1
|
Raju NP, Ansari A, Patil G, Sheeraz MS, Kukade S, Kumar S, Kapley A, Qureshi A. Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. J Basic Microbiol 2025; 65:e2400330. [PMID: 39676299 DOI: 10.1002/jobm.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.
Collapse
Affiliation(s)
- Neenu P Raju
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Aamir Ansari
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Gandhali Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Mohammed Shahique Sheeraz
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sushrut Kukade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Shailendra Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
2
|
Shawver S, Ishii S, Strickland MS, Badgley B. Soil type and moisture content alter soil microbial responses to manure from cattle administered antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27259-27272. [PMID: 38507165 PMCID: PMC11052774 DOI: 10.1007/s11356-024-32903-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.
Collapse
Affiliation(s)
- Sarah Shawver
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
3
|
Chai J, Zhuang Y, Cui K, Bi Y, Zhang N. Metagenomics reveals the temporal dynamics of the rumen resistome and microbiome in goat kids. MICROBIOME 2024; 12:14. [PMID: 38254181 PMCID: PMC10801991 DOI: 10.1186/s40168-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/28/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The gut microbiome of domestic animals carries antibiotic resistance genes (ARGs) which can be transmitted to the environment and humans, resulting in challenges of antibiotic resistance. Although it has been reported that the rumen microbiome of ruminants may be a reservoir of ARGs, the factors affecting the temporal dynamics of the rumen resistome are still unclear. Here, we collected rumen content samples of goats at 1, 7, 14, 28, 42, 56, 70, and 84 days of age, analyzed their microbiome and resistome profiles using metagenomics, and assessed the temporal dynamics of the rumen resistome in goats at the early stage of life under a conventional feeding system. RESULTS In our results, the rumen resistome of goat kids contained ARGs to 41 classes, and the richness of ARGs decreased with age. Four antibiotic compound types of ARGs, including drugs, biocides, metals, and multi-compounds, were found during milk feeding, while only drug types of ARGs were observed after supplementation with starter feed. The specific ARGs for each age and their temporal dynamics were characterized, and the network inference model revealed that the interactions among ARGs were related to age. A strong correlation between the profiles of rumen resistome and microbiome was found using Procrustes analysis. Ruminal Escherichia coli within Proteobacteria phylum was the main carrier of ARGs in goats consuming colostrum, while Prevotella ruminicola and Fibrobacter succinogenes associated with cellulose degradation were the carriers of ARGs after starter supplementation. Milk consumption was likely a source of rumen ARGs, and the changes in the rumen resistome with age were correlated with the microbiome modulation by starter supplementation. CONCLUSIONS Our data revealed that the temporal dynamics of the rumen resistome are associated with the microbiome, and the reservoir of ARGs in the rumen during early life is likely related to age and diet. It may be a feasible strategy to reduce the rumen and its downstream dissemination of ARGs in ruminants through early-life dietary intervention. Video Abstract.
Collapse
Affiliation(s)
- Jianmin Chai
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yimin Zhuang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Kai Cui
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yanliang Bi
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Naifeng Zhang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
4
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Brightwell G, Cookson AL. Impact of systemic antimicrobial therapy on the faecal microbiome in symptomatic dairy cows. PLoS One 2024; 19:e0296290. [PMID: 38180967 PMCID: PMC10769045 DOI: 10.1371/journal.pone.0296290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Antimicrobial resistance is a global threat to human and animal health, with the misuse and overuse of antimicrobials suggested as the main drivers of resistance. Antimicrobial therapy can alter the bacterial community composition and the faecal resistome in cattle. Little is known about the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the presence of disease. Therefore, this study aimed to assess the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the pastoral farm environment, by analysing faecal samples from cattle impacted by several different clinically-defined conditions and corresponding antimicrobial treatments. Analysis at the individual animal level showed a decrease in bacterial diversity and richness during antimicrobial treatment but, in many cases, the microbiome diversity recovered post-treatment when the cow re-entered the milking herd. Perturbations in the microbiome composition and the ability of the microbiome to recover were specific at the individual animal level, highlighting that the animal is the main driver of variation. Other factors such as disease severity, the type and duration of antimicrobial treatment and changes in environmental factors may also impact the bovine faecal microbiome. AmpC-producing Escherichia coli were isolated from faeces collected during and post-treatment with ceftiofur from one cow while no third-generation cephalosporin resistant E. coli were isolated from the untreated cow samples. This isolation of genetically similar plasmid-mediated AmpC-producing E. coli has implications for the development and dissemination of antibiotic resistant bacteria and supports the reduction in the use of critically important antimicrobials.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Gelalcha BD, Gelgie AE, Kerro Dego O. Prevalence and antimicrobial resistance profiles of extended-spectrum beta-lactamase-producing Escherichia coli in East Tennessee dairy farms. Front Vet Sci 2023; 10:1260433. [PMID: 38239744 PMCID: PMC10795760 DOI: 10.3389/fvets.2023.1260433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, such as Escherichia coli, are emerging as a serious threat to global health due to their rapid spread and their multidrug-resistant (MDR) phenotypes. However, limited information is available regarding the prevalence and antimicrobial resistance (AMR) profile of ESBL-E. coli in the United States dairy farms. This study aimed to determine the prevalence and AMR pattern of ESBL-E. coli in East Tennessee dairy cattle farms. Methods Rectal fecal samples from dairy cattle (n = 508) and manure (n = 30), water (n = 19), and feed samples (n = 15) were collected from 14 farms. The presumptive E. coli was isolated on CHROMagar™ ESBL and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed on the ESBL-E. coli isolates. Results and discussion From 572 fecal and farm environmental samples, a total of 233 (41%, n = 572) ESBL-E. coli were identified. The prevalence of fecal ESBL-E. coli was 47.5% (95% CI: 46.2-49.2). The within-farm prevalence of ESBL-E. coli ranged from 8 to 100%. Recent treatment history with third-generation cephalosporins (3GC), cow parity ≥3, and calves were the independent risk factors associated (P < 0.05) with fecal carriage of ESBL-E. coli. Overall, 99.6% (n = 231) ESBL-E. coli tested were phenotypically resistant to at least one of the 14 antimicrobial agents tested. The most common AMR phenotypes were against beta-lactam antibiotics, ampicillin (99.1%; n = 231 isolates), and ceftriaxone (98.7%, n = 231). Most ESBL-E. coli isolates (94.4%) were MDR (resistance to ≥3 antimicrobial classes), of which 42.6% showed co-resistance to at least six classes of antimicrobials. ESBL-E. coli isolates with concurrent resistance to ceftriaxone, ampicillin, streptomycin, tetracycline, sulfisoxazole, and chloramphenicol are widespread and detected in all the farms. The detection of MDR ESBL-E. coli suggests that dairy cattle can be a reservoir for these bacteria, highlighting the associated public health risk.
Collapse
Affiliation(s)
| | | | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Vasco KA, Carbonell S, Sloup RE, Bowcutt B, Colwell RR, Graubics K, Erskine R, Norby B, Ruegg PL, Zhang L, Manning SD. Persistent effects of intramammary ceftiofur treatment on the gut microbiome and antibiotic resistance in dairy cattle. Anim Microbiome 2023; 5:56. [PMID: 37946266 PMCID: PMC10636827 DOI: 10.1186/s42523-023-00274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Intramammary (IMM) ceftiofur treatment is commonly used in dairy farms to prevent mastitis, though its impact on the cattle gut microbiome and selection of antibiotic-resistant bacteria has not been elucidated. Herein, we enrolled 40 dairy (Holstein) cows at the end of the lactation phase for dry-cow therapy: 20 were treated with IMM ceftiofur (Spectramast®DC) and a non-antibiotic internal teat sealant (bismuth subnitrate) and 20 (controls) received only bismuth subnitrate. Fecal grab samples were collected before and after treatment (weeks 1, 2, 3, 5, 7, and 9) for bacterial quantification and metagenomic next-generation sequencing. RESULTS Overall, 90% and 24% of the 278 samples had Gram-negative bacteria with resistance to ampicillin and ceftiofur, respectively. Most of the cows treated with ceftiofur did not have an increase in the number of resistant bacteria; however, a subset (25%) shed higher levels of ceftiofur-resistant bacteria for up to 2 weeks post-treatment. At week 5, the antibiotic-treated cows had lower microbiota abundance and richness, whereas a greater abundance of genes encoding extended-spectrum β-lactamases (ESBLs), CfxA, ACI-1, and CMY, was observed at weeks 1, 5 and 9. Moreover, the contig and network analyses detected associations between β-lactam resistance genes and phages, mobile genetic elements, and specific genera. Commensal bacterial populations belonging to Bacteroidetes most commonly possessed ESBL genes followed by members of Enterobacteriaceae. CONCLUSION This study highlights variable, persistent effects of IMM ceftiofur treatment on the gut microbiome and resistome in dairy cattle. Antibiotic-treated cattle had an increased abundance of specific taxa and genes encoding ESBL production that persisted for 9 weeks. Fecal shedding of ESBL-producing Enterobacteriaceae, which was classified as a serious public health threat, varied across animals. Together, these findings highlight the need for additional studies aimed at identifying factors associated with shedding levels and the dissemination and persistence of antibiotic resistance determinants on dairy farms across geographic locations.
Collapse
Affiliation(s)
- Karla A Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Samantha Carbonell
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rebekah E Sloup
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bailey Bowcutt
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rita R Colwell
- University of Maryland, Institute for Advanced Computer Studies, College Park, MD, 20742, USA
- Cosmos ID, Inc, Germantown, MD, 20874, USA
| | | | - Ronald Erskine
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bo Norby
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Pamela L Ruegg
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Ossa-Trujillo C, Taylor EA, Sarwar F, Vinasco J, Jordan ER, Buitrago JAG, Hagevoort GR, Lawhon SD, Piñeiro JM, Galloway-Peña J, Norman KN, Scott HM. Two-Dose Ceftiofur Treatment Increases Cephamycinase Gene Quantities and Fecal Microbiome Diversity in Dairy Cows Diagnosed with Metritis. Microorganisms 2023; 11:2728. [PMID: 38004740 PMCID: PMC10673576 DOI: 10.3390/microorganisms11112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Antimicrobial resistance is a significant concern worldwide; meanwhile, the impact of 3rd generation cephalosporin (3GC) antibiotics on the microbial communities of cattle and resistance within these communities is largely unknown. The objectives of this study were to determine the effects of two-dose ceftiofur crystalline-free acid (2-CCFA) treatment on the fecal microbiota and on the quantities of second-and third-generation cephalosporin, fluoroquinolone, and macrolide resistance genes in Holstein-Friesian dairy cows in the southwestern United States. Across three dairy farms, 124 matched pairs of cows were enrolled in a longitudinal study. Following the product label regimen, CCFA was administered on days 0 and 3 to cows diagnosed with postpartum metritis. Healthy cows were pair-matched based on lactation number and calving date. Fecal samples were collected on days 0, 6, and 16 and pooled in groups of 4 (n = 192) by farm, day, and treatment group for community DNA extraction. The characterization of community DNA included real-time PCR (qPCR) to quantify the following antibiotic resistance genes: blaCMY-2, blaCTX-M, mphA, qnrB19, and the highly conserved 16S rRNA back-calculated to gene copies per gram of feces. Additionally, 16S rRNA amplicon sequencing and metagenomics analyses were used to determine differences in bacterial community composition by treatment, day, and farm. Overall, blaCMY-2 gene copies per gram of feces increased significantly (p ≤ 0.05) in the treated group compared to the untreated group on day 6 and remained elevated on day 16. However, blaCTX-M, mphA, and qnrB19 gene quantities did not differ significantly (p ≥ 0.05) between treatment groups, days, or farms, suggesting a cephamycinase-specific enhancement in cows on these farms. Perhaps unexpectedly, 16S rRNA amplicon metagenomic analyses showed that the fecal bacterial communities from treated animals on day 6 had significantly greater (p ≤ 0.05) alpha and beta diversity than the untreated group. Two-dose ceftiofur treatment in dairy cows with metritis elevates cephamycinase gene quantities among all fecal bacteria while paradoxically increasing microbial diversity.
Collapse
Affiliation(s)
- Claudia Ossa-Trujillo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Ethan A. Taylor
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University, College Station, TX 77843, USA; (E.A.T.); (F.S.); (J.V.); (S.D.L.); (J.G.-P.)
| | - Fatima Sarwar
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University, College Station, TX 77843, USA; (E.A.T.); (F.S.); (J.V.); (S.D.L.); (J.G.-P.)
| | - Javier Vinasco
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University, College Station, TX 77843, USA; (E.A.T.); (F.S.); (J.V.); (S.D.L.); (J.G.-P.)
| | - Ellen R. Jordan
- Department of Animal Science, Texas A&M University, Dallas, TX 75252, USA;
| | - Jose A. García Buitrago
- Department of Extension Animal Sciences and Natural Resources, New Mexico State University, Clovis, NM 88101, USA; (J.A.G.B.); (G.R.H.)
| | - G. Robert Hagevoort
- Department of Extension Animal Sciences and Natural Resources, New Mexico State University, Clovis, NM 88101, USA; (J.A.G.B.); (G.R.H.)
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University, College Station, TX 77843, USA; (E.A.T.); (F.S.); (J.V.); (S.D.L.); (J.G.-P.)
| | - Juan M. Piñeiro
- Department of Animal Science, Texas A&M University, Amarillo, TX 79106, USA;
| | - Jessica Galloway-Peña
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University, College Station, TX 77843, USA; (E.A.T.); (F.S.); (J.V.); (S.D.L.); (J.G.-P.)
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Harvey Morgan Scott
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University, College Station, TX 77843, USA; (E.A.T.); (F.S.); (J.V.); (S.D.L.); (J.G.-P.)
| |
Collapse
|
8
|
Torres Manno MA, Gizzi FO, Martín M, Espariz M, Magni C, Blancato VS. Metagenomic approach to infer rumen microbiome derived traits of cattle. World J Microbiol Biotechnol 2023; 39:250. [PMID: 37439894 DOI: 10.1007/s11274-023-03694-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Ruminants enable the conversion of indigestible plant material into animal consumables, including dairy products, meat, and valuable fibers. Microbiome research is gaining popularity in livestock species because it aids in the knowledge of illnesses and efficiency processes in animals. In this study, we use WGS metagenomic data to thoroughly characterize the ruminal ecosystem of cows to infer positive and negative livestock traits determined by the microbiome. The rumen of cows from Argentina were described by combining different gene biomarkers, pathways composition and taxonomic information. Taxonomic characterization indicated that the two major phyla were Bacteroidetes and Firmicutes; in third place, Proteobacteria was highly represented followed by Actinobacteria; Prevotella, and Bacteroides were the most abundant genera. Functional profiling of carbohydrate-active enzymes indicated that members of the Glycoside Hydrolase (GH) class accounted for 52.2 to 55.6% of the total CAZymes detected, among them the most abundant were the oligosaccharide degrading enzymes. The diversity of GH families found suggested efficient hydrolysis of complex biomass. Genes of multidrug, macrolides, polymyxins, beta-lactams, rifamycins, tetracyclines, and bacitracin resistance were found below 0.12% of relative abundance. Furthermore, the clustering analysis of genera and genes that correlated to methane emissions or feed efficiency, suggested that the cows analysed could be regarded as low methane emitters and clustered with high feed efficiency reference animals. Finally, the combination of bioinformatic analyses used in this study can be applied to assess cattle traits difficult to measure and guide enhanced nutrition and breeding methods.
Collapse
Affiliation(s)
- Mariano A Torres Manno
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Fernán O Gizzi
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - UNR, Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina
| | - Víctor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina.
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina.
| |
Collapse
|
9
|
Rovira P. Short-Term Impact of Oxytetracycline Administration on the Fecal Microbiome, Resistome and Virulome of Grazing Cattle. Antibiotics (Basel) 2023; 12:antibiotics12030470. [PMID: 36978337 PMCID: PMC10044027 DOI: 10.3390/antibiotics12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Antimicrobial resistance (AMR) is an important public health concern around the world. Limited information exists about AMR in grasslands-based systems where antibiotics are seldom used in beef cattle. The present study investigated the impacts of oxytetracycline (OTC) on the microbiome, antibiotic resistance genes (ARGs), and virulence factor genes (VFGs) in grazing steers with no previous exposure to antibiotic treatments. Four steers were injected with a single dose of OTC (TREAT), and four steers were kept as control (CONT). The effects of OTC on fecal microbiome, ARGs, and VFGs were assessed for 14 days using 16S rRNA sequencing and shotgun metagenomics. Alpha and beta microbiome diversities were significantly affected by OTC. Following treatment, less than 8% of bacterial genera had differential abundance between CONT and TREAT samples. Seven ARGs conferring resistance to tetracycline (tet32, tet40, tet44, tetO, tetQ, tetW, and tetW/N/W) increased their abundance in the post-TREAT samples compared to CONT samples. In addition, OTC use was associated with the enrichment of macrolide and lincosamide ARGs (mel and lnuC, respectively). The use of OTC had no significant effect on VFGs. In conclusion, OTC induced short-term alterations of the fecal microbiome and enrichment of ARGs in the feces of grazing beef cattle.
Collapse
Affiliation(s)
- Pablo Rovira
- Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Treinta y Tres 33000, Uruguay
| |
Collapse
|
10
|
Tang M, Wu Z, Li W, Shoaib M, Aqib AI, Shang R, Yang Z, Pu W. Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. J Dairy Sci 2022; 106:257-273. [DOI: 10.3168/jds.2022-22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]
|
11
|
Kang J, Liu Y, Chen X, Xu F, Wang H, Xiong W, Li X. Metagenomic insights into the antibiotic resistomes of typical Chinese dairy farm environments. Front Microbiol 2022; 13:990272. [PMID: 36246251 PMCID: PMC9555277 DOI: 10.3389/fmicb.2022.990272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance genes (ARGs) in the environment pose a threat to human and animal health. Dairy cows are important livestock in China; however, a comprehensive understanding of antibiotic resistance in their production environment has not been well clarified. In this study, we used metagenomic methods to analyze the resistomes, microbiomes, and potential ARG bacterial hosts in typical dairy farm environments (including feces, wastewater, and soil). The ARGs resistant to tetracyclines, MLS, β-lactams, aminoglycoside, and multidrug was dominant in the dairy farm ecosystem. The abundance and diversity of total ARGs in dairy feces and wastewater were significantly higher than in soil (P < 0.05). The same environmental samples from different dairy have similar resistomes and microbiomes. A high detection rate of tet(X) in wastewater and feces (100% and 71.4%, respectively), high abundance (range from 5.74 to 68.99 copies/Gb), and the finding of tet(X5) challenged the clinical application of the last antibiotics resort of tigecycline. Network analysis identified Bacteroides as the dominant genus in feces and wastewater, which harbored the greatest abundance of their respective total ARG coverage and shared ARGs. These results improved our understanding of ARG profiles and their bacterial hosts in dairy farm environments and provided a basis for further surveillance.
Collapse
Affiliation(s)
- Jijun Kang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Chen
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Xu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutic Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiubo Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci Biotechnol 2022; 31:1481-1499. [PMID: 36065433 PMCID: PMC9435411 DOI: 10.1007/s10068-022-01157-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.
Collapse
|
13
|
Kormos D, Lin K, Pruden A, Marr LC. Critical review of antibiotic resistance genes in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:870-883. [PMID: 35638569 DOI: 10.1039/d2em00091a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We conducted a critical review to establish what is known about the sources, characteristics, and dissemination of ARGs in the atmosphere. We identified 52 papers that reported direct measurements of bacterial ARGs in air samples and met other inclusion criteria. The settings of the studies fell into the following categories: urban, rural, hospital, industrial, wastewater treatment plants (WWTPs), composting and landfill sites, and indoor environments. Certain genes were commonly studied and generally abundant: sul1, intI1, β-lactam ARGs, and tetracycline ARGs. Abundances of total ARGs varied by season and setting, with air in urban areas having higher ARG abundance than rural areas during the summer and vice versa during the winter. There was greater consistency in the types and abundances of ARGs throughout the seasons in urban areas. Human activity within indoor environments was also linked to increased ARG content (abundance, diversity, and concentration) in the air. Several studies found that human exposure to ARGs through inhalation was comparable to exposure through drinking water or ingesting soil. Detection of ARGs in air is a developing field, and differences in sampling and analysis methods reflect the many possible approaches to studying ARGs in air and make direct comparisons between studies difficult. Methodologies need to be standardized to facilitate identification of the dominant ARGs in the air, determine their major sources, and quantify the role of atmospheric transport in dissemination of ARGs in the environment. With such knowledge we can develop better policies and guidelines to limit the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- David Kormos
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Kaisen Lin
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Linsey C Marr
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Pattis I, Weaver L, Burgess S, Ussher JE, Dyet K. Antimicrobial Resistance in New Zealand-A One Health Perspective. Antibiotics (Basel) 2022; 11:antibiotics11060778. [PMID: 35740184 PMCID: PMC9220317 DOI: 10.3390/antibiotics11060778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is an increasing global threat that affects human, animal and, often less acknowledged, environmental health. This complex issue requires a multisectoral One Health approach to address the interconnectedness of humans, animals and the natural environment. The prevalence of AMR in these reservoirs varies widely among countries and thus often requires a country-specific approach. In New Zealand (NZ), AMR and antimicrobial usage in humans are relatively well-monitored and -understood, with high human use of antimicrobials and the frequency of resistant pathogens increasing in hospitals and the community. In contrast, on average, NZ is a low user of antimicrobials in animal husbandry systems with low rates of AMR in food-producing animals. AMR in New Zealand’s environment is little understood, and the role of the natural environment in AMR transmission is unclear. Here, we aimed to provide a summary of the current knowledge on AMR in NZ, addressing all three components of the One Health triad with a particular focus on environmental AMR. We aimed to identify knowledge gaps to help develop research strategies, especially towards mitigating AMR in the environment, the often-neglected part of the One Health triad.
Collapse
Affiliation(s)
- Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Sara Burgess
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| |
Collapse
|
15
|
Weinroth MD, Thomas KM, Doster E, Vikram A, Schmidt JW, Arthur TM, Wheeler TL, Parker JK, Hanes AS, Alekoza N, Wolfe C, Metcalf JL, Morley PS, Belk KE. Resistomes and microbiome of meat trimmings and colon content from culled cows raised in conventional and organic production systems. Anim Microbiome 2022; 4:21. [PMID: 35272712 PMCID: PMC8908682 DOI: 10.1186/s42523-022-00166-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The potential to distribute bacteria resistant to antimicrobial drugs in the meat supply is a public health concern. Market cows make up a fifth of the U.S. beef produced but little is known about the entire population of bacteria (the microbiome) and entirety of all resistance genes (the resistome) that are found in this population. The objective of this study was to characterize and compare the resistomes and microbiome of beef, dairy, and organic dairy market cows at slaughter. METHODS Fifty-four (N = 54) composite samples of both colon content and meat trimmings rinsate samples were collected over six visits to two harvest facilities from cows raised in three different production systems: conventional beef, conventional dairy, and organic dairy (n = 3 samples per visit per production system). Metagenomic DNA obtained from samples were analyzed using target-enriched sequencing (resistome) and 16S rRNA gene sequencing (microbiome). RESULTS All colon content samples had at least one identifiable antimicrobial resistance gene (ARG), while 21 of the 54 meat trimmings samples harbored at least one identifiable ARGs. Tetracycline ARGs were the most abundant class in both colon content and carcass meat trimmings. The resistome found on carcass meat trimmings was not significantly different by production system (P = 0.84, R2 = 0.00) or harvest facility (P = 0.10, R2 = 0.09). However, the resistome of colon content differed (P = 0.01; R2 = 0.05) among production systems, but not among the harvest facilities (P = 0.41; R2 = 0.00). Amplicon sequencing revealed differences (P < 0.05) in microbial populations in both meat trimmings and colon content between harvest facilities but not production systems (P > 0.05). CONCLUSIONS These data provide a baseline characterization of an important segment of the beef industry and highlight the effect that the production system where cattle are raised and the harvest facilities where an animal is processed can impact associated microbiome and resistomes.
Collapse
Affiliation(s)
- Margaret D Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Kevin M Thomas
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Enrique Doster
- Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
- Intralytix, Columbia, MD, 21046, USA
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Jennifer K Parker
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ayanna S Hanes
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Najla Alekoza
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Cory Wolfe
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University and West Texas A&M University, Canyon, TX, 79105, USA.
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure. ENERGIES 2022. [DOI: 10.3390/en15051920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conversion of cattle manure into biogas in anaerobic digestion (AD) processes has been gaining attention in recent years. However, antibiotic consumption continues to increase worldwide, which is why antimicrobial concentrations can be expected to rise in cattle manure and in digestate. This study examined the long-term synergistic effects of antimicrobials on the anaerobic digestion of cattle manure. The prevalence of antibiotic resistance genes (ARGs) and changes in microbial biodiversity under exposure to the tested drugs was investigated using a metagenomic approach. Methane production was analyzed in lab-scale anaerobic bioreactors. Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant bacteria in the samples. The domain Archaea was represented mainly by methanogenic genera Methanothrix and Methanosarcina and the order Methanomassiliicoccales. Exposure to antibiotics inhibited the growth and development of methanogenic microorganisms in the substrate. Antibiotics also influenced the abundance and prevalence of ARGs in samples. Seventeen types of ARGs were identified and classified. Genes encoding resistance to tetracyclines, macrolide–lincosamide–streptogramin antibiotics, and aminoglycosides, as well as multi-drug resistance genes, were most abundant. Antibiotics affected homoacetogenic bacteria and methanogens, and decreased the production of CH4. However, the antibiotic-induced decrease in CH4 production was minimized in the presence of highly drug-resistant microorganisms in AD bioreactors.
Collapse
|
17
|
Zhou G, Tao HB, Wen X, Wang YS, Peng H, Liu HZ, Yang XJ, Huang XM, Shi QS, Xie XB. Metagenomic analysis of microbial communities and antibiotic resistance genes in spoiled household chemicals. CHEMOSPHERE 2022; 291:132766. [PMID: 34740703 DOI: 10.1016/j.chemosphere.2021.132766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/26/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Numerous attempts have been utilized to unveil the occurrences of antibiotic resistance genes (ARGs) in human-associated and non-human-associated samples. However, spoiled household chemicals, which are usually neglected by the public, may be also a reservoir of ARGs because of the excessive and inappropriate uses of industrial drugs. Based upon the Comprehensive Antibiotic Research Database, a metagenomic sequencing method was utilized to detect and quantify Antibiotic Resistance Ontology (AROs) in six spoiled household chemicals, including hair conditioner, dishwashing detergent, bath shampoo, hand sanitizer, and laundry detergent. Proteobacteria was found to be the dominant phylum in all the samples. Functional annotation of the unigenes obtained against the KEGG pathway, eggNOG and CAZy databases demonstrated a diversity of their functions. Moreover, 186 types of AROs that were members of 72 drug classes were identified. Multidrug resistance genes were the most dominant types, and there were 17 AROs whose resistance mechanisms were categorized into the resistance-nodulation-cell division antibiotic efflux pump among the top 20 AROs. Moreover, Proteobacteria was the dominant carrier of AROs with the primary resistance mechanism of antibiotic efflux. The maximum temperature of the months of collection significantly affected the distributions of AROs. Additionally, the isolated individual bacterium from spoiled household chemicals and artificial mixed communities of isolated bacteria demonstrated diverse resistant abilities to different biocides. This study demonstrated that there are abundant microorganisms and a broad spectrum profile of AROs in spoiled household chemicals that might induce a severe threat to public healthy securities and merit particular attention.
Collapse
Affiliation(s)
- Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Hong-Bing Tao
- Guangdong Dimei Biotechnology Co., Ltd, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xia Wen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Hong Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Hui-Zhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xiu-Jiang Yang
- Guangdong Dimei Biotechnology Co., Ltd, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xiao-Mo Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China; Guangdong Dimei Biotechnology Co., Ltd, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, People's Republic of China.
| |
Collapse
|
18
|
Jadeja NB, Worrich A. From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environ Microbiol 2022; 24:3290-3306. [PMID: 35172395 DOI: 10.1111/1462-2920.15927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
With increasing reports on antimicrobial resistance (AMR) in humans, animals and the environment, we are at risk of returning to a pre-antibiotic era. Therefore, AMR is recognized as one of the major global health threats of this century. Antibiotics are used extensively in farming systems to treat and prevent infections in food animals or to increase their growth. Besides the risk of a transfer of AMR between the human and the animal sector, there is another yet largely overlooked sector in the One Health triad. Human-dominated ecosystems such as agricultural soils are a major sink for antibiotics and AMR originating from livestock farming. This review summarizes current knowledge on the prevalence of AMR at the interface of animal and agricultural production and discusses the potential implications for human health. Soil resistomes are augmented by the application of manure from treated livestock. Subsequent transfer of AMR into plant microbiomes may likely play a critical role in human exposure to antibiotic resistance in the environment. Based on the knowledge that is currently available we advocate that more attention should be paid to the role of environmental resistomes in the AMR crisis.
Collapse
Affiliation(s)
- Niti B Jadeja
- Ashoka Trust for Research in Ecology and the Environment, PO, Royal Enclave, Srirampura, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, 04318, Germany
| |
Collapse
|
19
|
Dong L, Meng L, Liu H, Wu H, Schroyen M, Zheng N, Wang J. Effect of Cephalosporin Treatment on the Microbiota and Antibiotic Resistance Genes in Feces of Dairy Cows with Clinical Mastitis. Antibiotics (Basel) 2022; 11:antibiotics11010117. [PMID: 35052994 PMCID: PMC8773067 DOI: 10.3390/antibiotics11010117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotics are frequently used to treat dairy cows with mastitis. However, the potential effects of β-lactam antibiotics, such as cephalosporins, on the fecal microbiome is unknown. The objective was to investigate the effects of ceftiofur and cefquinome on the fecal microbiota and antibiotic resistance genes of dairy cows with mastitis. The fecal samples were collected from 8 dairy cows at the following periods: the start day (Day 0), medication (Days 1, 2, and 3), withdrawal (Days 4, 6, 7, and 8), and recovery (Days 9, 11, 13, and 15). 16S rRNA gene sequencing was applied to explore the changes in microbiota, and qPCR was used to investigate the antibiotic resistance genes. The cephalosporin treatment significantly decreased the microbial diversity and richness, indicated by the decreased Shannon and Chao 1 indexes, respectively (p < 0.05). The relative abundance of Bacteroides, Bacteroidaceae, Bacteroidales, and Bacteroidia increased, and the relative abundance of Clostridia, Clostridiales, Ethanoligenens, and Clostridium IV decreased at the withdrawal period. The cephalosporin treatment increased the relative abundance of β-lactam resistance genes (blaTEM and cfxA) at the withdrawal period (p < 0.05). In conclusion, the cephalosporin treatment decreased the microbial diversity and richness at the medication period, and increased the relative abundance of two β-lactam resistance genes at the withdrawal period.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoming Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (J.W.)
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.D.); (L.M.); (H.L.); (H.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (N.Z.); (J.W.); Tel.: +86-10-62816069 (J.W.)
| |
Collapse
|
20
|
Fonseca M, Heider LC, Léger D, Mcclure JT, Rizzo D, Dufour S, Kelton DF, Renaud D, Barkema HW, Sanchez J. Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR): An On-Farm Surveillance System. Front Vet Sci 2022; 8:799622. [PMID: 35097047 PMCID: PMC8790291 DOI: 10.3389/fvets.2021.799622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Canada has implemented on-farm antimicrobial resistance (AMR) surveillance systems for food-producing animals under the Canadian Integrated Program for Antimicrobial Resistance (CIPARS); however, dairy cattle have not been included in that program yet. The objective of this manuscript was to describe the development and implementation of the Canadian Dairy Network for Antimicrobial Stewardship and Resistance (CaDNetASR). An Expert Panel (EP) of researchers was created to lead the development of the dairy surveillance system. The EP initiated a draft document outlining the essential elements of the surveillance framework. This document was then circulated to a Steering Committee (SC), which provided recommendations used by the EP to finalize the framework. CaDNetASR has the following components: (1) a herd-level antimicrobial use quantification system; (2) annually administered risk factor questionnaires; and (3) methods for herd-level detection of AMR in three sentinel enteric pathogens (generic Escherichia coli, Campylobacter spp., and Salmonella spp.) recovered from pooled fecal samples collected from calves, heifers, cows, and the manure pit. A total of 144 dairy farms were recruited in five Canadian provinces (British-Columbia, Alberta, Ontario, Québec, and Nova-Scotia), with the help of local herd veterinarians and regional field workers, and in September 2019, the surveillance system was launched. 97.1 and 94.4% of samples were positive for E. coli, 63.8, and 49.1% of samples were positive for Campylobacter spp., and 5.0 and 7.7% of samples were positive for Salmonella spp., in 2019 and 2020, respectively. E. coli was equally distributed among all sample types. However, it was more likely that Campylobacter spp. were recovered from heifer and cow samples. On the other hand, it was more common to isolate Salmonella spp. from the manure pit compared to samples from calves, heifers, or cows. CaDNetASR will continue sampling until 2022 after which time this system will be integrated into CIPARS. CaDNetASR will provide online access to farmers and veterinarians interested in visualizing benchmarking metrics regarding AMU practices and their relationship to AMR and animal health in dairy herds. This will provide an opportunity to enhance antimicrobial stewardship practices on dairy farms in Canada.
Collapse
Affiliation(s)
- Mariana Fonseca
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Luke C. Heider
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - David Léger
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - J. Trenton Mcclure
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Daniella Rizzo
- Public Health Agency of Canada, Center for Foodborne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - Simon Dufour
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David F. Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Javier Sanchez
- Health Management Department, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
21
|
Weber J, Borchardt S, Seidel J, Schreiter R, Wehrle F, Donat K, Freick M. Effects of Selective Dry Cow Treatment on Intramammary Infection Risk after Calving, Cure Risk during the Dry Period, and Antibiotic Use at Drying-Off: A Systematic Review and Meta-Analysis of Current Literature (2000-2021). Animals (Basel) 2021; 11:3403. [PMID: 34944180 PMCID: PMC8698164 DOI: 10.3390/ani11123403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/21/2023] Open
Abstract
The objectives of this paper were (i) to perform a systematic review of the literature over the last 21 yr and (ii) to evaluate the efficacy of selective dry cow treatment (SDCT) vs. blanket dry cow treatment (BDCT) in dairy cows regarding the risk of intramammary infection (IMI) after calving, new IMI risk after calving, cure risk during the dry period, and a reduction in antibiotic use at drying-off by meta-analysis. The systematic search was carried out using the databases PubMed, CAB Direct, and ScienceDirect. A meta-analytical assessment was performed for each outcome of interest using random-effects models, and the relative risk (RR) for IMI and cure or the pooled proportion for antibiotic use was calculated. The final number of included studies was n = 3 for IMI risk after calving and n = 5 for new IMI risk after calving, cure risk during the dry period, and antibiotic use. The RR levels for IMI (RR, 95% confidence interval [CI]: 1.02, 0.94-1.11; p = 0.592), new IMI (RR, 95% CI: 1.06, 0.94-1.20; p = 0.994), and cure (RR, 95% CI: 1.00, 0.97-1.02; p = 0.661) did not differ significantly between SDCT and BDCT. Substantial heterogeneity was observed between the trials regarding the pooled proportion of antibiotic use within the SDCT groups (I2 = 97.7%; p < 0.001). This meta-analysis provides evidence that SDCT seems to be an adequate alternative to BDCT regarding udder health with a simultaneous reduction in antibiotic use. Limitations might arise because of the small number of studies included.
Collapse
Affiliation(s)
- Jim Weber
- Veterinary Practice Zettlitz, 09306 Zettlitz, Germany;
| | - Stefan Borchardt
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany;
| | - Julia Seidel
- Faculty of Agriculture/Environment/Chemistry, HTW Dresden—University of Applied Sciences, 01326 Dresden, Germany;
| | - Ruben Schreiter
- ZAFT e.V., Center for Applied Research and Technology, 01069 Dresden, Germany;
| | - Frederike Wehrle
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Germany; (F.W.); (K.D.)
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Germany; (F.W.); (K.D.)
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Markus Freick
- Veterinary Practice Zettlitz, 09306 Zettlitz, Germany;
- Faculty of Agriculture/Environment/Chemistry, HTW Dresden—University of Applied Sciences, 01326 Dresden, Germany;
- ZAFT e.V., Center for Applied Research and Technology, 01069 Dresden, Germany;
| |
Collapse
|
22
|
Ma T, McAllister TA, Guan LL. A review of the resistome within the digestive tract of livestock. J Anim Sci Biotechnol 2021; 12:121. [PMID: 34763729 PMCID: PMC8588621 DOI: 10.1186/s40104-021-00643-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Antimicrobials have been widely used to prevent and treat infectious diseases and promote growth in food-production animals. However, the occurrence of antimicrobial resistance poses a huge threat to public and animal health, especially in less developed countries where food-producing animals often intermingle with humans. To limit the spread of antimicrobial resistance from food-production animals to humans and the environment, it is essential to have a comprehensive knowledge of the role of the resistome in antimicrobial resistance (AMR), The resistome refers to the collection of all antimicrobial resistance genes associated with microbiota in a given environment. The dense microbiota in the digestive tract is known to harbour one of the most diverse resistomes in nature. Studies of the resistome in the digestive tract of humans and animals are increasing exponentially as a result of advancements in next-generation sequencing and the expansion of bioinformatic resources/tools to identify and describe the resistome. In this review, we outline the various tools/bioinformatic pipelines currently available to characterize and understand the nature of the intestinal resistome of swine, poultry, and ruminants. We then propose future research directions including analysis of resistome using long-read sequencing, investigation in the role of mobile genetic elements in the expression, function and transmission of AMR. This review outlines the current knowledge and approaches to studying the resistome in food-producing animals and sheds light on future strategies to reduce antimicrobial usage and control the spread of AMR both within and from livestock production systems.
Collapse
Affiliation(s)
- Tao Ma
- Key laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4P4, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Katada S, Fukuda A, Nakajima C, Suzuki Y, Azuma T, Takei A, Takada H, Okamoto E, Kato T, Tamura Y, Usui M. Aerobic Composting and Anaerobic Digestion Decrease the Copy Numbers of Antibiotic-Resistant Genes and the Levels of Lactose-Degrading Enterobacteriaceae in Dairy Farms in Hokkaido, Japan. Front Microbiol 2021; 12:737420. [PMID: 34659165 PMCID: PMC8515179 DOI: 10.3389/fmicb.2021.737420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment. The concentration of tetracycline/cefazolin-resistant lactose-degrading Enterobacteriaceae was decreased over 1,000-fold by both AC and AD. ARGs such as tetA, tetB, and bla TEM were frequently detected and their copy numbers were significantly reduced by ∼1,000-fold by AD but not by AC. However, several ARG copies remained even after AD treatment. Although concentrations of the majority of residual antimicrobials were decreased by both AC and AD, oxytetracycline level was not decreased after treatment in most cases. In addition, 16S rRNA gene amplicon-based metagenomic analysis revealed that both treatments changed the bacterial community structure. These results suggest that both AC and AD could suppress the transmission of ARB, and AD could reduce ARG copy numbers in dairy cow manure.
Collapse
Affiliation(s)
- Satoshi Katada
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ayaka Takei
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Eiryu Okamoto
- Laboratory of Environmental Microbiology, College of Agriculture, Food, and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Toshihide Kato
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
24
|
Haley BJ, Van Kessel JAS. The resistome of the bovine gastrointestinal tract. Curr Opin Biotechnol 2021; 73:213-219. [PMID: 34492620 DOI: 10.1016/j.copbio.2021.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023]
Abstract
The gastrointestinal tracts of beef and dairy cattle are reservoirs of antimicrobial-resistant bacteria, and our knowledge of the ecology of resistance in these animals has changed with the advent of novel molecular technologies. Application of metagenomics and qPCR to the study of bovine gut ecology has demonstrated that there is overlap, with some differences, between beef and dairy cattle fecal resistomes, that treatment with antimicrobials often transiently influences the resistome, and young calves carry a high abundance of ARGs. Future work should harness emerging metagenome sequencing technologies to better describe the taxa harboring ARGs and collocated non-resistance genes and use these data along with identifying the multiplicity of factors driving resistance to develop strategies to reduce AMR carriage in cattle.
Collapse
Affiliation(s)
- Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| |
Collapse
|
25
|
Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: balancing food security and environmental impacts. Nat Rev Microbiol 2021; 19:553-566. [PMID: 33981031 DOI: 10.1038/s41579-021-00543-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Ruminants produce edible products and contribute to food security. They house a complex rumen microbial community that enables the host to digest their plant feed through microbial-mediated fermentation. However, the rumen microbiome is also responsible for the production of one of the most potent greenhouse gases, methane, and contributes about 18% of its total anthropogenic emissions. Conventional methods to lower methane production by ruminants have proved successful, but to a limited and often temporary extent. An increased understanding of the host-microbiome interactions has led to the development of new mitigation strategies. In this Review we describe the composition, ecology and metabolism of the rumen microbiome, and the impact on host physiology and the environment. We also discuss the most pertinent methane mitigation strategies that emerged to balance food security and environmental impacts.
Collapse
Affiliation(s)
- Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel.
| | - R John Wallace
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| |
Collapse
|
26
|
Antibiotic Resistance Genes and Associated Phenotypes in Escherichia coli and Enterococcus from Cattle at Different Production Stages on a Dairy Farm in Central California. Antibiotics (Basel) 2021; 10:antibiotics10091042. [PMID: 34572624 PMCID: PMC8471271 DOI: 10.3390/antibiotics10091042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
The objectives of this study were to characterize overall genomic antibiotic resistance profiles of fecal Escherichia coli and Enterococcus spp. from dairy cattle at different production stages using whole-genome sequencing and to determine the association between antimicrobial resistance (AMR) phenotypes and their corresponding genotypes. The Comprehensive Antibiotic Resistance Database (CARD) and ResFinder, two publicly available databases of antimicrobial resistance genes, were used to annotate isolates. Based on the ResFinder database, 27.5% and 20.0% of tested E. coli isolates (n = 40) harbored single and ≥3 antimicrobial resistance genes, respectively; for Enterococcus spp., we observed 87.8% and 8.2%, respectively. The highest prevalence of AMR genes in E. coli was for resistance to tetracycline (27.5%), followed by sulphonamide (22.5%) and aminoglycoside (20.0%); the predominant antimicrobial resistance genes in Enterococcus spp. targeted macrolide drugs (77.6%). Based on the CARD database, resistance to ≥3 antimicrobial classes was observed in all E. coli and 77.6% in Enterococcus spp. isolates. A high degree of agreement existed between the resistance phenotype and the presence of resistance genes for various antimicrobial classes for E. coli but much less so for isolates of Enterococcus. Consistent with prior work, fecal E. coli and Enterococcus spp. isolates from calves harbored a wide spectrum of resistance genes, compared to those from cattle at other production stages, based on the cross-sectional samples from the studied farm.
Collapse
|
27
|
Nobrega DB, Tang KL, Caffrey NP, De Buck J, Cork SC, Ronksley PE, Polachek AJ, Ganshorn H, Sharma N, Kastelic JP, Kellner JD, Ghali WA, Barkema HW. Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. J Antimicrob Chemother 2021; 76:561-575. [PMID: 33146719 DOI: 10.1093/jac/dkaa443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is ongoing debate regarding potential associations between restrictions of antimicrobial use and prevalence of antimicrobial resistance (AMR) in bacteria. OBJECTIVES To summarize the effects of interventions reducing antimicrobial use in food-producing animals on the prevalence of AMR genes (ARGs) in bacteria from animals and humans. METHODS We published a full systematic review of restrictions of antimicrobials in food-producing animals and their associations with AMR in bacteria. Herein, we focus on studies reporting on the association between restricted antimicrobial use and prevalence of ARGs. We used multilevel mixed-effects models and a semi-quantitative approach based on forest plots to summarize findings from studies. RESULTS A positive effect of intervention [reduction in prevalence or number of ARGs in group(s) with restricted antimicrobial use] was reported from 29 studies for at least one ARG. We detected significant associations between a ban on avoparcin and diminished presence of the vanA gene in samples from animals and humans, whereas for the mecA gene, studies agreed on a positive effect of intervention in samples only from animals. Comparisons involving mcr-1, blaCTX-M, aadA2, vat(E), sul2, dfrA5, dfrA13, tet(E) and tet(P) indicated a reduced prevalence of genes in intervention groups. Conversely, no effects were detected for β-lactamases other than blaCTX-M and the remaining tet genes. CONCLUSIONS The available body of scientific evidence supported that restricted use of antimicrobials in food animals was associated with an either lower or equal presence of ARGs in bacteria, with effects dependent on ARG, host species and restricted drug.
Collapse
Affiliation(s)
- Diego B Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Karen L Tang
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Niamh P Caffrey
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan C Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul E Ronksley
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alicia J Polachek
- W21C Research and Innovation Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Heather Ganshorn
- Libraries and Cultural Resources, University of Calgary, Calgary, AB, Canada
| | - Nishan Sharma
- W21C Research and Innovation Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - James D Kellner
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - William A Ghali
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Emergence and Spread of Cephalosporinases in Wildlife: A Review. Animals (Basel) 2021; 11:ani11061765. [PMID: 34204766 PMCID: PMC8231518 DOI: 10.3390/ani11061765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Antimicrobial resistance (AMR) is one of the global public health challenges nowadays. AMR threatens the effective prevention and treatment of an ever-increasing range of infections, being present in healthcare settings but also detected across the whole ecosystem, including wildlife. This work compiles the available information about an important resistance mechanism that gives bacteria the ability to inactivate cephalosporin antibiotics, the cephalosporinases (extended-spectrum beta-lactamase (ESBL) and AmpC beta-lactamase), in wildlife. Through a rigorous systematic literature review in the Web of Science database, the available publications on this topic in the wildlife sphere were analysed. The emergence and spread of cephalosporinases in wildlife has been reported in 46 countries from all continents (52% in Europe), with descriptions mainly in birds and mammals. The most widely disseminated cephalosporinases in human-related settings (e.g. CTX-M-1, CTX-M-14, CTX-M-15 and CMY-2) are also the most reported in wildlife, suggesting that anthropogenic pressure upon natural environments have a strong impact on antimicrobial resistance spread, including the dissemination of genes encoding these enzymes. Our work highlights the urgence and importance of public and ecosystem health policies, including improved surveillance and control strategies that breakdown AMR transmission chains across wildlife, as part of an integrated strategy of the One Health approach. Abstract In the last decade, detection of antibiotic resistant bacteria from wildlife has received increasing interest, due to the potential risk posed by those bacteria to wild animals, livestock or humans at the interface with wildlife, and due to the ensuing contamination of the environment. According to World Health Organization, cephalosporins are critically important antibiotics to human health. However, acquired resistance to β-lactams is widely distributed and is mainly mediated by extended-spectrum beta-lactamase and AmpC beta-lactamases, such as cephalosporinases. This work thus aimed to compile and analyse the information available on the emergence and dissemination of cephalosporinases in wildlife worldwide. Results suggest a serious scenario, with reporting of cephalosporinases in 46 countries from all continents (52% in Europe), across 188 host species, mainly birds and mammals, especially gulls and ungulates. The most widely reported cephalosporinases, CTX-M-1, CTX-M-14, CTX-M-15 and CMY-2, were also the most common in wild animals, in agreement with their ubiquity in human settings, including their association to high-risk clones of Escherichia coli (E. coli), such as the worldwide distributed CTX-M-15/ST131 E. coli. Altogether, our findings show that anthropogenic activities affect the whole ecosystem and that public policies promoting animal and environmental surveillance, as well as mitigation measures to avoid antimicrobial misuse and AMR spread, are urgently needed to be out in practise.
Collapse
|
29
|
Wind L, Krometis LA, Hession WC, Pruden A. Cross-comparison of methods for quantifying antibiotic resistance in agricultural soils amended with dairy manure and compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144321. [PMID: 33477102 DOI: 10.1016/j.scitotenv.2020.144321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Agricultural soils are often amended with livestock manure, making them a key reservoir of antibiotic resistance genes (ARGs). Given that soils are among the most microbially-diverse environments on the planet; effective characterization and quantification of the effects of manure-derived amendments on soil resistomes is a major challenge. This study examined the effects of dairy manure-derived amendments on agricultural soils via two strategies: quantification of anthropogenic ARG markers via qPCR and shotgun metagenomic resistome profiling; and these strategies were compared to a previously published antibiotic resistant fecal coliform dataset. Soil samples were collected throughout a 120 day complete block field experiment to compare the effects of amendment type on antibiotic resistance. Results of all three measurements were consistent with the hypothesis that the application of composted manure reduced antibiotic resistance in soil relative to the application of raw manure, although some differences were noted in comparing the patterns of the three measurements with time. Raw dairy manure-amended soils yielded high sul1 and tet(W) relative abundances on Day 0 (following amendment application), but significantly decreased to background levels by Day 67 (harvest) and Day 120 (study completion). Shotgun metagenomics similarly detected a decrease in the relative abundances of sulfonamide and tetracycline-associated ARGs over time in the raw manure- and compost-amended soils; however, these levels were significantly lower than those estimated by qPCR. Interestingly, although patterns of sulfonamide and tetracycline resistance among culturable fecal coliforms echoed those observed via qPCR and metagenomics; erythromycin resistant coliforms were directly recovered by culture in amended soils, but corresponding ARGs were not detected by qPCR or metagenomics. This study supports both composting and time restrictions as means of reducing the potential for antibiotic resistance in manure to spread via soil application. Results suggest some differences in finer conclusions drawn depending on which antibiotic resistance monitoring target is selected.
Collapse
Affiliation(s)
- Lauren Wind
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA.
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - W Cully Hession
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, 1145 Perry St, Durham Hall RM 403, Blacksburg, VA 24061, USA
| |
Collapse
|
30
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front Microbiol 2021; 12:610656. [PMID: 33854486 PMCID: PMC8039466 DOI: 10.3389/fmicb.2021.610656] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a relatively new type of pollutant. The rise in antibiotic resistance observed recently is closely correlated with the uncontrolled and widespread use of antibiotics in agriculture and the treatment of humans and animals. Resistant bacteria have been identified in soil, animal feces, animal housing (e.g., pens, barns, or pastures), the areas around farms, manure storage facilities, and the guts of farm animals. The selection pressure caused by the irrational use of antibiotics in animal production sectors not only promotes the survival of existing antibiotic-resistant bacteria but also the development of new resistant forms. One of the most critical hot-spots related to the development and dissemination of ARGs is livestock and poultry production. Manure is widely used as a fertilizer thanks to its rich nutrient and organic matter content. However, research indicates that its application may pose a severe threat to human and animal health by facilitating the dissemination of ARGs to arable soil and edible crops. This review examines the pathogens, potentially pathogenic microorganisms and ARGs which may be found in animal manure, and evaluates their effect on human health through their exposure to soil and plant resistomes. It takes a broader view than previous studies of this topic, discussing recent data on antibiotic use in farm animals and the effect of these practices on the composition of animal manure; it also examines how fertilization with animal manure may alter soil and crop microbiomes, and proposes the drivers of such changes and their consequences for human health.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Lanyon CW, King JR, Stekel DJ, Gomes RL. A Model to Investigate the Impact of Farm Practice on Antimicrobial Resistance in UK Dairy Farms. Bull Math Biol 2021; 83:36. [PMID: 33646415 PMCID: PMC7921080 DOI: 10.1007/s11538-021-00865-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
The ecological and human health impact of antibiotic use and the related antimicrobial resistance (AMR) in animal husbandry is poorly understood. In many countries, there has been considerable pressure to reduce overall antibiotic use in agriculture or to cease or minimise use of human critical antibiotics. However, a more nuanced approach would consider the differential impact of use of different antibiotic classes; for example, it is not known whether reduced use of bacteriostatic or bacteriolytic classes of antibiotics would be of greater value. We have developed an ordinary differential equation model to investigate the effects of farm practice on the spread and persistence of AMR in the dairy slurry tank environment. We model the chemical fate of bacteriolytic and bacteriostatic antibiotics within the slurry and their effect on a population of bacteria, which are capable of resistance to both types of antibiotic. Through our analysis, we find that changing the rate at which a slurry tank is emptied may delay the proliferation of multidrug-resistant bacteria by up to five years depending on conditions. This finding has implications for farming practice and the policies that influence waste management practices. We also find that, within our model, the development of multidrug resistance is particularly sensitive to the use of bacteriolytic antibiotics, rather than bacteriostatic antibiotics, and this may be cause for controlling the usage of bacteriolytic antibiotics in agriculture.
Collapse
Affiliation(s)
- Christopher W Lanyon
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2QL, UK.
| | - John R King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2QL, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Rachel L Gomes
- Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
32
|
The Effect of Antibiotics on Mesophilic Anaerobic Digestion Process of Cattle Manure. ENERGIES 2021. [DOI: 10.3390/en14041125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study explored the effect of eight antimicrobials on the efficiency of biogas production in the anaerobic digestion (AD) process of cattle manure. The microbiome involved in AD, presence and number of genes mcrA, MSC and MST specific for Archaea, and antibiotic resistance genes (ARGs) concentration in digestate (D) were examined. Supplementation of antibiotics to substrate significantly lowered biogas production. Amoxicillin caused a 75% decrease in CH4 production in comparison with the control samples. Enrofloxacin, tetracycline, oxytetracycline, and chlortetracycline reduced the amount of biogas produced by 36, 39, 45 and 53%, respectively. High-throughput sequencing of 16S rRNA results revealed that bacteria dominated the Archaea microorganisms in all samples. Moreover, antibiotics led to a decrease in the abundance of the genes mcrA, MSC, MST, and induced an increase in the number of tetracyclines resistance genes. Antibiotics decreased the efficiency of the AD process and lowered the quantity of CH4 obtained, while stimulating an increase in the number of ARGs in D. This work reveals how antimicrobials affect the cattle manure AD process and changes in microbial biodiversity, number of functional genes and ARGs in the digestate due to drugs exposure. It also, provides useful, practical information about the AD process.
Collapse
|
33
|
Xue MY, Xie YY, Zhong YF, Liu JX, Guan LL, Sun HZ. Ruminal resistome of dairy cattle is individualized and the resistotypes are associated with milking traits. Anim Microbiome 2021; 3:18. [PMID: 33568223 PMCID: PMC7877042 DOI: 10.1186/s42523-021-00081-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antimicrobial resistance is one of the most urgent threat to global public health, as it can lead to high morbidity, mortality, and medical costs for humans and livestock animals. In ruminants, the rumen microbiome carries a large number of antimicrobial resistance genes (ARGs), which could disseminate to the environment through saliva, or through the flow of rumen microbial biomass to the hindgut and released through feces. The occurrence and distribution of ARGs in rumen microbes has been reported, revealing the effects of external stimuli (e.g., antimicrobial administrations and diet ingredients) on the antimicrobial resistance in the rumen. However, the host effect on the ruminal resistome and their interactions remain largely unknown. Here, we investigated the ruminal resistome and its relationship with host feed intake and milk protein yield using metagenomic sequencing. RESULTS The ruminal resistome conferred resistance to 26 classes of antimicrobials, with genes encoding resistance to tetracycline being the most predominant. The ARG-containing contigs were assigned to bacterial taxonomy, and the majority of highly abundant bacterial genera were resistant to at least one antimicrobial, while the abundances of ARG-containing bacterial genera showed distinct variations. Although the ruminal resistome is not co-varied with host feed intake, it could be potentially linked to milk protein yield in dairy cows. Results showed that host feed intake did not affect the alpha or beta diversity of the ruminal resistome or the abundances of ARGs, while the Shannon index (R2 = 0.63, P < 0.01) and richness (R2 = 0.67, P < 0.01) of the ruminal resistome were highly correlated with milk protein yield. A total of 128 significantly different ARGs (FDR < 0.05) were identified in the high- and low-milk protein yield dairy cows. We found four ruminal resistotypes that are driven by specific ARGs and associated with milk protein yield. Particularly, cows with low milk protein yield are classified into the same ruminal resistotype and featured by high-abundance ARGs, including mfd and sav1866. CONCLUSIONS The current study uncovered the prevalence of ARGs in the rumen of a cohort of lactating dairy cows. The ruminal resistome is not co-varied with host feed intake, while it could be potentially linked to milk protein yield in dairy cows. Our results provide fundamental knowledge on the prevalence, mechanisms and impact factors of antimicrobial resistance in dairy cattle and are important for both the dairy industry and other food animal antimicrobial resistance control strategies.
Collapse
Affiliation(s)
- Ming-Yuan Xue
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yi Xie
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Fan Zhong
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Fan S, Foster D, Miller WG, Osborne J, Kathariou S. Impact of Ceftiofur Administration in Steers on the Prevalence and Antimicrobial Resistance of Campylobacter spp. Microorganisms 2021; 9:microorganisms9020318. [PMID: 33557120 PMCID: PMC7913856 DOI: 10.3390/microorganisms9020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Bacterial resistance to ceftiofur raises health concerns due to ceftiofur’s extensive veterinary usage and structural similarity with the human antibiotic ceftriaxone. Ceftiofur crystalline-free acid (CCFA) and ceftiofur hydrochloride (CHCL) are ceftiofur types used therapeutically in cattle, but their potential impacts on Campylobacter prevalence and antimicrobial resistance remain unclear. In this study two groups of steers were each treated with CCFA or CHCL. In vivo active drug concentrations were measured and fecal samples were analyzed for Campylobacter for up to 42 days post-treatment. Following administration, the colonic concentration of ceftiofur initially increased then dropped to pre-treatment levels by day 8. The estimated prevalence of Campylobacter spp. was significantly (p = 0.0009) higher during the first week after CCFA treatment than after CHCL treatment (81.3% vs. 45.2%). Campylobacter jejuni predominated overall, with other Campylobacter spp. mainly identified in the first week after CCFA treatment. No treatment impacts were noted on ceftiofur minimum inhibitory concentration (MIC) for C. jejuni (10–20 μg/mL). More C. jejuni genotypes were detected in CCFA-treated than CHCL-treated steers. These findings suggest that ceftiofur did not significantly impact Campylobacter prevalence or ceftiofur MIC. However, CHCL may be preferable due to the lower likelihood of temporary increases in Campylobacter prevalence.
Collapse
Affiliation(s)
- Sicun Fan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Derek Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA;
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
| | - Jason Osborne
- Department of Statistics, College of Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
- Correspondence: ; Tel.: +1-919-513-2075
| |
Collapse
|
35
|
Oliver JP, Hurst JJ, Gooch CA, Stappenbeck A, Sassoubre L, Aga DS. On-farm screw press and rotary drum treatment of dairy manure-associated antibiotic residues and resistance. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:134-143. [PMID: 33438205 DOI: 10.1002/jeq2.20161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/22/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
An on-farm solid-liquid separator (SLS) and rotary drum composter (RD) manure treatment system was monitored for its impact on antibiotic residues and antibiotic resistance genes (ARGs). Administered antibiotics were tracked, and treatment system mass flows were quantified. Total amounts of antibiotic residues and ARGs were calculated from measured concentrations and mass flows. Only oxytetracycline (OTC) and sulfadimethoxine (SDM) were detected in the manure treatment system influent. No β-lactams were measured despite comprising ∼25% of the antibiotics administered. Nearly 80% of OTC and >90% of SDM partitioned into SLS liquid effluent (SL). The RD reduced the mass of OTC remaining in the SLS solid effluent (SS) significantly by 50%, whereas the mass of SDM appeared to increase after RD treatment. All four ARGs tested were detected in influent, with >70% of the sul1, blaOXA-1 , and intI1 genes (normalized by the 16S ribosomal RNA gene) partitioning into the SL. In contrast, about eight times more normalized tetO gene copies partitioned into the SS than in the SL. All ARGs remaining in the SS were significantly reduced by the RD treatment, with a noteworthy 98% reduction in normalized tetO gene copies. This study provides insight into on-farm levels of antibiotic residues and ARGs in dairy manure, their partitioning during SLS treatment, and their fate after a high-temperature RD treatment reaching 72.2 ± 0.18 °C near the outlet. It also notes the importance of mass-flow standardization of data, and the need to work towards standardization of manure system sampling protocols for antibiotic residues and ARGs.
Collapse
Affiliation(s)
- Jason P Oliver
- Animal Science, PRO-DAIRY Dairy Environmental Systems Program, Cornell Univ., Ithaca, NY, 14853, USA
- Agricultural Sciences, Groton Central School District, Groton, NY, 13073, USA
| | - Jerod J Hurst
- Chemistry, Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, 14260, USA
| | - Curt A Gooch
- Animal Science, PRO-DAIRY Dairy Environmental Systems Program, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ashley Stappenbeck
- Animal Science, PRO-DAIRY Dairy Environmental Systems Program, Cornell Univ., Ithaca, NY, 14853, USA
| | - Lauren Sassoubre
- Civil, Structural & Environmental Engineering, Univ. of Buffalo, The State Univ. of New York, Buffalo, NY, 14260, USA
- Dep. of Engineering, Univ. of San Francisco, San Francisco, CA, 94117, USA
| | - Diana S Aga
- Chemistry, Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
36
|
Pitta DW, Indugu N, Toth JD, Bender JS, Baker LD, Hennessy ML, Vecchiarelli B, Aceto H, Dou Z. The distribution of microbiomes and resistomes across farm environments in conventional and organic dairy herds in Pennsylvania. ENVIRONMENTAL MICROBIOME 2020; 15:21. [PMID: 33902716 PMCID: PMC8066844 DOI: 10.1186/s40793-020-00368-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/20/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Antimicrobial resistance is a serious concern. Although the widespread use of antimicrobials in livestock has exacerbated the emergence and dissemination of antimicrobial resistance genes (ARG) in farm environments, little is known about whether antimicrobial use affects distribution of ARG in livestock systems. This study compared the distribution of microbiomes and resistomes (collections of ARG) across different farm sectors in dairy herds that differed in their use of antimicrobials. Feces from heifers, non-lactating, and lactating cows, manure storage, and soil from three conventional (antimicrobials used to treat cows) and three organic (no antimicrobials used for at least four years) farms in Pennsylvania were sampled. Samples were extracted for genomic DNA, processed, sequenced on the Illumina NextSeq platform, and analyzed for microbial community and resistome profiles using established procedures. RESULTS Microbial communities and resistome profiles clustered by sample type across all farms. Overall, abundance and diversity of ARG in feces was significantly higher in conventional herds compared to organic herds. The ARG conferring resistance to betalactams, macrolide-lincosamide-streptogramin (MLS), and tetracyclines were significantly higher in fecal samples of dairy cows from conventional herds compared to organic herds. Regardless of farm type, all manure storage samples had greater diversity (albeit low abundance) of ARG conferring resistance to aminoglycosides, tetracyclines, MLS, multidrug resistance, and phenicol. All soil samples had lower abundance of ARG compared to feces, manure, and lagoon samples and were comprised of ARG conferring resistance to aminoglycosides, glycopeptides, and multi-drug resistance. The distribution of ARG is likely driven by the composition of microbiota in the respective sample types. CONCLUSIONS Antimicrobial use on farms significantly influenced specific groups of ARG in feces but not in manure storage or soil samples.
Collapse
Affiliation(s)
- Dipti W. Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - John D. Toth
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Joseph S. Bender
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Linda D. Baker
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Meagan L. Hennessy
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Helen Aceto
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Zhengxia Dou
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| |
Collapse
|
37
|
Schmidt JW, Vikram A, Arthur TM, Belk KE, Morley PS, Weinroth MD, Wheeler TL. Antimicrobial Resistance at Two U.S. Cull Cow Processing Establishments. J Food Prot 2020; 83:2216-2228. [PMID: 32730612 DOI: 10.4315/jfp-20-201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Culled beef cows (cows that have reached the end of their productive life span in cow-calf operations) and culled dairy cows represent approximately 18% of the cattle harvested in the United States annually, but data on antimicrobial resistance (AMR) in these cull cattle are extremely limited. To address this data gap, colon contents were obtained from 180 culled conventional beef cows, 179 culled conventional dairy cows, and 176 culled organic dairy cows (produced without using antimicrobials). Sponge samples were also collected from 181 conventional beef, 173 conventional dairy, and 180 organic dairy cow carcasses. These samples were obtained on 6 days (3 days each at two beef harvest and processing establishments). At one establishment, 30 samples of beef manufacturing trimmings from conventional cows and 30 trim samples from organic dairy cows were acquired. All 1,129 samples were cultured for Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella, and 3GCrSalmonella. Metagenomic DNA was isolated from 535 colon content samples, and quantitative PCR assays were performed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). For colon contents, only TETrE. coli (P < 0.01), 3GCrE. coli (P < 0.01), and erm(B) (P = 0.03) levels were higher in conventional than in organic cows. Sampling day also significantly affected (P < 0.01) these levels. Production system did not affect the levels of any measured AMR on carcasses or trim. The human health impact of the few significant AMR differences could not be determined due to the lack of standards for normal, background, safe, or basal values. Study results provide key heretofore unavailable data that may inform quantitative microbial risk assessments to address these gaps. HIGHLIGHTS
Collapse
Affiliation(s)
- John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,ORCID: https://orcid.org/0000-0003-0494-2436 [J.W.S.]
| | - Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-5064-8356 [A.V.]
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-9035-0474 [T.M.A.]
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,ORCID: https://orcid.org/0000-0002-7171-8824 [K.E.B.]
| | - Paul S Morley
- Veterinary Education, Research, and Outreach (VERO) Program, Texas A&M University and West Texas A&M University, Canyon, Texas 79016, USA (ORCID: https://orcid.org/0000-0001-8138-2714 [P.S.M.])
| | - Margaret D Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,https://orcid.org/0000-0001-8351-395X [M.D.W.]
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0002-6571-9097 [T.L.W.]
| |
Collapse
|
38
|
Adkins PRF, Ericsson AC, Middleton JR, Witzke MC. The effect of intramammary pirlimycin hydrochloride on the fecal microbiome of early-lactation heifers. J Dairy Sci 2020; 103:3459-3469. [PMID: 32037172 DOI: 10.3168/jds.2019-17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to determine the effect of intramammary pirlimycin on the fecal microbiome of dairy cattle. Primiparous heifers were enrolled and assigned to a treatment or control group at a ratio of 2:1. In part 1 of the study, treated heifers (T1) were given intramammary pirlimycin into one infected quarter once daily for 2 d at 24-h intervals, according to the label instructions. Control heifers received no treatment. In part 2 of the study, treated heifers (T2) were given intramammary pirlimycin into one infected quarter once daily for 8 d at 24-h intervals, according to the label instructions. All enrolled heifers (T1, T2, and control) had quarter-level milk samples aseptically collected for bacterial culture and fecal samples collected for 16S rRNA gene sequencing on d 0, 2, 7, 14, 21, and 28. Milk samples were plated on Columbia blood agar and incubated at 37°C for 24 h. Bacteria were identified using MALDI-TOF mass spectrometry. The DNA was extracted from feces using PowerFecal kits (Qiagen, Venlo, the Netherlands). The 16S rRNA gene amplicon library construction and sequencing was performed at the University of Missouri DNA Core facility. Testing for differences in fecal community composition was performed via one-way permutational multivariate ANOVA of Bray-Curtis and Jaccard similarities using Past 3.13 (https://folk.uio.no/ohammer/past/). Mean total count of operational taxonomic units and Chao1, Shannon, and Simpson α-diversity indices were determined and compared via t-test or Wilcoxon rank sum test. A treatment-dependent effect was present in the observed and predicted richness of feces from cows in the T1 group at d 2 posttreatment. Additionally, intramammary pirlimycin induced a significant change in the composition of the fecal microbiota by d 2 in the treated groups. Based on calculated intra-subject similarities, intramammary pirlimycin was associated with a significant acute change in the fecal microbiota of dairy heifers and that chance reversed when the antimicrobial exposure was brief, but sustained following longer exposure. Overall, intramammary pirlimycin administration affected the fecal microbiome of lactating dairy heifers. Further work is necessary to determine the effect of these changes on the heifer and the dairy environment as well as if treatment is influencing antimicrobial resistance among enteric and environmental bacteria.
Collapse
Affiliation(s)
- P R F Adkins
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia 65211.
| | - A C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia 65211
| | - J R Middleton
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia 65211
| | - M C Witzke
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia 65211
| |
Collapse
|
39
|
Oliver JP, Gooch CA, Lansing S, Schueler J, Hurst JJ, Sassoubre L, Crossette EM, Aga DS. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci 2020; 103:1051-1071. [DOI: 10.3168/jds.2019-16778] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
|
40
|
Foster DM, Jacob ME, Farmer KA, Callahan BJ, Theriot CM, Kathariou S, Cernicchiaro N, Prange T, Papich MG. Ceftiofur formulation differentially affects the intestinal drug concentration, resistance of fecal Escherichia coli, and the microbiome of steers. PLoS One 2019; 14:e0223378. [PMID: 31584976 PMCID: PMC6777789 DOI: 10.1371/journal.pone.0223378] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial drug concentrations in the gastrointestinal tract likely drive antimicrobial resistance in enteric bacteria. Our objective was to determine the concentration of ceftiofur and its metabolites in the gastrointestinal tract of steers treated with ceftiofur crystalline-free acid (CCFA) or ceftiofur hydrochloride (CHCL), determine the effect of these drugs on the minimum inhibitory concentration (MIC) of fecal Escherichia coli, and evaluate shifts in the microbiome. Steers were administered either a single dose (6.6 mg/kg) of CCFA or 2.2 mg/kg of CHCL every 24 hours for 3 days. Ceftiofur and its metabolites were measured in the plasma, interstitium, ileum and colon. The concentration and MIC of fecal E. coli and the fecal microbiota composition were assessed after treatment. The maximum concentration of ceftiofur was higher in all sampled locations of steers treated with CHCL. Measurable drug persisted longer in the intestine of CCFA-treated steers. There was a significant decrease in E. coli concentration (P = 0.002) within 24 hours that persisted for 2 weeks after CCFA treatment. In CHCL-treated steers, the mean MIC of ceftiofur in E. coli peaked at 48 hours (mean MIC = 20.45 ug/ml, 95% CI = 10.29–40.63 ug/ml), and in CCFA-treated steers, mean MIC peaked at 96 hours (mean MIC = 10.68 ug/ml, 95% CI = 5.47–20.85 ug/ml). Shifts in the microbiome of steers in both groups were due to reductions in Firmicutes and increases in Bacteroidetes. CCFA leads to prolonged, low intestinal drug concentrations, and is associated with decreased E. coli concentration, an increased MIC of ceftiofur in E. coli at specific time points, and shifts in the fecal microbiota. CHCL led to higher intestinal drug concentrations over a shorter duration. Effects on E. coli concentration and the microbiome were smaller in this group, but the increase in the MIC of ceftiofur in fecal E. coli was similar.
Collapse
Affiliation(s)
- Derek M. Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
- * E-mail:
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| | - Kyle A. Farmer
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| | - Benjamin J. Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, College of Agriculture and Life Sciences, NC State University, Raleigh, NC, United States of America
| | - Natalia Cernicchiaro
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Timo Prange
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| | - Mark G. Papich
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, United States of America
| |
Collapse
|
41
|
Rovira P, McAllister T, Lakin SM, Cook SR, Doster E, Noyes NR, Weinroth MD, Yang X, Parker JK, Boucher C, Booker CW, Woerner DR, Belk KE, Morley PS. Characterization of the Microbial Resistome in Conventional and "Raised Without Antibiotics" Beef and Dairy Production Systems. Front Microbiol 2019; 10:1980. [PMID: 31555225 PMCID: PMC6736999 DOI: 10.3389/fmicb.2019.01980] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
Metagenomic investigations have the potential to provide unprecedented insights into microbial ecologies, such as those relating to antimicrobial resistance (AMR). We characterized the microbial resistome in livestock operations raising cattle conventionally (CONV) or without antibiotic exposures (RWA) using shotgun metagenomics. Samples of feces, wastewater from catchment basins, and soil where wastewater was applied were collected from CONV and RWA feedlot and dairy farms. After DNA extraction and sequencing, shotgun metagenomic reads were aligned to reference databases for identification of bacteria (Kraken) and antibiotic resistance genes (ARGs) accessions (MEGARes). Differences in microbial resistomes were found across farms with different production practices (CONV vs. RWA), types of cattle (beef vs. dairy), and types of sample (feces vs. wastewater vs. soil). Feces had the greatest number of ARGs per sample (mean = 118 and 79 in CONV and RWA, respectively), with tetracycline efflux pumps, macrolide phosphotransferases, and aminoglycoside nucleotidyltransferases mechanisms of resistance more abundant in CONV than in RWA feces. Tetracycline and macrolide–lincosamide–streptogramin classes of resistance were more abundant in feedlot cattle than in dairy cow feces, whereas the β-lactam class was more abundant in dairy cow feces. Lack of congruence between ARGs and microbial communities (procrustes analysis) suggested that other factors (e.g., location of farms, cattle source, management practices, diet, horizontal ARGs transfer, and co-selection of resistance), in addition to antimicrobial use, could have impacted resistome profiles. For that reason, we could not establish a cause–effect relationship between antimicrobial use and AMR, although ARGs in feces and effluents were associated with drug classes used to treat animals according to farms’ records (tetracyclines and macrolides in feedlots, β-lactams in dairies), whereas ARGs in soil were dominated by multidrug resistance. Characterization of the “resistance potential” of animal-derived and environmental samples is the first step toward incorporating metagenomic approaches into AMR surveillance in agricultural systems. Further research is needed to assess the public-health risk associated with different microbial resistomes.
Collapse
Affiliation(s)
- Pablo Rovira
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Steven M Lakin
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Lethbridge, AB, Canada
| | - Enrique Doster
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Noelle R Noyes
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States
| | - Maggie D Weinroth
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Xiang Yang
- Department of Animal Sciences, University of California, Davis, Davis, CA, United States
| | - Jennifer K Parker
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd., Okotoks, AB, Canada
| | - Dale R Woerner
- Department of Animal and Food Sciences, College of Agricultural Sciences & Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Keith E Belk
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Paul S Morley
- VERO - Veterinary Education, Research, and Outreach Program, Texas A&M University and West Texas A&M University, Canyon, TX, United States
| |
Collapse
|
42
|
Durso LM, Cook KL. One Health and Antibiotic Resistance in Agroecosystems. ECOHEALTH 2019; 16:414-419. [PMID: 29541967 PMCID: PMC6858902 DOI: 10.1007/s10393-018-1324-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 05/23/2023]
Abstract
Agriculture reflects One Health principals, with the job of the farmer being to sustainably balance human, animal, and soil health. It is imperative to include an agricultural perspective when addressing antibiotic resistance (AR) from a One Health perspective, as the farmers, ranchers, and agricultural professionals have an intimate working knowledge of these complex systems, and they will be on the front lines of implementing on-farm control measures. Currently, communication across the One Health triad (humans, animals, environment) regarding agricultural AR is hindered by ambiguous language, complicated by cultural and linguistic differences that can lead to the conclusion that the other participant is not aware of the facts, or has ulterior motives. This work explores and identifies the language and vocabulary of AR in the context of supporting strategic short- and long-term problem solving in a One Health context.
Collapse
Affiliation(s)
- Lisa M Durso
- USDA, ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus, Lincoln, NE, 68583, USA.
| | - Kimberly L Cook
- USDA, ARS, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, 950 College Station Rd., Athens, GA, 30605, USA
| |
Collapse
|
43
|
Comparative diversity of microbiomes and Resistomes in beef feedlots, downstream environments and urban sewage influent. BMC Microbiol 2019; 19:197. [PMID: 31455230 PMCID: PMC6712873 DOI: 10.1186/s12866-019-1548-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Background Comparative knowledge of microbiomes and resistomes across environmental interfaces between animal production systems and urban settings is lacking. In this study, we executed a comparative analysis of the microbiota and resistomes of metagenomes from cattle feces, catch basin water, manured agricultural soil and urban sewage. Results Metagenomic DNA from composite fecal samples (FC; n = 12) collected from penned cattle at four feedlots in Alberta, Canada, along with water from adjacent catchment basins (CB; n = 13), soil (n = 4) from fields in the vicinity of one of the feedlots and urban sewage influent (SI; n = 6) from two municipalities were subjected to Illumina HiSeq2000 sequencing. Firmicutes exhibited the highest prevalence (40%) in FC, whereas Proteobacteria were most abundant in CB (64%), soil (60%) and SI (83%). Among sample types, SI had the highest diversity of antimicrobial resistance (AMR), and metal and biocide resistance (MBR) classes (13 & 15) followed by FC (10 & 8), CB (8 & 4), and soil (6 & 1). The highest antimicrobial resistant (AMR) gene (ARG) abundance was harboured by FC, whereas soil samples had a very small, but unique resistome which did not overlap with FC & CB resistomes. In the beef production system, tetracycline resistance predominated followed by macrolide resistance. The SI resistome harboured β-lactam, macrolide, tetracycline, aminoglycoside, fluoroquinolone and fosfomycin resistance determinants. Metal and biocide resistance accounted for 26% of the SI resistome with a predominance of mercury resistance. Conclusions This study demonstrates an increasing divergence in the nature of the microbiome and resistome as the distance from the feedlot increases. Consistent with antimicrobial use, tetracycline and macrolide resistance genes were predominant in the beef production system. One of the feedlots contributed both conventional (raised with antibiotics) and natural (raised without antibiotics) pens samples. Although natural pen samples exhibited a microbiota composition that was similar to samples from conventional pens, their resistome was less complex. Similarly, the SI resistome was indicative of drug classes used in humans and the greater abundance of mercury resistance may be associated with contamination of municipal water with household and industrial products. Electronic supplementary material The online version of this article (10.1186/s12866-019-1548-x) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Chen C, Pankow CA, Oh M, Heath LS, Zhang L, Du P, Xia K, Pruden A. Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. ENVIRONMENT INTERNATIONAL 2019; 128:233-243. [PMID: 31059918 DOI: 10.1016/j.envint.2019.04.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 05/12/2023]
Abstract
Manure-derived amendments are commonly applied to soil, raising questions about whether antibiotic use in livestock could influence the soil resistome (collective antibiotic resistance genes (ARGs)) and ultimately contribute to the spread of antibiotic resistance to humans during food production. Here, we examined the metagenomes of soils amended with raw or composted manure generated from dairy cows administered pirlimycin and cephapirin (antibiotic) or no antibiotics (control) relative to unamended soils. Initial amendment (Day 1) with manure or compost significantly increased the diversity (richness) of ARGs in soils (p < 0.01) and resulted in distinct abundances of individual ARG types. Notably, initial amendment with antibiotic-manure significantly increased the total ARG relative abundances (per 16S rRNA gene) in the soils (2.21 × unamended soils, p < 0.001). After incubating 120 days, to simulate a wait period before crop harvest, 282 ARGs reduced 4.33-fold (median) up to 307-fold while 210 ARGs increased 2.89-fold (median) up to 76-fold in the antibiotic-manure-amended soils, resulting in reduced total ARG relative abundances equivalent to those of the unamended soils. We further assembled the metagenomic data and calculated resistome risk scores, which was recently defined as a relative index comparing co-occurrence of sequences corresponding to ARGs, mobile genetic elements, and putative pathogens on the same scaffold. Initial amendment of manure significantly increased the soil resistome risk scores, especially when generated by cows administered antibiotics, while composting reduced the effects and resulted in soil resistomes more similar to the background. The risk scores of manure-amended soils reduced to levels comparable to the unamended soils after 120 days. Overall, this study provides an integrated, high-resolution examination of the effects of prior antibiotic use, composting, and a 120-day wait period on soil resistomes following manure-derived amendment, demonstrating that all three management practices have measurable effects and should be taken into consideration in the development of policy and practice for mitigating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Chaoqi Chen
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Christine A Pankow
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Min Oh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Pang Du
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
45
|
Exploration of antibiotic resistance risks in a veterinary teaching hospital with Oxford Nanopore long read sequencing. PLoS One 2019; 14:e0217600. [PMID: 31145757 PMCID: PMC6542553 DOI: 10.1371/journal.pone.0217600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
Abstract
The Oxford Nanopore MinION DNA sequencing device can produce large amounts of long sequences, typically several kilobases, within a few hours. This long read capacity was exploited to detect antimicrobial resistance genes (ARGs) in a large veterinary teaching hospital environment, and to assess their taxonomic origin, genetic organisation and association with mobilisation markers concurrently. Samples were collected on eight occasions between November 2016 and May 2017 (inclusive) in a longitudinal study. Nanopore sequencing was performed on total DNA extracted from the samples after a minimal enrichment step in broth. Many ARGs present in the veterinary hospital environment could potentially confer resistance to antimicrobials widely used in treating infections of companion animals, including aminoglycosides, extended-spectrum beta-lactams, sulphonamides, macrolides, and tetracyclines. High-risk ARGs, defined here as single or multiple ARGs associated with pathogenic bacterial species or with mobile genetic elements, were shared between the intensive care unit (ICU) patient cages, a dedicated laundry trolley and a floor cleaning mop-bucket. By contrast, a floor surface from an office corridor without animal contact and located outside the veterinary hospital did not contain such high-risk ARGs. Relative abundances of high-risk ARGs and co-localisation of these genes on the same sequence read were higher in the laundry trolley and mop bucket samples, compared to the ICU cages, suggesting that amplification of ARGs is likely to occur in the collection points for hospital waste. These findings have prompted the implementation of targeted intervention measures in the veterinary hospital to mitigate the risks of transferring clinically important ARGs between sites and to improve biosecurity practices in the facility.
Collapse
|
46
|
Zeineldin M, Aldridge B, Lowe J. Antimicrobial Effects on Swine Gastrointestinal Microbiota and Their Accompanying Antibiotic Resistome. Front Microbiol 2019; 10:1035. [PMID: 31156580 PMCID: PMC6530630 DOI: 10.3389/fmicb.2019.01035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
Antimicrobials are the most commonly prescribed drugs in the swine industry. While antimicrobials are an effective treatment for serious bacterial infections, their use has been associated with major adverse effects on health. It has been shown that antimicrobials have substantial direct and indirect impacts on the swine gastrointestinal (GI) microbiota and their accompanying antimicrobial resistome. Antimicrobials have also been associated with a significant public health concern through selection of resistant opportunistic pathogens and increased emergence of antimicrobial resistance genes (ARGs). Since the mutualistic microbiota play a crucial role in host immune regulation and in providing colonization resistance against potential pathogens, the detrimental impacts of antimicrobial treatment on the microbiota structure and its metabolic activity may lead to further health complications later in life. In this review, we present an overview of antimicrobial use in the swine industry and their role in the emergence of antimicrobial resistance. Additionally, we review our current understanding of GI microbiota and their role in swine health. Finally, we investigate the effects of antimicrobial administration on the swine GI microbiota and their accompanying antibiotic resistome. The presented data is crucial for the development of robust non-antibiotic alternative strategies to restore the GI microbiota functionality and guarantee effective continued use of antimicrobials in the livestock production system.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Brian Aldridge
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - James Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
47
|
Guron GKP, Arango-Argoty G, Zhang L, Pruden A, Ponder MA. Effects of Dairy Manure-Based Amendments and Soil Texture on Lettuce- and Radish-Associated Microbiota and Resistomes. mSphere 2019; 4:e00239-19. [PMID: 31068435 PMCID: PMC6506619 DOI: 10.1128/msphere.00239-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
Dairy cattle are routinely treated with antibiotics, and the resulting manure or composted manure is commonly used as a soil amendment for crop production, raising questions regarding the potential for antibiotic resistance to propagate from "farm to fork." The objective of this study was to compare the microbiota and "resistomes" (i.e., carriage of antibiotic resistance genes [ARGs]) associated with lettuce leaf and radish taproot surfaces grown in different soils amended with dairy manure, compost, or chemical fertilizer only (control). Manure was collected from antibiotic-free dairy cattle (DC) or antibiotic-treated dairy cattle (DA), with a portion composted for parallel comparison. Amendments were applied to loamy sand or silty clay loam, and lettuce and radishes were cultivated to maturity in a greenhouse. Metagenomes were profiled via shotgun Illumina sequencing. Radishes carried a distinct ARG composition compared to that of lettuce, with greater relative abundance of total ARGs. Taxonomic species richness was also greater for radishes by 1.5-fold. The resistomes of lettuce grown with DC compost were distinct from those grown with DA compost, DC manure, or fertilizer only. Further, compost applied to loamy sand resulted in twofold-greater relative abundance of total ARGs on lettuce than when applied to silty clay loam. The resistomes of radishes grown with biological amendments were distinct from the corresponding fertilizer controls, but effects of composting or antibiotic use were not measureable. Cultivation in loamy sand resulted in higher species richness for both lettuce and radishes than when grown in silty clay loam by 2.2-fold and 1.2-fold, respectively, when amended with compost.IMPORTANCE A controlled, integrated, and replicated greenhouse study, along with comprehensive metagenomic analysis, revealed that multiple preharvest factors, including antibiotic use during manure collection, composting, biological soil amendment, and soil type, influence vegetable-borne resistomes. Here, radishes, a root vegetable, carried a greater load of ARGs and species richness than lettuce, a leafy vegetable. However, the lettuce resistome was more noticeably influenced by upstream antibiotic use and composting. Network analysis indicated that cooccurring ARGs and mobile genetic elements were almost exclusively associated with conditions receiving raw manure amendments, suggesting that composting could alleviate the mobility of manure-derived resistance traits. Effects of preharvest factors on associated microbiota and resistomes of vegetables eaten raw are worthy of further examination in terms of potential influence on human microbiomes and spread of antibiotic resistance. This research takes a step toward identifying on-farm management practices that can help mitigate the spread of agricultural sources of antibiotic resistance.
Collapse
Affiliation(s)
- Giselle K P Guron
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
48
|
Fogler K, Guron GKP, Wind LL, Keenum IM, Hession WC, Krometis LA, Strawn LK, Pruden A, Ponder MA. Microbiota and Antibiotic Resistome of Lettuce Leaves and Radishes Grown in Soils Receiving Manure-Based Amendments Derived From Antibiotic-Treated Cows. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Zeineldin MM, Megahed A, Blair B, Burton B, Aldridge B, Lowe J. Negligible Impact of Perinatal Tulathromycin Metaphylaxis on the Developmental Dynamics of Fecal Microbiota and Their Accompanying Antimicrobial Resistome in Piglets. Front Microbiol 2019; 10:726. [PMID: 31024502 PMCID: PMC6460945 DOI: 10.3389/fmicb.2019.00726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/22/2019] [Indexed: 01/30/2023] Open
Abstract
While the antimicrobial resistance profiles of cultured pathogens have been characterized in swine, the fluctuations in antimicrobial resistance genes (ARGs) associated with the developing gastrointestinal microbiota have not been elucidated. The objective of this study was to assess the impact of perinatal tulathromycin (TUL) metaphylaxis on the developmental dynamics of fecal microbiota and their accompanying antimicrobial resistome in pre-weaned piglets. Sixteen litters were given one of two treatments [control group (CONT; saline 1cc IM) and TUL group (TUL; 2.5 mg/kg IM)] directly after birth. Deep fecal swabs were collected at day 0 (prior to treatment), and again at days 5 and 20 post treatment. Shotgun metagenomic sequencing was performed on the extracted DNA, and the fecal microbiota structure and abundance of ARGs were assessed. Collectively, the swine fecal microbiota and their accompanying ARGs were diverse and established soon after birth. Across all samples, a total of 127 ARGs related to 19 different classes of antibiotics were identified. The majority of identified ARGs were observed in both experimental groups and at all-time points. The magnitude and extent of differences in microbial composition and abundance of ARGs between the TUL and CONT groups were statistically insignificant. However, both fecal microbiota composition and ARGs abundance were changed significantly between different sampling days. In combination, these results indicate that the perinatal TUL metaphylaxis has no measurable benefits or detriment impacts on fecal microbiota structure and abundance of ARGs in pre-weaned piglets.
Collapse
Affiliation(s)
- Mohamed M Zeineldin
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ameer Megahed
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Benjamin Blair
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Brandi Burton
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Brian Aldridge
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - James Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
50
|
Asante J, Osei Sekyere J. Understanding antimicrobial discovery and resistance from a metagenomic and metatranscriptomic perspective: advances and applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:62-86. [PMID: 30637962 DOI: 10.1111/1758-2229.12735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Our inability to cultivate most microorganisms, specifically bacteria, in the laboratory has for many years restricted our view and understanding of the bacterial meta-resistome in all living and nonliving environments. As a result, reservoirs, sources and distribution of antibiotic resistance genes (ARGS) and antibiotic-producers, as well as the effects of human activity and antibiotics on the selection and dissemination of ARGs were not well comprehended. With the advances made in the fields of metagenomics and metatranscriptomics, many of the hitherto little-understood concepts are becoming clearer. Further, the discovery of antibiotics such as lugdinin and lactocillin from the human microbiota, buttressed the importance of these new fields. Metagenomics and metatranscriptomics are becoming important clinical diagnostic tools for screening and detecting pathogens and ARGs, assessing the effects of antibiotics, other xenobiotics and human activity on the environment, characterizing the microbiome and the environmental resistome with lesser turnaround time and decreasing cost, as well as discovering antibiotic-producers. However, challenges with accurate binning, skewed ARGs databases, detection of less abundant and allelic variants of ARGs and efficient mobilome characterization remain. Ongoing efforts in long-read, phased- and single-cell sequencing, strain-resolved binning, chromosomal-conformation capture, DNA-methylation binning and deep-learning bioinformatic approaches offer promising prospects in reconstructing complete strain-level genomes and mobilomes from metagenomes.
Collapse
Affiliation(s)
- Jonathan Asante
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|