1
|
Megawati D, Armitige LY, Tazi L. Differential Host Gene Expression in Response to Infection by Different Mycobacterium tuberculosis Strains-A Pilot Study. Microorganisms 2024; 12:2146. [PMID: 39597535 PMCID: PMC11596623 DOI: 10.3390/microorganisms12112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Tuberculosis (TB) represents a global public health threat and is a leading cause of morbidity and mortality worldwide. Effective control of TB is complicated with the emergence of multidrug resistance. Yet, there is a fundamental gap in understanding the complex and dynamic interactions between different Mycobacterium tuberculosis strains and the host. In this pilot study, we investigated the host immune response to different M. tuberculosis strains, including drug-sensitive avirulent or virulent, and rifampin-resistant or isoniazid-resistant virulent strains in human THP-1 cells. We identified major differences in the gene expression profiles in response to infection with these strains. The expression of IDO1 and IL-1β in the infected cells was stronger in all virulent M. tuberculosis strains. The most striking result was the overexpression of many interferon-stimulated genes (ISGs) in cells infected with the isoniazid-resistant strain, compared to the rifampin-resistant and the drug-sensitive strains. Our data indicate that infection with the isoniazid-resistant M. tuberculosis strain preferentially resulted in cGAS-STING/STAT1 activation, which induced a characteristic host immune response. These findings reveal complex gene signatures and a dynamic variation in the immune response to infection by different M. tuberculosis strains.
Collapse
Affiliation(s)
- Dewi Megawati
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar 80239, Bali, Indonesia
| | | | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
2
|
Xu M, Liu M, Liu T, Pan X, Ren Q, Han T, Gou L. HigA2 (Rv2021c) Is a Transcriptional Regulator with Multiple Regulatory Targets in Mycobacterium tuberculosis. Microorganisms 2024; 12:1244. [PMID: 38930627 PMCID: PMC11205783 DOI: 10.3390/microorganisms12061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Toxin-antitoxin (TA) systems are the major mechanism for persister formation in Mycobacterium tuberculosis (Mtb). Previous studies found that HigBA2 (Rv2022c-Rv2021c), a predicted type II TA system of Mtb, could be activated for transcription in response to multiple stresses such as anti-tuberculosis drugs, nutrient starvation, endure hypoxia, acidic pH, etc. In this study, we determined the binding site of HigA2 (Rv2021c), which is located in the coding region of the upstream gene higB2 (Rv2022c), and the conserved recognition motif of HigA2 was characterized via oligonucleotide mutation. Eight binding sites of HigA2 were further found in the Mtb genome according to the conserved motif. RT-PCR showed that HigA2 can regulate the transcription level of all eight of these genes and three adjacent downstream genes. DNA pull-down experiments showed that twelve functional regulators sense external regulatory signals and may regulate the transcription of the HigBA2 system. Of these, Rv0903c, Rv0744c, Rv0474, Rv3124, Rv2603c, and Rv3583c may be involved in the regulation of external stress signals. In general, we identified the downstream target genes and possible upstream regulatory genes of HigA2, which paved the way for the illustration of the persistence establishment mechanism in Mtb.
Collapse
Affiliation(s)
- Mingyan Xu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Meikun Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Tong Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Xuemei Pan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Qi Ren
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Tiesheng Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (M.X.); (M.L.); (T.L.); (X.P.); (Q.R.)
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
3
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Loy DE, Bauman AA, Massoudi LM, Dolganov G, Strong M, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of Mycobacterium tuberculosis that survives prolonged multi-drug treatment in mice. mBio 2023; 14:e0236323. [PMID: 37905920 PMCID: PMC10746229 DOI: 10.1128/mbio.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.
Collapse
Affiliation(s)
- Elizabeth A. Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin J. Reid
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samuel T. Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah E. M. Born
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Monica R. Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rebecca M. Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Kendra N. Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Jeanne B. Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Dorothy E. Loy
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, California, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, California, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Camille M. Moore
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Cui Y, Dang G, Wang H, Tang Y, Lv M, Liu S, Song N. DosR's multifaceted role on Mycobacterium bovis BCG revealed through multi-omics. Front Cell Infect Microbiol 2023; 13:1292864. [PMID: 38076461 PMCID: PMC10703047 DOI: 10.3389/fcimb.2023.1292864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular bacterium that causes a highly contagious and potentially lethal tuberculosis (TB) in humans. It can maintain a dormant TB infection within the host. DosR (dormancy survival regulator) (Rv3133c) has been recognized as one of the key transcriptional proteins regulating bacterial dormancy and participating in various metabolic processes. In this study, we extensively investigate the still not well-comprehended role and mechanism of DosR in Mycobacterium bovis (M. bovis) Bacillus Calmette-Guérin (BCG) through a combined omics analysis. Our study finds that deleting DosR significantly affects the transcriptional levels of 104 genes and 179 proteins. Targeted metabolomics data for amino acids indicate that DosR knockout significantly upregulates L-Aspartic acid and serine synthesis, while downregulating seven other amino acids, including L-histidine and lysine. This suggests that DosR regulates amino acid synthesis and metabolism. Taken together, these findings provide molecular and metabolic bases for DosR effects, suggesting that DosR may be a novel regulatory target.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yiyi Tang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingyue Lv
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ningning Song
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| |
Collapse
|
5
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
6
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
7
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Bauman AA, Massoudi LM, Dolganov G, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531356. [PMID: 36945388 PMCID: PMC10028792 DOI: 10.1101/2023.03.06.531356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.
Collapse
Affiliation(s)
- Elizabeth A Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin J Reid
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel T Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E M Born
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monica R Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Kendra N Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jeanne B Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Allison A Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lisa M Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, CA, USA
- UCSF Center for Tuberculosis, University of California, San Francisco, CA, USA
| | - Martin I Voskuil
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory T Robertson
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camille M Moore
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Nicholas D Walter
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
9
|
Gautam US, Asrican R, Sempowski GD. Targeted dose delivery of Mycobacterium tuberculosis in mice using silicon antifoaming agent via aerosol exposure system. PLoS One 2022; 17:e0276130. [PMID: 36228009 PMCID: PMC9560519 DOI: 10.1371/journal.pone.0276130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that forms aggregates (clumps) on solid agar plates and in liquid media. Detergents such as Tween 80/Tyloxapol are considered the gold standard to disrupt clump formation in Mtb cultures. The presence of detergent, however, may generate foam and hinder Mtb aerosolization thus requiring addition of an antifoam agent for optimal Mtb aerosol-based procedures. Aerosol inhalation can be technically challenging, in particular to achieve a reproducible inhaled target dose. In this study, the impact of an antifoam, the silicon antifoaming agent (SAF), on Mtb aerosolization and whole-body mouse aerosol infection was investigated. A comparative study using SAF in a liquid suspension containing Mycobacterium bovis BCG (M. bovis BCG) or Mtb H37Rv did not cause any adverse effect on bacterial viability. Incorporation of SAF during mycobacteria inhalation procedures revealed that aerosolized mycobacterial strains were maintained under controlled environmental conditions such as humidity, temperature, pressure, and airflow inside the aerosol chamber. In addition, environmental factors and spray factors were not affected by the presence of SAF in mycobacterial cultures during aerosolization. Spray factor was significantly less during aerosol procedures with a low-input dose of mycobacteria in comparison to high-dose, as predicted. The mycobacterial load recovered in the biosampler (AGI) was ~2–3 logs lower than nebulizer or input bacterial load. A consistent Mtb bacillary load determined in mouse lungs indicates that SAF does not affect mycobacteria aerosolization during the aerosol generation process. These data confirmed that 1) SAF prevents formation of excessive foam during aerosolization, 2) SAF had no negative impact on mycobacterial viability within aerosol droplets, 3) Mtb droplets within aerosol-generated particles are well within the range required for reaching and depositing deep into lung tissue, and 4) SAF had no negative impact on achieving a target dose in mice exposed to Mtb aerosol.
Collapse
Affiliation(s)
- Uma Shankar Gautam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (USG); (GDS)
| | - Rosemarie Asrican
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Departments of Medicine and Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (USG); (GDS)
| |
Collapse
|
10
|
Asai M, Li Y, Spiropoulos J, Cooley W, Everest DJ, Kendall SL, Martín C, Robertson BD, Langford PR, Newton SM. Galleria mellonella as an infection model for the virulent Mycobacterium tuberculosis H37Rv. Virulence 2022; 13:1543-1557. [PMID: 36052440 PMCID: PMC9481108 DOI: 10.1080/21505594.2022.2119657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a leading cause of infectious disease mortality. Animal infection models have contributed substantially to our understanding of TB, yet their biological and non-biological limitations are a research bottleneck. There is a need for more ethically acceptable, economical, and reproducible TB infection models capable of mimicking key aspects of disease. Here, we demonstrate and present a basic description of how Galleria mellonella (the greater wax moth, Gm) larvae can be used as a low cost, rapid, and ethically more acceptable model for TB research. This is the first study to infect Gm with the fully virulent MTB H37Rv, the most widely used strain in research. Infection of Gm with MTB resulted in a symptomatic lethal infection, the virulence of which differed from both attenuated Mycobacterium bovis BCG and auxotrophic MTB strains. The Gm-MTB model can also be used for anti-TB drug screening, although CFU enumeration from Gm is necessary for confirmation of mycobacterial load reducing activity of the tested compound. Furthermore, comparative virulence of MTB isogenic mutants can be determined in Gm. However, comparison of mutant phenotypes in Gm against conventional models must consider the limitations of innate immunity. Our findings indicate that Gm will be a practical, valuable, and advantageous additional model to be used alongside existing models to advance tuberculosis research.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - William Cooley
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - David J Everest
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - Sharon L Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hartfield, UK
| | - Carlos Martín
- Department of Microbiology, Facultad de Medicina Universidad de Zaragoza, CIBERES, (ISCIII), Spain
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Sandra M Newton
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
11
|
Rani A, Alam A, Ahmad F, P. M, Saurabh A, Zarin S, Mitra DK, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Methyltransferase Rv1515c Can Suppress Host Defense Mechanisms by Modulating Immune Functions Utilizing a Multipronged Mechanism. Front Mol Biosci 2022; 9:906387. [PMID: 35813825 PMCID: PMC9263924 DOI: 10.3389/fmolb.2022.906387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) gene Rv1515c encodes a conserved hypothetical protein exclusively present within organisms of MTB complex and absent in non-pathogenic mycobacteria. In silico analysis revealed that Rv1515c contain S-adenosylmethionine binding site and methyltransferase domain. The DNA binding and DNA methyltransferase activity of Rv1515c was confirmed in vitro. Knock-in of Rv1515c in a model mycobacteria M. smegmatis (M. s_Rv1515c) resulted in remarkable physiological and morphological changes and conferred the recombinant strain with an ability to adapt to various stress conditions, including resistance to TB drugs. M. s_Rv1515c was phagocytosed at a greater rate and displayed extended intra-macrophage survival in vitro. Recombinant M. s_Rv1515c contributed to enhanced virulence by suppressing the host defense mechanisms including RNS and ROS production, and apoptotic clearance. M. s_Rv1515c, while suppressing the phagolysosomal maturation, modulated pro-inflammatory cytokine production and also inhibited antigen presentation by downregulating the expression of MHC-I/MHC-II and co-stimulatory signals CD80 and CD86. Mice infected with M. s_Rv1515c produced more Treg cells than vector control (M. s_Vc) and exhibited reduced effector T cell responses, along-with reduced expression of macrophage activation markers in the chronic phase of infection. M. s_Rv1515c was able to survive in the major organs of mice up to 7 weeks post-infection. These results indicate a crucial role of Rv1515c in M. tb pathogenesis.
Collapse
Affiliation(s)
- Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT-D), New Delhi, India
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Faraz Ahmad
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Manjunath P.
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Abhinav Saurabh
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheeba Zarin
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- *Correspondence: Seyed E. Hasnain, , , , Nasreen Z. Ehtesham, ,
| | - Nasreen Z. Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
- *Correspondence: Seyed E. Hasnain, , , , Nasreen Z. Ehtesham, ,
| |
Collapse
|
12
|
Stupar M, Furness J, De Voss CJ, Tan L, West NP. Two-component sensor histidine kinases of Mycobacterium tuberculosis: beacons for niche navigation. Mol Microbiol 2022; 117:973-985. [PMID: 35338720 PMCID: PMC9321153 DOI: 10.1111/mmi.14899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Intracellular bacterial pathogens such as Mycobacterium tuberculosis are remarkably adept at surviving within a host, employing a variety of mechanisms to counteract host defenses and establish a protected niche. Constant surveying of the environment is key for pathogenic mycobacteria to discern their immediate location and coordinate the expression of genes necessary for adaptation. Two‐component systems efficiently perform this role, typically comprised of a transmembrane sensor kinase and a cytoplasmic response regulator. In this review, we describe the role of two‐component systems in bacterial pathogenesis, focusing predominantly on the role of sensor kinases of M. tuberculosis. We highlight important features of sensor kinases in mycobacterial infection, discuss ways in which these signaling proteins sense and respond to environments, and how this is attuned to their intracellular lifestyle. Finally, we discuss recent studies which have identified and characterized inhibitors of two‐component sensor kinases toward establishing a new strategy in anti‐mycobacterial therapy.
Collapse
Affiliation(s)
- Miljan Stupar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Juanelle Furness
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Christopher J De Voss
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
13
|
Martínez-Pérez A, Estévez O, González-Fernández Á. Contribution and Future of High-Throughput Transcriptomics in Battling Tuberculosis. Front Microbiol 2022; 13:835620. [PMID: 35283833 PMCID: PMC8908424 DOI: 10.3389/fmicb.2022.835620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
While Tuberculosis (TB) infection remains a serious challenge worldwide, big data and “omic” approaches have greatly contributed to the understanding of the disease. Transcriptomics have been used to tackle a wide variety of queries including diagnosis, treatment evolution, latency and reactivation, novel target discovery, vaccine response or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in data interpretation may hinder transcriptomics complete potential. Technology evolution and collaborative efforts among multidisciplinary groups might be key in its exploitation. Here, we discuss the main fields explored in TB using transcriptomics, and identify the challenges that need to be addressed for a real implementation in TB diagnosis, prevention and therapy.
Collapse
Affiliation(s)
- Amparo Martínez-Pérez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - Olivia Estévez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - África González-Fernández
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| |
Collapse
|
14
|
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is an infectious disease caused by Mycobacterium tuberculosis which is resistant to at least isoniazid and rifampicin. This disease is a worldwide threat and complicates the control of tuberculosis (TB). Long treatment duration, a combination of several drugs, and the adverse effects of these drugs are the factors that play a role in the poor outcomes of MDR-TB patients. There have been many studies with repurposed drugs to improve MDR-TB outcomes, including clofazimine. Clofazimine recently moved from group 5 to group B of drugs that are used to treat MDR-TB. This drug belongs to the riminophenazine class, which has lipophilic characteristics and was previously discovered to treat TB and approved for leprosy. This review discusses the role of clofazimine as a treatment component in patients with MDR-TB, and the drug’s properties. In addition, we discuss the efficacy, safety, and tolerability of clofazimine for treating MDR-TB. This study concludes that the clofazimine-containing regimen has better efficacy compared with the standard one and is also well-tolerated. Clofazimine has the potential to shorten the duration of MDR-TB treatment.
Collapse
|
15
|
In Vivo Antigen Expression Regulates CD4 T Cell Differentiation and Vaccine Efficacy against Mycobacterium tuberculosis Infection. mBio 2021; 12:mBio.00226-21. [PMID: 33879592 PMCID: PMC8092222 DOI: 10.1128/mbio.00226-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions, and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host.
Collapse
|
16
|
Clemmensen HS, Dube JY, McIntosh F, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Behr MA, Mortensen R. In vivo antigen expression regulates CD4 T cell differentiation and vaccine efficacy against Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.02.429488. [PMID: 33564764 PMCID: PMC7872352 DOI: 10.1101/2021.02.02.429488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to IFN-γ or nutrient/oxygen deprivation of in vitro infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analysed their corresponding CD4 T cell phenotype and vaccine-protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination and, against the overexpressing strain, vaccination with MPT70 conferred similar protection as ESAT-6. Together our data indicate that high in vivo antigen expression drives T cells towards terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less-differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune-balance in favor of the host.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Health Technology, Technical University of Denmark
| | - Jean-Yves Dube
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Fiona McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Health Technology, Technical University of Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Immunology and Microbiology, University of Copenhagen
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| |
Collapse
|
17
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
18
|
Zheng H, Williams JT, Aleiwi B, Ellsworth E, Abramovitch RB. Inhibiting Mycobacterium tuberculosis DosRST Signaling by Targeting Response Regulator DNA Binding and Sensor Kinase Heme. ACS Chem Biol 2020; 15:52-62. [PMID: 31556993 PMCID: PMC6970277 DOI: 10.1021/acschembio.8b00849] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Mycobacterium
tuberculosis (Mtb) possesses a two-component
regulatory system, DosRST, that enables Mtb to sense host immune cues
and establish a state of nonreplicating persistence (NRP). NRP bacteria
are tolerant to several antimycobacterial drugs in vitro and are thought to play a role in the long course of tuberculosis
therapy. Previously, we reported the discovery of six novel chemical
inhibitors of DosRST, named HC101A–106A, from a whole cell,
reporter-based phenotypic high throughput screen. Here, we report
functional and mechanism of action studies of HC104A and HC106A. RNaseq
transcriptional profiling shows that the compounds downregulate genes
of the DosRST regulon. Both compounds reduce hypoxia-induced triacylglycerol
synthesis by ∼50%. HC106A inhibits Mtb survival during hypoxia-induced
NRP; however, HC104A did not inhibit survival during NRP. An electrophoretic
mobility assay shows that HC104A inhibits DosR DNA binding in a dose-dependent
manner, indicating that HC104A may function by directly targeting
DosR. In contrast, UV–visible spectroscopy studies suggest
HC106A directly targets the sensor kinase heme, via a mechanism that
is distinct from the oxidation and alkylation of heme previously observed
with artemisinin (HC101A). Synergistic interactions were observed
when DosRST inhibitors were examined in pairwise combinations with
the strongest potentiation observed between artemisinin paired with
HC102A, HC103A, or HC106A. Our data collectively show that the DosRST
pathway can be inhibited by multiple distinct mechanisms.
Collapse
|
19
|
Gautam US, Mehra S, Kumari P, Alvarez X, Niu T, Tyagi JS, Kaushal D. Mycobacterium tuberculosis sensor kinase DosS modulates the autophagosome in a DosR-independent manner. Commun Biol 2019; 2:349. [PMID: 31552302 PMCID: PMC6754383 DOI: 10.1038/s42003-019-0594-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Dormancy is a key characteristic of the intracellular life-cycle of Mtb. The importance of sensor kinase DosS in mycobacteria are attributed in part to our current findings that DosS is required for both persistence and full virulence of Mtb. Here we show that DosS is also required for optimal replication in macrophages and involved in the suppression of TNF-α and autophagy pathways. Silencing of these pathways during the infection process restored full virulence in MtbΔdosS mutant. Notably, a mutant of the response regulator DosR did not exhibit the attenuation in macrophages, suggesting that DosS can function independently of DosR. We identified four DosS targets in Mtb genome; Rv0440, Rv2859c, Rv0994, and Rv0260c. These genes encode functions related to hypoxia adaptation, which are not directly controlled by DosR, e.g., protein recycling and chaperoning, biosynthesis of molybdenum cofactor and nitrogen metabolism. Our results strongly suggest a DosR-independent role for DosS in Mtb.
Collapse
Affiliation(s)
- Uma S. Gautam
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Present Address: Duke Human Vaccine Institute, Duke University School of Medicine, 909 S. LaSalle St., Durham, NC 27710 USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
- Center for Experimental Infectious Diseases Research, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
| | - Priyanka Kumari
- All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | - Tianhua Niu
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, 70112 LA USA
| | - Jaya S. Tyagi
- All India Institute of Medical Sciences, New Delhi, 110029 India
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute Faridabad, Haryana, 121001 India
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, 70112 LA USA
| |
Collapse
|
20
|
Girardin RC, Bai G, He J, Sui H, McDonough KA. AbmR (Rv1265) is a novel transcription factor of Mycobacterium tuberculosis that regulates host cell association and expression of the non-coding small RNA Mcr11. Mol Microbiol 2018; 110:811-830. [PMID: 30207611 PMCID: PMC6282994 DOI: 10.1111/mmi.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022]
Abstract
Gene regulatory networks used by Mycobacterium tuberculosis (Mtb) during infection include many genes of unknown function, confounding efforts to determine their roles in Mtb biology. Rv1265 encodes a conserved hypothetical protein that is expressed during infection and in response to elevated levels of cyclic AMP. Here, we report that Rv1265 is a novel auto‐inhibitory ATP‐binding transcription factor that upregulates expression of the small non‐coding RNA Mcr11, and propose that Rv1265 be named ATP‐binding mcr11regulator (AbmR). AbmR directly and specifically bound DNA, as determined by electrophoretic mobility shift assays, and this DNA‐binding activity was enhanced by AbmR’s interaction with ATP. Genetic knockout of abmR in Mtb increased abmR promoter activity and eliminated growth phase‐dependent increases in mcr11 expression during hypoxia. Mutagenesis identified arginine residues in the carboxy terminus that are critical for AbmR’s DNA‐binding activity and gene regulatory function. Limited similarity to other DNA‐ or ATP‐binding domains suggests that AbmR belongs to a novel class of DNA‐ and ATP‐binding proteins. AbmR was also found to form large organized structures in solution and facilitate the serum‐dependent association of Mtb with human lung epithelial cells. These results indicate a potentially complex role for AbmR in Mtb biology.
Collapse
Affiliation(s)
- Roxie C Girardin
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Jie He
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Haixin Sui
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
21
|
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJC. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4972762. [PMID: 29873719 PMCID: PMC5989597 DOI: 10.1093/femspd/fty036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Africa Health Research Institute, K-RITH Tower Building, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
22
|
An IclR like protein from mycobacteria regulates leuCD operon and induces dormancy-like growth arrest in Mycobacterium smegmatis. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
24
|
Hudock TA, Foreman TW, Bandyopadhyay N, Gautam US, Veatch AV, LoBato DN, Gentry KM, Golden NA, Cavigli A, Mueller M, Hwang SA, Hunter RL, Alvarez X, Lackner AA, Bader JS, Mehra S, Kaushal D. Hypoxia Sensing and Persistence Genes Are Expressed during the Intragranulomatous Survival of Mycobacterium tuberculosis. Am J Respir Cell Mol Biol 2017; 56:637-647. [PMID: 28135421 PMCID: PMC5449490 DOI: 10.1165/rcmb.2016-0239oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Although it is accepted that the environment within the granuloma profoundly affects Mycobacterium tuberculosis (Mtb) and infection outcome, our ability to understand Mtb gene expression in these niches has been limited. We determined intragranulomatous gene expression in human-like lung lesions derived from nonhuman primates with both active tuberculosis (ATB) and latent TB infection (LTBI). We employed a non-laser-based approach to microdissect individual lung lesions and interrogate the global transcriptome of Mtb within granulomas. Mtb genes expressed in classical granulomas with central, caseous necrosis, as well as within the caseum itself, were identified and compared with other Mtb lesions in animals with ATB (n = 7) or LTBI (n = 7). Results were validated using both an oligonucleotide approach and RT-PCR on macaque samples and by using human TB samples. We detected approximately 2,900 and 1,850 statistically significant genes in ATB and LTBI lesions, respectively (linear models for microarray analysis, Bonferroni corrected, P < 0.05). Of these genes, the expression of approximately 1,300 (ATB) and 900 (LTBI) was positively induced. We identified the induction of key regulons and compared our results to genes previously determined to be required for Mtb growth. Our results indicate pathways that Mtb uses to ensure its survival in a highly stressful environment in vivo. A large number of genes is commonly expressed in granulomas with ATB and LTBI. In addition, the enhanced expression of the dormancy survival regulon was a key feature of lesions in animals with LTBI, stressing its importance in the persistence of Mtb during the chronic phase of infection.
Collapse
Affiliation(s)
- Teresa A. Hudock
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Taylor W. Foreman
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Nirmalya Bandyopadhyay
- Whitaker Biomedical Engineering Institute, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Uma S. Gautam
- Tulane National Primate Research Center, Covington, Louisiana
| | - Ashley V. Veatch
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Denae N. LoBato
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Nadia A. Golden
- Tulane National Primate Research Center, Covington, Louisiana
| | - Amy Cavigli
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Shen-An Hwang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, Louisiana
| | - Andrew A. Lackner
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| | - Joel S. Bader
- Whitaker Biomedical Engineering Institute, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Smriti Mehra
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane University Health Sciences, New Orleans, Louisiana; and
| |
Collapse
|
25
|
Unique Regulation of the DosR Regulon in the Beijing Lineage of Mycobacterium tuberculosis. J Bacteriol 2016; 199:JB.00696-16. [PMID: 27799329 DOI: 10.1128/jb.00696-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
The DosR regulon, a set of 48 genes normally expressed in Mycobacterium tuberculosis under conditions that inhibit aerobic respiration, is controlled via the DosR-DosS/DosT two-component system. While the regulon requires induction in most M. tuberculosis isolates, for members of the Beijing lineage, its expression is uncoupled from the need for signaling. In our attempts to understand the mechanistic basis for this uncoupling in the Beijing background, we previously reported the identification of two synonymous single-nucleotide polymorphisms (SNPs) within the adjacent Rv3134c gene. In the present study, we have interrogated the impact of these SNPs on dosR expression in wild-type strains, as well as a range of dosR-dosS-dosT mutants, for both Beijing and non-Beijing M. tuberculosis backgrounds. In this manner, we have unequivocally determined that the C601T dosR promoter SNP is the sole requirement for the dramatic shift in the pattern of DosR regulon expression seen in this globally important lineage. Interestingly, we also show that DosT is completely nonfunctional within these strains. Thus, a complex series of evolutionary steps has led to the present-day Beijing DosR phenotype that, in turn, potentially confers a fitness advantage in the face of some form of host-associated selective pressure. IMPORTANCE Mycobacterium tuberculosis strains of the Beijing lineage have been described as being of enhanced virulence compared to other lineages, and in certain regions, they are associated with the dramatic spread of multidrug-resistant tuberculosis (TB). In terms of trying to understand the functional basis for these broad epidemiological phenomena, it is interesting that, in contrast to the other major lineages, the Beijing strains all constitutively overexpress members of the DosR regulon. Here, we identify the mutational events that led to the evolution of this unique phenotype. In addition, our work highlights the fact that important phenotypic differences exist between distinct M. tuberculosis lineages, with the potential to impact the efficacy of diagnosis, vaccination, and treatment programs.
Collapse
|