1
|
Tavares CS, Wang X, Ghosh S, Mishra R, Bonning BC. Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci. J Invertebr Pathol 2025; 210:108291. [PMID: 39986348 DOI: 10.1016/j.jip.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
The whitefly, Bemisia tabaci, is among the most important threats to global agriculture and food security. In addition to losses associated with feeding, B. tabaci vectors hundreds of plant viruses, many of which cause severe disease in staple food crops. The management of B. tabaci is confounded by extensive resistance to chemical insecticides. While pesticidal proteins derived from entomopathogenic bacteria such as Bacillus thuringiensis (Bt) could provide for alternative management approaches, only one pesticidal protein with toxicity to B. tabaci has been identified. Here we screened 11 Bt-derived pesticidal proteins from several different structural classes against the highly invasive, Middle East-Asian Minor 1 (MEAM1) cryptic species of B. tabaci, and assessed the impact of a B. tabaci-active protein on the gut epithelial membrane by transmission electron microscopy. The pesticidal proteins were expressed in Bt or in Escherichia coli and purified for use in bioassays. The toxicity of purified proteins was first assessed by feeding adults on a single dose followed by lethal concentration (LC50) determination for proteins with significant mortality relative to the buffer control. The proteins Tpp78Aa1, Tpp78Ba1, and Cry1Ca were toxic to B. tabaci with LC50 values of 99, 96, and 351 µg/mL, respectively. Disruption of the brush border and severe reduction in microvilli on the gut surface caused by Tpp78Aa1 is consistent with the mode of action of Bt-derived pesticidal proteins. These proteins may provide valuable tools for the integrated management of B. tabaci populations and associated reduced incidence of B. tabaci vectored plant viral diseases.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Saptarshi Ghosh
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Cibotti S, Ali JG, Schilder RJ. Differential effects of clothianidin exposure on metabolic rates across life stages of Danaus plexippus (Lepidoptera: Nymphalidae). ENVIRONMENTAL ENTOMOLOGY 2025:nvaf041. [PMID: 40411767 DOI: 10.1093/ee/nvaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/04/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025]
Abstract
The restoration of milkweed to agricultural landscapes is thought to be essential for bolstering declining monarch butterfly (Danaus plexippus) populations. However, the rise of neonicotinoid seed treatments in recent decades has severely increased the toxicity of these landscapes for insects. It is therefore crucial that we understand how monarchs utilize neonicotinoid-contaminated plants and their impacts on monarch health to better inform conservation efforts. We monitored monarch usage of milkweed (Asclepias syriaca) plantings adjacent to clothianidin-treated and untreated cornfields and found both were utilized with equal frequency. We then examined how plant-mediated larval clothianidin exposure affected monarch development, morphology, and energetics by tracking mortality rates, development times, body metrics, and metabolic rates across life stages. We found no difference in mortality rates or body metrics between the 2 treatment groups. Larvae feeding on clothianidin-treated plants required less time to reach pupation than those feeding on control plants, but there was no difference in the time between pupation and eclosion. Larval clothianidin exposure did not affect the resting metabolic rates of monarchs at any life stage; however, it lowered both the average and peak flight metabolic rates of adults, with the effects being stronger in males than females. These findings suggest that larval exposure to clothianidin-contaminated plants can have carry-over sublethal effects in adulthood, which may adversely affect flight capacity, particularly in males. Further studies are needed to elucidate the possible impacts on crucial aspects of monarch ecology, including their foraging, migratory, and reproductive potential.
Collapse
Affiliation(s)
- Staci Cibotti
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Rudolf J Schilder
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Monmany-Garzia AC, Chacoff N, Aragón R, Sosa A, Aparicio VC, Ayup MM, Galindo-Cardona A. Effects of soybean fields on the health of Apis mellifera (Hymenoptera: Apidae) in the Chaco ecoregion. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:473-485. [PMID: 40036185 DOI: 10.1093/jee/toaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 03/06/2025]
Abstract
Honey bees (Apis mellifera) are important pollinators for natural and cultivated species. Due to their high sensitivity to stressors, they are also valuable indicators of environmental changes and agricultural management practices. In this study, we compared the performance and incidence of pesticides over sentinel hives within forest remnants with those within linear forest fragments (LFF) surrounded by soybean fields under conventional management. Sentinel hives in LFF showed some signs of deterioration, such as colony collapse, low numbers of brood frames, and pesticide occurrences, but honey production and the number of adult bees were similar to hives in the forest. Soybean pollen was scarce in honey and absent in bee bread, suggesting that bees may be relying more on wild plant species. We detected 5 pesticides (azoxystrobin, carbendazim, chlorpyrifos, imidacloprid, and coumaphos) in hives both at forests and LFF in pollen, bee bodies, and wax; pesticides in honey were detected in old sentinel hives (2 yr of exposition to agricultural conventional management). Only 2 of the 5 pesticides were applied in one of the farms under study, highlighting the importance of considering landscape-scale agricultural management. Our results indicate that conventional agriculture of soybean/maize primarily affected the performance of beehives, and pesticides were detected in honey only after long exposure to hives. Beekeeping in soybean fields in the Chaco could be feasible if cautions were followed, such as the conservation of forest fragments and key plant species, appropriate pesticide schedules, coordinated applications among farms, and linear forest remnants improvements.
Collapse
Affiliation(s)
- A Carolina Monmany-Garzia
- Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Natacha Chacoff
- Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Roxana Aragón
- Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Alexis Sosa
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Concordia, Entre Ríos, Argentina
| | - Virginia C Aparicio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Centro Científico Tecnológico Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Balcarce, Buenos Aires, Argentina
| | - M Marta Ayup
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Alberto Galindo-Cardona
- Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| |
Collapse
|
4
|
Morrison B, Newburn LR, Fitch G. Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. INSECTS 2025; 16:414. [PMID: 40332845 PMCID: PMC12027951 DOI: 10.3390/insects16040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025]
Abstract
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and immune function, protect against disease agents, and detoxify toxicants. This review presents a comprehensive overview of PSMs, as well as some fatty acids, with documented health benefits for eusocial bees at ecologically relevant exposure levels and the plant species whose floral products and/or resin are known to contain them. We find medicinal metabolites to be widespread but unevenly distributed across the plant phylogeny, with a few families containing a majority of the species known to produce PSMs with documented health benefits. We discuss the current state of knowledge and identify gaps in our understanding. The existing literature on the health benefits of metabolites, and particularly PSMs, to bees is spread across multiple fields; our hope is that this review will bring these fields closer together and encourage further investigation of the role of metabolites in promoting bee health in ecological contexts.
Collapse
Affiliation(s)
| | - Laura R. Newburn
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
| | - Gordon Fitch
- Centre for Bee Ecology, Evolution and Conservation, York University, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
5
|
Mahdavi A, Torabi E, Ghasemi V, Mahdavi V, Haji Mohammad Hasan F. Pesticide residues in nectar, pollen, and beebread matrices from rapeseed (Brassica napus L.): Which matrix is associated with the highest risks to the honey bee (Apis mellifera L.)? ENVIRONMENTAL RESEARCH 2025; 270:121014. [PMID: 39892806 DOI: 10.1016/j.envres.2025.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
This study investigated pesticide residues in nectar, pollen, and beebread samples collected from 17 apiaries situated near rapeseed fields in Golestan province, Iran. A total of 54 pesticides, including all those registered for use in the region within the past five years, were analyzed using UHPLC-MS/MS following QuEChERS extraction. A total of 19, 21, and 18 pesticides were detected in nectar, pollen, and beebread, respectively. While overall pesticide concentrations were similar across matrices, distinct pesticide distributions were observed. Fungicides (propiconazole, thiophanate-methyl, tebuconazole, and carbendazim), along with organophosphate and neonicotinoid insecticides, were more prevalent in beebread compared to pollen or nectar. Hazard quotients (HQs) and risk quotients (RQs) were calculated to evaluate potential risks to honey bees. Maximum HQ values for nectar, pollen, and beebread ranged from <0.01 to 5690.80, <0.01 to 4589.61, and <0.01 to 13,090.78, respectively. Diazinon, imidacloprid, and propiconazole exhibited the highest HQ values. Pollen and beebread samples were associated with the highest risks to honey bees, exhibiting a higher number of pesticides with HQs >50 and higher overall HQ values. RQ values revealed that diazinon and imidacloprid exceeded the level of concern for forager bees and drones, while diazinon posed a risk to nurse bees. Our findings highlight the potential exposure of honey bees to pesticide residues from rapeseed fields and emphasize the need for strategies to mitigate these risks.
Collapse
Affiliation(s)
- Ali Mahdavi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Vahid Ghasemi
- Division of Honey Bee, Department of Animal Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Fatemeh Haji Mohammad Hasan
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
6
|
Polidori C, Trisoglio CF, Ferrari A, Romano A, Bonasoro F. Contaminant-driven midgut histological damage in bees and other aculeate Hymenoptera: A quantitative review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104670. [PMID: 40049307 DOI: 10.1016/j.etap.2025.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/09/2025]
Abstract
We present a review about histological sub-lethal effects due to anthropogenic contaminants on the midgut of bees and other aculeate hymenopterans. Contaminant types, damage types, and methodology were extracted and summarized from 74 published articles, and then quantitatively analyzed. We found that the Western honeybee (Apis mellifera) is by far the most widely used model. Contaminants have largely been tested under laboratory conditions, particularly insecticides and fungicides. Tissue-level damage (e.g., degradation of epithelium and of peritrophic membrane) were often detected together with cell-level damage (e.g., cell vacuolisation, karyorrhexis). Descriptive statistics and mixed models suggested that herbicides may cause a specific mix of alterations with an overall lower severity compared with other pesticides, while the combined use of light and electron microscopy seemed to detect more damage types. We claim for efforts to reduce biases in future studies on such histological effects, allowing their clearer use as markers of human activities.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy.
| | - Chiara Francesca Trisoglio
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| |
Collapse
|
7
|
Rinkevich FD, Dodge D, Egnew N. Minimal toxicological impact of chlorothalonil on adult honey bees (Apis mellifera, L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106300. [PMID: 40015892 DOI: 10.1016/j.pestbp.2025.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
Honey bees encounter a diverse array of pesticides in their foraging areas and inside their colonies. Beekeepers have expressed tremendous concern about the impacts of pesticides on honey bee colony health and their beekeeping business. The fungicide chlorothalonil is frequently detected at concentrations above 5 ppm within colonies. Exposure to chlorothalonil in lab studies have shown impacts on larval development and morphology of emerging adults while field studies have shown that colony losses are associated with chlorothalonil at 5 ppm. This research was conducted to test if chlorothalonil has effects on honey bee toxicity, insecticide synergism, detoxification activity, and expression of esterase and cytochrome P450 genes in order to assess if chlorothalonil may contribute to colony losses via direct or enhanced toxicity. Exposure to 10 μg topically applied doses or 5 ppm orally applied concentrations of technical or formulated chlorothalonil did not result in significant direct mortality, demonstrated <2-fold levels of synergism or antagonism with phenothrin, chlorpyrifos, and clothianidin, and did not impact activity or expression of detoxification enzymes. Therefore, the impacts of chlorothalonil on honey bee colony health is likely not due to toxicity or synergism but rather other physiological mechanisms.
Collapse
Affiliation(s)
- Frank D Rinkevich
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, 1157 Ben Hur Rd, Baton Rouge, LA, USA.
| | - David Dodge
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, 1157 Ben Hur Rd, Baton Rouge, LA, USA.
| | - Nathan Egnew
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, 1157 Ben Hur Rd, Baton Rouge, LA, USA.
| |
Collapse
|
8
|
Orikpete OF, Kikanme KN, Falade TDO, Dennis NM, Ejike Ewim DR, Fadare OO. Neonicotinoid pesticides in African agriculture: What do we know and what should be the focus for future research? CHEMOSPHERE 2025; 372:144057. [PMID: 39746486 DOI: 10.1016/j.chemosphere.2024.144057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date. Imidacloprid (33.5%), acetamiprid (23.3%), and thiamethoxam (25.0%) are the most reported NEO-P across the continent with concentrations range from 9.0 × 10-5 to 7.2 × 107 mg kg-1, 1.7 × 10-5 to 2.1 × 103 mg kg-1, and 1.0 × 10-5 to 4.7 × 104 mg kg-1, respectively. NEO-P have been reported in honey, water, vegetables, fruits, and staple foods in most countries and in 92-100% of human urine samples collected in Ghana and Cameroon. This widespread presence indicates a potential food safety and public health concern, warranting further study. Studies on NEO-P interactions with bees have emanated mainly from North Africa (35.3% published studies) while Central/Middle, and Southern Africa accounted for 11.8% each of these studies, all of which were conducted in Cameroon and South Africa, respectively. It is important to have contextual evidence to understand neonicotinoids-pollinator interactions across specific African regions and countries; however, literature regarding the extent of NEO-P toxicities/effects on pollinators is required in 44 African countries. The environmental persistence of NEO-P and their broad-spectrum impact necessitate a re-evaluation of current regulatory practices and adoption of more sustainable pest management strategies across the continent. Furthermore, future studies should focus on investigating the long-term exposure to NEO-P, advanced computational methods in ecological risk assessments and eco-friendly alternatives to NEO-P.
Collapse
Affiliation(s)
- Ochuko Felix Orikpete
- Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, Choba, Rivers State, 500102, Nigeria
| | - Kenneth N Kikanme
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79416, USA
| | - Titilayo D O Falade
- International Institute of Tropical Agriculture, Ibadan, Oyo State, 200001, Nigeria
| | - Nicole M Dennis
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32610, USA
| | | | - Oluniyi O Fadare
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Mamy L, Pesce S, Sanchez W, Aviron S, Bedos C, Berny P, Bertrand C, Betoulle S, Charles S, Chaumot A, Coeurdassier M, Coutellec MA, Crouzet O, Faburé J, Fritsch C, Gonzalez P, Hedde M, Leboulanger C, Margoum C, Mougin C, Munaron D, Nélieu S, Pelosi C, Rault M, Sucré E, Thomas M, Tournebize J, Leenhardt S. Impacts of neonicotinoids on biodiversity: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2794-2829. [PMID: 38036909 DOI: 10.1007/s11356-023-31032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.
Collapse
Affiliation(s)
- Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| | | | | | | | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire, 69280, Marcy‑L'Etoile, France
| | - Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, 51100, Reims, France
| | | | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, Ifremer, 35042, Rennes, France
| | - Olivier Crouzet
- OFB, Direction de la Recherche et Appui Scientifique (DRAS), 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Patrice Gonzalez
- CNRS, Bordeaux INP, EPOC, UMR 5805, Univ. Bordeaux, 33600, Pessac, France
| | - Mickael Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, 34060, Montpellier, France
| | | | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Magali Rault
- Université d'Avignon, Université Aix-Marseille, CNRS, IRD, IMBE, Pôle Agrosciences, 84916, Avignon, France
| | - Elliott Sucré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200, Sète, France
- Centre Universitaire de Formation Et de Recherche de Mayotte (CUFR), 97660, Dembeni, Mayotte, France
| | - Marielle Thomas
- Université de Lorraine, INRAE, UR AFPA, 54000, Nancy, France
| | | | | |
Collapse
|
10
|
Kiruthika K, Suganthi A, Johnson Thangaraj Edward YS, Anandham R, Renukadevi P, Murugan M, Bimal Kumar Sahoo, Mohammad Ikram, Kavitha PG, Jayakanthan M. Role of Lactic Acid Bacteria in Insecticide Residue Degradation. Probiotics Antimicrob Proteins 2025; 17:81-102. [PMID: 38819541 DOI: 10.1007/s12602-024-10298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Lactic acid bacteria are gaining global attention, especially due to their role as a probiotic. They are increasingly being used as a flavoring agent and food preservative. Besides their role in food processing, lactic acid bacteria also have a significant role in degrading insecticide residues in the environment. This review paper highlights the importance of lactic acid bacteria in degrading insecticide residues of various types, such as organochlorines, organophosphorus, synthetic pyrethroids, neonicotinoids, and diamides. The paper discusses the mechanisms employed by lactic acid bacteria to degrade these insecticides, as well as their potential applications in bioremediation. The key enzymes produced by lactic acid bacteria, such as phosphatase and esterase, play a vital role in breaking down insecticide molecules. Furthermore, the paper discusses the challenges and future directions in this field. However, more research is needed to optimize the utilization of lactic acid bacteria in insecticide residue degradation and to develop practical strategies for their implementation in real-world scenarios.
Collapse
Affiliation(s)
- K Kiruthika
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - A Suganthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | | | - R Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bimal Kumar Sahoo
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Mohammad Ikram
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P G Kavitha
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Jayakanthan
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Bogo G, Porrini MP, Aguilar-Monge I, Aldea-Sánchez P, de Groot GS, Velarde RA, Xolalpa-Aroche A, Vázquez DE. Current status of toxicological research on stingless bees (Apidae, Meliponini): Important pollinators neglected by pesticides' regulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178229. [PMID: 39719763 DOI: 10.1016/j.scitotenv.2024.178229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Stingless bees (tribe Meliponini), comprising over 600 known species within the largest group of eusocial bees, play a critical role in ecosystem functioning through their pollination services. They contribute to the reproduction of numerous plant species, including many economically important crops such as cacao, coffee, and various fruits. Beyond their ecological significance, stingless bees hold cultural and economic importance for many native and rural communities, where they are managed for their honey, pollen, and propolis for nutritional and health purposes. The overwhelming majority of studies on pesticide toxicity and risk assessment on bees are conducted on the model species Apis mellifera in the United States and Europe, where stingless bees are absent. In May 2023, the European Food Safety Authority (EFSA) published its revised guidance document on the risk assessment of plant protection products (PPPs) for bees, including, beyond honey bees, other bee species from Bombus and Osmia genera. Despite the Meliponini widespread distribution in tropical and subtropical regions, the impact of pesticides on stingless bees remains largely unexplored. Here, we present a systematic review of stingless bee toxicological studies which highlights a substantial knowledge gap. Up to October of 2024, only 144 research articles on the effects of pesticides on Meliponini had been identified, 80 % of those were conducted in a single country (Brazil). The number of bee species and PPPs tested is extremely low, with just five species accounting for almost 50 % of the collected data and only 79 PPPs tested, among which biopesticides were the most common. Concerning the experimental methodologies, there is a significant lack of studies focusing on chronic exposure and field assays, as well as a scarcity of studies focusing on sublethal effects. Furthermore, we pinpoint to areas where research is needed for the development of risk assessment guidelines to protect these vital pollinators.
Collapse
Affiliation(s)
- Gherardo Bogo
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy.
| | - Martín P Porrini
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Investigación en Abejas Sociales (CIAS)-Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Estación Costera J.J. Nágera, Ruta Provincial 11 Km 5395 Playa Chapadmalal, 7603 Mar del Plata, Buenos Aires, Argentina.
| | - Ingrid Aguilar-Monge
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia. Costa Rica.
| | - Patricia Aldea-Sánchez
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Universidad SEK, Santiago, Chile.
| | - Grecia S de Groot
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Grupo Ecología de la Polinización (ECOPOL) - Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA - CONICET-Universidad Nacional del Comahue), Pasaje Gutiérrez 1250, Bariloche, Río Negro, Argentina.
| | - Rodrigo A Velarde
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay.
| | - Aurora Xolalpa-Aroche
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Centro de Innovación para el Desarrollo Apícola Sustentable en Quintana Roo - Universidad Intercultural Maya de Quintana Roo, Mexico.
| | - Diego E Vázquez
- Sociedad Latinoamericana de Investigación en Abejas (SoLatInA), Montevideo, Uruguay; Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay; Centro de Investigación en Ciencias Ambientales (CICA), Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
12
|
Johnson BJ, Hereward JP, Wilson R, Furlong MJ, Devine GJ. A review of the potential impacts of coastal mosquito control programs on Australian Stingless Bees (Apidae, Meliponini)-likely exposure pathways and lessons learned from studies on honey bees. ENVIRONMENTAL ENTOMOLOGY 2024; 53:894-907. [PMID: 39373633 DOI: 10.1093/ee/nvae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
The impact of the programmatic use of larvicides for mosquito control on native stingless bees (e.g., Apidae, Meliponini) is a growing concern in Australia due to heightened conservation awareness and the growth of hobbyist stingless bee keeping. In Australia, the two most widely used mosquito larvicides are the bacterium Bacillus thuringiensis var. israelensis (Bti) and the insect hormone mimic methoprene (as S-methoprene). Each has a unique mode of action that could present a risk to stingless bees and other pollinators. Herein, we review the potential impacts of these larvicides on native Australian bees and conclude that their influence is mitigated by their low recommended field rates, poor environmental persistence, and the seasonal and intermittent nature of mosquito control applications. Moreover, evidence suggests that stingless bees may display a high physiological tolerance to Bti similar to that observed in honey bees (Apis mellifera), whose interactions with B. thuringiensis-based biopesticides are widely reported. In summary, neither Bti or methoprene is likely to pose a significant risk to the health of stingless bees or their nests. However, current knowledge is limited by regulatory testing requirements that only require the use of honey bees as toxicological models. To bridge this gap, we suggest that regulatory testing is expanded to include stingless bees and other nontarget insects. This is imperative for improving our understanding of the potential risks that these and other pesticides may pose to native pollinator conservation.
Collapse
Affiliation(s)
- Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - James P Hereward
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Rachele Wilson
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Michael J Furlong
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
13
|
Bruckner S, Straub L, Villamar-Bouza L, Beneduci ZJ, Neumann P, Williams GR. Life stage dependent effects of neonicotinoid exposure on honey bee hypopharyngeal gland development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117337. [PMID: 39561561 DOI: 10.1016/j.ecoenv.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Functional Apis mellifera honey bee colonies rely on collaborative brood care typically performed by nurse bees with well-developed hypopharyngeal glands (HPGs). Neonicotinoids, widely used insecticides, have been shown to negatively affect HPG development when worker bees were exposed to field-realistic concentrations either as brood or adults. To date, it is unknown whether timing of neonicotinoid exposure influences the severity of these observed negative effects on HPGs. To address this, we conducted a fully-crossed field experiment assessing potential effects of a neonicotinoid blend (clothianidin and thiamethoxam combined) on worker HPGs when exposed during different life stages. We found that neonicotinoid exposure during the brood stage, but not the adult stage, significantly influenced subsequent HPG development. Since HPG morphogenesis begins during the brood stage, neonicotinoid-induced stress possibly impaired this process, resulting in smaller glands once these individuals became adult nurses. Because HPG productivity is correlated to their size, smaller glands as a result of neonicotinoid exposure could negatively affect colony functionality.
Collapse
Affiliation(s)
- Selina Bruckner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA; Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| | - Laura Villamar-Bouza
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; European Food Safety Authority (EFSA), Pesticide Unit, Parma, Italy
| | - Zachary J Beneduci
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Swiss Bee Research Center, Agroscope, Bern, Switzerland.
| | - Geoffrey R Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA; Swiss Bee Research Center, Agroscope, Bern, Switzerland.
| |
Collapse
|
14
|
Basu P, Ngo HT, Aizen MA, Garibaldi LA, Gemmill-Herren B, Imperatriz-Fonseca V, Klein AM, Potts SG, Seymour CL, Vanbergen AJ. Pesticide impacts on insect pollinators: Current knowledge and future research challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176656. [PMID: 39366587 DOI: 10.1016/j.scitotenv.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
With the need to intensify agriculture to meet growing food demand, there has been significant rise in pesticide use to protect crops, but at different rates in different world regions. In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment on pollinators, pollination and food production identified pesticides as one of the major drivers of pollinator decline. This assessment highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species, primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural practices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment (2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to 4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to increase across all Asian regions. In each of the respective regions, we also examined the number of studies since 2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive update on the status of knowledge on pesticide impacts on different pollinating insects from literature published during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides and highlight some regional and international conservation efforts and initiatives that address pesticide reduction and/or elimination.
Collapse
Affiliation(s)
- P Basu
- Department of Zoology, University of Calcutta, Kolkata, India.
| | - H T Ngo
- Food and Agriculture Organization of the United Nations (UN FAO), Regional Office for Latin America and the Caribbean (RLC), Región Metropolitana, Santiago, Chile
| | - M A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - L A Garibaldi
- National University of Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina; National Council of Scientific and Technical Research, Institute of Research in Natural Resources, Agroecology and Rural Development, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - A M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - C L Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, South Africa; FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - A J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
15
|
Ozols N, Brusbārdis V, Filipovičs M, Gailis J, Radenkovs V, Rubene B, Zagorska V. Pesticide Contamination of Honey-Bee-Collected Pollen in the Context of the Landscape Composition in Latvia. TOXICS 2024; 12:862. [PMID: 39771077 PMCID: PMC11679399 DOI: 10.3390/toxics12120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
The honey bee (Apis mellifera) is the most widely managed pollinator and is vital for crop fertilization. Recently, bee colonies have been suffering high mortality rates, exacerbated by factors such as land-use changes and the use of pesticides. Our work aimed to explore the residues of pesticides in honey-bee-collected pollen and how this contamination was affected by seasonality and the landscape composition. We selected six apiaries from different landscapes in Latvia, and pollen samples were collected during the flowering season (2023). We analyzed 39 samples and found 21 pesticide residues (mainly fungicides) with a frequency of 93 occurrences where the values were above the limit of quantification. The most frequently encountered substances were acetamiprid, boscalid, fluopyram, and prothioconazole. However, the highest concentrations were for dimoxystrobin (44 µg kg-1), acetamiprid (37 µg kg-1), azoxystrobin (27 µg kg-1), prothioconazole (25 µg kg-1), and boscalid (15 µg kg-1). We then calculated the Pollen Hazard Quotient (PHQ) for each pollen sample. No sample had a PHQ value above the critical value of 50. The highest contamination level was observed in the first half of the vegetation season (the end of May and the beginning of June), but later, it significantly decreased. We did not find any significant influence of landscape composition on pesticide pollution.
Collapse
Affiliation(s)
- Niks Ozols
- Institute of Plant Protection Research ‘Agrihorts’, Latvia University of Life Sciences and Technologies, 2 Paula Lejiņa Street, LV-3004 Jelgava, Latvia; (M.F.); (J.G.); (B.R.); (V.Z.)
| | - Valters Brusbārdis
- Latvian Beekeepers Association, 22c Rīgas Street, LV-3004 Jelgava, Latvia;
| | - Maksims Filipovičs
- Institute of Plant Protection Research ‘Agrihorts’, Latvia University of Life Sciences and Technologies, 2 Paula Lejiņa Street, LV-3004 Jelgava, Latvia; (M.F.); (J.G.); (B.R.); (V.Z.)
| | - Jānis Gailis
- Institute of Plant Protection Research ‘Agrihorts’, Latvia University of Life Sciences and Technologies, 2 Paula Lejiņa Street, LV-3004 Jelgava, Latvia; (M.F.); (J.G.); (B.R.); (V.Z.)
| | - Vitalijs Radenkovs
- Institute of Horticulture (LatHort), 1 Graudu Street, LV-3701 Dobele, Latvia;
- Division of Smart Technologies, Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, 22b Rīgas Street, LV-3004 Jelgava, Latvia
| | - Betija Rubene
- Institute of Plant Protection Research ‘Agrihorts’, Latvia University of Life Sciences and Technologies, 2 Paula Lejiņa Street, LV-3004 Jelgava, Latvia; (M.F.); (J.G.); (B.R.); (V.Z.)
| | - Viktorija Zagorska
- Institute of Plant Protection Research ‘Agrihorts’, Latvia University of Life Sciences and Technologies, 2 Paula Lejiņa Street, LV-3004 Jelgava, Latvia; (M.F.); (J.G.); (B.R.); (V.Z.)
| |
Collapse
|
16
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
18
|
Rasmussen SL, Roslev P, Nielsen JL, Pertoldi C, Vorkamp K. Pesticides in the population of European hedgehogs ( Erinaceus europaeus) in Denmark. Front Vet Sci 2024; 11:1436965. [PMID: 39183753 PMCID: PMC11341479 DOI: 10.3389/fvets.2024.1436965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
European hedgehogs (Erinaceus europaeus) inhabit most of Denmark, except for a few smaller islands. Research from other European countries has shown that the hedgehog populations are in decline. The exposure to chemicals might contribute to this development, although their role is currently unknown. Our research studied the occurrence of 19 selected pesticides in the Danish hedgehog population as well as factors potentially explaining the levels of chemicals detected. We analysed 115 liver samples obtained from dead hedgehogs in 2016 for seven rodenticides, four insecticides and eight herbicides commonly used in Denmark at the time of sampling, applying a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. Detection frequencies varied between 0.9% for fluroxypyr and trans-permethrin and 79% for bromadiolone. Rodenticides, insecticides and herbicides were detected in 84, 43, and 50% of the samples, respectively. The compounds most frequently detected included the insecticide imidacloprid (35%), the herbicide metamitron (29%) and the rodenticide bromadiolone (79%). Individual concentrations varied between non-detected to >2 μg/g. A total of 79% of the 115 hedgehogs contained more than one detectable pesticide, with up to nine of the 19 compounds detected in one individual. The detection frequencies were found to differ significantly between the Eastern and Western part of Denmark for difenacoum, difethialone and imidacloprid. However, no associations were found with sex, age, habitat type or the prevalence of mecC-MRSA and endoparasites in the hedgehogs tested. Whether or not the pesticide levels detected carry a health risk for the hedgehogs remains unknown as no adverse effect levels have yet been established for European hedgehogs for single compounds or pesticide mixtures.
Collapse
Affiliation(s)
- Sophie Lund Rasmussen
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Biology, University of Oxford, Abingdon, United Kingdom
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Linacre College, University of Oxford, Oxford, United Kingdom
| | - Peter Roslev
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Aalborg Zoo, Aalborg, Denmark
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
19
|
Abuagla MIB, Iqbal J, Raweh HSA, Alqarni AS. Insight into Olfactory Learning, Memory, and Mortality of Apis mellifera jemenitica after Exposure to Acetamiprid Insecticide. INSECTS 2024; 15:473. [PMID: 39057206 PMCID: PMC11276894 DOI: 10.3390/insects15070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
The honey bee, a significant crop pollinator, encounters pesticides through various routes of exposure during foraging and flower visitation. Considering the potential threat of pesticide poisoning, the indigenous Saudi bee Apis mellifera jemenitica is susceptible to the risks associated with acetamiprid, a neonicotinoid insecticide. This study investigates the acetamiprid-induced effects on the survival, olfactory learning, and memory formation of A. m. jemenitica through two exposure routes: topical application and oral ingestion. Field-realistic and serially diluted concentrations (100, 50, 25, and 10 ppm) of acetamiprid led to notable mortality at 4, 12, 24, and 48 h after treatment, with peak mortality observed at 24 h and 48 h for both exposure routes. Bee mortality was concentration-dependent, increasing with the rising concentration of acetamiprid at the tested time intervals. Food consumption following oral exposure exhibited a concentration-dependent pattern, steadily decreasing with increasing concentrations of acetamiprid. Oral exposure resulted in a substantially higher cumulative mortality (55%) compared to topical exposure (15%), indicating a significant disparity in bee mortality between the two exposure routes. The 24 h post-treatment LC50 values for acetamiprid were 160.33 and 12.76 ppm for topical application and oral ingestion, respectively. The sublethal concentrations (LC10, LC20, and LC30) of acetamiprid were 15.23, 34.18, and 61.20 ppm, respectively, following topical exposure, and 2.85, 4.77, and 6.91 ppm, respectively, following oral exposure. The sublethal concentrations of acetamiprid significantly decreased learning during the 2nd-3rd conditioning trials and impaired memory formation at 2, 12, and 24 h following both topical and oral exposure routes, compared to the control bees. Notably, the sublethal concentrations were equally effective in impairing bee learning and memory. Taken together, acetamiprid exposure adversely affected bee survival, hindered learning, and impaired the memory retention of learned tasks.
Collapse
Affiliation(s)
| | | | | | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.I.B.A.); (J.I.)
| |
Collapse
|
20
|
Strang CG, Rondeau S, Baert N, McArt SH, Raine NE, Muth F. Field agrochemical exposure impacts locomotor activity in wild bumblebees. Ecology 2024; 105:e4310. [PMID: 38828716 DOI: 10.1002/ecy.4310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 06/05/2024]
Abstract
Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees. Laboratory-based studies with commercial pollinators have consistently shown that pesticide exposure can impact bee behavior, with cascading effects on foraging performance, reproductive success, and pollination services. However, these studies typically assess only one chemical, neglecting the complexity of real-world exposure to multiple agrochemicals and other stressors. In the summer of 2020, we collected wild-foraging workers of the common eastern bumblebee, Bombus impatiens, from five squash (Cucurbita) agricultural sites (organic and conventional farms), selected to represent a range of agrochemical, including neonicotinoid insecticide, use. For each bee, we measured two behaviors relevant to foraging success and previously shown to be impacted by pesticide exposure: sucrose responsiveness and locomotor activity. Following behavioral testing, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) chemical analysis to detect and quantify the presence of 92 agrochemicals in each bumblebee. Bees collected from our sites did not vary in pesticide exposure as expected. While we found a limited occurrence of neonicotinoids, two fungicides (azoxystrobin and difenoconazole) were detected at all sites, and the pesticide synergist piperonyl butoxide (PBO) was present in all 123 bees. We found that bumblebees that contained higher levels of PBO were less active, and this effect was stronger for larger bumblebee workers. While PBO is unlikely to be the direct cause of the reduction in bee activity, it could be an indicator of exposure to pyrethroids and/or other insecticides that we were unable to directly quantify, but which PBO is frequently tank-mixed with during pesticide applications on crops. We did not find a relationship between agrochemical exposure and bumblebee sucrose responsiveness. To our knowledge, this is the first evidence of a sublethal behavioral impact of agrochemical exposure on wild-foraging bees.
Collapse
Affiliation(s)
- Caroline G Strang
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Felicity Muth
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
21
|
Moldoveanu OC, Maggioni M, Dani FR. Environmental ameliorations and politics in support of pollinators. Experiences from Europe: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121219. [PMID: 38838532 DOI: 10.1016/j.jenvman.2024.121219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
At least 87% of angiosperm species require animal vectors for their reproduction, while more than two-thirds of major global food crops depend on zoogamous pollination. Pollinator insects are a wide variety of organisms that require diverse biotic and abiotic resources. Many factors have contributed to a serious decrease in the abundance of populations and diversity of pollinator species over the years. This decline is alarming, and the European Union has taken several actions aimed at counteracting it by issuing new conservation policies and standardizing the actions of member countries. In 2019, the European Green Deal was presented, aiming to restore 100% of Europe's degraded land by 2050 through financial and legislative instruments. Moreover, the Common Agricultural Policies have entailed greening measures for the conservation of habitats and beneficial species for more than 10 years. The new CAP (CAP 23-27) reinforces conservation objectives through strategic plans based on eco-schemes defined at the national level by the member countries, and some states have specifically defined eco-schemes for pollinator conservation. Here, we review the framework of EU policies, directives, and regulations, which include measures aimed at protecting pollinators in agricultural, urban, and peri-urban environments. Moreover, we reviewed the literature reporting experimental works on the environmental amelioration for pollinators, particularly those where CAP measures were implemented and evaluated, as well as studies conducted in urban areas. Among CAP measures, several experimental works have considered the sowing and management of entomophilous plants and reported results important for environmental ameliorations. Some urban, peri-urban and wasteland areas have been reported to host a considerable number of pollinators, especially wild bees, and despite the lack of specific directives, their potential to contribute to pollinator conservation could be enhanced through targeted actions, as highlighted by some studies.
Collapse
Affiliation(s)
| | - Martino Maggioni
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy; Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Palermo, Italy; National Biodiversity Future Centre, Palermo, Italy
| | - Francesca Romana Dani
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, Italy; National Biodiversity Future Centre, Palermo, Italy.
| |
Collapse
|
22
|
Cedden D, Güney G, Scholten S, Rostás M. Lethal and sublethal effects of orally delivered double-stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala. PEST MANAGEMENT SCIENCE 2024; 80:2282-2293. [PMID: 37020381 DOI: 10.1002/ps.7494] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The cabbage stem flea beetle (Psylliodes chrysocephala) is one of the most important insect pests of oilseed rape (Brassica napus) in northern Europe. The emergence of insecticide-resistant populations and the ban on neonicotinoid seed treatments have made the management of this pest challenging and research is needed to develop alternative strategies such as RNA interference (RNAi). We investigated lethal and sublethal effects of orally delivered double-stranded (ds)RNAs targeting P. chrysocephala orthologs of Sec23 and vacuolar adenosine triphosphatase subunit G (VatpG), which are involved in endoplasmic reticulum-Golgi transport and organelle acidification, respectively. RESULTS Feeding bioassays on P. chrysocephala adults showed that the highest concentration (200 ng/leaf disk) of dsSec23 caused mortalities of 76% and 56% in pre-aestivating and post-aestivating beetles, respectively, while the same concentration of dsVatpG led to mortality rates of ~34% in both stages. Moreover, sublethal effects, such as decreased feeding rates and attenuated locomotion were observed. Small RNA sequencing and gene expression measurements following the delivery of dsRNAs demonstrated the generation of ~21 nucleotide-long small interfering RNAs and a systemic RNAi response in P. chrysocephala. CONCLUSION We demonstrate that P. chrysocephala is a promising candidate for developing RNAi-based pest management strategies. Further research is necessary to identify more effective target genes and to assess potential non-target effects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Doga Cedden
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Bartlett LJ, Alparslan S, Bruckner S, Delaney DA, Menz JF, Williams GR, Delaplane KS. Neonicotinoid exposure increases Varroa destructor (Mesostigmata: Varroidae) mite parasitism severity in honey bee colonies and is not mitigated by increased colony genetic diversity. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:20. [PMID: 38805648 PMCID: PMC11132139 DOI: 10.1093/jisesa/ieae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Agrochemical exposure is a major contributor to ecological declines worldwide, including the loss of crucial pollinator species. In addition to direct toxicity, field-relevant doses of pesticides can increase species' vulnerabilities to other stressors, including parasites. Experimental field demonstrations of potential interactive effects of pesticides and additional stressors are rare, as are tests of mechanisms via which pollinators tolerate pesticides. Here, we controlled honey bee colony exposure to field-relevant concentrations of 2 neonicotinoid insecticides (clothianidin and thiamethoxam) in pollen and simultaneously manipulated intracolony genetic heterogeneity. We showed that exposure increased rates of Varroa destructor (Anderson and Trueman) parasitism and that while increased genetic heterogeneity overall improved survivability, it did not reduce the negative effect size of neonicotinoid exposure. This study is, to our knowledge, the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Suleyman Alparslan
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Selina Bruckner
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Deborah A Delaney
- Department of Entomology & Wildlife Ecology, University of Delaware, Newark, DE 27695-7613, USA
| | - John F Menz
- Department of Entomology & Wildlife Ecology, University of Delaware, Newark, DE 27695-7613, USA
| | - Geoffrey R Williams
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Keith S Delaplane
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
24
|
Henriques Martins CA, Azpiazu C, Bosch J, Burgio G, Dindo ML, Francati S, Sommaggio D, Sgolastra F. Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach. INSECTS 2024; 15:317. [PMID: 38786873 PMCID: PMC11122312 DOI: 10.3390/insects15050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Insects play an essential role as pollinators of wild flowers and crops. At the same time, pollinators in agricultural environments are commonly exposed to pesticides, compromising their survival and the provision of pollination services. Although pollinators include a wide range of species from several insect orders, information on pesticide sensitivity is mostly restricted to bees. In addition, the disparity of methodological procedures used for different insect groups hinders the comparison of toxicity data between bees and other pollinators. Dipterans are a highly diverse insect order that includes some important pollinators. Therefore, in this study, we assessed the sensitivity of two hoverflies (Sphaerophoria rueppellii, Eristalinus aeneus) and one tachinid fly (Exorista larvarum) to a neonicotinoid insecticide (Confidor®, imidacloprid) following a comparative approach. We adapted the standardized methodology of acute contact exposure in honey bees to build dose-response curves and calculate median lethal doses (LD50) for the three species. The methodology consisted in applying 1 µL of the test solution on the thorax of each insect. Sphaerophoria rueppelli was the most sensitive species (LD50 = 10.23 ng/insect), and E. aeneus (LD50 = 18,176 ng/insect) the least. We then compared our results with those available in the literature for other pollinator species using species sensitivity distribution (SSD). Based on the SSD curve, the 95th percentile of pollinator species would be protected by a safety factor of 100 times the Apis mellifera endpoint. Overall, dipterans were less sensitive to imidacloprid than most bee species. As opposed to most bee species, oviposition and fecundity of many dipteran species can be reliably assessed in the laboratory. We measured the number of eggs laid following exposure to different insecticide doses and assessed the potential trade-off between oviposition and survival through the sublethal sensitivity index (SSI). Exposure to imidacloprid had a significant effect on fecundity, and SSI values indicated that oviposition is a sensitive endpoint for the three dipteran species tested. Future studies should integrate this information related to population dynamics in simulation models for environmental risk assessment.
Collapse
Affiliation(s)
- Cátia Ariana Henriques Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Celeste Azpiazu
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
- Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Jordi Bosch
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
| | - Giovanni Burgio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Maria Luisa Dindo
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Santolo Francati
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Daniele Sommaggio
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41121 Modena, Italy;
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| |
Collapse
|
25
|
Abdallah OI, Abd El-Hamid RM, Ahmed NS, Alhewairini SS, Abdel Ghani SB. Development of Green and Facile Sample Preparation Method for Determination of Seven Neonicotinoids in Fresh Vegetables, and Dissipation and Risk Assessment of Imidacloprid and Dinotefuran. Foods 2024; 13:1106. [PMID: 38611410 PMCID: PMC11011385 DOI: 10.3390/foods13071106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
A facile procedure for extracting and determining seven neonicotinoids was developed. Water was the only extraction solvent without phase separation and cleanup steps. The method was validated according to European Union standards, and the values obtained were compared with the criteria. The accuracy values were between 99.8% (thiamethoxam) and 106.8% (clothianidin) at the spiking levels of 0.01, 0.1, and 1 mg/kg in the tested matrices. The precision as pooled RSD values was ≤6.1% (intra-day) and ≤6.9% (inter-day). The limit of quantification was set and tested at 0.01 mg/kg. The matrix effect was evaluated, and all matrices had a suppressive effect. The matrix of the cucumber was the most effective, with -20.9% for dinotefuran and an average of -9.8% for all compounds, while the tomato matrix had the slightest effect. Real marketed samples were analyzed using the developed and QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) methods; the results were not significantly different. A supervised field trial was conducted in the open field to study the dissipation patterns of imidacloprid and dinotefuran in tomatoes. The dissipation of both compounds followed first-order kinetics. The half-life (T½) values were 3.4 and 2.5 days, with dissipation rates k of 0.2013 and 0.2781 days, respectively. Following the EU-MRL database, the calculated pre-harvest interval (PHI) values were 7 and 14 days for imidacloprid and dinotefuran, respectively, and 3 days for both compounds following Codex Alimentarius regulations. The risk of imidacloprid and dinotefuran residues was estimated from chronic and acute perspectives. The risk factors of dinotefuran were lower than those of imidacloprid. Nonetheless, the highest expected residues of both compounds were below the tolerance limits.
Collapse
Affiliation(s)
- Osama I Abdallah
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Rania M Abd El-Hamid
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Nevein S Ahmed
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Saleh S Alhewairini
- Department of Plant Protection, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah 51452, Saudi Arabia
| | - Sherif B Abdel Ghani
- Department of Plant Protection, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah 51452, Saudi Arabia
- Department of Plant Protection, Faculty of Agriculture, Ain Shams University, P.O. Box 68 Hadayek Shoubra, Cairo 11241, Egypt
| |
Collapse
|
26
|
Cecala JM, Vannette RL. Nontarget impacts of neonicotinoids on nectar-inhabiting microbes. Environ Microbiol 2024; 26:e16603. [PMID: 38494634 DOI: 10.1111/1462-2920.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Plant-systemic neonicotinoid (NN) insecticides can exert non-target impacts on organisms like beneficial insects and soil microbes. NNs can affect plant microbiomes, but we know little about their effects on microbial communities that mediate plant-insect interactions, including nectar-inhabiting microbes (NIMs). Here we employed two approaches to assess the impacts of NN exposure on several NIM taxa. First, we assayed the in vitro effects of six NN compounds on NIM growth using plate assays. Second, we inoculated a standardised NIM community into the nectar of NN-treated canola (Brassica napus) and assessed microbial survival and growth after 24 h. With few exceptions, in vitro NN exposure tended to decrease bacterial growth metrics. However, the magnitude of the decrease and the NN concentrations at which effects were observed varied substantially across bacteria. Yeasts showed no consistent in vitro response to NNs. In nectar, we saw no effects of NN treatment on NIM community metrics. Rather, NIM abundance and diversity responded to inherent plant qualities like nectar volume. In conclusion, we found no evidence that NIMs respond to field-relevant NN levels in nectar within 24 h, but our study suggests that context, specifically assay methods, time and plant traits, is important in assaying the effects of NNs on microbial communities.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology & Nematology, University of California, Davis, California, USA
| | - Rachel L Vannette
- Department of Entomology & Nematology, University of California, Davis, California, USA
| |
Collapse
|
27
|
Conradie TA, Lawson K, Allsopp M, Jacobs K. Exploring the impact of fungicide exposure and nutritional stress on the microbiota and immune response of the Cape honey bee (Apis mellifera capensis). Microbiol Res 2024; 280:127587. [PMID: 38142516 DOI: 10.1016/j.micres.2023.127587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Honey bees (Apis mellifera) harbour a stable core microbial community within their gut, that is suggested to play a role in metabolic functioning, immune regulation, and host homeostasis. This microbiota presents a unique opportunity to observe the effects of stressors on honey bee health. We examined the effects of two common honey bee stressors: indirect fungicide contamination and nutrient limitation. These effects were observed through changes in their hind- and midgut microbiota using Automated Ribosomal Intergenic Spacer Analysis (ARISA), alongside high-throughput amplicon sequencing. Expression of the honey bees' immune response was examined through the expression of three immune-related genes, namely, immune deficiency (imd), proPhenolOxidase (proPO), and spaetzle (spz). Additionally, longevity of the honey bees was monitored through observation of the expression levels of Vitellogenin (Vg). Both treatment groups were compared to a negative control, and a diseased positive control. There was no effect on the hindgut microbiota due to the stressors, while significant changes in the midgut was observed. This was also observed in the expression of the immune-related genes within the treatment groups. The Imd pathway was substantially downregulated, with upregulation in the prophenoloxidase pathway. However, no significant effect was observed in the expression of spz, and only the pollen treatment group showed reduced longevity through a downregulation of Vg. Overall, the effect of these two common stressors indicate a compromise in honey bee immunity, and potential vulnerabilities within the immune defence mechanisms.
Collapse
Affiliation(s)
- Tersia A Conradie
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kayla Lawson
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Mike Allsopp
- Agricultural Research Council - Plant, Health & Protection, Stellenbosch 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
28
|
Fischer N, Costa CP, Hur M, Kirkwood JS, Woodard SH. Impacts of neonicotinoid insecticides on bumble bee energy metabolism are revealed under nectar starvation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169388. [PMID: 38104805 DOI: 10.1016/j.scitotenv.2023.169388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Bumble bees are an important group of insects that provide essential pollination services as a consequence of their foraging behaviors. These pollination services are driven, in part, by energetic exchanges between flowering plants and individual bees. Thus, it is important to examine bumble bee energy metabolism and explore how it might be influenced by external stressors contributing to declines in global pollinator populations. Two stressors that are commonly encountered by bees are insecticides, such as the neonicotinoids, and nutritional stress, resulting from deficits in pollen and nectar availability. Our study uses a metabolomic approach to examine the effects of neonicotinoid insecticide exposure on bumble bee metabolism, both alone and in combination with nutritional stress. We hypothesized that exposure to imidacloprid disrupts bumble bee energy metabolism, leading to changes in key metabolites involved in central carbon metabolism. We tested this by exposing Bombus impatiens workers to imidacloprid according to one of three exposure paradigms designed to explore how chronic versus more acute (early or late) imidacloprid exposure influences energy metabolite levels, then also subjecting them to artificial nectar starvation. The strongest effects of imidacloprid were observed when bees also experienced nectar starvation, suggesting a combinatorial effect of neonicotinoids and nutritional stress on bumble bee energy metabolism. Overall, this study provides important insights into the mechanisms underlying the impact of neonicotinoid insecticides on pollinators, and underscores the need for further investigation into the complex interactions between environmental stressors and energy metabolism.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| | - Claudinéia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Manhoi Hur
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Jay S Kirkwood
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
29
|
Cappellari A, Malagnini V, Fontana P, Zanotelli L, Tonidandel L, Angeli G, Ioriatti C, Marini L. Impact of landscape composition on honey bee pollen contamination by pesticides: A multi-residue analysis. CHEMOSPHERE 2024; 349:140829. [PMID: 38042427 DOI: 10.1016/j.chemosphere.2023.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
The honey bee is the most common and important managed pollinator of crops. In recent years, honey bee colonies faced high mortality for multiple causes, including land-use change and the use of plant protection products (hereafter pesticides). This work aimed to explore how contamination by pesticides of pollen collected by honey bees was modulated by landscape composition and seasonality. We placed two honey bee colonies in 13 locations in Northern Italy in contrasting landscapes, from which we collected pollen samples monthly during the whole flowering season in 2019 and 2020. We searched for almost 400 compounds, including fungicides, herbicides, insecticides, and acaricides. We then calculated for each pollen sample the Pollen Hazard Quotient (PHQ), an index that provides a measure of multi-residue toxicity of contaminated pollen. Almost all pollen samples were contaminated by at least one compound. We detected 97 compounds, mainly fungicides, but insecticides and acaricides showed the highest toxicity. Fifteen % of the pollen samples had medium-high or high levels of PHQ, which could pose serious threats to honey bees. Fungicides showed a nearly constant PHQ throughout the season, while herbicides and insecticides and acaricides showed higher PHQ values in spring and early summer. Also, PHQ increased with increasing cover of agricultural and urban areas from April to July, while it was low and independent of landscape composition at the end of the season. The cover of perennial crops, i.e., fruit trees and vineyards, but not of annual crops, increased PHQ of pollen samples. Our work highlighted that the potential toxicity of pollen collected by honey bees was modulated by complex interactions among pesticide category, seasonality, and landscape composition. Due to the large number of compounds detected, our study should be complemented with additional experimental research on the potential interactive effects of multiple compounds on honey bee health.
Collapse
Affiliation(s)
- Andree Cappellari
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Valeria Malagnini
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Paolo Fontana
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Livia Zanotelli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Loris Tonidandel
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Gino Angeli
- Edmund Mach Foundation, Technology Transfer Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Claudio Ioriatti
- Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010, San Michele All'Adige, TN, Italy
| | - Lorenzo Marini
- University of Padova, Department of Agronomy, Food, Natural Resources, Animals and Environment, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
30
|
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
31
|
Lonsdorf EV, Rundlöf M, Nicholson CC, Williams NM. A spatially explicit model of landscape pesticide exposure to bees: Development, exploration, and evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168146. [PMID: 37914120 DOI: 10.1016/j.scitotenv.2023.168146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Pesticides represent one of the greatest threats to bees and other beneficial insects in agricultural landscapes. Potential exposure is generated through compound- and crop-specific patterns of pesticide use over space and time and unique degradation behavior among compounds. Realized exposure develops through bees foraging from their nests across the spatiotemporal mosaic of floral resources and associated pesticides throughout the landscape. Despite the recognized importance of a landscape-wide approach to assessing exposure, we lack a sufficiently-evaluated predictive framework to inform mitigation decisions and environmental risk assessment for bees. We address this gap by developing a bee pesticide exposure model that incorporates spatiotemporal pesticide use patterns, estimated rates of pesticide degradation, floral resource dynamics across habitats, and bee foraging movements. We parameterized the model with pesticide use data from a public database containing crop-field- and date-specific records of uses throughout our study region over an entire year. We evaluate the model performance in predicting bee pesticide exposure using a dataset of pesticide residues in pollens gathered by bumble bees (Bombus vosnesenskii) returning to colonies across 14 spatially independent landscapes in Northern California. We applied alternative model formulations of pesticide accumulation and degradation, floral resource seasonality, and bee foraging behavior to evaluate different levels of detail for predicting observed pesticide exposure. Our best model explained 73 % of observed variation in pesticide exposure of bumble bee colonies, with generally positive correlations for the dominant compounds. Timing and location of pesticide use were integral, but more detailed parameterizations of pesticide degradation, floral resources, and bee foraging improved the predictions little if at all. Our results suggest that this approach to predict bees' pesticide exposure has value in extending from the local field scale to the landscape in environmental risk assessment and for exploring mitigation options to support bees in agricultural landscapes.
Collapse
Affiliation(s)
- Eric V Lonsdorf
- Department of Environmental Sciences, 400 Dowman Drive, 5th floor, Math & Science Center, Emory University, Atlanta 30322, GA, United States of America.
| | - Maj Rundlöf
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America; Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Charlie C Nicholson
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America; Department of Biology, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Neal M Williams
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616, United States of America
| |
Collapse
|
32
|
Paula MCD, Batista NR, Cunha DADS, Santos PGD, Antonialli-Junior WF, Cardoso CAL, Simionatto E. Impacts of the insecticide thiamethoxam on the native stingless bee Plebeia catamarcensis (Hymenoptera, Apidae, Meliponini). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122742. [PMID: 37839683 DOI: 10.1016/j.envpol.2023.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Agricultural production and the indiscriminate use of insecticides such as thiamethoxam have put at risk the biodiversity and ecosystem services provided by bees, including native stingless species. Since most of the native species do not present economic importance, they may suffer "silent extinction", due to lack of monitoring of their colonies. Therefore, this study aimed to determine the lethal and sublethal concentrations of the insecticide thiamethoxam, with evaluation of its sublethal effects on mobility, in the stingless bee Plebeia catamarcensis (Holmberg, 1903). Foraging bees were collected and exposed to thiamethoxam to determine lethal (LC50) and sublethal concentrations. The 24 h LC50 was 0.408 ng a.i./μL, a value demonstrating that this species may be as sensitive as other stingless bees already studied. Sublethal concentrations influenced the locomotion abilities of the bees, making them hyperactive when exposed to LC50/10 and lethargic when exposed to LC50/100. The effects of sublethal concentrations on individuals may have collective consequences, especially in colonies with few individuals, as is the case of P. catamarcensis. The findings reinforce the hypothesis that thiamethoxam may contribute to the decline of native stingless bees, which can be significantly impacted when chronically exposed to agricultural production systems that use this insecticide, consequently affecting the ecosystem services provided by these bees.
Collapse
Affiliation(s)
- Michele Castro de Paula
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Nathan Rodrigues Batista
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Dayana Alves da Silva Cunha
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Poliana Galvão Dos Santos
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - William Fernando Antonialli-Junior
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Euclésio Simionatto
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| |
Collapse
|
33
|
Bava R, Castagna F, Ruga S, Caminiti R, Nucera S, Bulotta RM, Naccari C, Britti D, Mollace V, Palma E. Protective Role of Bergamot Polyphenolic Fraction (BPF) against Deltamethrin Toxicity in Honeybees ( Apis mellifera). Animals (Basel) 2023; 13:3764. [PMID: 38136801 PMCID: PMC10741048 DOI: 10.3390/ani13243764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Pesticide-induced poisoning phenomena are a serious problem for beekeeping and can cause large losses of honeybee populations due to acute and sub-acute poisoning. The reduced responsiveness of honeybees to the damage caused by pesticides used in agriculture can be traced back to a general qualitative and quantitative impoverishment of the nectar resources of terrestrial ecosystems. Malnutrition is associated with a decline in the functionality of the immune system and the systems that are delegated to the detoxification of the organism. This research aimed to verify whether bergamot polyphenolic extract (BPF) could have protective effects against poisoning by the pyrethroid pesticide deltamethrin. The studies were conducted with caged honeybees under controlled conditions. Sub-lethal doses of pesticides and related treatments for BPF were administered. At a dose of 21.6 mg/L, deltamethrin caused mortality in all treated subjects (20 caged honeybees) after one day of administration. The groups where BPF (1 mg/kg) was added to the toxic solution recorded the survival of honeybees by up to three days. Comparing the honeybees of the groups in which the BPF-deltamethrin association was added to the normal diet (sugar solution) with those in which deltamethrin alone was added to the normal diet, the BPF group had a statistically significant reduction in the honeybee mortality rate (p ≤ 0.05) and a greater consumption of food. Therefore, it can be argued that the inclusion of BPF and its constituent antioxidants in the honeybee diet reduces toxicity and oxidative stress caused by oral intake of deltamethrin. Furthermore, it can be argued that BPF administration could compensate for metabolic energy deficits often induced by the effects of malnutrition caused by environmental degradation and standard beekeeping practices.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Clara Naccari
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Vincenzo Mollace
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
34
|
Klatt BK, Wurz A, Herbertsson L, Rundlöf M, Svensson GP, Kuhn J, Vessling S, de La Vega B, Tscharntke T, Clough Y, Smith HG. Seed treatment with clothianidin induces changes in plant metabolism and alters pollinator foraging preferences. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1247-1256. [PMID: 38062283 PMCID: PMC10724316 DOI: 10.1007/s10646-023-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Neonicotinoids, systemic insecticides that are distributed into all plant tissues and protect against pests, have become a common part of crop production, but can unintentionally also affect non-target organisms, including pollinators. Such effects can be direct effects from insecticide exposure, but neonicotinoids can affect plant physiology, and effects could therefore also be indirectly mediated by changes in plant phenology, attractiveness and nutritional value. Under controlled greenhouse conditions, we tested if seed treatment with the neonicotinoid clothianidin affected oilseed rape's production of flower resources for bees and the content of the secondary plant products glucosinolates that provide defense against herbivores. Additionally, we tested if seed treatment affected the attractiveness of oilseed rape to flower visiting bumblebees, using outdoor mesocosms. Flowers and leaves of clothianidin-treated plants had different profiles of glucosinolates compared with untreated plants. Bumblebees in mesocosms foraged slightly more on untreated plants. Neither flower timing, flower size nor the production of pollen and nectar differed between treatments, and therefore cannot explain any preference for untreated oilseed rape. We instead propose that this small but significant preference for untreated plants was related to the altered glucosinolate profile caused by clothianidin. Thereby, this study contributes to the understanding of the complex relationships between neonicotinoid-treated crops and pollinator foraging choices, by suggesting a potential mechanistic link by which insecticide treatment can affect insect behavior.
Collapse
Affiliation(s)
- Björn K Klatt
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden.
- Department of Biology, Lund University, 223 62, Lund, Sweden.
- School of Business, Innovation and Sustainability, Biology & Environmental Sciences, Halmstad University, 30118, Halmstad, Sweden.
| | - Annemarie Wurz
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Department of Crop Sciences, Agroecology, University of Göttingen, 37077, Göttingen, Germany
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Lina Herbertsson
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | | - Jürgen Kuhn
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | - Sofie Vessling
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
| | - Bernardo de La Vega
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teja Tscharntke
- Department of Crop Sciences, Agroecology, University of Göttingen, 37077, Göttingen, Germany
| | - Yann Clough
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
| | - Henrik G Smith
- Centre for Environmental and Climate Science, Lund University, 223 62, Lund, Sweden
- Department of Biology, Lund University, 223 62, Lund, Sweden
| |
Collapse
|
35
|
Xiao X, Haas J, Nauen R. Functional orthologs of honeybee CYP6AQ1 in stingless bees degrade the butenolide insecticide flupyradifurone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115719. [PMID: 37992638 DOI: 10.1016/j.ecoenv.2023.115719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Flupyradifurone (FPF), a novel butenolide insecticide binding to nicotinic acetylcholine receptors (nAChRs), has been shown to be less acutely toxic to western honey bees (Apis mellifera) than other insecticides such as neonicotinoids sharing the same target-site. A previous study revealed that this is due to enhanced oxidative metabolism of FPF, mediated by three cytochrome P450 monooxygenases (P450s), including CYP6AQ1. Therefore, we followed a toxicogenomics approach and investigated the potential role of functional CYP6AQ1 orthologs in FPF metabolism from eight different bee species, including stingless bees (Tribe: Meliponini). We conducted a phylogenetic analysis on four stingless bee species, including Frieseomelitta varia, Heterotrigona itama, Melipona quadrifasciata and Tetragonula carbonaria to identify CYP6AQ1-like functional orthologs. Three non-Meliponini, but tropical bee species, i.e., Ammobates syriacus, Euglossa dilemma and Megalopta genalis were analyzed as well. We identified candidate P450s in all (neo)tropical species with greater than 61% and 67% predicted protein sequence identities when compared to A. mellifera CYP6AQ1 and Bombus terrestris CYP6AQ26, respectively. Heterologous expression in High Five insect cells of these functional orthologs revealed a common coumarin substrate profile and a preference for the O-debenzylation of bulkier substrates. Competition assays using the fluorescent probe substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) with these enzymes indicated inhibition of BOMFC metabolism by increasing concentrations of FPF. Furthermore, UPLC-MS/MS analysis revealed the capacity of all CYP6AQ1-like orthologs to metabolize FPF by hydroxylation in vitro at various levels, indicating a conserved FPF detoxification potential in different (neo)tropical bee species including Meliponini. This research, employing a toxicogenomics approach, provides important insights into the potential of stingless and other tropical bee species to detoxify FPF, and highlights the significance of investigating the detoxification mechanisms of insecticides in non-Apis bee species by molecular tools to inform risk assessment and conservation efforts.
Collapse
Affiliation(s)
- Xingzhi Xiao
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany; Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Julian Haas
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany.
| |
Collapse
|
36
|
Du L, Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Assessment of the risk of imidaclothiz to the dominant aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae). ENVIRONMENTAL RESEARCH 2023; 238:117165. [PMID: 37739156 DOI: 10.1016/j.envres.2023.117165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
37
|
Dirilgen T, Herbertsson L, O'Reilly AD, Mahon N, Stanley DA. Moving past neonicotinoids and honeybees: A systematic review of existing research on other insecticides and bees. ENVIRONMENTAL RESEARCH 2023; 235:116612. [PMID: 37454798 DOI: 10.1016/j.envres.2023.116612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Synthetic pesticides (e.g. herbicides, fungicides and insecticides) are used widely in agriculture to protect crops from pests, weeds and disease. However, their use also comes with a range of environmental concerns. One key concern is the effect of insecticides on non-target organisms such as bees, who provide pollination services for crops and wild plants. This systematic literature review quantifies the existing research on bees and insecticides broadly, and then focuses more specifically on non-neonicotinoid insecticides and non-honeybees. We find that articles on honeybees (Apis sp.) and insecticides account for 80% of all research, with all other bees combined making up 20%. Neonicotinoids were studied in 34% of articles across all bees and were the most widely studied insecticide class for non-honeybees overall, with almost three times as many studies than the second most studied class. Of non-neonicotinoid insecticide classes and non-honeybees, the most studied were pyrethroids and organophosphates followed by carbamates, and the most widely represented bee taxa were bumblebees (Bombus), followed by leaf-cutter bees (Megachile) and mason bees (Osmia). Research has taken place across several countries, with the highest numbers of articles from Brazil and the US, and with notable gaps from countries in Asia, Africa and Oceania. Mortality was the most studied effect type, while sub-lethal effects such as on behaviour were less studied. Few studies tested how the effect of insecticides were influenced by multiple pressures, such as climate change and co-occurring pesticides (cocktail effects). As anthropogenic pressures do not occur in isolation, we suggest that future research also addresses these knowledge gaps. Given the changing global patterns in insecticide use, and the increasing inclusion of both non-honeybees and sub-lethal effects in pesticide risk assessment, there is a need for expanding research beyond its current state to ensure a strong scientific evidence base for the development of risk assessment and associated policy.
Collapse
Affiliation(s)
- T Dirilgen
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland; Earth Institute, University College Dublin, Belfield, Dublin, Ireland.
| | - L Herbertsson
- Department of Biology, Lund University, Lund, Sweden
| | - A D O'Reilly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland; Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - N Mahon
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - D A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland; Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
38
|
Straw EA, Stanley DA. Weak evidence base for bee protective pesticide mitigation measures. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1604-1612. [PMID: 37458300 PMCID: PMC10564266 DOI: 10.1093/jee/toad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 10/12/2023]
Abstract
Pesticides help produce food for humanity's growing population, yet they have negative impacts on the environment. Limiting these impacts, while maintaining food supply, is a crucial challenge for modern agriculture. Mitigation measures are actions taken by pesticide users, which modify the risk of the application to nontarget organisms, such as bees. Through these, the impacts of pesticides can be reduced, with minimal impacts on the efficacy of the pesticide. Here we collate the scientific evidence behind mitigation measures designed to reduce pesticide impacts on bees using a systematic review methodology. We included all publications which tested the effects of any pesticide mitigation measure (using a very loose definition) on bees, at any scale (from individual through to population level), so long as they presented evidence on the efficacy of the measure. We found 34 publications with direct evidence on the topic, covering a range of available mitigation measures. No currently used mitigation measures were thoroughly tested, and some entirely lacked empirical support, showing a weak evidence base for current recommendations and policy. We found mitigation measure research predominantly focuses on managed bees, potentially failing to protect wild bees. We also found that label-recommended mitigation measures, which are the mitigation measures most often applied, specifically are seldom tested empirically. Ultimately, we recommend that more, and stronger, scientific evidence is required to justify existing mitigation measures to help reduce the impacts of pesticides on bees while maintaining crop protection.
Collapse
Affiliation(s)
- Edward A Straw
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Vickneswaran M, Carolan JC, Saunders M, White B. Establishing the extent of pesticide contamination in Irish agricultural soils. Heliyon 2023; 9:e19416. [PMID: 37674820 PMCID: PMC10478240 DOI: 10.1016/j.heliyon.2023.e19416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
To establish meaningful and sustainable policy directives for sustainable pesticide use in agriculture, baseline knowledge of pesticide levels in soils is required. To address this, five pesticides and one metabolite widely used in Irish agriculture and five neonicotinoid compounds pesticides were screened from soils from 25 fields. These sites represented a diversity of soil and land use types. Prothioconazole was detected in 16 of the 18 sites where it had been recently applied, with the highest maximum concentration quantified of 46 μg/kg. However, a week after application only four fields had prothioconazole concentrations above the limit of quantification (LOQ). Fluroxypyr was applied in 11 sites but was not detected above LOQ. Glyphosate and AMPA were not detected. Interestingly, neonicotinoids were detected in 96% of all sampling sites, even though they were not reported as recently applied. Excluding neonicotinoids, 60% of sites were found to contain pesticide residues of compounds that were not previously applied, with boscalid and azoxystrobin detected in 15 of the 25 sites sampled. The total number of pesticides detected in Irish soils were significantly negatively correlated with clay fraction, while average pesticide concentrations were significantly positively correlated with log Kow values. 17 fields were found to have total pesticide concentrations in excess of 0.5 μg/kg, even when recently applied pesticides were removed from calculations. Theoretical consideration of quantified pesticides determined that azoxystrobin has high leaching risk, while boscalid, which was detected but not applied, has an accumulation risk. This information provides insight into the current level of pesticide contamination in Irish agricultural soil and contributes to the European-level effort to understand potential impacts of pesticide contamination in soil.
Collapse
Affiliation(s)
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Matthew Saunders
- Department of Botany, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Blánaid White
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
40
|
Nekoei S, Rezvan M, Khamesipour F, Mayack C, Molento MB, Revainera PD. A systematic review of honey bee (Apis mellifera, Linnaeus, 1758) infections and available treatment options. Vet Med Sci 2023. [PMID: 37335585 PMCID: PMC10357250 DOI: 10.1002/vms3.1194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Honey bees and honeycomb bees are very valuable for wild flowering plants and economically important crops due to their role as pollinators. However, these insects confront many disease threats (viruses, parasites, bacteria and fungi) and large pesticide concentrations in the environment. Varroa destructor is the most prevalent disease that has had the most negative effects on the fitness and survival of different honey bees (Apis mellifera and A. cerana). Moreover, honey bees are social insects and this ectoparasite can be easily transmitted within and across bee colonies. OBJECTIVE This review aims to provide a survey of the diversity and distribution of important bee infections and possible management and treatment options, so that honey bee colony health can be maintained. METHODS We used PRISMA guidelines throughout article selection, published between January 1960 and December 2020. PubMed, Google Scholar, Scopus, Cochrane Library, Web of Science and Ovid databases were searched. RESULTS We have collected 132 articles and retained 106 articles for this study. The data obtained revealed that V. destructor and Nosema spp. were found to be the major pathogens of honey bees worldwide. The impact of these infections can result in the incapacity of forager bees to fly, disorientation, paralysis, and death of many individuals in the colony. We find that both hygienic and chemical pest management strategies must be implemented to prevent, reduce the parasite loads and transmission of pathogens. The use of an effective miticide (fluvalinate-tau, coumaphos and amitraz) now seems to be an essential and common practice required to minimise the impact of Varroa mites and other pathogens on bee colonies. New, alternative biofriendly control methods, are on the rise, and could be critical for maintaining honey bee hive health and improving honey productivity. CONCLUSIONS We suggest that critical health control methods be adopted globally and that an international monitoring system be implemented to determine honey bee colony safety, regularly identify parasite prevalence, as well as potential risk factors, so that the impact of pathogens on bee health can be recognised and quantified on a global scale.
Collapse
Affiliation(s)
- Shahin Nekoei
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Rezvan
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology, Genetics, and Bioengineering, Sabanci University, İstanbul, Turkey
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
- Microbiology, Parasitology, Pathology Program, Federal University of Parana, Curitiba, PR, Brazil
| | - Pablo Damián Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
41
|
Martín-Blázquez R, Calhoun AC, Sadd BM, Cameron SA. Gene expression in bumble bee larvae differs qualitatively between high and low concentration imidacloprid exposure levels. Sci Rep 2023; 13:9415. [PMID: 37296299 PMCID: PMC10256756 DOI: 10.1038/s41598-023-36232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neonicotinoid pesticides negatively impact bumble bee health, even at sublethal concentrations. Responses to the neonicotinoid imidacloprid have been studied largely at individual adult and colony levels, focusing mostly on behavioral and physiological effects. Data from developing larvae, whose health is critical for colony success, are deficient, particularly at the molecular level where transcriptomes can reveal disruption of fundamental biological pathways. We investigated gene expression of Bombus impatiens larvae exposed through food provisions to two field-realistic imidacloprid concentrations (0.7 and 7.0 ppb). We hypothesized both concentrations would alter gene expression, but the higher concentration would have greater qualitative and quantitative effects. We found 678 genes differentially expressed under both imidacloprid exposures relative to controls, including mitochondrial activity, development, and DNA replication genes. However, more genes were differentially expressed with higher imidacloprid exposure; uniquely differentially expressed genes included starvation response and cuticle genes. The former may partially result from reduced pollen use, monitored to verify food provision use and provide additional context to results. A smaller differentially expressed set only in lower concentration larvae, included neural development and cell growth genes. Our findings show varying molecular consequences under different field-realistic neonicotinoid concentrations, and that even low concentrations may affect fundamental biological processes.
Collapse
Affiliation(s)
- Rubén Martín-Blázquez
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de la Cartuja, Seville, Spain.
| | - Austin C Calhoun
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Sydney A Cameron
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
42
|
Straw EA, Mesnage R, Brown MJF, Antoniou MN. No impacts of glyphosate or Crithidia bombi, or their combination, on the bumblebee microbiome. Sci Rep 2023; 13:8949. [PMID: 37268667 PMCID: PMC10238469 DOI: 10.1038/s41598-023-35304-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Pesticides are recognised as a key threat to pollinators, impacting their health in many ways. One route through which pesticides can affect pollinators like bumblebees is through the gut microbiome, with knock-on effects on their immune system and parasite resistance. We tested the impacts of a high acute oral dose of glyphosate on the gut microbiome of the buff tailed bumblebee (Bombus terrestris), and glyphosate's interaction with the gut parasite (Crithidia bombi). We used a fully crossed design measuring bee mortality, parasite intensity and the bacterial composition in the gut microbiome estimated from the relative abundance of 16S rRNA amplicons. We found no impact of either glyphosate, C. bombi, or their combination on any metric, including bacterial composition. This result differs from studies on honeybees, which have consistently found an impact of glyphosate on gut bacterial composition. This is potentially explained by the use of an acute exposure, rather than a chronic exposure, and the difference in test species. Since A. mellifera is used as a model species to represent pollinators more broadly in risk assessment, our results highlight that caution is needed in extrapolating gut microbiome results from A. mellifera to other bee species.
Collapse
Affiliation(s)
- Edward A Straw
- Department of Botany, Trinity College Dublin, Dublin, Ireland.
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK.
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662, Überlingen, Germany.
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|
43
|
Sherard M, Dang QM, Reiff SC, Simpson JH, Leopold MC. On-Site Detection of Neonicotinoid Pesticides Using Functionalized Gold Nanoparticles and Halogen Bonding. ACS APPLIED NANO MATERIALS 2023; 6:8367-8381. [PMID: 37260915 PMCID: PMC10227770 DOI: 10.1021/acsanm.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023]
Abstract
Neonicotinoid (NN) pesticides have emerged globally as one of the most widely used agricultural tools for protecting crops from pest damage and boosting food production. Unfortunately, some NN compounds, such as extensively employed imidacloprid-based pesticides, have also been identified as likely endangering critical pollinating insects like honey bees. To this end, NN pesticides pose a potential threat to world food supplies. As more countries restrict or prohibit the use of NN pesticides, tools are needed to effectively and quickly identify the presence of NN compounds like imidacloprid on site (e.g., in storage areas on farms or pesticide distribution warehouses). This study represents a proof-of-concept where the colloidal properties of specifically modified gold nanoparticles (Au-NPs) able to engage in the rare intermolecular interaction of halogen bonding (XB) can result in the detection of certain NN compounds. Density functional theory and diffusion-ordered NMR spectroscopy (DOSY NMR) are used to explore the fundamental XB interactions between strong XB-donor structures and NN compounds, with the latter found to possess multiple XB-acceptor binding sites. A fundamental understanding of these XB interactions allows for the functionalization of alkanethiolate-stabilized Au-NPs, known as monolayer-protected gold clusters (MPCs), with XB-donor capability (f-MPCs). In the presence of certain NN compounds such as imidacloprid, the f-MPCs subsequently exhibit visual XB-induced aggregation that is also measured with absorption (UV-vis) spectroscopy and verified with transmission electron microscopy (TEM) imaging. The demonstrated f-MPC-aggregation detection scheme has a number of favorable attributes, including quickly reporting the presence of the NN target, requiring only micrograms of suspect material, and being highly selective for imidacloprid, the most prevalent and most important NN insecticide compound. Requiring no instrumentation, the presented methodology can be envisioned as a simple screening test in which dipping a cotton swab of an unknown powder from a surface in a f-MPC solution causes f-MPCs to aggregate and yield a preliminary indication of imidacloprid presence.
Collapse
|
44
|
Mena F, Berrocal S, Solano K, Herrera E, Gallardo M, Jiménez K, Aguilar I, Pinnock-Branford M. Comparison of the Sensitivity of Tetragonisca angustula (Apidae-Meliponini) and Apis mellifera (Apidae-Apini) to Three Insecticides (Malathion, Imidacloprid, and Fipronil) Used in Costa Rica. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1022-1031. [PMID: 36807197 DOI: 10.1002/etc.5587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The decline of insect pollinators is a significant concern within the current biodiversity crisis. The paradox between the benefits that these animals represent to humans and the evidence of human activities driving their extinction calls for the urgent protection of bees. To address the role of chemical pollution in this scenario, we assessed the acute toxicity as well as four biomarker responses (cholinesterase [ChE], glutathione S-transferase, catalase, and lipid peroxidation [LPO]) elicited by dietary 24-h exposure to three insecticides (malathion, imidacloprid, and fipronil) on the stingless neotropical bee Tetragonisca angustula and the honeybee Apis mellifera. Malathion was the most toxic substance to both species, with 48-h median lethal doses (LD50s) of 0.25 ng/bee to A. mellifera and 0.02 ng/bee to T. angustula. Fipronil was also highly toxic and presented a similar toxicity to both species, with 48-h LD50s of 0.5 ng/bee (A. mellifera) and 0.4 ng/bee (T. angustula). Imidacloprid had the lowest acute toxicity with a 48-h LD50 of 29 ng/bee for A. mellifera, whereas T. angustula tolerated exposure higher than 35 ng/bee. Apparent biomarker responses were observed in bees of both species that survived exposure to higher concentrations of malathion (ChE inhibition) and fipronil (increased LPO). Our results suggest that specific sensitivity to insecticides varies greatly among compounds and pollinator species, but the use of different representative species can facilitate the prioritization of substances regarding their risk to pollinators. Further research is necessary to better characterize the risk that pesticides represent in neotropical agricultural landscapes. Environ Toxicol Chem 2023;42:1022-1031. © 2023 SETAC.
Collapse
Affiliation(s)
- Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Silvia Berrocal
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Karla Solano
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Eduardo Herrera
- Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia, Costa Rica
| | - Mario Gallardo
- Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia, Costa Rica
| | - Katherine Jiménez
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Ingrid Aguilar
- Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia, Costa Rica
| | - Margaret Pinnock-Branford
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
45
|
Elmquist J, Biddinger D, Phan NT, Moural TW, Zhu F, Hoover K. Potential risk to pollinators from neonicotinoid applications to host trees for management of spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:368-378. [PMID: 36881675 DOI: 10.1093/jee/toad032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 05/30/2023]
Abstract
Neonicotinoid insecticides are used to manage spotted lanternfly (Lycorma delicatula (White); hereafter SLF), a recently introduced pest in the United States. Neonicotinoids can harm nontargets, such as pollinators potentially exposed via floral resources of treated plants. We quantified neonicotinoid residues in whole flowers of two SLF host plant species, red maple (Acer rubrum L. [Sapindales: Sapindaceae]) and tree-of-heaven (Ailanthus altissima (Mill.) [Sapindales: Simaroubaceae]), treated with post-bloom imidacloprid or dinotefuran applications that differed in timing and method of application. In red maple flowers, dinotefuran residues from fall applications were significantly higher than summer applications, while imidacloprid residues from fall applications were significantly lower than summer applications. Residues did not differ between application methods or sites. In tree-of-heaven flowers, dinotefuran residues were only detected in one of 28 samples at a very low concentration. To assess acute mortality risk to bees from oral exposure to residues in these flowers, we calculated risk quotients (RQ) using mean and 95% prediction interval residue concentrations from treatments in this study and lethal concentrations obtained from acute oral bioassays for Apis mellifera (L. (Hymenoptera: Apidae)) and Osmia cornifrons (Radoszkowski (Hymenoptera: Megachilidae)), then compared these RQs to a level of concern. For A. mellifera, only one treatment group, applied at 2X maximum label rate, had an RQ that exceeded this level. However, several RQs for O. cornifrons exceeded the level of concern, suggesting potential acute risk to solitary bees. Further studies are recommended for more comprehensive risk assessments to nontargets from neonicotinoid use for SLF management.
Collapse
Affiliation(s)
- Jonathan Elmquist
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - David Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Fruit Research and Extension Center, Pennsylvania State University, Biglerville, PA 17307, USA
| | - Ngoc T Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
46
|
Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Luo J, Cui J. Exposure to flupyradifurone affect health of biocontrol parasitoid Binodoxys communis (Hymenoptera: Braconidae) via disrupting detoxification metabolism and lipid synthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114785. [PMID: 36934546 DOI: 10.1016/j.ecoenv.2023.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Assessing the potential effects of insecticides on beneficial biological control agents is key to facilitating the success of integrated pest management (IPM) approaches. Flupyradifurone (FPF) is a novel neonicotinoid insecticide that is replacing traditional neonicotinoids over a large geographical range to control pests. Binodoxys communis, is the dominant parasitic natural enemy of aphids. To date, no reports have addressed sublethal effects of FPF on B. communis. In this study, the lethal and sublethal effects of FPF on B. communis were investigated by indirect exposure to larvae and direct exposure to adults. Results showed that the sublethal LC10 and LC25 of FPF had negative effects on the biological parameters of B. communis, including significantly reducing survival rate, adult longevity, parasitism rate, and emergence rate, and significantly prolonging the developmental stages from egg to cocoons. In addition, we observed a transgenerational effect of FPF on the next generation (F1). RNA-Seq transcriptomic analysis identified a total of 1429 differentially expressed genes (DEGs) that were significantly changed between FPF-treated and control groups. These DEGs are mainly enriched in metabolic pathways such as peroxisomes, glutamate metabolism, carbon metabolism, fatty acid metabolism, and amino acid metabolism. This report is the first comprehensive evaluation of how FPF effects B. communis, which adds to the methods of assessing pesticide exposure in parasitic natural enemies. We speculate that the significant changes in pathways, especially those related to lipid synthesis, may be the reason for weakened parasitoid biocontrol ability. The present study provides new evidence for the toxic effects and environmental residue risk of FPF.
Collapse
Affiliation(s)
- Xueke Gao
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, 831100, Changji, China
| | - Likang Zhao
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xiangzhen Zhu
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Li Wang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Kaixin Zhang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Dongyang Li
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jichao Ji
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Lin Niu
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Junyu Luo
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, 831100, Changji, China.
| | - Jinjie Cui
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 455001, Zhengzhou, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, 831100, Changji, China.
| |
Collapse
|
47
|
Schaad E, Fracheboud M, Droz B, Kast C. Quantitation of pesticides in bee bread collected from honey bee colonies in an agricultural environment in Switzerland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56353-56367. [PMID: 36917390 PMCID: PMC10121494 DOI: 10.1007/s11356-023-26268-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Pesticide contamination of bee products is a widespread phenomenon. Due to its composition, bee bread is affected by both lipophilic and hydrophilic substances. As proof of concept of a monitoring campaign and to better understand the extent of contamination, we developed an analytical method based on a modified QuEChERS extraction, with subsequent separation by liquid chromatography and detection by mass spectrometry. This allowed for the quantitation of 51 agricultural- or beekeeping-associated pesticides in bee bread. The workflow was applied to 60 samples taken biweekly throughout spring to autumn 2022 from five colonies at a Swiss apiary in an agricultural area. In total, 30 pesticides were identified (> LOD), among which 26 pesticides were quantitated. The total number of pesticides detected per colony ranged from 11 to 19. The most prevalent substances (> LOQ) were two neonicotinoid insecticides, acetamiprid and thiacloprid (max. 16 μg/kg and 37 μg/kg, respectively); seven fungicides, azoxystrobin (max. 72 μg/kg), boscalid (max. 50 μg/kg), cyprodinil (max. 1965 μg/kg), difenoconazole (max. 73 μg/kg), mandipropamid (max. 33 μg/kg), pyraclostrobin (max. 8 μg/kg) and trifloxystrobin (max. 38 μg/kg); and two herbicides, prosulfocarb (max. 38 μg/kg) and terbuthylazine (max. 26 μg/kg). The study revealed strong variability in pesticide occurrence and concentrations among colonies sampled at the same site and date. The applied biweekly sampling of bee bread from March to August was shown to be reliable in capturing peak contaminations and revealing the onset of certain pesticides in bee bread. The study provides an adequate practical approach for pesticide monitoring campaigns.
Collapse
Affiliation(s)
- Emmanuel Schaad
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Marion Fracheboud
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Benoît Droz
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Christina Kast
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.
| |
Collapse
|
48
|
Thompson LJ, Stout JC, Stanley DA. Contrasting effects of fungicide and herbicide active ingredients and their formulations on bumblebee learning and behaviour. J Exp Biol 2023; 226:297167. [PMID: 36861783 PMCID: PMC10112909 DOI: 10.1242/jeb.245180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Fungicides and herbicides are two of the most heavily applied pesticide classes in the world, but receive little research attention with regards to their potential impacts on bees. As they are not designed to target insects, the mechanisms behind potential impacts of these pesticides are unclear. It is therefore important to understand their influence at a range of levels, including sublethal impacts on behaviours such as learning. We used the proboscis extension reflex (PER) paradigm to assess how the herbicide glyphosate and the fungicide prothioconazole affect bumblebee olfactory learning. We also assessed responsiveness, and compared the impacts of these active ingredients and their respective commercial formulations (Roundup Biactive and Proline). We found that learning was not impaired by either formulation but, of the bees that displayed evidence of learning, exposure to prothioconazole active ingredient increased learning level in some situations, while exposure to glyphosate active ingredient resulted in bumblebees being less likely to respond to antennal stimulation with sucrose. Our data suggest that fungicides and herbicides may not negatively impact olfactory learning ability when bumblebees are exposed orally to field-realistic doses in a lab setting, but that glyphosate has the potential to cause changes in responsiveness in bees. As we found impacts of active ingredients and not commercial formulations, this suggests that co-formulants may modify impacts of active ingredients in the products tested on olfactory learning without being toxic themselves. More research is needed to understand the mechanisms behind potential impacts of fungicides and herbicides on bees, and to evaluate the implications of behavioural changes caused by glyphosate and prothioconazole for bumblebee fitness.
Collapse
Affiliation(s)
- Linzi J Thompson
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.,Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.,Earth Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
49
|
Thany SH. Molecular Mechanism of Action of Neonicotinoid Insecticides. Int J Mol Sci 2023; 24:ijms24065484. [PMID: 36982557 PMCID: PMC10056306 DOI: 10.3390/ijms24065484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Since neonicotinoid insecticides were first introduced several years ago, most of them have been banned by the European Union due to their potentially adverse effects on humans and useful insects [...]
Collapse
Affiliation(s)
- Steeve H Thany
- Department of Biology and Biochemistry, Université d'Orléans, LBLGC USC-INRAE 1328, 1 rue de Chartres, 45067 Orléans, France
| |
Collapse
|
50
|
Askri D, Straw EA, Arafah K, Voisin SN, Bocquet M, Brown MJF, Bulet P. Parasite and Pesticide Impacts on the Bumblebee (Bombus terrestris) Haemolymph Proteome. Int J Mol Sci 2023; 24:ijms24065384. [PMID: 36982462 PMCID: PMC10049270 DOI: 10.3390/ijms24065384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Pesticides pose a potential threat to bee health, especially in combination with other stressors, such as parasites. However, pesticide risk assessment tests pesticides in isolation from other stresses, i.e., on otherwise healthy bees. Through molecular analysis, the specific impacts of a pesticide or its interaction with another stressor can be elucidated. Molecular mass profiling by MALDI BeeTyping® was used on bee haemolymph to explore the signature of pesticidal and parasitic stressor impacts. This approach was complemented by bottom-up proteomics to investigate the modulation of the haemoproteome. We tested acute oral doses of three pesticides—glyphosate, Amistar and sulfoxaflor—on the bumblebee Bombus terrestris, alongside the gut parasite Crithidia bombi. We found no impact of any pesticide on parasite intensity and no impact of sulfoxaflor or glyphosate on survival or weight change. Amistar caused weight loss and 19–41% mortality. Haemoproteome analysis showed various protein dysregulations. The major pathways dysregulated were those involved in insect defences and immune responses, with Amistar having the strongest impact on these dysregulated pathways. Our results show that even when no response can be seen at a whole organism level, MALDI BeeTyping® can detect effects. Mass spectrometry analysis of bee haemolymph provides a pertinent tool to evaluate stressor impacts on bee health, even at the level of individuals.
Collapse
Affiliation(s)
- Dalel Askri
- Plateforme BioPark d’Archamps, 74160 Archamps, France
- Correspondence:
| | - Edward A. Straw
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School for Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
- Department of Botany, School of Natural Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Karim Arafah
- Plateforme BioPark d’Archamps, 74160 Archamps, France
| | - Sébastien N. Voisin
- Plateforme BioPark d’Archamps, 74160 Archamps, France
- Phylogene S.A. 62 RN113, 30620 Bernis, France
| | | | - Mark J. F. Brown
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School for Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Philippe Bulet
- CR, University Grenoble Alpes, IAB Inserm 1209, CNRS UMR5309, 38000 Grenoble, France
| |
Collapse
|