1
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Hontecillas R. Oral Omilancor Treatment Ameliorates Clostridioides difficile Infection During IBD Through Novel Immunoregulatory Mechanisms Mediated by LANCL2 Activation. Inflamm Bowel Dis 2024; 30:103-113. [PMID: 37436905 DOI: 10.1093/ibd/izad124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is an opportunistic infection of the gastrointestinal tract, commonly associated with antibiotic administration, that afflicts almost 500 000 people yearly only in the United States. CDI incidence and recurrence is increased in inflammatory bowel disease (IBD) patients. Omilancor is an oral, once daily, first-in-class, gut-restricted, immunoregulatory therapeutic in clinical development for the treatment of IBD. METHODS Acute and recurrent murine models of CDI and the dextran sulfate sodium-induced concomitant model of IBD and CDI were utilized to determine the therapeutic efficacy of oral omilancor. To evaluate the protective effects against C. difficile toxins, in vitro studies with T84 cells were also conducted. 16S sequencing was employed to characterize microbiome composition. RESULTS Activation of the LANCL2 pathway by oral omilancor and its downstream host immunoregulatory changes decreased disease severity and inflammation in the acute and recurrence models of CDI and the concomitant model of IBD/CDI. Immunologically, omilancor treatment increased mucosal regulatory T cell and decreased pathogenic T helper 17 cell responses. These immunological changes resulted in increased abundance and diversity of tolerogenic gut commensal bacterial strains in omilancor-treated mice. Oral omilancor also resulted in accelerated C. difficile clearance in an antimicrobial-free manner. Furthermore, omilancor provided protection from toxin damage, while preventing the metabolic burst observed in intoxicated epithelial cells. CONCLUSIONS These data support the development of omilancor as a novel host-targeted, antimicrobial-free immunoregulatory therapeutic for the treatment of IBD patients with C. difficile-associated disease and pathology with the potential to address the unmet clinical needs of ulcerative colitis and Crohn's disease patients with concomitant CDI.
Collapse
|
2
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Baker R, Hontecillas R. Modulation of colonic immunometabolic responses during Clostridioides difficile infection ameliorates disease severity and inflammation. Sci Rep 2023; 13:14708. [PMID: 37679643 PMCID: PMC10485029 DOI: 10.1038/s41598-023-41847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea, and its clinical symptoms can span from asymptomatic colonization to pseudomembranous colitis and even death. The current standard of care for CDI is antibiotic treatment to achieve bacterial clearance; however, 15 to 35% of patients experience recurrence after initial response to antibiotics. We have conducted a comprehensive, global colonic transcriptomics analysis of a 10-day study in mice to provide new insights on the local host response during CDI and identify novel host metabolic mechanisms with therapeutic potential. The analysis indicates major alterations of colonic gene expression kinetics at the acute infection stage, that are restored during the recovery phase. At the metabolic level, we observe a biphasic response pattern characterized by upregulated glycolytic metabolism during the peak of inflammation, while mitochondrial metabolism predominates during the recovery/healing stage. Inhibition of glycolysis via 2-Deoxy-D-glucose (2-DG) administration during CDI decreases disease severity, protects from mortality, and ameliorates colitis in vivo. Additionally, 2-DG also protects intestinal epithelial cells from C. difficile toxin damage, preventing loss of barrier integrity and secretion of proinflammatory mediators. These data postulate the pharmacological targeting of host immunometabolic pathways as novel treatment modalities for CDI.
Collapse
Affiliation(s)
| | | | | | | | - Ryan Baker
- NIMML Institute, Blacksburg, VA, 24060, USA
| | | |
Collapse
|
3
|
Baker R, Hontecillas R, Tubau-Juni N, Leber AJ, Kale S, Bassaganya-Riera J. Computational modeling of complex bioenergetic mechanisms that modulate CD4+ T cell effector and regulatory functions. NPJ Syst Biol Appl 2022; 8:45. [DOI: 10.1038/s41540-022-00263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractWe built a computational model of complex mechanisms at the intersection of immunity and metabolism that regulate CD4+ T cell effector and regulatory functions by using coupled ordinary differential equations. The model provides an improved understanding of how CD4+ T cells are shaping the immune response during Clostridioides difficile infection (CDI), and how they may be targeted pharmacologically to produce a more robust regulatory (Treg) response, which is associated with improved disease outcomes during CDI and other diseases. LANCL2 activation during CDI decreased the effector response, increased regulatory response, and elicited metabolic changes that favored Treg. Interestingly, LANCL2 activation provided greater immune and metabolic modulation compared to the addition of exogenous IL-2. Additionally, we identified gluconeogenesis via PEPCK-M as potentially responsible for increased immunosuppressive behavior in Treg cells. The model can perturb immune signaling and metabolism within a CD4+ T cell and obtain clinically relevant outcomes that help identify novel drug targets for infectious, autoimmune, metabolic, and neurodegenerative diseases.
Collapse
|
4
|
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice. BIOLOGY 2022; 11:biology11020297. [PMID: 35205164 PMCID: PMC8869254 DOI: 10.3390/biology11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. Abstract The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
Collapse
|
5
|
Jenior ML, Papin JA. Computational approaches to understanding Clostridioides difficile metabolism and virulence. Curr Opin Microbiol 2022; 65:108-115. [PMID: 34839237 PMCID: PMC8792252 DOI: 10.1016/j.mib.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
The progress of infection by Clostridioides difficile is strongly influenced by metabolic cues it encounters as it colonizes the gastrointestinal tract. Both colonization and regulation of virulence have a multi-factorial interaction between host, microbiome, and gene expression cascades. While these connections with metabolism have been understood for some time, many mechanisms of control have remained difficult to directly assay due to high metabolic variability among C. difficile isolates and difficult genetic systems. Computational systems offer a means to interrogate structure of complex or noisy datasets and generate useful, tractable hypotheses to be tested in the laboratory. Recently, in silico techniques have provided powerful insights into metabolic elements of C. difficile infection ranging from virulence regulation to interactions with the gut microbiota. In this review, we introduce and provide context to the methods of computational modeling that have been applied to C. difficile metabolism and virulence thus far. The techniques discussed here have laid the foundation for future multi-scale efforts aimed at understanding the complex interplay of metabolic activity between pathogen, host, and surrounding microbial community in the regulation of C. difficile pathogenesis.
Collapse
Affiliation(s)
- Matthew L Jenior
- Department of Biomedical Engineering, University of Virginia, MR-5 2041a, Box 800759, Health System, Charlottesville, VA 22908 USA.
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, MR-5 2041a, Box 800759, Health System, Charlottesville, VA 22908 USA; Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Cribas ES, Denny JE, Maslanka JR, Abt MC. Loss of Interleukin-10 (IL-10) Signaling Promotes IL-22-Dependent Host Defenses against Acute Clostridioides difficile Infection. Infect Immun 2021; 89:e00730-20. [PMID: 33649048 PMCID: PMC8091099 DOI: 10.1128/iai.00730-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Infection with the bacterial pathogen Clostridioides difficile causes severe damage to the intestinal epithelium that elicits a robust inflammatory response. Markers of intestinal inflammation accurately predict clinical disease, however, the extent to which host-derived proinflammatory mediators drive pathogenesis versus promote host protective mechanisms remains elusive. In this report, we employed Il10-/- mice as a model of spontaneous colitis to examine the impact of constitutive intestinal immune activation, independent of infection, on C. difficile disease pathogenesis. Upon C. difficile challenge, Il10-/- mice exhibited significantly decreased morbidity and mortality compared to littermate Il10 heterozygote (Il10HET) control mice, despite a comparable C. difficile burden, innate immune response, and microbiota composition following infection. Similarly, antibody-mediated blockade of interleukin-10 (IL-10) signaling in wild-type C57BL/6 mice conveyed a survival advantage if initiated 3 weeks prior to infection. In contrast, no advantage was observed if blockade was initiated on the day of infection, suggesting that the constitutive activation of inflammatory defense pathways prior to infection mediated host protection. IL-22, a cytokine critical in mounting a protective response against C. difficile infection, was elevated in the intestine of uninfected, antibiotic-treated Il10-/- mice, and genetic ablation of the IL-22 signaling pathway in Il10-/- mice negated the survival advantage following C. difficile challenge. Collectively, these data demonstrate that constitutive loss of IL-10 signaling, via genetic ablation or antibody blockade, enhances IL-22-dependent host defense mechanisms to limit C. difficile pathogenesis.
Collapse
Affiliation(s)
- Emily S Cribas
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua E Denny
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey R Maslanka
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to Clostridioides difficile: A tricky balance between immunoprotection and immunopathogenesis. J Leukoc Biol 2020; 109:195-210. [PMID: 32829520 DOI: 10.1002/jlb.4vmr0720-201r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile (C. difficile) is the major cause of hospital-acquired gastrointestinal infections in individuals following antibiotics treatment. The pathogenesis of C. difficile infection (CDI) is mediated mainly by the production of toxins that induce tissue damage and host inflammatory responses. While innate immunity is well characterized in human and animal models of CDI, adaptive immune responses remain poorly understood. In this review, the current understanding of adaptive immunity is summarized and its influence on pathogenesis and disease outcome is discussed. The perspectives on what we believe to be the main pending questions and the focus of future research are also provided. There is no doubt that the innate immune response provides a first line of defense to CDI. But, is the adaptive immune response a friend or a foe? Probably it depends on the course of the disease. Adaptive immunity is essential for pathogen eradication, but may also trigger uncontrolled or pathological inflammation. Most of the understanding of the role of T cells is based on findings from experimental models. While they are a very valuable tool for research studies, more studies in human are needed to translate these findings into human disease. Another main challenge is to unravel the role of the different T cell populations on protection or induction of immunopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laureano Ángel Español
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Lorenzo Sebastián Morro
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Dovrolis N, Kolios G, Spyrou GM, Maroulakou I. Computational profiling of the gut-brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform 2020; 20:825-841. [PMID: 29186317 DOI: 10.1093/bib/bbx154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
Almost 2500 years after Hippocrates' observations on health and its direct association to the gastrointestinal tract, a paradigm shift has recently occurred, making the gut and its symbionts (bacteria, fungi, archaea and viruses) a point of convergence for studies. It is nowadays well established that the gut microflora's compositional diversity regulates via its genes (the microbiome) the host's health and provides preliminary insights into disease progression and regulation. The microbiome's involvement is evident in immunological and physiological studies that link changes in its biodiversity to its contributions to the host's phenotype but also in neurological investigations, substantiating the aptly named gut-brain axis. The definitive mechanisms of this last bidirectional interaction will be our main focus because it presents researchers with a new conundrum. In this review, we prospect current literature for computational analysis methodologies that accommodate the need for better understanding of the microbiome-gut-brain interactions and neurological disorder onset and progression, through cross-disciplinary systems biology applications. We will present bioinformatics tools used in exploring these synergies that help build and interpret microbial 16S ribosomal RNA data sets, produced by shotgun and high-throughput sequencing of healthy and neurological disorder samples stored in biological databases. These approaches provide alternative means for researchers to form hypotheses to their inquests faster, cheaper and swith precision. The goal of these studies relies on the integration of combined metagenomics and metabolomics assessments. An accurate characterization of the microbiome and its functionality can support new diagnostic, prognostic and therapeutic strategies for neurological disorders, customized for each individual host.
Collapse
|
9
|
Verma M, Bassaganya-Riera J, Leber A, Tubau-Juni N, Hoops S, Abedi V, Chen X, Hontecillas R. High-resolution computational modeling of immune responses in the gut. Gigascience 2020; 8:5513894. [PMID: 31185494 PMCID: PMC6559340 DOI: 10.1093/gigascience/giz062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/19/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori causes gastric cancer in 1–2% of cases but is also beneficial for protection against allergies and gastroesophageal diseases. An estimated 85% of H. pylori–colonized individuals experience no detrimental effects. To study the mechanisms promoting host tolerance to the bacterium in the gastrointestinal mucosa and systemic regulatory effects, we investigated the dynamics of immunoregulatory mechanisms triggered by H. pylori using a high-performance computing–driven ENteric Immunity SImulator multiscale model. Immune responses were simulated by integrating an agent-based model, ordinary, and partial differential equations. Results The outputs were analyzed using 2 sequential stages: the first used a partial rank correlation coefficient regression–based and the second a metamodel-based global sensitivity analysis. The influential parameters screened from the first stage were selected to be varied for the second stage. The outputs from both stages were combined as a training dataset to build a spatiotemporal metamodel. The Sobol indices measured time-varying impact of input parameters during initiation, peak, and chronic phases of infection. The study identified epithelial cell proliferation and epithelial cell death as key parameters that control infection outcomes. In silico validation showed that colonization with H. pylori decreased with a decrease in epithelial cell proliferation, which was linked to regulatory macrophages and tolerogenic dendritic cells. Conclusions The hybrid model of H. pylori infection identified epithelial cell proliferation as a key factor for successful colonization of the gastric niche and highlighted the role of tolerogenic dendritic cells and regulatory macrophages in modulating the host responses and shaping infection outcomes.
Collapse
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, 1 Riverside Circle, Roanoke, VA 24016, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Xi Chen
- Grado Department of Industrial and Systems Engineering, Virginia Tech, 250 Perry St, Blacksburg, VA 24061, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Abstract
OBJECTIVES Chronic pancreatitis (CP) is associated with high rates of recurrent hospitalizations, which predisposes to Clostridium difficile infection (CDI). We investigate the burden of CDI in CP. METHODS We identified records of patients with CP from the Nationwide Inpatient Sample (NIS) 2012-2014 and estimated the impact of CDI on their outcomes. We calculated the adjusted odds ratio (AOR) of CP on having CDI (NIS 2014). From NIS 2007-2014, we plotted the trends of CDI and its interaction with CP. RESULTS From 2012 to 2014, 886 (2.72%) of the 32,614 CP patients had concomitant CDI, which was associated with poorer outcomes: acute kidney injury (AOR, 2.57 [95% confidence interval {CI}, 2.11-3.13]), length of stay (13.3 vs 7.4 days), and charges (US $127,496 vs US $72,767), but not mortality (AOR, 0.93 [95% CI, 0.28-3.05]). In 2014, CP was associated with an increased risk of CDI (crude odds ratio, 2.10 [95% CI, 1.95-2.26]), which persisted after multivariate adjustment (AOR, 2.03 [95% CI, 1.87-2.19]). From 2007 to 2014, the annual prevalence of CDI was 106.4 cases per 10,000 hospitalizations, increasing from 2007 (95.5/10,000) to 2014 (118.4/10,000), with a 3.7 times higher annual rate of increase among CP versus no-CP patients (13.4/10,000 vs 3.7/10,000 population/year). CONCLUSIONS Chronic pancreatitis patients have high burden of CDI and may benefit from CDI prophylaxis.
Collapse
|
11
|
Verma M, Hontecillas R, Tubau-Juni N, Abedi V, Bassaganya-Riera J. Challenges in Personalized Nutrition and Health. Front Nutr 2018; 5:117. [PMID: 30555829 PMCID: PMC6281760 DOI: 10.3389/fnut.2018.00117] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, PA, United States
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Parker A, Lawson MAE, Vaux L, Pin C. Host-microbe interaction in the gastrointestinal tract. Environ Microbiol 2018; 20:2337-2353. [PMID: 28892253 PMCID: PMC6175405 DOI: 10.1111/1462-2920.13926] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in-vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond.
Collapse
Affiliation(s)
- Aimée Parker
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| | | | - Laura Vaux
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| | - Carmen Pin
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| |
Collapse
|
13
|
Leber A, Hontecillas R, Tubau-Juni N, Zoccoli-Rodriguez V, Abedi V, Bassaganya-Riera J. NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host-Gut Microbiota Interactions during Inflammatory Bowel Disease. Front Immunol 2018. [PMID: 29535731 PMCID: PMC5834749 DOI: 10.3389/fimmu.2018.00363] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interactions among the gut microbiome, dysregulated immune responses, and genetic factors contribute to the pathogenesis of inflammatory bowel disease (IBD). Nlrx1−/− mice have exacerbated disease severity, colonic lesions, and increased inflammatory markers. Global transcriptomic analyses demonstrate enhanced mucosal antimicrobial defense response, chemokine and cytokine expression, and epithelial cell metabolism in colitic Nlrx1−/− mice compared to wild-type (WT) mice. Cell-specificity studies using cre-lox mice demonstrate that the loss of NLRX1 in intestinal epithelial cells (IEC) recapitulate the increased sensitivity to DSS colitis observed in whole body Nlrx1−/− mice. Further, organoid cultures of Nlrx1−/− and WT epithelial cells confirm the altered patterns of proliferation, amino acid metabolism, and tight junction expression. These differences in IEC behavior can impact the composition of the microbiome. Microbiome analyses demonstrate that colitogenic bacterial taxa such as Veillonella and Clostridiales are increased in abundance in Nlrx1−/− mice and in WT mice co-housed with Nlrx1−/− mice. The transfer of an Nlrx1−/−-associated gut microbiome through co-housing worsens disease in WT mice confirming the contributions of the microbiome to the Nlrx1−/− phenotype. To validate NLRX1 effects on IEC metabolism mediate gut–microbiome interactions, restoration of WT glutamine metabolic profiles through either exogenous glutamine supplementation or administration of 6-diazo-5-oxo-l-norleucine abrogates differences in inflammation, microbiome, and overall disease severity in Nlrx1−/− mice. The influence NLRX1 deficiency on SIRT1-mediated effects is identified to be an upstream controller of the Nlrx1−/− phenotype in intestinal epithelial cell function and metabolism. The altered IEC function and metabolisms leads to changes in barrier permeability and microbiome interactions, in turn, promoting greater translocation and inflammation and resulting in an increased disease severity. In conclusion, NLRX1 is an immunoregulatory molecule and a candidate modulator of the interplay between mucosal inflammation, metabolism, and the gut microbiome during IBD.
Collapse
Affiliation(s)
- Andrew Leber
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Raquel Hontecillas
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, PA, United States
| | - Josep Bassaganya-Riera
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Mayorga LS, Verma M, Hontecillas R, Hoops S, Bassaganya-Riera J. Agents and networks to model the dynamic interactions of intracellular transport. CELLULAR LOGISTICS 2017; 7:e1392401. [PMID: 29296512 DOI: 10.1080/21592799.2017.1392401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023]
Abstract
Cell biology is increasingly evolving to become a more formal and quantitative science. The field of intracellular transport is no exception. However, it is extremely challenging to formulate mathematical and computational models for processes that involve dynamic structures that continuously change their shape, position and composition, leading to information transfer and functional outcomes. The two major strategies employed to represent intracellular trafficking are based on "ordinary differential equations" and "agent-" based modeling. Both approaches have advantages and drawbacks. Combinations of both modeling strategies have promising characteristics to generate meaningful simulations for intracellular transport and allow the formulation of new hypotheses and provide new insights. In the near future, cell biologists will encounter and hopefully overcome the challenge of translating descriptive cartoon representations of biological systems into mathematical network models.
Collapse
Affiliation(s)
- Luis S Mayorga
- IHEM (Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
15
|
Informatics for Nutritional Genetics and Genomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1005:143-166. [PMID: 28916932 DOI: 10.1007/978-981-10-5717-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While traditional nutrition science is focusing on nourishing population, modern nutrition is aiming at benefiting individual people. The goal of modern nutritional research is to promote health, prevent diseases, and improve performance. With the development of modern technologies like bioinformatics, metabolomics, and molecular genetics, this goal is becoming more attainable. In this chapter, we will discuss the new concepts and technologies especially in informatics and molecular genetics and genomics, and how they have been implemented to change the nutrition science and lead to the emergence of new branches like nutrigenomics, nutrigenetics, and nutritional metabolomics.
Collapse
|
16
|
Modeling new immunoregulatory therapeutics as antimicrobial alternatives for treating Clostridium difficile infection. Artif Intell Med 2017; 78:1-13. [DOI: 10.1016/j.artmed.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/06/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022]
|
17
|
|
18
|
Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori Infection. PLoS One 2016; 11:e0167440. [PMID: 27936058 PMCID: PMC5147901 DOI: 10.1371/journal.pone.0167440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Immune responses to Helicobacter pylori are orchestrated through complex balances of host-bacterial interactions, including inflammatory and regulatory immune responses across scales that can lead to the development of the gastric disease or the promotion of beneficial systemic effects. While inflammation in response to the bacterium has been reasonably characterized, the regulatory pathways that contribute to preventing inflammatory events during H. pylori infection are incompletely understood. To aid in this effort, we have generated a computational model incorporating recent developments in the understanding of H. pylori-host interactions. Sensitivity analysis of this model reveals that a regulatory macrophage population is critical in maintaining high H. pylori colonization without the generation of an inflammatory response. To address how this myeloid cell subset arises, we developed a second model describing an intracellular signaling network for the differentiation of macrophages. Modeling studies predicted that LANCL2 is a central regulator of inflammatory and effector pathways and its activation promotes regulatory responses characterized by IL-10 production while suppressing effector responses. The predicted impairment of regulatory macrophage differentiation by the loss of LANCL2 was simulated based on multiscale linkages between the tissue-level gastric mucosa and the intracellular models. The simulated deletion of LANCL2 resulted in a greater clearance of H. pylori, but also greater IFNγ responses and damage to the epithelium. The model predictions were validated within a mouse model of H. pylori colonization in wild-type (WT), LANCL2 whole body KO and myeloid-specific LANCL2-/- (LANCL2Myeloid) mice, which displayed similar decreases in H. pylori burden, CX3CR1+ IL-10-producing macrophages, and type 1 regulatory (Tr1) T cells. This study shows the importance of LANCL2 in the induction of regulatory responses in macrophages and T cells during H. pylori infection.
Collapse
|
19
|
Knight-Schrijver V, Chelliah V, Cucurull-Sanchez L, Le Novère N. The promises of quantitative systems pharmacology modelling for drug development. Comput Struct Biotechnol J 2016; 14:363-370. [PMID: 27761201 PMCID: PMC5064996 DOI: 10.1016/j.csbj.2016.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
Recent growth in annual new therapeutic entity (NTE) approvals by the U.S. Food and Drug Administration (FDA) suggests a positive trend in current research and development (R&D) output. Prior to this, the cost of each NTE was considered to be rising exponentially, with compound failure occurring mainly in clinical phases. Quantitative systems pharmacology (QSP) modelling, as an additional tool in the drug discovery arsenal, aims to further reduce NTE costs and improve drug development success. Through in silico mathematical modelling, QSP can simulate drug activity as perturbations in biological systems and thus understand the fundamental interactions which drive disease pathology, compound pharmacology and patient response. Here we review QSP, pharmacometrics and systems biology models with respect to the diseases covered as well as their clinical relevance and applications. Overall, the majority of modelling focus was aligned with the priority of drug-discovery and clinical trials. However, a few clinically important disease categories, such as Immune System Diseases and Respiratory Tract Diseases, were poorly covered by computational models. This suggests a possible disconnect between clinical and modelling agendas. As a standard element of the drug discovery pipeline the uptake of QSP might help to increase the efficiency of drug development across all therapeutic indications.
Collapse
Affiliation(s)
| | - V. Chelliah
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - N. Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
- Corresponding author.
| |
Collapse
|
20
|
Denny JE, Powell WL, Schmidt NW. Local and Long-Distance Calling: Conversations between the Gut Microbiota and Intra- and Extra-Gastrointestinal Tract Infections. Front Cell Infect Microbiol 2016; 6:41. [PMID: 27148490 PMCID: PMC4826874 DOI: 10.3389/fcimb.2016.00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Preservation of health from infectious diseases depends upon both mucosal and systemic immunity via the collaborative effort of innate and adaptive immune responses. The proficiency of host immunity stems from robust defense mechanisms—physical barriers and specialized immune cells—and a failure of these mechanisms leads to pathology. Intriguingly, immunocompetence to pathogens can be shaped by the gut microbiome as recent publications highlight a dynamic interplay between the gut microbiome and host susceptibility to infection. Modulation of host immunity to enteric pathogens has long been studied where gut bacteria shape multiple facts of both innate and adaptive immunity. Conversely, the impact of gut commensals on host immunity to extra-gastrointestinal (GI) tract infections has only recently been recognized. In this context, the gut microbiome can augment host immunity to extra-GI tract bacterial, viral, and parasitic pathogens. This review explores the research that affords insight into the role of the gut microbiome in various infectious diseases, with a particular emphasis on extra-GI tract infections. A better understanding of the link between the gut microbiome and infectious disease will be critical for improving global health in the years ahead.
Collapse
Affiliation(s)
- Joshua E Denny
- Department of Microbiology and Immunology, University of Louisville Louisville, KY, USA
| | - Whitney L Powell
- Department of Microbiology and Immunology, University of Louisville Louisville, KY, USA
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, University of Louisville Louisville, KY, USA
| |
Collapse
|
21
|
Allison DB, Bassaganya-Riera J, Burlingame B, Brown AW, le Coutre J, Dickson SL, van Eden W, Garssen J, Hontecillas R, Khoo CSH, Knorr D, Kussmann M, Magistretti PJ, Mehta T, Meule A, Rychlik M, Vögele C. Goals in Nutrition Science 2015-2020. Front Nutr 2015; 2:26. [PMID: 26442272 PMCID: PMC4563164 DOI: 10.3389/fnut.2015.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- David B Allison
- Office of Energetics and Nutrition Obesity Research Center, School of Public Health, University of Alabama at Birmingham , Birmingham, AL , USA ; Section on Statistical Genetics, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Nutrition Sciences, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Biostatistics, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech , Blacksburg, VA , USA
| | - Barbara Burlingame
- Deakin University , Melbourne, VIC , Australia ; American University of Rome , Rome , Italy
| | - Andrew W Brown
- Office of Energetics and Nutrition Obesity Research Center, School of Public Health, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Johannes le Coutre
- Nestlé Research Center , Lausanne , Switzerland ; Organization for Interdisciplinary Research Projects, The University of Tokyo , Tokyo , Japan ; École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Suzanne L Dickson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg , Gothenburg , Sweden
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech , Blacksburg, VA , USA
| | - Chor San H Khoo
- North American Branch of International Life Sciences Institute , Washington, DC , USA
| | | | - Martin Kussmann
- École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland ; Nestlé Institute of Health Sciences SA , Lausanne , Switzerland
| | - Pierre J Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology , Thuwal , Saudi Arabia ; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Tapan Mehta
- Department of Health Services Administration, Nutrition Obesity Research Center, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Adrian Meule
- Department of Psychology, University of Salzburg , Salzburg , Austria
| | - Michael Rychlik
- Analytical Food Chemistry, Technische Universität München , Freising , Germany
| | - Claus Vögele
- Research Unit INSIDE, Institute for Health and Behaviour, University of Luxembourg , Luxembourg , Luxembourg
| |
Collapse
|
22
|
Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection. PLoS One 2015; 10:e0136139. [PMID: 26327290 PMCID: PMC4556515 DOI: 10.1371/journal.pone.0136139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/31/2015] [Indexed: 01/08/2023] Open
Abstract
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.
Collapse
|