive neurons in the lateral hypothalamus (LH), which project to the VTA. The orexin receptor antagonist, SB334867, suppressed RKT-induced increase in food intake and c-Fos expression in the LH, VTA, and NAc. RKT increased c-Fos expression in the arcuate nucleus and nucleus of the solitary tract of the medulla, which was inhibited by [D-Lys3]-GHRP-6. CONCLUSIONS & INFERENCES RKT may restore appetite in subjects with anorexia through ghrelin- and orexin-dependent activation of neurons regulating the brain appetite control network, including the hypothalamus and MDPW.
Collapse
Affiliation(s)
- Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Naomi Yamaguchi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Kiyoshige Takayama
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Eriko Hosomi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Yutaro Hori
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Kosuke Maezawa
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Seiichi Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
- Department of Gastroenterology, University of Tokyo Hospital, Tokyo, Japan
| | - Yumi Harada
- TSUMURA Kampo Research Laboratories, TSUMURA & CO., Ibaraki, Japan
| | - Naoki Fujitsuka
- TSUMURA Kampo Research Laboratories, TSUMURA & CO., Ibaraki, Japan
| | - Sumiko Nagoshi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| |
Collapse
|
4
|
Duan X, Bai W, Hu J, Wu J, Tan H, Wang F, Lang X, Wang B, Hu J. Inhibitory effect of flavonoids on multidrug and toxin extrusion protein 1 function: Implications for food/herb-drug interaction and drug-induced kidney injury. J Appl Toxicol 2024; 44:1388-1402. [PMID: 38760888 DOI: 10.1002/jat.4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Multidrug and toxin extrusion protein 1 (MATE1), an efflux transporter mainly expressed in renal proximal tubules, mediates the renal secretion of organic cationic drugs. The inhibition of MATE1 will impair the excretion of drugs into the tubular lumen, leading to the accumulation of nephrotoxic drugs in the kidney and consequently potentiating nephrotoxicity. Screening and identifying potent MATE1 inhibitors can predict or minimize the risk of drug-induced kidney injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions. Our objective was to investigate the inhibitory effects of flavonoids on MATE1 in vitro and in vivo and to assess the effects of flavonoids on cisplatin-induced kidney injury. Thirteen flavonoids exhibited significant transport activity inhibition (>50%) on MATE1 in MATE1-MDCK cells. Among them, the six strongest flavonoid inhibitors, including irisflorentin, silymarin, isosilybin, sinensetin, tangeretin, and nobiletin, markedly increased cisplatin cytotoxicity in these cells. In cisplatin-induced in vivo renal injury models, irisflorentin, isosilybin, and sinensetin also increased serum creatinine and blood urea nitrogen levels to different degrees, especially irisflorentin, which exhibited the most potent nephrotoxicity with cisplatin. The pharmacophore model indicated that the hydrogen bond acceptors at the 3, 5, and 7 positions may play a critical role in the inhibitory effect of flavonoids on MATE1. Our findings provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions and avoiding the exacerbation of drug-induced kidney injury via MATE1 mediation.
Collapse
Affiliation(s)
- Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinjin Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuli Lang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Zhong W, Zhang Q. Atractylodin: An Alkyne Compound with Anticancer Potential. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1729-1757. [PMID: 39192675 DOI: 10.1142/s0192415x24500551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Atractylodin is one of the main active ingredients of Atractylodis Rhizoma. It has various pharmacological properties, such as antigastric ulcer, immune regulation, antibacterial, anti-inflammatory, antitumor, anti-oxidant, and neuroprotective properties. In the past few decades, atractylodin has attracted the attention of researchers due to its excellent therapeutic effects. This paper aims to review the pharmacology of atractylodin, focusing mainly on its pharmacological effects in tumor treatment. Atractylodin exerts its antitumor effect by regulating different signaling pathways to induce important biological events such as apoptosis, cell cycle arrest, and autophagy, inhibiting cancer cell invasion and metastasis. In the process of cell apoptosis, atractylodin mainly induces cancer cell apoptosis by downregulating the Notch signaling pathway, affecting multiple upstream and downstream targets. In addition, atractylodin induces autophagy in cancer cells by regulating various signaling pathways such as PI3K/AKT/mTOR, p38MAPK, and hypothalamic Sirt1 and p-AMPK. Atractylodin effectively induces G1/M and G2/M phase arrest under the action of multiple signaling pathways. Among them, the pathways related to G1/M are more widely stagnated. In inhibiting the migration and invasion of cancer cells, atractylodin mainly regulates the Wnt signaling pathway, downregulates the expression of N-cadherin in cancer cells, and then blocks the PI3K/AKT/mTOR signaling pathway, inhibiting the phosphorylation of PI3K, AKT, and mTOR proteins, thereby having a significant impact on the invasion and migration of cancer cells. This paper systematically reviews the research progress on the antitumor effects and mechanisms of atractylodin, hoping to provide a reference and theoretical basis for its clinical application and new drug development.
Collapse
Affiliation(s)
- Wenxia Zhong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
6
|
Xing C, Liu Y, Wang S, Zhang J, Liu G, Li N, Leng Y, Ying D, Xu C. Regulation of intestinal flora in patients with chronic atrophic gastritis by modified Chai Shao Liu Jun Zi decoction based on 16S rRNA sequencing. Medicine (Baltimore) 2024; 103:e37053. [PMID: 38335441 PMCID: PMC10860994 DOI: 10.1097/md.0000000000037053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
Chai Shao Liu Jun Zi decoction (CSLJZD) is an effective Chinese medicine for the treatment of chronic atrophic gastritis (CAG). However, the effect of CSLJZD on the intestinal flora of patients with CAG remains unclear. We used 16S rRNA gene sequencing to investigate the regulatory effects of CSLJZD on intestinal microflora in patients with CAG. Eight patients with CAG were randomly selected as the model group and 8 healthy medical examiners as the control group; the treatment group comprised patients with CAG after CSLJZD treatment. High-throughput sequencing and bioinformatics analysis of the V3V4 region of the 16S rRNA gene of intestinal bacteria obtained from the intestinal isolates of fecal specimens from all participants were performed separately. A rarefaction curve, species accumulation curve, Chao1 index, and ACE index were calculated to assess the alpha diversity. Principal component analysis (PCA), non-metric multi-dimensional scaling, and the unweighted pair group method with arithmetic mean were used to examine beta diversity. The LEfSe method was used to identify the differentially expressed bacteria. Differential function analysis was performed using PCA based on KEGG function prediction. Rarefaction and species accumulation curves showed that the sequencing data were reasonable. The Chao1 and ACE indices were significantly increased in patients with CAG compared with those in the healthy group. Following CSLJZD and vitacoenzyme treatment, Chao1 and ACE indices decreased. The PCA, non-metric multi-dimensional scaling, and unweighted pair group method with arithmetic mean results showed that the CAG group was distinct from the healthy and treatment groups. The LEfSe results showed that the abundances of the genus Bilophila, family Desulfovibrionaceae, order Desulfovibrionales and genus Faecalibacterium were significantly higher in the healthy group. The abundance of genus Klebsiella, order Deltaproteobacteria, genus Gemmiger, and other genera was significantly higher in the treatment group. Treatment with CSLJZD had a therapeutic effect on the intestinal flora of patients with CAG.
Collapse
Affiliation(s)
- Chongyi Xing
- Changchun University of Chinese Medicine, Changchun, China
| | - Yuna Liu
- Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Shaohua Wang
- Department of Gastroenterology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Jing Zhang
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Gang Liu
- Department of Gastroenterology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Na Li
- Laboratory of Molecular Pharmacology of Traditional Chinese Medicine, Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yan Leng
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Dashi Ying
- Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunfeng Xu
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| |
Collapse
|
7
|
Singh N, Sharma U, Mishra B, Kandalkar AM, Jain SK. Herbs and Herbal Formulations for the Management and Prevention of Gastrointestinal Diseases. REFERENCE SERIES IN PHYTOCHEMISTRY 2024:657-691. [DOI: 10.1007/978-3-031-43199-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Tan H, Wang F, Hu J, Duan X, Bai W, Wang X, Wang B, Su Y, Hu J. Inhibitory interaction of flavonoids with organic cation transporter 2 and their structure-activity relationships for predicting nephroprotective effects. J Appl Toxicol 2023; 43:1421-1435. [PMID: 37057715 DOI: 10.1002/jat.4474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Organic cation transporter 2 (OCT2) is mainly responsible for the renal secretion of various cationic drugs, closely associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OCT2 inhibitors with little toxicity in natural products in reducing OCT2-mediated AKI is of great value. Flavonoids are enriched in various vegetables, fruits, and herbal products, and some were reported to produce transporter-mediated drug-drug interactions. This study aimed to screen potential inhibitors of OCT2 from 96 flavonoids, assess the nephroprotective effects on cisplatin-induced kidney injury, and clarify the structure-activity relationships of flavonoids with OCT2. Ten flavonoids exhibited significant inhibition (>50%) on OCT2 in OCT2-HEK293 cells. Among them, the six most potent flavonoid inhibitors, including pectolinarigenin, biochanin A, luteolin, chrysin, 6-hydroxyflavone, and 6-methylflavone markedly decreased cisplatin-induced cytotoxicity. Moreover, in cisplatin-induced renal injury models, they also reduced serum blood urea nitrogen (BUN) and creatinine levels to different degrees, the best of which was 6-methylflavone. The pharmacophore model clarified that the aromatic ring, hydrogen bond acceptors, and hydrogen bond donors might play a vital role in the inhibitory effect of flavonoids on OCT2. Thus, our findings would pave the way to predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and optimizing flavonoid structure to alleviate OCT2-related AKI.
Collapse
Affiliation(s)
- Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yan Su
- Department of Health Management and Service, Cangzhou Medical College, Hebei, 061001, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
9
|
Sun Y, Duan X, Wang F, Tan H, Hu J, Bai W, Wang X, Wang B, Hu J. Inhibitory effects of flavonoids on glucose transporter 1 (GLUT1): From library screening to biological evaluation to structure-activity relationship. Toxicology 2023; 488:153475. [PMID: 36870413 DOI: 10.1016/j.tox.2023.153475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Glucose transporter 1 (GLUT1) is mainly responsible for glucose uptake and energy metabolism, especially in the aerobic glycolysis process of tumor cells, which is closely associated with the advancement of tumors. Numerous studies have demonstrated that the inhibition of GLUT1 can decrease the growth of tumor cells and enhance drug sensitivity, so GLUT1 is considered to be a promising therapeutic target for cancer treatment. Flavonoids are a group of phenolic secondary metabolites present in vegetables, fruits, and herbal products, some of which were reported to increase cancer cells' sensitivity to sorafenib by inhibiting GLUT1. Our objective was to screen potential inhibitors of GLUT1 from 98 flavonoids and assess the sensitizing effect of sorafenib on cancer cells. and illuminate the structure-activity relationships of flavonoids with GLUT1. Eight flavonoids, including apigenin, kaempferol, eupatilin, luteolin, hispidulin, isosinensetin, sinensetin, and nobiletin exhibited significant inhibition (>50%) on GLUT1 in GLUT1-HEK293T cells. Among them, sinensetin and nobiletin showed stronger sensitizing effects and caused a sharp downward shift of the cell viability curves in HepG2 cells, illustrating these two flavonoids might become sensitizers to enhance the efficacy of sorafenib by inhibiting GLUT1. Molecular docking analysis elucidated inhibitory effect of flavonoids on GLUT1 was related to conventional hydrogen bonds, but not Pi interactions. The pharmacophore model clarified the critical pharmacophores of flavonoids inhibitors are hydrophobic groups in 3'positions and hydrogen bond acceptors. Thus, our findings would provide useful information for optimizing flavonoid structure to design novel GLUT1 inhibitors and overcome drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xinbo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Yamamoto K, Sato Y, Hagihara K, Kirikihira K, Jotaki A, Michihara A, Miyake Y. Effects of Rikkunshi-To, a Japanese kampo medicine, on donepezil-induced gastrointestinal side effects in mice. J Pharmacol Sci 2022; 150:123-133. [PMID: 36055750 DOI: 10.1016/j.jphs.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Donepezil, an acetylcholinesterase inhibitor, is associated with gastrointestinal symptoms, such as nausea, vomiting, and anorexia, which may affect adherence to continuous therapy. Since Rikkunshi-To, a Japanese herbal medicine, activates the ghrelin signaling pathway and promotes gastrointestinal function, it is administered to prevent gastrointestinal symptoms. We herein investigated whether donepezil-induced gastrointestinal side effects in mice are ameliorated by Rikkunshi-To and if its therapeutic efficacy is mediated by ghrelin. Since pica behavior, the ingestion of kaolin, correlates with nausea and vomiting in humans, donepezil was intraperitoneally administered with or without Rikkunshi-To daily to mice, and food and kaolin intakes were monitored. The effects of donepezil on intestinal motility and a ghrelin receptor antagonist on donepezil-induced pica behavior, anorexia, and changes in intestinal motility were examined in mice treated with Rikkunshi-To. Pica behavior and anorexia were significantly induced by donepezil and significantly inhibited by Rikkunshi-To. Intestinal motility was significantly suppressed by donepezil and promoted by Rikkunshi-To. Furthermore, the therapeutic effects of Rikkunshi-To were antagonized by the ghrelin receptor antagonist. The present results support the therapeutic efficacy of Rikkunshi-To against donepezil-induced gastrointestinal side effects.
Collapse
Affiliation(s)
- Kouichi Yamamoto
- Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuhki Sato
- Department of Clinical Evaluation of Drug Efficacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama-shi, Hiroshima 729-0292, Japan
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyosuke Kirikihira
- Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akito Jotaki
- Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayana Michihara
- Department of Clinical Evaluation of Drug Efficacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama-shi, Hiroshima 729-0292, Japan
| | - Yumi Miyake
- Department of Clinical Evaluation of Drug Efficacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama-shi, Hiroshima 729-0292, Japan
| |
Collapse
|
11
|
Network Pharmacology Approach to Investigate the Mechanism of Modified Liu Jun Zi Decoction in the Treatment of Chronic Atrophic Gastritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7536042. [PMID: 35754680 PMCID: PMC9232340 DOI: 10.1155/2022/7536042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
Although modified Liu Jun Zi decoction (MLD) has favorable outcomes for chronic atrophic gastritis (CAG) in clinics, the identification of its active ingredients and the molecular mechanism of pharmacology are still unknown and need to be solved urgently. In the study, we screened 170 active components of MLD based on oral bioavailability ≥30% and drug-likeness ≥0.18 via the TCMSP platform. We further establish a dataset containing 315 CAG targets from PharmGkb, GeneCard, OMIM, DrugBank database, and Therapeutic Target database. Network pharmacology found that there are 110 active components of MLD and 26 potential targets for CAG in the “ingredient-target” network. The results of gene ontology analysis show that these targets are involved mainly in reactive oxygen species metabolic process, regulation of vasculature development, and T cell activation. KEGG pathways analysis indicates that these signaling pathways in the treatment of CAG include HIF-1 signaling pathway, neurodegeneration-multiple diseases pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. Finally, docking of the active component quercetin and clinical medicine Omeprazole with the core targets was carried out. We found that quercetin, a crucial active ingredient in MLD, has good binding activity with potential targets of CAG, and its molecular conformation is stable, which is better than the binding energy of Omeprazole. So, the active ingredients of MLD exhibit good potential drugs for the treatment of CAG.
Collapse
|
12
|
Shimizu T, Terawaki K, Sekiguchi K, Sanechika S, Ohbuchi K, Matsumoto C, Ikeda Y. Tokishakuyakusan ameliorates lowered body temperature after immersion in cold water through the early recovery of blood flow in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114896. [PMID: 34896207 DOI: 10.1016/j.jep.2021.114896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Cold feeling' is a subjective feeling of unusual coldness that aggravates fatigue, stiffness, and other symptoms, thereby reducing quality of life. Tokishakuyakusan (TSS) is a Kampo medicine reported to improve cold feeling and is used to treat symptoms aggravated by cold feeling. However, the mechanism of action of TSS is unclear. Cold feeling may involve reduced blood flow and subsequent inhibition of heat transport. Therefore, elucidating the effects of TSS on blood flow is one of the most important research topics for clarifying the mechanism of action of TSS. AIM OF THE STUDY We aimed to evaluate the effect of TSS on recovery from lowered body temperature by the immersion of rats in cold water and to clarify the involvement of blood flow in the action of TSS. MATERIALS AND METHODS After female Wistar rats underwent 9 days of low room temperature stress loading (i.e. room temperature of 18 °C), they were subjected to immersion in cold water (15 °C) for 15 min. Body surface temperature, rectal temperature, and plantar temperature were measured before and after immersion in cold water. Blood flow was measured before and after immersion in cold water without low room temperature stress loading. TSS (0.5 g/kg or 1 g/kg) or the vehicle (i.e. distilled water) was orally administered once daily for 10 days for the measurement of body temperature or once 30 min before immersion in cold water for the measurement of blood flow. In addition, we examined the effect of TSS on calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) cells, the effect of TSS ingredients on transient receptor potential (TRP) channels, and the effect of TSS ingredients on the membrane potential of vascular smooth muscle cells and evaluated the mechanism of the effects of TSS on blood flow. RESULTS Body temperature and blood flow decreased after immersion in cold water and then recovered over time. A comparison of body temperature at each timepoint or area under the curve showed that TSS (1 g/kg) accelerated the recovery of body surface temperature, rectal temperature, and blood flow. TSS significantly increased CGRP release from DRG cells, which disappeared after pretreatment with HC-030031 (a transient receptor potential ankyrin 1 [TRPA1] antagonist). The effects of seven TSS ingredients on TRP channels were examined. The agonistic effect on TRPA1 was observed for atractylodin, atractylodin carboxylic acid and levistolide A. Among the TSS ingredients, atractylodin carboxylic acid had significant hyperpolarising effects. CONCLUSIONS The mechanism by which TSS accelerates the recovery of lowered body temperature in rats after immersion in cold water may involve the acceleration of the recovery of lowered blood flow. Increased CGRP release from DRG cells by TSS, TRPA1 activation by TSS ingredients, and membrane potential changes in vascular smooth muscle cells caused by TSS ingredients are part of the mechanism of action of TSS. These findings may partly contribute to the interpretation of the beneficial effects of TSS on cold feeling.
Collapse
Affiliation(s)
- Tomofumi Shimizu
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Kiyoshi Terawaki
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Kyoji Sekiguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Sho Sanechika
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Chinami Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Yoshiki Ikeda
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| |
Collapse
|
13
|
Dai Y, Chen S, Li Y, Zhang G, Bi P, Nie K. Liujunzi Decoction ameliorated cisplatin-induced anorexia by inhibiting the JAK-STAT signaling pathway and coordinating anorexigenic and orexigenic neuropeptides in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114840. [PMID: 34800646 DOI: 10.1016/j.jep.2021.114840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese formula, Liujunzi Decoction (LJZD) originated from the Yi Xue Zheng Zhuan, and has a promising effect in treating chemotherapy-induced anorexia (CIA). AIM OF THE STUDY The present study aims to investigate whether LJZD acts on interleukin-6 (IL-6)/leptin mediated janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway that regulates hypothalamus anorexigenic and orexigenic peptides to ameliorate CIA, and also elucidates the potential mechanism by metabolomic analysis. MATERIALS AND METHODS Network pharmacology analyses were conducted to screen out potential targets and pathways. The CIA rat model was established via an intraperitoneal injection of cisplatin. The histological changes of gastric antrum, liver and ileum were observed by HE staining. The serum levels of leptin, ghrelin, IL-6 and growth differentiation factor 15 (GDF15) were measured by ELISA. The JAK1/2 and STAT levels in gastric antrum and hypothalamus were detected by Western blot. The transcriptions of gastric antrum and hypothalamus IL-6R mRNA, and hypothalamus cocaine- and amphetamine-regulated transcript (CART), pro-opiomelanocortin (POMC), thyrotropin-releasing hormone (TRH), upregulated orexigenic peptides neuropeptide Y (NPY), and agouti-related protein (AGRP) mRNA were assessed by RT-qPCR. The blood samples of control, model and high dose LJZD groups were analyzed by metabolomic. RESULTS Network pharmacology highlighted the IL-6/leptin mediated JAK-STAT signaling pathway, which regulated downstream anorexigenic and orexigenic peptides in hypothalamus. LJZD ameliorated CIA via stimulating food intake and water consumption in rats. Cisplatin-induced gastric antrum, liver, ileum injuries were ameliorated, serum leptin level reduction was elevated, and ghrelin, IL-6, GDF15 level increases were decreased after LJZD treatments. In gastric antrum and hypothalamus, LJZD inhibited cisplatin-induced activation of JAK-STAT signaling pathway, downregulated the transcriptions of downstream anorexigenic peptides CART, POMC, TRH, and upregulated orexigenic peptides NPY, AGRP in hypothalamus. Importantly, the effect of LJZD in treating CIA might partly relate to the improvements of 23 abnormal metabolites. CONCLUSION This study implies that inhibiting JAK-STAT signaling pathway, regulating the expressions of anorexigenic and orexigenic peptides, and mediating various metabolic pathways might be potential mechanisms of LJZD's effect against CIA.
Collapse
Affiliation(s)
- Yongzhao Dai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Siqi Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Yaqi Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Guanglong Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Pingping Bi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Multievaluation Strategy for Liujunzi Decoction: Fingerprint Characterization, Chemometrics Analysis, Network Pharmacology, and Molecular Docking. J CHEM-NY 2022. [DOI: 10.1155/2022/9257614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Liujunzi decoction (LJZD), a traditional tonic formula for treating “qi” deficiency of the spleen and the syndrome of phlegm dampness, can be used to prevent and treat chemotherapy-induced anorexia (CIA). The chemical constituents of LJZD are rather complex; therefore, it is of great significance to establish an effective and economic quality control method to ensure the quality consistency and stability of LJZD. With one chromatographic condition, 13 common peaks detected at 203 nm were selected to establish a fingerprint similarity model and 7 chemical constituents were identified as ephedrine hydrochloride, liquiritin, hesperidin, ginsenoside Rg1, jujuboside A, 6-gingerol, and atractylenolide III. Ten batches of LJZD were divided into two groups by cluster analysis and principal component analysis (PCA), and four main components (ephedrine hydrochloride, hesperidin, ginsenoside Rg1, and jujuboside A) of LJZD were analyzed. Also, the analysis results were combined with network pharmacology and molecular docking technology to further predict how LJZD could prevent and treat CIA. We found that these four main components of LJZD spontaneously combined with four CIA targets (SRC, PIK3R1, MAPK1, and AKT1). In this study, we established the fingerprint of LJZD for the first time, and through a comprehensive multiassessment method, we also successively analyzed the fingerprint and chemometrics.
Collapse
|
15
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
16
|
Inokuchi K, Masaoka T, Kanai T. Rikkunshito as a Therapeautic Agent for Functional Dyspepsia and its Prokinetic and Non-Prokinetic Effects. Front Pharmacol 2021; 12:640576. [PMID: 34168558 PMCID: PMC8217963 DOI: 10.3389/fphar.2021.640576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Prokinetics is one of the therapeutic agents for functional and motility disorders of the stomach. However, its efficacy is limited. Kampo medicine is a unique medical system that was developed in Japan. In Kampo medicine, herbal medicine is prescribed based on the patient’s condition. Therefore, even for functional and motility disorders of the stomach, some herbal medicines are considered as a therapeutic option. Recently, there has been an increase in evidence for the efficacy or the mechanism of herbal medicine for functional and motility disorders of the stomach. Among these, rikkunshito is a well-studied herbal medicine that could be used as an alternative to prokinetics. In this review, we discuss the possibilities of rikkunshito for functional dyspepsia with its prokinetic and non-prokinetic effects and provide an overview of their current use with a focus on their therapeutic mechanism.
Collapse
Affiliation(s)
- Kazumi Inokuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiro Masaoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Gao L, Wang Y, Zhang W, Zhu X, Gao Q, Xiao Y, Chen K, Liu F, Chen L. Novel in vivo and in vitro mechanisms of positive inotropic effect of atractylodin. Clin Exp Pharmacol Physiol 2021; 48:686-696. [PMID: 32931027 DOI: 10.1111/1440-1681.13406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/28/2022]
Abstract
This study was to investigate the inotropic effect of atractylodin and its underlying mechanism. The cardiac pressure-volume loop (P-V loop), Langendroff-perfused isolated rat heart, patch-clamp, Ca2+ transient and western blot techniques were used. The results demonstrated that atractylodin (3 mg/kg, ip) remarkably increased the left ventricular stroke work, cardiac output, stroke volume, heart rate, ejection fraction, end-systolic pressure, peak rates of rise and fall of left ventricular pressures (+dP/dtmax , -dP/dtmax ), the slopes of end-systolic pressure-volume relationship (also named as end-systolic elastance, Ees) and reducing end-systolic volume and end-diastolic volume in the in vivo rat study. Also, atractylodin (3 mg/kg, ip) significantly decreased diastolic blood pressure and the arterial elastance (Ea) without significant systolic blood pressure change. In addition, atractylodin (0.1, 1, 10 µmol/L) also increased the isolated rat heart left ventricular developed pressure which is the difference between the systolic and diastolic pressure in non-pacing and pacing modes. Furthermore, JMV-2959 (1 μmol/L), a ghrelin receptor unbiased antagonist, blocked the increased left ventricular developed pressure of atractylodin in isolated rat hearts. Finally, atractylodin (5 µmol/L) increased the amplitude of Ca2+ transient by enhancing SERCA2a activity, the sarcoplasmic reticulum Ca2+ content and the phosphorylation of phospholamban at 16-serine. These results demonstrated that atractylodin had a positive inotropic effect by enhancing SERCA2a activity which might be mediated by acting ghrelin receptor in myocardium. In conclusion, atractylodin which had the positive inotropic effect and decreased diastolic blood pressure might serve as an agent for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Li Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Taizhou Fourth People's Hospital, Taizhou, China
| | - Yuwei Wang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojia Zhu
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianwen Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujie Xiao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kesu Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Fuming Liu
- First Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Long Chen
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, China
| |
Collapse
|
18
|
Gwee K, Holtmann G, Tack J, Suzuki H, Liu J, Xiao Y, Chen M, Hou X, Wu D, Toh C, Lu F, Tang X. Herbal medicines in functional dyspepsia-Untapped opportunities not without risks. Neurogastroenterol Motil 2021; 33:e14044. [PMID: 33258198 PMCID: PMC7900952 DOI: 10.1111/nmo.14044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contemporary treatments for functional dyspepsia have limitations. Herbal medicine has been suggested as adjunctive treatment. With growing scientific recognition and public interests, an in-depth review of this is timely. AIMS/PURPOSE To evaluate the therapeutic potential and problems that may be associated with the adoption of herbal medicines in functional dyspepsia. METHODS We reviewed the treatment landscape of functional dyspepsia and assessed the scientific community's interest in herbal medicine. Preclinical pharmacological and clinical trial data were reviewed for several herbal medicines available in the market. Challenges associated with adoption of herbal medicine in mainstream medicine were critically evaluated. RESULTS We found that herbal medicines frequently comprise a combination of herbs with multiple reported pharmacological effects on gastrointestinal motility and secretory functions, as well as cytoprotective and psychotropic properties. We identified a number of commercially available herbal products that have undergone rigorous clinical trials, involving large numbers of well-defined subjects, reporting both efficacy and safety for functional dyspepsia. Persisting concerns include lack of rigorous assessments for majority of products, toxicity, consistency of ingredients, dose standardizations, and quality control. We provide a quality framework for its evaluation. CONCLUSIONS We commend herbal medicine as a viable future option in managing functional dyspepsia. An attractive appeal of herbal medicine is the prospect to simultaneously target multiple pathophysiological mechanisms. Wider adoption and acceptance of herbal medicines in treatment algorithms of functional dyspepsia will require the application of the scientific rigor expected of chemical therapies, to all stages of their development and evaluation.
Collapse
Affiliation(s)
- Kok‐Ann Gwee
- Department of MedicineYong Loo Lin School of MedicineNational University of Singapore and Gleneagles HospitalSingapore CitySingapore
| | - Gerald Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural SciencesUniversity of Queensland and Department of Gastroenterology & HepatologyPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Jan Tack
- Department of GastroenterologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Hidekazu Suzuki
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineTokai University School of MedicineTokyoJapan
| | - Jinsong Liu
- Gastroenterology DepartmentWuhan Union HospitalHuazhong Science & Technology UniversityWuhanChina
| | - Yinglian Xiao
- Division of Gastroenterology and HepatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Min‐Hu Chen
- Division of Gastroenterology and HepatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaohua Hou
- Division of GastroenterologyWuhan Union HospitalHuazhong Science & Technology UniversityWuhanChina
| | - Deng‐Chyang Wu
- Division of GastroenterologyDepartment of Internal Medicine, and Department of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Clarissa Toh
- Independent ResearcherStomach, Liver & Bowel CentreGleneagles HospitalSingapore CitySingapore
| | - Fang Lu
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Xu‐Dong Tang
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
19
|
Jeong SH, Jang JH, Lee GY, Yang SJ, Cho HY, Lee YB. In vivo and in vitro studies of Banhahoobak-tang tablets using UPLC-ESI-MS/MS with polarity switching. J Pharm Biomed Anal 2021; 196:113931. [PMID: 33548876 DOI: 10.1016/j.jpba.2021.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
Banhahoobak-tang is the most prescribed herbal drug in East Asia when individuals experience sudden symptoms such as sore throat or neurological symptoms. The low toxicity and high in-vivo safety of this herbal medicine has made it more attractive to patients, and it has recently been formulated as tablets. In addition, Banhahoobak-tang tablets are registered as health insurance drugs in South Korea, and clinical prescriptions and demand are increasing. However, there are very few clinical trial data as well as very little accurate content analysis and results for Banhahoobak-tang tablets. The purpose of this study was to perform in-vitro and in-vivo studies on Banhahoobak-tang tablets, including content analysis, pharmacokinetics in humans, and plasma protein binding. For this study, a UPLC-ESI-MS/MS method with polarity switching was developed for simultaneous analysis of 18 components of Banhahoobak-tang. To separate the analytes, a C8 reverse-phase column was used as the stationary phase, 0.1 % aqueous formic acid and acetonitrile as the mobile phase, and ionization and multiple reaction monitoring for quantification. The developed method was able to isolate and quantify the 18 components with good sensitivity and selectivity and was fully validated according to international analytical standards. Stability tests were also conducted on the analytes. Finally, the method was applied to in-vitro and in-vivo studies of Banhahoobak-tang tablets, and the tablet components were 52.49 ng/g to 91.00 μg/g on average. The detected components showed rapid oral absorption in humans as well as high plasma protein binding ratio overall. These results and methods can be useful not only for effectiveness and safety evaluation but also for quality control of Banhahoobak-tang tablets.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Guk-Yeo Lee
- National Development Institute of Korean Medicine, 288 Udeuraendeu-gil, Anyang-myeon, Jangheung-gun, Jeollanam-do 59338, Republic of Korea
| | - Seung-Jung Yang
- College of Oriental Medicine, Dong-Shin University, 185 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
20
|
Qian Y, Markowitz JS. Natural Products as Modulators of CES1 Activity. Drug Metab Dispos 2020; 48:993-1007. [PMID: 32591414 DOI: 10.1124/dmd.120.000065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Carboxylesterase (CES) 1 is the predominant esterase expressed in the human liver and is capable of catalyzing the hydrolysis of a wide range of therapeutic agents, toxins, and endogenous compounds. Accumulating studies have demonstrated associations between the expression and activity of CES1 and the pharmacokinetics and/or pharmacodynamics of CES1 substrate medications (e.g., methylphenidate, clopidogrel, oseltamivir). Therefore, any perturbation of CES1 by coingested xenobiotics could potentially compromise treatment. Natural products are known to alter drug disposition by modulating cytochrome P450 and UDP-glucuronosyltransferase enzymes, but this issue is less thoroughly explored with CES1. We report the results of a systematic literature search and discuss natural products as potential modulators of CES1 activity. The majority of research reports reviewed were in vitro investigations that require further confirmation through clinical study. Cannabis products (Δ 9-tetrahydrocannabinol, cannabidiol, cannabinol); supplements from various plant sources containing naringenin, quercetin, luteolin, oleanolic acid, and asiatic acid; and certain traditional medicines (danshen and zhizhuwan) appear to pose the highest inhibition potential. In addition, ursolic acid, gambogic acid, and glycyrrhetic acid, if delivered intravenously, may attain high enough systemic concentrations to significantly inhibit CES1. The provision of a translational interpretation of in vitro assessments of natural product actions and interactions is limited by the dearth of basic pharmacokinetic data of the natural compounds exhibiting potent in vitro influences on CES1 activity. This is a major impediment to assigning even potential clinical significance. The modulatory effects on CES1 expression after chronic exposure to natural products warrants further investigation. SIGNIFICANCE STATEMENT: Modulation of CES1 activity by natural products may alter the course of treatment and clinical outcome. In this review, we have summarized the natural products that can potentially interact with CES1 substrate medications. We have also noted the limitations of existing reports and outlined challenges and future directions in this field.
Collapse
Affiliation(s)
- Yuli Qian
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Matsumoto T, Takiyama M, Sanechika S, Nakayama A, Aoki K, Ohbuchi K, Kushida H, Kanno H, Nishi A, Watanabe J. In Vivo Pharmacokinetic Analysis Utilizing Non-Targeted and Targeted Mass Spectrometry and In Vitro Assay against Transient Receptor Potential Channels of Maobushisaishinto and Its Constituent Asiasari Radix. Molecules 2020; 25:E4283. [PMID: 32962000 PMCID: PMC7570662 DOI: 10.3390/molecules25184283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
The Japanese traditional medicine maobushisaishinto (MBST) has been prescribed for treating upper respiratory tract infections, such as a common cold. However, its mode of action is poorly understood, especially concerning the MBST constituent Asiasari Radix (AR). In this study, we focused on AR, with an objective of clarifying its bioavailable active ingredients and role within MBST by performing pharmacokinetic and pharmacological studies. Firstly, we performed qualitative non-targeted analysis utilizing high-resolution mass spectrometry to explore the bioavailable ingredients of AR as well as quantitative targeted analysis to reveal plasma concentrations following oral administration of MBST in rats. Secondly, we performed in vitro pharmacological study of bioavailable AR ingredients in addition to other ingredients of MBST to confirm any agonistic activities against transient receptor potential (TRP) channels. As a result, methyl kakuol and other compounds derived from AR were detected in the rat plasma and showed agonistic activity against TRPA1. This study suggests that methyl kakuol as well as other compounds have the potential to be an active ingredient in AR and thus presumably would contribute in part to the effects exerted by MBST.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Shou Sanechika
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Akiko Nakayama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Katsuyuki Aoki
- Botanical Raw Materials Research Laboratories, Botanical Raw Materials Division, Tsumura & Co., Ibaraki 3001192, Japan;
| | - Katsuya Ohbuchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Hitomi Kanno
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| |
Collapse
|
22
|
A traditional herbal medicine rikkunshito prevents angiotensin II-Induced atrial fibrosis and fibrillation. J Cardiol 2020; 76:626-635. [PMID: 32682626 DOI: 10.1016/j.jjcc.2020.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/26/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Rikkunshito (RKT), a traditional herbal medicine, has been demonstrated to exert anti-inflammatory, anti-apoptotic, and anti-fibrotic effects in several organs. This study tested the hypothesis that RKT can suppress angiotensin II (AngII)-induced inflammatory atrial fibrosis and ameliorate enhanced vulnerability to atrial fibrillation (AF). METHODS Eight-week-old male C57BL/6 mice were subcutaneously infused with either vehicle or AngII (2.0 mg/kg/day) for 2 weeks. Water or RKT at a dose of 1000 mg/kg/day were orally administered once daily for 2 weeks. Morphological, histological, and biochemical analyses were performed. AF was induced either by transesophageal burst pacing in vivo or by burst/extrastimuli in isolated perfused hearts using a Langendorff apparatus. RESULTS RKT at a dose of 1000 mg/kg/day for 2 weeks attenuated atrial interstitial fibrosis and profibrotic and proinflammatory signals induced by continuous infusion of AngII. RKT attenuated AngII-induced enhanced vulnerability to AF in in vivo experiments and in isolated perfused hearts. Atractylodin, an active component of RKT, exhibited antifibrotic activity comparable to that of RKT. RKT reversed AngII-induced suppression of sirtuin 1 (Sirt1) translocation to the nuclei. RKT suppressed AngII-induced phosphorylation of IκB, overexpression of p53, and cellular apoptotic signals and apoptosis. All of the antagonizing effects of RKT against AngII were attenuated by a concomitant treatment with a growth hormone secretagogue receptor (GHSR)-inhibitor. CONCLUSION Our results demonstrated that RKT prevented atrial fibrosis and attenuated enhanced vulnerability to AF induced by AngII. The results also suggested that potentiating the GHSR-Sirt1 pathway is involved in these processes.
Collapse
|
23
|
Fan X, Bai J, Hu M, Xu Y, Zhao S, Sun Y, Wang B, Hu J, Li Y. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology 2020; 437:152445. [PMID: 32259555 DOI: 10.1016/j.tox.2020.152445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/14/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1), a liver-specific uptake transporter, was associated with drug induced liver injury (DILI). Screening and identifying potent OATP1B1 inhibitors with little toxicity is of great value in reducing OATP1B1-mediated DILI. Flavonoids are a group of polyphenols ubiquitously present in vegetables, fruits and herbal products, some of them were reported to produce transporter-mediated DDI. Our objective was to investigate potential inhibitors of OATP1B1 from 99 flavonoids, and to assess the hepatoprotective effects on bosentan induced liver injury. Eight flavonoids, including biochanin A, hispidulin, isoliquiritigenin, isosinensetin, kaempferol, licochalcone A, luteolin and sinensetin exhibited significant inhibition (>50 %) on OATP1B1 in OATP1B1-HEK293 cells, which reduced the OATP1B1-mediated influx of methotrexate, accordingly decreased its cytotoxicity in OATP1B1-HEK293 cells and increased its AUC0-t in different extents in rats, from 28.27%-82.71 %. In bosentan-induced rat liver injury models, 8 flavonoids reduced the levels of serum total bile acid (TBA) and the liver concentration of bosentan in different degrees. Among them, kaempferol decreased the concentration most significantly, by 54.17 %, which indicated that flavonoids may alleviate bosentan-induced liver injury by inhibiting OATP1B1-mediated bosentan uptake. Furthermore, the pharmacophore model indicated the hydrogen bond acceptors and hydrogen bond donors may play critical role in the potency of flavonoids inhibition on OATP1B1. Taken together, our findings would provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and alleviating bosentan -induced liver injury by OATP1B1 regulation.
Collapse
Affiliation(s)
- Xiaoqing Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Minwan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanxia Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shengyu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
24
|
Miyano K, Ohshima K, Suzuki N, Furuya S, Yoshida Y, Nonaka M, Higami Y, Yoshizawa K, Fujii H, Uezono Y. Japanese Herbal Medicine Ninjinyoeito Mediates Its Orexigenic Properties Partially by Activating Orexin 1 Receptors. Front Nutr 2020; 7:5. [PMID: 32175325 PMCID: PMC7056666 DOI: 10.3389/fnut.2020.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is highly prevalent in patients with progressive cancer and is characterized by decreased food consumption, and body weight. Japanese herbal medicine Ninjinyoeito (NYT), composed of 12 herbal crude drugs, is prescribed in Asian countries to improve several symptoms such as anorexia and fatigue, which are commonly observed in patients with cancer cachexia. However, the action mechanisms of NYT in improving anorexia or fatigue in patients with cancer are not clear. Therefore, in the present study, we examined the effects of NYT on the activities of several G-protein-coupled receptors (GPCRs), which activate hyperphagia signaling in the central nervous system, using an in vitro assay with the CellKey™ system, which detects the activation of GPCRs as a change in intracellular impedance (ΔZ). NYT increased the ΔZ of human embryonic kidney 293 (HEK293) cells expressing orexin 1 receptor (OX1R) and those expressing neuropeptide Y1 receptor (NPY1R) in a dose-dependent manner. On the contrary, NYT did not significantly increase the ΔZ of HEK293A cells expressing growth hormone secretagogue receptor (GHSR) and those expressing NPY5R. The selective OX1R antagonist SB674042 significantly decreased the NYT-induced increase in ΔZ in OX1R-expressing cells. Contrarily, the selective NPY1R antagonist BIBO3340 failed to inhibit the NPY-induced increase in ΔZ in NPY1R-expressing cells. Additionally, we prepared modified NYT excluding each one of the 12 herbal crude drugs in NYT and investigated the effects on the activity of OX1R. Among the 12 modified NYT formulations, the one without citrus unshiu peel failed to activate OX1R. A screening of each of the 12 herbal crude drugs showed that citrus unshiu peel significantly activated OX1R, which was significantly suppressed by SB674042. These finding suggest that NYT and citrus unshiu peel could increase food intake via activation of orexigenic OX1R-expressing neurons in the hypothalamus. This study provides scientific evidence to support the potential of NYT for cancer patients with anorexia.
Collapse
Affiliation(s)
- Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kaori Ohshima
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nozomi Suzuki
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Saho Furuya
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yuki Yoshida
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miki Nonaka
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hideaki Fujii
- Department of Medicinal Chemistry, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Supportive Care Research, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, Tokyo, Japan.,Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
25
|
Kim YS, Kim JW, Ha NY, Kim J, Ryu HS. Herbal Therapies in Functional Gastrointestinal Disorders: A Narrative Review and Clinical Implication. Front Psychiatry 2020; 11:601. [PMID: 32754057 PMCID: PMC7365888 DOI: 10.3389/fpsyt.2020.00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/10/2020] [Indexed: 01/06/2023] Open
Abstract
The pathophysiology of functional gastrointestinal disorders (FGIDs) is still unclear and various complex mechanisms have been suggested to be involved. In many cases, improvement of symptoms and quality of life (QoL) in patients with FGIDs is difficult to achieve with the single-targeted treatments alone and clinical application of these treatments can be challenging owing to the side effects. Herbal preparations as complementary and alternative medicine can control multiple treatment targets of FGIDs simultaneously and relatively safely. To date, many herbal ingredients and combination preparations have been proposed across different countries and together with a variety of traditional medicine. Among the herbal therapies that are comparatively considered to have an evidence base are iberogast (STW-5) and peppermint oil, which have been mainly studied and used in Europe, and rikkunshito and motilitone (DA-9701), which are extracted from natural substances in traditional medicine, are the focus of this review. These herbal medications have multi-target pharmacology similar to the etiology of FGIDs, such as altered intestinal sensory and motor function, inflammation, neurohormonal abnormality, and have displayed comparable efficacy and safety in controlled trials. To achieve the treatment goal of refractory FGIDs, extensive and high quality studies on the pharmacological mechanisms and clinical effects of these herbal medications as well as efforts to develop new promising herbal compounds are required.
Collapse
Affiliation(s)
- Yong Sung Kim
- Wonkwang Digestive Disease Research Institute, Gut and Food Healthcare, Wonkwang University School of Medicine, Iksan, South Korea.,Good Breath Clinic, Gunpo, South Korea
| | - Jung-Wook Kim
- Department of Gastroenterology, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Na-Yeon Ha
- Department of Clinical Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinsung Kim
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Han Seung Ryu
- Wonkwang Digestive Disease Research Institute, Gut and Food Healthcare, Wonkwang University School of Medicine, Iksan, South Korea.,Brain-Gut Stress Clinic, Division of Gastroenterology, Wonkwang University Hospital, Iksan, South Korea
| |
Collapse
|
26
|
Takiyama M, Matsumoto T, Watanabe J. LC-MS/MS detection of citrus unshiu peel-derived flavonoids in the plasma and brain after oral administration of yokukansankachimpihange in rats. Xenobiotica 2019; 49:1494-1503. [PMID: 30741064 DOI: 10.1080/00498254.2019.1581300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. Yokukansankachimpihange (YKSCH), a Kampo formulation combining Citrus unshiu peel (CUP) and Pinellia tuber (PT) with yokukansan (YKS), has been recently used to treat the behavioral and psychological symptoms of dementia. Several flavonoids derived from CUP and PT reportedly exhibit psychopharmacological activity, but it remains unclear whether these flavonoids reach the brain after oral administration of YKSCH. 2. In this study, we first measured eight target flavonoids in the plasma and brain in rats orally administered YKSCH. Among these flavonoids, hesperidin, narirutin, nobiletin, and heptamethoxyflavone (HMF) were detected in the plasma, and nobiletin and HMF were detected in the brain. 3. Next, to clarify whether CUP and PT affect the pharmacokinetics of YKS ingredients in YKSCH, the plasma pharmacokinetics of geissoschizine methyl ether (GM) as a representative active ingredient in YKS was examined in rats orally administered YKSCH or YKS. There was no significant difference between the two groups, inferring that the pharmacokinetics of GM may not be affected by the two additional crude drugs. 4. Taken together, this study suggests that the CUP-derived flavonoids nobiletin and HMF may be responsible for the psychopharmacological effects of YKSCH in addition to YKS ingredients.
Collapse
Affiliation(s)
- Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co. , Ibaraki , Japan
| |
Collapse
|
27
|
Kitagawa H, Ohbuchi K, Munekage M, Fujisawa K, Kawanishi Y, Namikawa T, Kushida H, Matsumoto T, Shimobori C, Nishi A, Sadakane C, Watanabe J, Yamamoto M, Hanazaki K. Phenotyping analysis of the Japanese Kampo medicine maoto in healthy human subjects using wide-targeted plasma metabolomics. J Pharm Biomed Anal 2019; 164:119-127. [PMID: 30368117 DOI: 10.1016/j.jpba.2018.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023]
Abstract
Traditional herbal medicine (THM) consists of a vast number of compounds that exert pharmacological effects throughout the body. Comprehensive phenotyping analysis using omics is essential for understanding the nature of THM in detail. We previously reported that the Japanese Kampo medicine maoto ameliorated flu-like symptoms in a rat infection model and dynamically changed plasma metabolites as indicated by metabolome analysis. The aim of this study was to apply wide-targeted plasma metabolomics with quantitative analysis of maoto compounds in a human clinical trial to evaluate the effect of maoto on plasma metabolites. Four healthy human subjects were recruited. Plasma samples were collected before and 0.25, 0.5, 1, 2, 4 and 8 h after maoto treatment. Wide-targeted metabolomics and quantitative analysis of the main chemical constituents of maoto were then performed. Plasma metabolome analysis revealed that maoto administration decreased essential amino acids including branched-chain amino acids (BCAAs) and increased various kinds of ω-3 fatty acids including eicosapentaenoic acid and docosahexaenoic acid, consistent with previous studies in rats. Fifteen of the major compounds in maoto were identified in the systemic circulation. Finally, the correlation between endogenous metabolites and maoto compounds in plasma was analyzed and the results indicated that the decrease in plasma BCAAs might be caused by ephedrines present in maoto. The present study demonstrated that plasma metabolomic studies of endogenous and exogenous metabolites are useful for elucidating the mechanism of action of THM.
Collapse
Affiliation(s)
- Hiroyuki Kitagawa
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Research Laboratories, Tsumura & CO., Ibaraki, Japan.
| | - Masaya Munekage
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kazune Fujisawa
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yasuhiro Kawanishi
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tsutomu Namikawa
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | | | - Chika Shimobori
- Tsumura Kampo Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Chiharu Sadakane
- Tsumura Kampo Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | | | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
28
|
Basic Study of Drug-Drug Interaction between Memantine and the Traditional Japanese Kampo Medicine Yokukansan. Molecules 2018; 24:molecules24010115. [PMID: 30597998 PMCID: PMC6337661 DOI: 10.3390/molecules24010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Several basic pharmacokinetic and pharmacological studies were conducted as part of a group of studies to clarify the drug-drug interaction (DDI) between memantine (MEM), a drug used to treat Alzheimer's disease, and yokukansan (YKS), a traditional Japanese Kampo medicine used to treat behavioral and psychological symptoms of dementia. The pharmacokinetic studies showed that there were no statistically significant differences in MEM concentrations in the plasma, brain, and urine between mice treated with MEM alone and with MEM plus YKS. Regarding candidate active ingredients of YKS, there were also no statistically significant differences in concentrations of geissoschizine methyl ether in the plasma and brain, urine, glycyrrhetinic acid in the plasma, and isoliquiritigenin in the urine, in mice treated with YKS alone or with MEM plus YKS. The pharmacological studies showed that isoliquiritigenin, which has an N-methyl-d-aspartic acid (NMDA) receptor antagonistic effect, did not affect the inhibitory effect of MEM on NMDA-induced intracellular Ca2+ influx in primary cultured rat cortical neurons. Moreover, YKS did not affect either the ameliorative effects of MEM on NMDA-induced learning and memory impairment, or the MEM-induced decrease in locomotor activities in mice. These results suggest that there is probably no pharmacokinetic or pharmacological interaction between MEM and YKS in mice, but more detailed studies are needed in the future. Our findings provide important information for future studies, to clarify the DDI more regarding the efficacy and safety of combined use of these drugs in a clinical situation.
Collapse
|
29
|
Murata I, Nishiyama T, Kawasaki H, Naito C, Kamata T, Furukawa Y, Iwata M, Sugino M, Inoue Y, Kanamoto I. Pharmaceutical Properties of Rikkunshito Extract Suppository and Bioequivalence by Pharmacokinetic Parameters and Effectiveness against Nausea and Vomiting and Anorexia in Rats. YAKUGAKU ZASSHI 2018; 138:1169-1179. [DOI: 10.1248/yakushi.18-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Isamu Murata
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Taisei Nishiyama
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Hironori Kawasaki
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Chizuru Naito
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Takeshi Kamata
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yoshiyuki Furukawa
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Moeko Iwata
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Masahiro Sugino
- Laboratory of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yutaka Inoue
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Ikuo Kanamoto
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
30
|
Nahata M, Mizuhara Y, Sadakane C, Watanabe J, Fujitsuka N, Hattori T. Influence of food on the gastric motor effect of the Kampo medicine rikkunshito in rat. Neurogastroenterol Motil 2018; 30. [PMID: 28776825 DOI: 10.1111/nmo.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rikkunshito, one of the Kampo medicines, is widely prescribed as a remedy for various upper gastrointestinal syndromes. The effect of rikkunshito is related to endogenous ghrelin and its active ingredient atractylodin enhances ghrelin receptor signaling. Kampo medicines are traditionally administered before or between meals; however, no definitive benefit of the timing of administration has been proven yet. To clarify the influence of food on the pharmacological action of rikkunshito, we investigated the gastric motor activity and pharmacokinetic profiles of atractylodin after the administration of rikkunshito in fasted and fed rats. METHODS Phase III-like contractions in the gastric antrum after an injection of ghrelin were measured using a strain gauge force transducer. Rikkunshito was administered to rats during fasting or after a nutrient test meal. Ghrelin was injected 30 minutes later and gastric motility was evaluated. Furthermore, after rikkunshito administration, the pharmacokinetic profiles of atractylodin in the plasma and brain of fasted and free-fed rats were assessed. KEY RESULTS Rikkunshito administration potentiated ghrelin-induced phase III-like contractions under fasting conditions. This effect was attenuated in animals fed a test meal. Atractylodin was detected pharmacokinetically in the plasma and brain after rikkunshito administration in rats, and free-fed rats exhibited a decreased maximum concentration of plasma atractylodin and a delayed time to reach the maximum concentration. CONCLUSIONS & INFERENCES We show that the pharmacological action of rikkunshito is influenced by food in rats. The efficacy of rikkunshito may be associated with decreased absorption of its active ingredient atractylodin when food is in the stomach.
Collapse
Affiliation(s)
- M Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Y Mizuhara
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - C Sadakane
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - J Watanabe
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - N Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - T Hattori
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| |
Collapse
|
31
|
Shiomi Y, Ohira Y, Yoshimura M, Ozaki T, Takei M, Tanaka T. Z-505 hydrochloride ameliorates chemotherapy-induced anorexia in rodents via activation of the ghrelin receptor, GHSR1a. Eur J Pharmacol 2018; 818:148-157. [DOI: 10.1016/j.ejphar.2017.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
|
32
|
Uji M, Yokoyama Y, Ohbuchi K, Tsuchiya K, Sadakane C, Shimobori C, Yamamoto M, Nagino M. Exploration of serum biomarkers for predicting the response to Inchinkoto (ICKT), a Japanese traditional herbal medicine. Metabolomics 2017; 13:155. [PMID: 31375927 PMCID: PMC6153689 DOI: 10.1007/s11306-017-1292-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In patients with obstructive jaundice, biliary drainage sometimes fails to result in improvement. A pharmaceutical-grade choleretic herbal medicine, Inchinkoto (ICKT), has been proposed to exert auxiliary effects on biliary drainage; however, its effects are variable among patients. OBJECTIVES The aim of this study is to explore serum biomarkers that are associated with pharmaceutical efficacy of ICKT. METHODS Obstructive jaundice patients who underwent external biliary decompression were enrolled (n = 37). ICKT was given orally 3 times a day at daily dose of 7.5 g. Serum and bile samples were collected before, 3 h after, and 24 h after ICKT administration. The concentrations of total bilirubin, direct bilirubin, and total bile acid in bile specimens were measured. Metabolites in serum samples were comprehensively profiled using LC-MS/MS and GC-MS/MS. Pharmacokinetic analysis of major ICKT components was also performed. RESULTS ICKT administration significantly decreased serum ALT and increased bile volume after 24 h. The serum concentrations of ICKT components were not well correlated with the efficacy of ICKT. However, the ratio of 2-hydroxyisobutyric acid to arachidonic acid and the ratio of glutaric acid to niacinamide, exhibited good performance as biomarkers for the efficacy of ICKT on bile flow and ALT, respectively. Additionally, comprehensive correlation analysis revealed that serum glucuronic acid was highly correlated with serum total bilirubin, suggesting that this metabolite may be deeply involved in the pathogenesis of jaundice. CONCLUSIONS The present study indicates that ICKT is efficacious and provides candidates for predicting ICKT efficacy. Further validation studies are warranted.
Collapse
Affiliation(s)
- Masahito Uji
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan.
| | | | | | | | | | | | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| |
Collapse
|
33
|
Open Label Trial of the Efficacy and Safety Profile of Rikkunshito used for the Treatment of Gastrointestinal Symptoms in Patients with Parkinson's Disease: A Pilot Study. Curr Ther Res Clin Exp 2017; 87:1-8. [PMID: 28912900 PMCID: PMC5583142 DOI: 10.1016/j.curtheres.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) usually experience distress related not only to motor dysfunction, but also to nonmotor symptoms, including gastrointestinal dysfunction. OBJECTIVE The purpose of this pilot study was to evaluate the efficacy and safety profile of a traditional Japanese medicine, rikkunshito (RKT), used for the treatment of gastrointestinal symptoms, associated with anorexia and dyspepsia, in patients with PD. METHODS Patients were randomly assigned to either Group A (4-week treatment period with 7.5 g/d RKT followed by a 4-week off-treatment period) or Group B (4-week off-treatment period followed by a 4-week treatment period with 7.5 g/d RKT). Appetite, quality of life for gastrointestinal symptoms, and depression were assessed using a visual analog scale, the Gastrointestinal Symptom Rating Scale and the Self-Rating Depression Scale, respectively. The gastric emptying examination and assay of plasma acylated ghrelin level were performed using the 13C-acetate breath test and commercially available assay kits, respectively. RESULTS RKT treatment produced a significant increase in the appetite score (1.84 [2.34]; P < 0.05), compared to a decrease in the score over the off-treatment period (-1.36 [2.94]). The mean score for abdominal pain, on the Gastrointestinal Symptom Rating Scale, and for self-reported depression, on the Self-Rating Depression Scale, also decreased significantly with RKT treatment (P < 0.05), compared with the off-treatment period scores. No effect of RKT on plasma acylated ghrelin level and rate of gastric emptying was identified. CONCLUSIONS RKT may improve anorexia in patients with PD. The positive effects of RKT on depression and anorexia may improve the overall quality of life of these patients. The benefits of RKT identified in our pilot study will need to be confirmed in a randomized, double-blind, controlled trial. UMIN Clinical Trial Registry identifier: UMIN000009626.
Collapse
|
34
|
Fujitsuka N, Asakawa A, Morinaga A, Amitani MS, Amitani H, Katsuura G, Sawada Y, Sudo Y, Uezono Y, Mochiki E, Sakata I, Sakai T, Hanazaki K, Yada T, Yakabi K, Sakuma E, Ueki T, Niijima A, Nakagawa K, Okubo N, Takeda H, Asaka M, Inui A. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1. Mol Psychiatry 2016; 21:1613-1623. [PMID: 26830139 PMCID: PMC5078860 DOI: 10.1038/mp.2015.220] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR) is known to retard aging and delay functional decline as well as the onset of diseases in most organisms. Ghrelin is secreted from the stomach in response to CR and regulates energy metabolism. We hypothesized that in CR ghrelin has a role in protecting aging-related diseases. We examined the physiological mechanisms underlying the ghrelin system during the aging process in three mouse strains with different genetic and biochemical backgrounds as animal models of accelerated or normal human aging. The elevated plasma ghrelin concentration was observed in both klotho-deficient and senescence-accelerated mouse prone/8 (SAMP8) mice. Ghrelin treatment failed to stimulate appetite and prolong survival in klotho-deficient mice, suggesting the existence of ghrelin resistance in the process of aging. However, ghrelin antagonist hastened death and ghrelin signaling potentiators rikkunshito and atractylodin ameliorated several age-related diseases with decreased microglial activation in the brain and prolonged survival in klotho-deficient, SAMP8 and aged ICR mice. In vitro experiments, the elevated sirtuin1 (SIRT1) activity and protein expression through the cAMP-CREB pathway was observed after ghrelin and ghrelin potentiator treatment in ghrelin receptor 1a-expressing cells and human umbilical vein endothelial cells. Furthermore, rikkunshito increased hypothalamic SIRT1 activity and SIRT1 protein expression of the heart in the all three mouse models of aging. Pericarditis, myocardial calcification and atrophy of myocardial and muscle fiber were improved by treatment with rikkunshito. Ghrelin signaling may represent one of the mechanisms activated by CR, and potentiating ghrelin signaling may be useful to extend health and lifespan.
Collapse
Affiliation(s)
- N Fujitsuka
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan,Tsumura Research Laboratories, Tsumura, Ibaraki, Japan
| | - A Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - A Morinaga
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - M S Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - H Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - G Katsuura
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Y Sawada
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Y Sudo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Y Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - E Mochiki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - I Sakata
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - T Sakai
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - K Hanazaki
- Department of Surgery, Kochi Medical School, Kochi, Japan
| | - T Yada
- Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - K Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - E Sakuma
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - T Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - A Niijima
- Department of Physiology, Niigata University School of Medicine, Niigata, Japan
| | - K Nakagawa
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - N Okubo
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - H Takeda
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan,Hokkaido University Hospital Gastroenterological Medicine, Sapporo, Japan
| | - M Asaka
- Cancer Preventive Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - A Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan,Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan. E-mail:
| |
Collapse
|
35
|
CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia. Sci Rep 2016; 6:27516. [PMID: 27273195 PMCID: PMC4897628 DOI: 10.1038/srep27516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities.
Collapse
|
36
|
Rikkunshito Ameliorates Cancer Cachexia Partly through Elevation of Glucarate in Plasma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:871832. [PMID: 26451159 PMCID: PMC4586964 DOI: 10.1155/2015/871832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022]
Abstract
Cancer cachexia, which is characterized by decreased food intake, weight loss and systemic inflammation, increases patient's morbidity and mortality. We previously showed that rikkunshito (RKT), a Japanese traditional herbal medicine (Kampo), ameliorated the symptoms of cancer cachexia through ghrelin signaling-dependent and independent pathways. To investigate other mechanisms of RKT action in cancer cachexia, we performed metabolome analysis of plasma in a rat model bearing the Yoshida AH-130 hepatoma. A total of 110 metabolites were detected in plasma and RKT treatment significantly altered levels of 23 of those metabolites in cachexia model rats. Among them, glucarate, which is known to have anticarcinogenic activity through detoxification of carcinogens via inhibition of β-glucuronidase, was increased in plasma following administration of RKT. In our AH-130 ascites-induced cachexia rat model, administration of glucarate delayed onset of weight loss, improved muscle atrophy, and reduced ascites content. Additionally, glucarate reduced levels of plasma interferon-γ (IFN-γ) in tumor-bearing rats and was also found to suppress LPS-induced IFN-γ expression in splenocytes in vitro. These results suggest that glucarate has anti-inflammatory activity via a direct effect on immune host cells and suggest that RKT may also ameliorate inflammation partly through the elevation of glucarate in plasma.
Collapse
|