1
|
Juez-Castillo G, Valencia-Vidal B, Orrego LM, Cabello-Donayre M, Montosa-Hidalgo L, Pérez-Victoria JM. FiCRoN, a deep learning-based algorithm for the automatic determination of intracellular parasite burden from fluorescence microscopy images. Med Image Anal 2024; 91:103036. [PMID: 38016388 DOI: 10.1016/j.media.2023.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/27/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Protozoan parasites are responsible for dramatic, neglected diseases. The automatic determination of intracellular parasite burden from fluorescence microscopy images is a challenging problem. Recent advances in deep learning are transforming this process, however, high-performance algorithms have not been developed. The limitations in image acquisition, especially for intracellular parasites, make this process complex. For this reason, traditional image-processing methods are not easily transferred between different datasets and segmentation-based strategies do not have a high performance. Here, we propose a novel method FiCRoN, based on fully convolutional regression networks (FCRNs), as a promising new tool for estimating intracellular parasite burden. This estimation requires three values, intracellular parasites, infected cells and uninfected cells. FiCRoN solves this problem as multi-task learning: counting by regression at two scales, a smaller one for intracellular parasites and a larger one for host cells. It does not use segmentation or detection, resulting in a higher generalization of counting tasks and, therefore, a decrease in error propagation. Linear regression reveals an excellent correlation coefficient between manual and automatic methods. FiCRoN is an innovative freedom-respecting image analysis software based on deep learning, designed to provide a fast and accurate quantification of parasite burden, also potentially useful as a single-cell counter.
Collapse
Affiliation(s)
- Graciela Juez-Castillo
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain; Research Group Osiris&Bioaxis, Faculty of Engineering, El Bosque University, 110121 Bogotá, Colombia
| | - Brayan Valencia-Vidal
- Research Group Osiris&Bioaxis, Faculty of Engineering, El Bosque University, 110121 Bogotá, Colombia; Department of Computer Engineering, Automation and Robotics, Research Centre for Information and Communication Technologies, University of Granada, 18014 Granada, Spain.
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain; Universidad Internacional de la Rioja, 26006 La Rioja, Spain
| | - Laura Montosa-Hidalgo
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain.
| |
Collapse
|
2
|
Baiyegunhi OO, Mann J, Khaba T, Nkosi T, Mbatha A, Ogunshola F, Chasara C, Ismail N, Ngubane T, Jajbhay I, Pansegrouw J, Dong KL, Walker BD, Ndung'u T, Ndhlovu ZM. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Nat Commun 2022; 13:4041. [PMID: 35831418 PMCID: PMC9279299 DOI: 10.1038/s41467-022-31692-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.
Collapse
Affiliation(s)
- Omolara O Baiyegunhi
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Trevor Khaba
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Bruce D Walker
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Institute for Medical Sciences and Engineering and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Durban, South Africa.
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Liao PH, Chiang HL, Shun CT, Hang JF, Chiu HM, Wu MS, Lin CH. Colonic Leucine-Rich Repeat Kinase 2 Expression Is Increased and Associated With Disease Severity in Patients With Parkinson’s Disease. Front Aging Neurosci 2022; 13:819373. [PMID: 35126095 PMCID: PMC8812574 DOI: 10.3389/fnagi.2021.819373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise a common genetic risk factor for Parkinson’s disease (PD) and inflammatory bowel disease (IBD). We investigated the expression of LRRK2 in colonic biopsies obtained from a cohort of PD patients and healthy controls. Methods A cohort of 51 PD patients and 40 age- and gender-matched controls who have colonic biopsied samples were recruited. Among these participants, 26 individuals (12 PD patients and 14 controls) had a series of colon biopsies. For the patients with PD, the first biopsies were taken before the PD diagnosis. The colonic expression of LRRK2 was assayed by immunohistochemical staining. Results The fraction of LRRK2-positive cells among the total cell count in biopsied colonic tissues was significantly higher in PD patients than controls (0.81% ± 0.53% vs. 0.45% ± 0.39%; P = 0.02). Colonic LRRK2 immunoreactivity was higher in those with LRRK2 genetic variants compared to those with wild type LRRK2 (2.44% ± 1.15% vs. 0.21 ± 0.13%, P < 0.01). Age had no effect on LRRK2 expression (P = 0.96). LRRK2 expression correlated with disease severity in regards to motor symptoms measured by the UPDRS part III scores (r = 6335, P < 0.001) and cognitive dysfunction measured by the mini-mental status examination scores (r = -0.5774, P < 0.001). PD patients in the prodromal phase had a steeper increase in colonic LRRK2 expression compared to controls during the serial colon biopsy assessment (P < 0.01). Conclusion Colonic LRRK2 expression was increased in PD patients compared to controls, and the expression level correlated with disease severity.
Collapse
Affiliation(s)
| | - Han-Lin Chiang
- College of Medicine, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chin-Hsien Lin,
| |
Collapse
|
4
|
Delacher M, Simon M, Sanderink L, Hotz-Wagenblatt A, Wuttke M, Schambeck K, Schmidleithner L, Bittner S, Pant A, Ritter U, Hehlgans T, Riegel D, Schneider V, Groeber-Becker FK, Eigenberger A, Gebhard C, Strieder N, Fischer A, Rehli M, Hoffmann P, Edinger M, Strowig T, Huehn J, Schmidl C, Werner JM, Prantl L, Brors B, Imbusch CD, Feuerer M. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 2021; 54:702-720.e17. [PMID: 33789089 PMCID: PMC8050210 DOI: 10.1016/j.immuni.2021.03.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.
Collapse
Affiliation(s)
- Michael Delacher
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany; Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Malte Simon
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data management (ODCF), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina Wuttke
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Kathrin Schambeck
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Lisa Schmidleithner
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Asmita Pant
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Dania Riegel
- Regensburg Center for Interventional Immunology (RCI)
| | - Verena Schneider
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine TERM, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center for Regenerative Therapies TLZ-RT, 97082 Würzburg, Germany
| | - Florian Kai Groeber-Becker
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine TERM, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center for Regenerative Therapies TLZ-RT, 97082 Würzburg, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Alexander Fischer
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Rehli
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI); Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany; RESIST, Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; RESIST, Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | | | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI); Chair for Immunology, University Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
5
|
Tian P, Zhao Z, Fan Y, Cui N, Shi B, Hao G. Changes in Expressions of Spermatogenic Marker Genes and Spermatogenic Cell Population Caused by Stress. Front Endocrinol (Lausanne) 2021; 12:584125. [PMID: 34707565 PMCID: PMC8542882 DOI: 10.3389/fendo.2021.584125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Many young adults are in a state of stress due to social and psychological pressures, which may result in male reproductive dysfunction. To provide new insight into this phenomenon, we investigated the effect of stress on the regulation of key genes and biological events in specific stages of spermatogenesis. After establishing rat stress models of different time durations, we observed pathological changes in testis through haematoxylin and eosin staining, and analysed gene expression in testis by RNA-seq, bioinformatic analysis, and reverse transcription qPCR (RT-qPCR). Immunohistochemistry (IHC) with the TissueFAXS quantitative imaging system was used to verify changes of different population of spermatogenic cells marked by differentially expressed marker genes. Our results showed that prolonged stress can lead to pathological changes in the testes, such as thinning of the spermatogenic epithelium, a decreased number of spermatogenic epithelial cells, the disordered arrangement of spermatogenic cells, and a decreased number of mature sperms. RNA-seq revealed that key marker spermatogenesis-related genes such as Stra8, Sycp3, Piwil1, and Tnp1 had significantly decreased expression levels in chronic stress groups, and this was confirmed by RT-qPCR and IHC. Collectively, these findings suggest that chronic stress causes damaging pathological changes in testis and dysregulates the marker genes of specific stages of spermatogenesis and change the population of spermatogenic cells, which may be a critical responsible for male reproductive dysfunction.
Collapse
Affiliation(s)
- Pengxiang Tian
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Fan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Cui
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baojun Shi
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Baojun Shi, ; Guimin Hao,
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Baojun Shi, ; Guimin Hao,
| |
Collapse
|
6
|
Ribechini E, Eckert I, Beilhack A, Du Plessis N, Walzl G, Schleicher U, Ritter U, Lutz MB. Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell-killing capability. JCI Insight 2019; 5:128664. [PMID: 31162143 DOI: 10.1172/jci.insight.128664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis patients and mice infected with live Mycobacterium tuberculosis (Mtb) accumulate high numbers of myeloid-derived suppressor cells (MDSCs). Here, we hypothesized that also dead Mtb vaccines may induce MDSCs that could impair the efficacy of vaccination. We found that repeated injections of Mtb vaccines (heat-killed Mtb in Incomplete Freund's Adjuvant, like Montanide) but not single or control vaccines without Mtb strongly expanded CD11b+ myeloid cells in the spleen, that suppressed T cell proliferation and killing ex vivo. Dead Mtb vaccination induced the generation of CD11b+ Ly-6Chigh CD115+ iNOS/Nos2+ monocytic MDSCs (M-MDSCs) upon application of inflammatory or microbial activation signals. In vivo these M-MDSCs positioned strategically in the spleen by infiltrating the splenic bridging channels and white pulp areas. Notably, within 6 to 24 hours in a Nos2-dependent fashion they produced NO to rapidly kill conventional and plasmacytoid dendritic cells (cDCs, pDCs) while, surprisingly, sparing T cells in vivo. Thus, we demonstrate that Mtb vaccine induced M-MDSCs to not directly suppress T cell in vivo but, instead, M-MDSCs directly target DC subpopulations thereby indirectly suppressing effector T cell responses. Collectively, we demonstrate that Mtb booster vaccines induce M-MDSCs in the spleen that can be activated to kill DCs cautioning to thoroughly investigate MDSC formation in individuals after Mtb vaccination in clinical trials.
Collapse
Affiliation(s)
- Eliana Ribechini
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ina Eckert
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Nelita Du Plessis
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- South African Medical Research Council, Centre for Tuberculosis Research, Department of Science and Technology - National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ulrike Schleicher
- Microbiology Institute, Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Uwe Ritter
- RCI Regensburg Center for Interventional Immunology, Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Saylor J, Ma Z, Goodridge HS, Huang F, Cress AE, Pandol SJ, Shiao SL, Vidal AC, Wu L, Nickols NG, Gertych A, Knudsen BS. Spatial Mapping of Myeloid Cells and Macrophages by Multiplexed Tissue Staining. Front Immunol 2018; 9:2925. [PMID: 30619287 PMCID: PMC6302234 DOI: 10.3389/fimmu.2018.02925] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
An array of phenotypically diverse myeloid cells and macrophages (MC&M) resides in the tumor microenvironment, requiring multiplexed detection systems for visualization. Here we report an automated, multiplexed staining approach, named PLEXODY, that consists of five MC&M-related fluorescently-tagged antibodies (anti - CD68, - CD163, - CD206, - CD11b, and - CD11c), and three chromogenic antibodies, reactive with high- and low-molecular weight cytokeratins and CD3, highlighting tumor regions, benign glands and T cells. The staining prototype and image analysis methods which include a pixel/area-based quantification were developed using tissues from inflamed colon and tonsil and revealed a unique tissue-specific composition of 14 MC&M-associated pixel classes. As a proof-of-principle, PLEXODY was applied to three cases of pancreatic, prostate and renal cancers. Across digital images from these cancer types we observed 10 MC&M-associated pixel classes at frequencies greater than 3%. Cases revealed higher frequencies of single positive compared to multi-color pixels and a high abundance of CD68+/CD163+ and CD68+/CD163+/CD206+ pixels. Significantly more CD68+ and CD163+ vs. CD11b+ and CD11c+ pixels were in direct contact with tumor cells and T cells. While the greatest percentage (~70%) of CD68+ and CD163+ pixels was 0–20 microns away from tumor and T cell borders, CD11b+ and CD11c+ pixels were detected up to 240 microns away from tumor/T cell masks. Together, these data demonstrate significant differences in densities and spatial organization of MC&M-associated pixel classes, but surprising similarities between the three cancer types.
Collapse
Affiliation(s)
- Joshua Saylor
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhaoxuan Ma
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S Goodridge
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Fangjin Huang
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anne E Cress
- Molecular and Cellular Biology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Stephen J Pandol
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen L Shiao
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Adriana C Vidal
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas G Nickols
- Department of Molecular and Medical Pharmacology and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arkadiusz Gertych
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Beatrice S Knudsen
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Blenman KRM, Bosenberg MW. Immune Cell and Cell Cluster Phenotyping, Quantitation, and Visualization Using In Silico Multiplexed Images and Tissue Cytometry. Cytometry A 2018; 95:399-410. [PMID: 30468565 DOI: 10.1002/cyto.a.23668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 11/11/2022]
Abstract
Phenotyping immune cells and cell clusters in situ, including their activation state and function, can aid in interpretation of spatial relationships within the tissue microenvironment. Immune cell phenotypes require multiple biomarkers. However, conventional microscopy setups can only image up to four biomarkers at one time. In this report, we describe and give an example of a workflow to phenotype, quantitate, and visualize greater than four biomarkers in silico utilizing multiplexed fluorescence histology and the TissueFAXS quantitative imaging system with a conventional microscopy setup. Biomarkers were conjugated to Cy3 or Cy5. Multiplexed staining was performed on formalin-fixed paraffin-embedded tissue sections. We imaged the slides, inactivated the dyes, and repeated the process until all biomarkers were stained. Phenotype profiles were built based on in silico combinations of the biomarkers. We used algorithms that aligned all images to create a composite image, isolated each cell in the image, and identified biomarker positive cells in the image. The in silico phenotypes were quantitated and displayed through flow cytometry-like histograms and dot scatterplots in addition to backgating into the tissue images. The advantage of our workflow is that it provides visual verification of cell isolation and identification as well as highlight characteristics of cells and cell clusters. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kim R M Blenman
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marcus W Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Blazquez R, Wlochowitz D, Wolff A, Seitz S, Wachter A, Perera-Bel J, Bleckmann A, Beißbarth T, Salinas G, Riemenschneider MJ, Proescholdt M, Evert M, Utpatel K, Siam L, Schatlo B, Balkenhol M, Stadelmann C, Schildhaus HU, Korf U, Reinz E, Wiemann S, Vollmer E, Schulz M, Ritter U, Hanisch UK, Pukrop T. PI3K: A master regulator of brain metastasis-promoting macrophages/microglia. Glia 2018; 66:2438-2455. [PMID: 30357946 DOI: 10.1002/glia.23485] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
Mutations and activation of the PI3K signaling pathway in breast cancer cells have been linked to brain metastases. However, here we describe that in some breast cancer brain metastases samples the protein expression of PI3K signaling components is restricted to the metastatic microenvironment. In contrast to the therapeutic effects of PI3K inhibition on the breast cancer cells, the reaction of the brain microenvironment is less understood. Therefore we aimed to quantify the PI3K pathway activity in breast cancer brain metastasis and investigate the effects of PI3K inhibition on the central nervous system (CNS) microenvironment. First, to systematically quantify the PI3K pathway activity in breast cancer brain metastases, we performed a prospective biomarker study using a reverse phase protein array (RPPA). The majority, namely 30 out of 48 (62.5%) brain metastatic tissues examined, revealed high PI3K signaling activity that was associated with a median overall survival (OS) of 9.41 months, while that of patients, whose brain metastases showed only moderate or low PI3K activity, amounted to only 1.93 and 6.71 months, respectively. Second, we identified PI3K as a master regulator of metastasis-promoting macrophages/microglia during CNS colonization; and treatment with buparlisib (BKM120), a pan-PI3K Class I inhibitor with a good blood-brain-barrier penetrance, reduced their metastasis-promoting features. In conclusion, PI3K signaling is active in the majority of breast cancer brain metastases. Since PI3K inhibition does not only affect the metastatic cells but also re-educates the metastasis-promoting macrophages/microglia, PI3K inhibition may hold considerable promise in the treatment of brain metastasis and the respective microenvironment.
Collapse
Affiliation(s)
- Raquel Blazquez
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Stefanie Seitz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Astrid Wachter
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Perera-Bel
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | | | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Laila Siam
- Institute of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Bawarjan Schatlo
- Institute of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marko Balkenhol
- Comprehensive Cancer Center, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Ulrike Korf
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eileen Reinz
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Vollmer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Mathias Schulz
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Uwe K Hanisch
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Lee KH, Pyeon HJ, Nam H, Won JS, Hwang JY, Lee KA, Yeon JY, Hong SC, Nam DH, Lee K, Lee SH, Joo KM. Significant therapeutic effects of adult human multipotent neural cells on spinal cord injury. Stem Cell Res 2018; 31:71-78. [PMID: 30031233 DOI: 10.1016/j.scr.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 01/31/2023] Open
Abstract
Neural stem cells are emerging as a regenerative therapy for spinal cord injury (SCI), since they differentiate into functional neural cells and secrete beneficial paracrine factors into the damaged microenvironment. Previously, we successfully isolated and cultured adult human multipotent neural cells (ahMNCs) from the temporal lobes of epileptic patients. In this study, we investigated the therapeutic efficacy and treatment mechanism of ahMNCs for SCI using rodent models. When 1 × 106 ahMNCs were transplanted into injured spinal cords at 7 days after contusion, the injection group showed significantly better functional recovery than the control group (media injection after contusion), which was determined by the Basso, Beattie and Bresnahan (BBB) score. Although transplanted ahMNCs disappeared continuously, remained cells expressed differentiated neural cell markers (Tuj1) or astrocyte marker (GFAP) in the injured spinal cords. Moreover, the number of CD31-positive microvessels significantly increased in the injection group than that of the control group. The paracrine pro-angiogenic activities of ahMNCs were confirmed by in vitro tube formation assay and in vivo Matrigel plug assay. Together, these results indicate that ahMNCs have significant therapeutic efficacy in SCI via replacement of damaged neural cells and pro-angiogenic effects on the microenvironment of SCI.
Collapse
Affiliation(s)
- Kee-Hang Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Hee-Jang Pyeon
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Hyun Nam
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Jeong-Seob Won
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Ji-Yoon Hwang
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kyung-A Lee
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Je Young Yeon
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Seung-Chyul Hong
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Do-Hyun Nam
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Kyunghoon Lee
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, South Korea.
| | - Sun-Ho Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
| | - Kyeung-Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
11
|
Sun C, Wang B, Li J, Shangguan J, Figini M, Zhou K, Pan L, Ma Q, Zhang Z. Quantitative measurement of breast carcinoma fibrosis for the prediction in the risk of bone metastasis. Am J Transl Res 2018; 10:1852-1859. [PMID: 30018725 PMCID: PMC6038064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Previous studies have shown the poor prognosis of metastatic breast cancer including bone metastasis. The early prediction and intervention of invasive breast carcinoma with bone metastasis are crucial to the outcomes of patients. The purpose of our study is to test the hypothesis that the collagen deposition of primary breast cancer can be used as a quantitative biomarker for the early prediction of bone metastasis. METHODS A total of sixty breast cancer patients were included in our study, and the surgical specimens of these patients were divided into three groups: patients with no metastasis (group 1), lymph node metastasis (group 2), and bone metastasis (group 3). Masson's trichrome staining and hematoxylin and eosin staining were applied to all primary breast cancers. Collagen area percentage and tumor cell measurement of each sample were measured by HistoQuest software. RESULTS Measurement results of collagen area percentage (%) in primary breast tumors were 32.39 ± 13.30, 25.37 ± 11.10, and 22.71 ± 8.91 for groups 1, 2, and 3, respectively. The corresponding P values were 0.0779 (group 1 vs. group 2), 0.4086 (group 2 vs. group 3), and 0.0102 (group 1 vs. group 3). The correlation between collagen area percentage and tumor cell measurement were group 1 (P = 0.5927, r = -0.1273), group 2 (P = 0.5711, r = -0.1348), and group 3 (P = 0.0003, r = -0.7253). CONCLUSIONS The collagen deposition of primary breast cancer can be used as a quantitative biomarker for the early prediction of bone metastasis.
Collapse
Affiliation(s)
- Chong Sun
- Department of Orthopedics, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, China
| | - Bin Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Kang Zhou
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Quanhong Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Robert H. Lurie Comprehensive Cancer CenterChicago, IL, USA
| |
Collapse
|
12
|
Zimara N, Chanyalew M, Aseffa A, van Zandbergen G, Lepenies B, Schmid M, Weiss R, Rascle A, Wege AK, Jantsch J, Schatz V, Brown GD, Ritter U. Dectin-1 Positive Dendritic Cells Expand after Infection with Leishmania major Parasites and Represent Promising Targets for Vaccine Development. Front Immunol 2018; 9:263. [PMID: 29535708 PMCID: PMC5834765 DOI: 10.3389/fimmu.2018.00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
Resistant mouse strains mount a protective T cell-mediated immune response upon infection with Leishmania (L.) parasites. Healing correlates with a T helper (Th) cell-type 1 response characterized by a pronounced IFN-γ production, while susceptibility is associated with an IL-4-dependent Th2-type response. It has been shown that dermal dendritic cells are crucial for inducing protective Th1-mediated immunity. Additionally, there is growing evidence that C-type lectin receptor (CLR)-mediated signaling is involved in directing adaptive immunity against pathogens. However, little is known about the function of the CLR Dectin-1 in modulating Th1- or Th2-type immune responses by DC subsets in leishmaniasis. We characterized the expression of Dectin-1 on CD11c+ DCs in peripheral blood, at the site of infection, and skin-draining lymph nodes of L. major-infected C57BL/6 and BALB/c mice and in peripheral blood of patients suffering from cutaneous leishmaniasis (CL). Both mouse strains responded with an expansion of Dectin-1+ DCs within the analyzed tissues. In accordance with the experimental model, Dectin-1+ DCs expanded as well in the peripheral blood of CL patients. To study the role of Dectin-1+ DCs in adaptive immunity against L. major, we analyzed the T cell stimulating potential of bone marrow-derived dendritic cells (BMDCs) in the presence of the Dectin-1 agonist Curdlan. These experiments revealed that Curdlan induces the maturation of BMDCs and the expansion of Leishmania-specific CD4+ T cells. Based on these findings, we evaluated the impact of Curdlan/Dectin-1 interactions in experimental leishmaniasis and were able to demonstrate that the presence of Curdlan at the site of infection modulates the course of disease in BALB/c mice: wild-type BALB/c mice treated intradermally with Curdlan developed a protective immune response against L. major whereas Dectin-1-/- BALB/c mice still developed the fatal course of disease after Curdlan treatment. Furthermore, the vaccination of BALB/c mice with a combination of soluble L. major antigens and Curdlan was able to provide a partial protection from severe leishmaniasis. These findings indicate that the ligation of Dectin-1 on DCs acts as an important checkpoint in adaptive immunity against L. major and should therefore be considered in future whole-organism vaccination strategies.
Collapse
Affiliation(s)
- Nicole Zimara
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Menberework Chanyalew
- Armauer Hansen Research Institute, Leishmaniasis Research Laboratory, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Leishmaniasis Research Laboratory, Addis Ababa, Ethiopia
| | - Ger van Zandbergen
- Federal Institute for Vaccines and Biomedicines, Division of Immunology, Paul Ehrlich Institute, Langen, Germany
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit, Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany
| | - Maximilian Schmid
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Richard Weiss
- Department of Molecular Biology, Division of Allergy and Immunology, University of Salzburg, Salzburg, Austria
| | - Anne Rascle
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|