1
|
Crabtree D, Seidler K, Barrow M. Pathophysiological mechanisms of gut dysbiosis and food allergy and an investigation of probiotics as an intervention for atopic disease. Clin Nutr ESPEN 2025; 65:189-204. [PMID: 39571752 DOI: 10.1016/j.clnesp.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND AIMS Epidemiological studies have associated reduced bacterial diversity and abundance and food allergy. This mechanistic review investigated the link between gut dysbiosis and food allergy with a focus on the role of short-chain fatty acids (SCFAs) in modulating T-cells. T-cell differentiation poses an opportunity to direct the immune cells towards an anergic regulatory T cell (Treg) or allergic T helper 2 (Th2) response. Probiotic intervention to prevent and/or treat atopic disease symptoms through this mechanistic pathway was explored. METHODOLOGY A narrative review was conducted following a three-stage systematic literature search of EMBASE and Medline databases. Ninety-six of 571 papers were accepted and critically appraised using ARRIVE and SIGN50 forms. Thematic analysis identified key pathophysiological mechanisms within the narrative of included papers. RESULTS Preclinical studies provided compelling evidence for SCFAs' modulation of T-cell differentiation, which may act through G-protein coupled receptors 41, 43 and 109a and histone deacetylase inhibition. Foxp3 transcription factor was implicated in the upregulation of Tregs. Human probiotic intervention studies aimed at increasing SCFAs and Tregs and preventing atopic disease showed inconclusive results. However, evidence for probiotic intervention in children with cow's milk protein allergy (CMPA) was more promising and warrants further investigation. CONCLUSION Preclinical evidence suggests that the mechanism of gut dysbiosis and reduced SCFAs may skew T-cell differentiation towards a Th2 response, thus inducing allergy symptoms. Probiotic trials were inconclusive: probiotics were predominantly unsuccessful in the prevention of allergic disease, however, may be able to modulate food allergy symptoms in infants with CMPA.
Collapse
Affiliation(s)
- Danielle Crabtree
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Michelle Barrow
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| |
Collapse
|
2
|
Gao H, Kosins AE, Cook-Mills JM. Mechanisms for initiation of food allergy by skin pre-disposed to atopic dermatitis. Immunol Rev 2024; 326:151-161. [PMID: 39007725 DOI: 10.1111/imr.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.
Collapse
Affiliation(s)
- Haoran Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Allison E Kosins
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
4
|
Cook-Mills JM, Emmerson LN. Epithelial barrier regulation, antigen sampling, and food allergy. J Allergy Clin Immunol 2022; 150:493-502. [DOI: 10.1016/j.jaci.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
|
5
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
6
|
Lee KH, Bosco A, O'Sullivan M, Song Y, Metcalfe J, Yu K, Mullins BJ, Loh R, Zhang G. Identifying gene network patterns and associated cellular immune responses in children with or without nut allergy. World Allergy Organ J 2022; 15:100631. [PMID: 35228856 PMCID: PMC8844301 DOI: 10.1016/j.waojou.2022.100631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Although evidence suggests that the immune system plays a key role in the pathophysiology of nut allergy, the precise immunological mechanisms of nut allergy have not been systematically investigated. The aim of the present study was to identify gene network patterns and associated cellular immune responses in children with or without nut allergy. Methods Transcriptome profiling of whole blood cells was compared between children with and without nut allergy. Three genes were selected to be validated on a larger cohort of samples (n = 86) by reverse transcription-polymerase chain reactions (RT-qPCR). The composition of immune cells was inferred from the transcriptomic data using the CIBERSORTx algorithm. A co-expression network was constructed employing weighted gene co-expression network analysis (WGCNA) on the top 5000 most variable transcripts. The modules were interrogated with pathway analysis tools (InnateDB) and correlated with clinical phenotypes and cellular immune responses. Results Proportions of neutrophils were positively correlated and CD4+ T-cells and regulatory T-cells (Tregs) were negatively correlated with modules of nut allergy. We also identified 2 upregulated genes, namely Interferon Induced With Helicase C Domain 1 (IFIH1), DNA damage-regulated autophagy modulator 1 (DRAM1) and a downregulated gene Zinc Finger Protein 512B (ZNF512B) as hub genes for nut allergy. Further pathway analysis showed enrichment of type 1 interferon signalling in nut allergy. Conclusions Our findings suggest that upregulation of type 1 interferon signalling and neutrophil responses and downregulation of CD4+ T-cells and Tregs are features of the pathogenesis of nut allergy.
Collapse
Affiliation(s)
- Khui Hung Lee
- School of Public Health, Curtin University of Technology, Bentley, 6102, Western Australia, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Crawley, 6000, Western Australia, Australia
| | - Michael O'Sullivan
- Department of Immunology, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
| | - Yong Song
- The Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Tasmania, Australia
| | - Jessica Metcalfe
- Department of Immunology, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
| | - Kan Yu
- School of Science, Edith Cowan University, Joondalup, 6027, Western Australia, Australia
| | - Benjamin J. Mullins
- School of Public Health, Curtin University of Technology, Bentley, 6102, Western Australia, Australia
| | - Richard Loh
- Department of Immunology, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
| | - Guicheng Zhang
- School of Public Health, Curtin University of Technology, Bentley, 6102, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Crawley, 6000, Western Australia, Australia
- Corresponding author. School of Public Health, Curtin University of Technology, Kent St, Bentley, 6102, Western Australia, Australia.
| |
Collapse
|
7
|
Abstract
During the last decades a substantial increase of allergic diseases has been noticed including allergic asthma and rhinoconjunctivitis as well as food allergies. Since efficient avoidance of airborne - and often hidden - food allergens is not possible, allergen immunotherapy (AIT) is the only causative treatment with the goal of inducing allergen tolerance in affected individuals. Efficacy as well as safety of AIT significantly depends on how the allergen is presented to the immune system, meaning both the route and the form of its application. Here, new ways of allergen administration have lately been explored, some of which are auspicious candidates for successful implementation in the therapeutic management of immediate-type allergies. While the first oral AIT has been approved recently by the FDA for the treatment of peanut allergy, further interesting routes of allergen application include either epicutaneous, intradermal, intranasal, or intralymphatic delivery. Besides, rather the immunologically relevant peptides instead of whole allergen may be administered to develop tolerance. In this chapter, we will describe these new and promising avenues of allergen application in the field of AIT. In addition, we will discuss their potential for future treatment of IgE-mediated allergic diseases enhancing therapeutic efficiency while further minimizing the risks of adverse events.
Collapse
Affiliation(s)
- Wolfgang Pfützner
- Clinical & Experimental Allergology, Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany.
| | - Christian Möbs
- Clinical & Experimental Allergology, Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
8
|
OVA-Experienced CD4 + T Cell Transfer and Chicken Protein Challenge Affect the Immune Response to OVA in a Murine Model. Int J Mol Sci 2021; 22:ijms22126573. [PMID: 34207474 PMCID: PMC8234906 DOI: 10.3390/ijms22126573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chicken meat is often a major component of a modern diet. Allergy to chicken meat is relatively rare and occurs independently or in subjects allergic to ovalbumin (OVA). We examined the effect of adoptive transfer of OVA-CD4+ T cells on the immune response to OVA in mice fed chicken meat. Donor mice were injected intraperitoneally with 100 µg of OVA with Freund’s adjuvant two times over a week, and CD4+ T cells were isolated from them and transferred to naïve mice (CD4+/OVA/ChM group), which were then provoked with OVA with FA and fed freeze-dried chicken meat for 14 days. The mice injected with OVA and fed chicken meat (OVA/ChM group), and sensitized (OVA group) and healthy (PBS group) mice served as controls. Humoral and cellular response to OVA was monitored over the study. The CD4+/OVA/ChM group had lowered levels of anti-OVA IgG and IgA, and total IgE. There were significant differences in CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ T cells between groups. OVA stimulation decreased the splenocyte proliferation index and IFN-γ secretion in the CD4+/OVA/ChM group compared to the OVA group. IL-4 was increased in the OVA/ChM mice, which confirms allergenic potential of the egg–meat protein combination. Transfer of OVA-experienced CD4+ T cells ameliorated the negative immune response to OVA.
Collapse
|
9
|
Selck C, Dominguez-Villar M. Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Front Immunol 2021; 12:661875. [PMID: 34054826 PMCID: PMC8160309 DOI: 10.3389/fimmu.2021.661875] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells are a heterogenous population of immunosuppressive T cells whose therapeutic potential for the treatment of autoimmune diseases and graft rejection is currently being explored. While clinical trial results thus far support the safety and efficacy of adoptive therapies using polyclonal Treg cells, some studies suggest that antigen-specific Treg cells are more potent in regulating and improving immune tolerance in a disease-specific manner. Hence, several approaches to generate and/or expand antigen-specific Treg cells in vitro or in vivo are currently under investigation. However, antigen-specific Treg cell therapies face additional challenges that require further consideration, including the identification of disease-relevant antigens as well as the in vivo stability and migratory behavior of Treg cells following transfer. In this review, we discuss these approaches and the potential limitations and describe prospective strategies to enhance the efficacy of antigen-specific Treg cell treatments in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Claudia Selck
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | |
Collapse
|
10
|
Mayorga C, Palomares F, Cañas JA, Pérez-Sánchez N, Núñez R, Torres MJ, Gómez F. New Insights in Therapy for Food Allergy. Foods 2021; 10:foods10051037. [PMID: 34068667 PMCID: PMC8151532 DOI: 10.3390/foods10051037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Food allergy is an increasing problem worldwide, with strict avoidance being classically the only available reliable treatment. The main objective of this review is to cover the latest information about the tools available for the diagnosis and treatment of food allergies. In recent years, many efforts have been made to better understand the humoral and cellular mechanisms involved in food allergy and to improve the strategies for diagnosis and treatment. This review illustrates IgE-mediated food hypersensitivity and provides a current description of the diagnostic strategies and advances in different treatments. Specific immunotherapy, including different routes of administration and new therapeutic approaches, such as hypoallergens and nanoparticles, are discussed in detail. Other treatments, such as biologics and microbiota, are also described. Therefore, we conclude that although important efforts have been made in improving therapies for food allergies, including innovative approaches mainly focusing on efficacy and safety, there is an urgent need to develop a set of basic and clinical results to help in the diagnosis and treatment of food allergies.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Correspondence: ; Tel.: +34-951-290-224
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - José A. Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - Natalia Pérez-Sánchez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - María José Torres
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Medicine Department, Universidad de Málaga-UMA, 29071 Málaga, Spain
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| |
Collapse
|
11
|
Smaldini PL, Trejo FM, Rizzo GP, Comerci DJ, Kampinga J, Docena GH. Mucosal Immunoregulatory Properties of Tsukamurella inchonensis to Reverse Experimental Food Allergy. Front Immunol 2021; 12:641597. [PMID: 33995359 PMCID: PMC8120237 DOI: 10.3389/fimmu.2021.641597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
The intestinal mucosa is lined by epithelial cells, which are key cells to sustain gut homeostasis. Food allergy is an immune-mediated adverse reaction to food, likely due to defective regulatory circuits. Tsukamurella inchonensis is a non-pathogenic bacterium with immunomodulatory properties. We hypothesize that the anti-inflammatory effect of dead T. inchonensis on activated epithelial cells modulates milk allergy through the restoration of tolerance in a mouse model. Epithelial cells (Caco-2 and enterocytes from mouse gut) and macrophages were stimulated with T. inchonensis and induction of luciferase under the NF-κB promoter, ROS and cytokines production were studied. Balb/c mice were mucosally sensitized with cow´s milk proteins plus cholera toxin and orally challenged with the allergen to evidence hypersensitivity symptoms. After that, mice were orally administered with heat-killed T. inchonensis as treatment and then challenged with the allergen. The therapeutic efficacy was in vivo (clinical score and cutaneous test) and in vitro (serum specific antibodies and cytokines-ELISA, and cell analysis-flow cytometry) evaluated. Heat-killed T. inchonensis modulated the induction of pro-inflammatory chemokines, with an increase in anti-inflammatory cytokines by intestinal epithelial cells and by macrophages with decreased OX40L expression. In vivo, oral administration of T. inchonensis increased the frequency of lamina propria CD4+CD25+FoxP3+ T cells, and clinical signs were lower in T. inchonensis-treated mice compared with milk-sensitized animals. In vivo depletion of Tregs (anti-CD25) abrogated T. inchonensis immunomodulation. In conclusion, these bacteria suppressed the intestinal inflammatory immune response to reverse food allergy.
Collapse
Affiliation(s)
- Paola L Smaldini
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Fernando M Trejo
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Gastón P Rizzo
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas, Dr. Rodolfo A. Ugalde (IIB-INTECH), CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | | | - Guillermo H Docena
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| |
Collapse
|
12
|
Candreva ÁM, Smaldini PL, Cauerhff A, Petruccelli S, Docena GH. A novel approach to ameliorate experimental milk allergy based on the oral administration of a short soy cross-reactive peptide. Food Chem 2020; 346:128926. [PMID: 33484948 DOI: 10.1016/j.foodchem.2020.128926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 02/04/2023]
Abstract
Food allergy is on the rise, and preventive/therapeutic procedures are needed. We explored a preventive protocol for milk allergy with the oral administration of a Gly-m-Bd-30K soy-derived peptide that contains cross-reactive epitopes with bovine caseins. B/T-cross-reactive epitopes were mapped using milk-specific human sera and monoclonal antibodies on overlapping and recombinant peptides of Gly-m-Bd-30K by SPOT and cell proliferation assays. Bioinformatics tools were used to characterize epitopes on the 3D-modelled molecule, and to predict the binding to HLA alleles. The peptide was orally administrated to mice that were then IgE-sensitized to milk proteins. Immunodominant B-epitopes were mainly located on the surface of the Nt-fragment. The use of a soy-peptide-containing an immunodominant cross-reactive T-epitope, along with a single B epitope, prevents IgE-mediated milk sensitization through the induction of Th1-mediated immunity and induction of blocking IgG. The use of a safe soy-peptide may represent a promising alternative for preventing milk allergy.
Collapse
Affiliation(s)
- Ángela María Candreva
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Paola L Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Ana Cauerhff
- Departamento Química Biológica, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina.
| |
Collapse
|
13
|
Mori Y, Ugajin T, Okada K, Handa Y, Umemoto N, Iijima H, Igawa K, Yokozeki H. Epicutaneously sensitized food-induced anaphylaxis is ameliorated with "oral tolerance" to antigen. Exp Dermatol 2020; 30:367-376. [PMID: 33063903 DOI: 10.1111/exd.14216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023]
Abstract
Food allergy is an antigen-specific immunological adverse reaction after exposure to a given food. Multiple clinical studies showed that oral immunotherapy (OIT) is effective for the prevention and treatment for food allergy that is developed in infants and children. However, the effectiveness of OIT for epicutaneously sensitized food allergy remains unclear. Previously, we established a mouse model of epicutaneous-sensitized food allergy. In this model, systemic allergic reaction including intestinal and skin symptoms, such as anaphylaxis, was observed. We treated this model with OIT in two ways (OIT before sensitization or OIT during the sensitization phase) and evaluated the preventive effect of both methods. OIT before sensitization significantly ameliorated mast cell degranulation in sensitized skin, but there was no decrease in rectal temperatures or in mast cell degranulation in the jejunum. However, OIT administered during the sensitization phase significantly ameliorated the decrease in rectal temperature and mast cell degranulation in the skin and jejunum. OIT before sensitization increased the regulatory T cells in mesenteric lymph node (MLN), but not in the spleen, and it reduced antigen-specific IgG, but not IgE, production compared with the non-OIT control. However, OIT during sensitization caused a greater increase in regulatory T cells in both the MLN and spleen and reduced antigen-specific IgE and IgG generation compared with the non-OIT control group. Thus, OIT during the sensitization phase was effective for the prevention of epicutaneous-sensitized food allergy.
Collapse
Affiliation(s)
- Yukari Mori
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Tsukasa Ugajin
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Kouhei Okada
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Yutaro Handa
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Naoshi Umemoto
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Hazuki Iijima
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Ken Igawa
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Dermatology, Dokkyo Medical University, Shimotsuga-gun, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| |
Collapse
|
14
|
Abstract
Food allergens are innocuous proteins that promote tolerogenic adaptive immune responses in healthy individuals yet in other individuals induce an allergic adaptive immune response characterized by the presence of antigen-specific immunoglobulin E and type-2 immune cells. The cellular and molecular processes that determine a tolerogenic versus non-tolerogenic immune response to dietary antigens are not fully elucidated. Recently, there have been advances in the identification of roles for microbial communities and anatomical sites of dietary antigen exposure and presentation that have provided new insights into the key regulatory steps in the tolerogenic versus non-tolerogenic decision-making processes. Herein, we will review and discuss recent findings in cellular and molecular processes underlying food sensitization and tolerance, immunological processes underlying severity of food-induced anaphylaxis, and insights obtained from immunotherapy trials.
Collapse
Affiliation(s)
- Sunil Tomar
- 1. Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan 4051-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Simon P Hogan
- 1. Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan 4051-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| |
Collapse
|
15
|
Lee KH, Song Y, Wu W, Yu K, Zhang G. The gut microbiota, environmental factors, and links to the development of food allergy. Clin Mol Allergy 2020; 18:5. [PMID: 32265597 PMCID: PMC7119288 DOI: 10.1186/s12948-020-00120-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Food allergy appears to have its roots in an insufficient exposure to a diverse range of environmental microbiota during early life. Microbial exposure ensures the colonization of the gastrointestinal tract with commensal microbes, which is necessary for the induction of a balanced and tolerogenic immune function. High-throughput sequencing technology has facilitated in-depth studies of the gut microbiota as well as bacterial-derived metabolites. Although the role of the microbiota in allergies is now widely studied, its importance for food allergy was only recently noted. Studies in human cohorts have shown that there is an association of dysbiosis and pathogenesis of food allergy, while studies from animal models have demonstrated the capacity of specific species in the gut microbiota to alter immune response, which may lead to the desensitization of food allergy. This article reviews the role of the gut microbiota in food allergy, and discusses the influence of environmental factors as well as prevention and management strategies relating to such regulatory mechanism.
Collapse
Affiliation(s)
- Khui Hung Lee
- 1School of Public Health, Curtin University of Technology, Bentley, WA Australia.,2Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102 Australia
| | - Yong Song
- 1School of Public Health, Curtin University of Technology, Bentley, WA Australia
| | - Weidong Wu
- 3School of Public Health, Xinxiang Medical University, 601 Jinsui street, Xinxiang, Henan China
| | - Kan Yu
- 4School of Science, Edith Cowan University, Joondalup, WA Australia
| | - Guicheng Zhang
- 1School of Public Health, Curtin University of Technology, Bentley, WA Australia.,2Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102 Australia
| |
Collapse
|
16
|
Mai J, Liang B, Xiong Z, Ai X, Gao F, Long Y, Yao S, Liu Y, Gong S, Zhou Z. Oral administration of recombinant
Bacillus subtilis
spores expressing
Helicobacter pylori
neutrophil‐activating protein suppresses peanut allergy via up‐regulation of Tregs. Clin Exp Allergy 2019; 49:1605-1614. [DOI: 10.1111/cea.13489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jialiang Mai
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Bingshao Liang
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Zhile Xiong
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Xiaolan Ai
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Fei Gao
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Yan Long
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Shuwen Yao
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Yunfeng Liu
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Sitang Gong
- Pediatric Gastroenterology Department Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| | - Zhenwen Zhou
- Clinical Laboratory Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou China
| |
Collapse
|
17
|
Pereira E Silva A, Lourenço AL, Marmello BO, Bitteti M, Teixeira GAPB. Comparison of two techniques for a comprehensive gut histopathological analysis: Swiss Roll versus Intestine Strips. Exp Mol Pathol 2019; 111:104302. [PMID: 31465765 DOI: 10.1016/j.yexmp.2019.104302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 01/07/2023]
Abstract
Assessing the gut mucosa milieu is important to grade the inflammatory process in conditions such as food hypersensitivity, allergy, gut parasitosis, etc. However, the gastrointestinal tract comprises a challenging system to evaluate, due to its thin tubular structure and mucosa, which suffer fast autolysis after death. Irrespective of the preferred inflammatory score system, it is important to choose the technique that will render the best tissue analysis. Thus, our aim was to compare two of the most frequently used methods to collect, process and analyze gut segments, the Swiss Roll and the Intestinal Strips. Normal C57Bl/6 mice were randomly assigned to Rolls or Strips group. After an overdose of anesthetics, segments of the duodenum, jejunum and ileum were collected and prepared accordingly for histological processing and analysis. Our results show the villi in the Rolls tend to be shorter and wider than those in the Strips in the duodenum and jejunum but not the ileum. No significant differences were observed in intra-epithelial lymphocytes and goblet cells counts. Finally, we staged each segment using our histomorphometric classification system, which revealed that although all animals presented a normal intestinal mucosa, those assigned to the Rolls group had their mucosa staged in the Infiltrative Stage while the Strips group had their mucosa staged as Normal. In conclusion, Swiss Rolls might be desirable for a wider assessment of the intestine, as it allows large segments to be analyzed at once, while Strips are better suited when detailed evaluation of each villus is intended.
Collapse
Affiliation(s)
- Airton Pereira E Silva
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil; Graduation Program in Pathology, School of Medicine, Antônio Pedro University Hospital, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Bárbara Oliveira Marmello
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil; Graduation Program in Science and Biotechnology, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | - Monique Bitteti
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Gerlinde Agate Platais Brasil Teixeira
- Gastrointestinal Immunology Group, Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil; Graduation Program in Pathology, School of Medicine, Antônio Pedro University Hospital, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil; Graduation Program in Science and Biotechnology, Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Yamamoto T, Matsunami E, Komori K, Hayashi S, Kadowaki M. The isoflavone puerarin induces Foxp3 + regulatory T cells by augmenting retinoic acid production, thereby inducing mucosal immune tolerance in a murine food allergy model. Biochem Biophys Res Commun 2019; 516:626-631. [PMID: 31235250 DOI: 10.1016/j.bbrc.2019.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
The disruption of intestinal mucosal immune tolerance can lead to the development of intestinal immune diseases such as food allergy (FA). Regulatory T cells (Tregs) in the mucosa play a critical role in maintaining peripheral immune tolerance in the intestine, and retinoic acid (RA) is absolutely required for the induction of Tregs. We have previously reported that kakkonto, a traditional Japanese herbal medicine, suppresses FA in a murine FA model due to the induction of Tregs in the colonic mucosa. However, the precise molecular mechanisms underlying the induction of Tregs remain unclear. Puerarin, an isoflavone derivative, is a major constituent of kakkonto. Thus, we investigated the effect of puerarin on the induction of Tregs. BALB/c mice were systemically sensitized and then orally challenged with ovalbumin (OVA) as an FA model. Puerarin treatment suppressed the development of allergic diarrhea in FA mice. The gene expression levels of IL-4 and mast cell protease I (mMCP-1) were significantly upregulated in the proximal colon of FA mice but were reduced by puerarin. The proportions of Foxp3+CD4+ cells and CD103+CD11c+ dendritic cells (DCs) were significantly higher among the colonic lamina propria (cLP) cells of puerarin-treated FA mice than among those of untreated FA mice. The gene expression of Aldh1a1, an RA synthesis enzyme, in colonic epithelial cells (CECs) was significantly higher in the puerarin-treated FA mouse colon than in the untreated FA mouse colon. In addition, the preventive effect of puerarin was suppressed in the FA model by pretreatment with LE540, an RA receptor (RAR) antagonist. The induction of Foxp3+CD4+ cells and CD103+CD11c+ DCs by puerarin was reduced by pretreatment with LE540. The present findings indicate that the augmentation of RA production in CECs induced by puerarin enhances the induction of Tregs and suppresses the development of FA in a mouse model. Thus, a natural enhancer of RA production, such as puerarin, has the potential to treat immune diseases attributed to Treg deficiency.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| | - Emi Matsunami
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Koji Komori
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
19
|
Wagenaar L, van Roest M, Kruijssen LJW, Simons PJ, Boon L, Vonk MM, van Esch BCAM, Knippels LMJ, Garssen J, Pieters RHH, Smit JJ. Non-digestible oligosaccharides scFOS/lcFOS facilitate safe subcutaneous immunotherapy for peanut allergy. Clin Mol Allergy 2019; 17:7. [PMID: 30988664 PMCID: PMC6448225 DOI: 10.1186/s12948-019-0111-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/26/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Improving the safety of subcutaneous immunotherapy (SCIT) for food allergy is necessary to reduce side effects and achieve long-term tolerance. We determined the effect of dietary supplementation with 1% non-digestible short- and long-chain fructo-oligosaccharides (scFOS/lcFOS) on safety and efficacy of SCIT using a peanut allergy mouse model. METHODS After sensitization, mice received a scFOS/lcFOS or control diet for the rest of the study. To study safety of SCIT, mice were dosed with a single subcutaneous injection of peanut extract (PE) or PBS. To study efficacy, mice were dosed subcutaneously (SCIT, 3 times/week) with PE or PBS for 3 weeks. Hereafter, acute allergic skin responses, anaphylactic shock symptoms and body temperature were assessed. To study the mechanism in vitro, the human IgE receptor (FcεRI)-transfected rat mast cell (RBL) line was sensitized with an oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (BLG) and incubated with the oligosaccharides before exposure to BLG to assess direct the effect on degranulation. RESULTS scFOS/lcFOS reduced anaphylaxis caused by a single PE SCIT dose. scFOS/lcFOS alone also reduced the acute allergic skin response. Moreover, scFOS/lcFOS supplementation resulted in lower MMCP-1 levels in serum after PE SCIT dose compared to control diet, while antibody levels were not affected by the diet. In vitro incubation with scFOS/lcFOS at 0.5% suppressed the degranulation of IgE-sensitized RBL cells. However, dietary supplementation with scFOS/lcFOS did not improve the efficacy of SCIT. CONCLUSIONS We show that scFOS/lcFOS diet improves the safety of SCIT, as evidenced by lower anaphylactic responses without compromising the efficacy in a mouse model for peanut allergy. This effect is likely to result from the suppression of mast cell effector function.
Collapse
Affiliation(s)
- Laura Wagenaar
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | - Manon van Roest
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | - Laura J. W. Kruijssen
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | | | | | - Marlotte M. Vonk
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Betty C. A. M. van Esch
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Leon M. J. Knippels
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Raymond H. H. Pieters
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| | - Joost J. Smit
- Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
20
|
Wagenaar L, Bol‐Schoenmakers MW, Giustarini G, Garssen J, Smit JJ, Pieters RH. Mouse strain differences in response to oral immunotherapy for peanut allergy. Immun Inflamm Dis 2019; 7:41-51. [PMID: 30838819 PMCID: PMC6416762 DOI: 10.1002/iid3.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Promising therapies for food allergy are emerging, mostly based on animal experimentation. However, different mouse strains are used, which may make it hard to compare experiments. The current study investigated whether the immunological differences between C3H/HeOuJ (C3H) and BALB/c mice lead to differences in efficacy of peanut-specific immunotherapy. METHODS After sensitization using peanut extract (PE), C3H and BALB/c mice received oral immunotherapy (OIT) by intragastric dosing for three weeks. Hereafter, mice were exposed to PE via the intradermal, intragastric and intraperitoneal route, to determine allergic outcomes. Furthermore, PE-specific antibody and cytokine production were determined and the number of various immune cells at different time points during the study were measured. RESULTS OIT protected C3H mice against anaphylaxis, whereas no anaphylaxis was seen in BALB/c mice. In contrast, OIT induced an increase in MMCP-1 levels in BALB/c mice but not in C3H mice. No effect of OIT on the acute allergic skin response was observed in either strain. Specific antibody responses showed similar patterns in both strains for IgA and IgG1. IgE levels were a tenfold higher in BALB/c mice and after the intragastric challenge (day 70) OIT-treated BALB/c mice showed induced IgE levels. Moreover, in C3H mice IgG2a levels were higher and increased in response to OIT and challenges. After the final challenge, but not at other timepoints MLN-derived lymphocytes from OIT-treated BALB/c mice produced less IL-13 and IL-5 compared to control-treated mice, whereas no differences were seen in case of C3H mice. CONCLUSIONS Taken together, these results show that the C3H strain is more suitable to study clinical outcomes of OIT, whereas the BALB/c strain is more optimal to study T cell responses.
Collapse
Affiliation(s)
- Laura Wagenaar
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Marianne W.H.C. Bol‐Schoenmakers
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Giulio Giustarini
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Johan Garssen
- Faculty of Science, Department of Pharmacology, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Department of ImmunologyNutricia ResearchUtrechtThe Netherlands
| | - Joost J. Smit
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Raymond H.H. Pieters
- Faculty of Veterinary MedicineDepartment of ImmunotoxicologyInstitute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
21
|
Černý V, Hrdý J, Novotná O, Petrásková P, Boráková K, Kolářová L, Prokešová L. Distinct characteristics of Tregs of newborns of healthy and allergic mothers. PLoS One 2018; 13:e0207998. [PMID: 30475891 PMCID: PMC6258229 DOI: 10.1371/journal.pone.0207998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
Allergic diseases represent a major issue in clinical and experimental immunology due to their high and increasing incidence worldwide. Allergy status of the mother remains the best predictor of an individual's increased risk of allergy development. Dysregulation of the balance between different branches of immune response, chiefly excessive polarization towards Th2, is the underlying cause of allergic diseases. Regulatory T cells (Tregs) play a pivotal role in the timely establishment of physiological immune polarization and are crucial for control of allergy. In our study we used flow cytometry to assess Tregs in cord blood of newborns of healthy (n = 121) and allergic (n = 108) mothers. We observed a higher percentage of Tregs (CD4+CD25+CD127lowFoxP3+) in cord blood of children of allergic mothers. However, the percentage of cells expressing extracellular (PD-1, CTLA-4, GITR) and intracellular (IL-10, TGF-β) markers of function was lower (significantly for PD-1 and IL-10) within Tregs of these children. Furthermore, Helios- induced Tregs in the cord blood of children of allergic mothers were decreased. These results were supported by a decrease in plasma levels of IL-10 and TGF-β in cord blood of newborns of allergic mothers, implying lower tolerogenic capacity on the systemic level. Taken together, these findings reflect deficient function of Tregs in the group with higher risk of allergy development. This may be caused by a lower maturation status of the immune system, specifically Tregs, at birth. Such immaturity may represent an important mechanism involved in the increased risk of allergy in children of allergic mothers.
Collapse
Affiliation(s)
- Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ludmila Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
22
|
Arasi S, Caminiti L, Crisafulli G, Pajno GB. A general strategy for de novo immunotherapy design: the active treatment of food allergy. Expert Rev Clin Immunol 2018; 14:665-671. [PMID: 29984605 DOI: 10.1080/1744666x.2018.1498784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION IgE-mediated food allergy (FA) has been emerging as a public health priority. It is a potentially life-threatening condition with negative impact on the quality of life of patients and their family and its prevalence is increasing in westernized countries in the recent two decades. The current standard approach to FA consists of the strict avoidance of the triggering food. However, an elimination diet may be difficult and frustrating, above all for those foods (e.g. milk and egg) that are pivotal in the common diet. Oral immunotherapy (OIT) may increase the amount of food that the patient can intake without reaction and reduce the risk of potential life-threatening allergic reactions. It is currently considered the most promising treatment for FA. However, many gaps are still unsolved. Areas covered: The aim of this review is to shed light on the current evidence and the main needs in OIT in order to stimulate the development of longitudinal, prospective, and well-designed studies with the final goal of a 'precision medicine.' Expert commentary: Clinical trials for OIT conducted so far are extremely heterogeneous. The aim in the near future is to identify the most suitable candidates to OIT and algorithms for treatments tailored on well-characterized subpopulations of patients.
Collapse
Affiliation(s)
- Stefania Arasi
- a Department of Pediatrics- Allergy Unit , University of Messina , Messina , Italy.,b SIAF- Schweizerischers Institut für Allergie- und Asthmaforschung , Davos , Switzerland.,c Pediatric Allergy Unit , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Lucia Caminiti
- a Department of Pediatrics- Allergy Unit , University of Messina , Messina , Italy
| | - Giuseppe Crisafulli
- a Department of Pediatrics- Allergy Unit , University of Messina , Messina , Italy
| | | |
Collapse
|
23
|
Larsen JM, Bøgh KL. Animal models of allergen-specific immunotherapy in food allergy: Overview and opportunities. Clin Exp Allergy 2018; 48:1255-1274. [DOI: 10.1111/cea.13212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
24
|
Poly(anhydride) nanoparticles containing cashew nut proteins can induce a strong Th1 and Treg immune response after oral administration. Eur J Pharm Biopharm 2018; 127:51-60. [DOI: 10.1016/j.ejpb.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
|
25
|
Walker MT, Green JE, Ferrie RP, Queener AM, Kaplan MH, Cook-Mills JM. Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol 2018; 141:1711-1725.e9. [PMID: 29454836 PMCID: PMC5938139 DOI: 10.1016/j.jaci.2018.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mechanisms for the development of food allergy in neonates are unknown but clearly linked in patient populations to a genetic predisposition to skin barrier defects. Whether skin barrier defects contribute functionally to development of food allergy is unknown. OBJECTIVE The purpose of the study was to determine whether skin barrier mutations, which are primarily heterozygous in patient populations, contribute to the development of food allergy. METHODS Mice heterozygous for the filaggrin (Flg)ft and Tmem79ma mutations were skin sensitized with environmental and food allergens. After sensitization, mice received oral challenge with food allergen, and then inflammation, inflammatory mediators, and anaphylaxis were measured. RESULTS We define development of inflammation, inflammatory mediators, and food allergen-induced anaphylaxis in neonatal mice with skin barrier mutations after brief concurrent cutaneous exposure to food and environmental allergens. Moreover, neonates of allergic mothers have increased responses to suboptimal sensitization with food allergens. Importantly, responses to food allergens by these neonatal mice were dependent on genetic defects in skin barrier function and on exposure to environmental allergens. ST2 blockade during skin sensitization inhibited the development of anaphylaxis, antigen-specific IgE, and inflammatory mediators. Neonatal anaphylactic responses and antigen-specific IgE were also inhibited by oral pre-exposure to food allergen, but interestingly, this was blunted by concurrent pre-exposure of the skin to environmental allergen. CONCLUSION These studies uncover mechanisms for food allergy sensitization and anaphylaxis in neonatal mice that are consistent with features of human early-life exposures and genetics in patients with clinical food allergy and demonstrate that changes in barrier function drive development of anaphylaxis to food allergen.
Collapse
Affiliation(s)
- Matthew T Walker
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jeremy E Green
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ryan P Ferrie
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ashley M Queener
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Mark H Kaplan
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind
| | - Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
26
|
Aguilera-Insunza R, Venegas LF, Iruretagoyena M, Rojas L, Borzutzky A. Role of dendritic cells in peanut allergy. Expert Rev Clin Immunol 2018; 14:367-378. [PMID: 29681186 DOI: 10.1080/1744666x.2018.1467757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The prevalence of peanut allergy (PA) has increased, affecting approximately 1.1% of children in Western countries. PA causes life-threatening anaphylaxis and frequently persists for life. There are no standardized curative therapies for PA, and avoidance of peanuts remains the main therapeutic option. A better understanding of the pathogenesis of PA is essential to identify new treatment strategies. Intestinal dendritic cells (DCs) are essential in the induction and maintenance of food tolerance because they present dietary allergens to T cells, thereby directing subsequent immune responses. Areas covered: In this review, we discuss the factors related to the acquisition of oral tolerance to peanut proteins. We focus on intestinal DC-related aspects, including the latest advances in the biology of intestinal DC subtypes, effect of tolerance-inducing factors on DCs, effect of dietary components on oral tolerance, and role of DCs in peanut sensitization. Expert commentary: Given the increasing prevalence of PA, difficulty of avoiding peanut products, and the potentially serious accidental reactions, the development of novel therapies for PA is needed. The ability of DCs to trigger tolerance or immunity makes them an interesting target for new treatment strategies against PA.
Collapse
Affiliation(s)
- Raquel Aguilera-Insunza
- a Department of Immunology and Rheumatology, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Luis F Venegas
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Mirentxu Iruretagoyena
- a Department of Immunology and Rheumatology, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leticia Rojas
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Arturo Borzutzky
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile.,c Millennium Institute on Immunology and Immunotherapy, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
27
|
Smaldini PL, Trejo F, Cohen JL, Piaggio E, Docena GH. Systemic IL-2/anti-IL-2Ab complex combined with sublingual immunotherapy suppresses experimental food allergy in mice through induction of mucosal regulatory T cells. Allergy 2018; 73:885-895. [PMID: 29319881 DOI: 10.1111/all.13402] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Therapeutic tolerance restoration has been proven to modify food allergy in patients and animal models and although sublingual immunotherapy (SLIT) has showed promise, combined therapy may be necessary to achieve a strong and long-term tolerance. AIMS In this work, we combined SLIT with systemic administration of IL-2 associated with an anti-IL-2 monoclonal antibody (IL-2/anti-IL-2Ab complex or IL-2C) to reverse the IgE-mediated experimental allergy. MATERIALS AND METHODS Balb/c mice were sensitized with cholera toxin and milk proteins and orally challenged with allergen to elicit hypersensitivity reactions. Then, allergic mice were treated with a sublingual administration of very low amounts of milk proteins combined with intraperitoneal injection of low doses of IL-2C. The animals were next re-exposed to allergens and mucosal as well as systemic immunological parameters were assessed in vivo and in vitro. RESULTS The treatment reduced serum specific IgE, IL-5 secretion by spleen cells and increased IL-10 and TGF-β in the lamina propria of buccal and duodenal mucosa. We found an augmented frequency of IL-10-secreting CD4+ CD25+ Foxp3+ regulatory T cells (Treg) in the submaxilar lymph nodes and buccal lamina propria. Tregs were sorted, characterized and adoptively transferred to naïve mice, which were subsequently sensitized. No allergy was experienced in these mice and we encouragingly discovered a faster and more efficient tolerance induction with the combined therapy compared with SLIT. CONCLUSION The combination of two therapeutic strategies rendered Treg-mediated tolerance more efficient compared to individual treatments and reversed the established IgE-mediated food allergy. This approach highlights the ability of IL-2C to expand Tregs, and it may represent a promising disease-modifying therapy for managing food allergy.
Collapse
Affiliation(s)
- P. L. Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP); CONICET y Universidad Nacional de La Plata; La Plata Argentina
| | - F. Trejo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP); CONICET y Universidad Nacional de La Plata; La Plata Argentina
| | - J. L. Cohen
- Université Paris-Est; UMR_S955; UPEC; Créteil France
- Inserm, U955; Equipe 21; Créteil France
- Hôpital Henri Mondor; UPEC; APHP; Inserm; CIC Biothérapie; Créteil France
| | - E. Piaggio
- Institut Curie; PSL Research University; INSERM U932; Translational Immunotherapy team; Paris France
- Institut Curie; Centre d'Investigation Clinique Biothérapie CICBT 1428; Paris France
| | - G. H. Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP); CONICET y Universidad Nacional de La Plata; La Plata Argentina
| |
Collapse
|
28
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother 2018; 14:815-831. [PMID: 29257936 DOI: 10.1080/21645515.2017.1417711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Basophils are circulating cells that are associated quite exclusively with allergy response and hypersensitivity reactions but their role in the immune network might be much more intriguing and complex than previously expected. The feasibility of testing their biology in vitro for allergy research and diagnosis, due fundamentally to their quite easy availability in the peripheral blood, made them the major source for assessing allergy in the laboratory assay, when yet many further cells such as mast cells and eosinophils are much more involved as effector cells in allergy than circulating basophils. Interestingly, basophil numbers change rarely in peripheral blood during an atopic response, while we might yet observe an increase in eosinophils and modification in the biology of mast cells in the tissue during an hypersensitivity response. Furthermore, the fact that basophils are very scanty in numbers suggests that they should mainly serve as regulatory cells in immunity, rather than effector leukocytes, as still believed by the majority of physicians. In this review we will try to describe and elucidate the possible role of these cells, known as "innate IL4-producing cells" in the immune regulation of allergy and their function in allergen immunotherapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- a Department of Neurological and Movement Sciences , University of Verona , Verona , Italy
| | - Geir Bjørklund
- b Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| | - Andrea Sboarina
- c Department of Surgery , Dentistry, Paediatrics and Gynaecology-University of Verona , Verona , Italy
| | - Antonio Vella
- d Unit of Immunology-Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona , Italy
| |
Collapse
|
29
|
Satitsuksanoa P, Jansen K, Głobińska A, van de Veen W, Akdis M. Regulatory Immune Mechanisms in Tolerance to Food Allergy. Front Immunol 2018; 9:2939. [PMID: 30619299 PMCID: PMC6299021 DOI: 10.3389/fimmu.2018.02939] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Oral tolerance can develop after frequent exposure to food allergens. Upon ingestion, food is digested into small protein fragments in the gastrointestinal tract. Small food particles are later absorbed into the human body. Interestingly, some of these ingested food proteins can cause allergic immune responses, which can lead to food allergy. So far it has not been completely elucidated how these proteins become immunogenic and cause food allergies. In contrast, oral tolerance helps to prevent the pathologic reactions against different types of food antigens from animal or plant origin. Tolerance to food is mainly acquired by dendritic cells, epithelial cells in the gut, and the gut microbiome. A subset of CD103+ DCs is capable of inducing T regulatory cells (Treg cells) that express anti-inflammatory cytokines. Anergic T cells also contribute to oral tolerance, by reducing the number of effector cells. Similar to Treg cells, B regulatory cells (Breg cells) suppress effector T cells and contribute to the immune tolerance to food allergens. Furthermore, the human microbiome is an essential mediator in the induction of oral tolerance or food allergy. In this review, we outline the current understanding of regulatory immune mechanisms in oral tolerance. The biological changes reflecting early consequences of immune stimulation with food allergens should provide useful information for the development of novel therapeutic treatments.
Collapse
|
30
|
Yang L, Shu Q, Luo X, Liu Z, Qiu S, Liu J, Guo H, Li L, Li M, Liu D, Xia L, Liu Z, Yang P. Long-term effects: Galectin-1 and specific immunotherapy for allergic responses in the intestine. Allergy 2018; 73:106-114. [PMID: 28718965 DOI: 10.1111/all.13256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Mast cell activation interferes with the effects of allergen-specific immunotherapy (SIT). Galectin-1 (Gal-1) is capable of regulating immune cells' functions. This study tests the hypothesis that administration of Gal-1 promotes and prolongs the efficacy of SIT via suppressing mast cell activation. METHODS An intestinal allergy mouse model was developed. The coadministration of SIT and Gal-1 on suppression of the allergic responses, prevention of mast cell activation, and generation of antigen-specific regulatory T cells (Treg) in the intestine was observed in sensitized mice. RESULTS The coadministration of Gal-1 and SIT markedly suppressed the allergic responses in the mouse intestine vs the use of either SIT alone or Gal-1 alone. The Gal-1 binds to the IgE/FcɛRI complexes on the surface of mast cells to prevent mast cell activation during SIT. Gal-1 promoted the SIT-generated allergen-specific Tregs in the intestine of sensitized mice. Coadministration of Gal-1 and SIT significantly enhanced the efficacy of immunotherapy in suppressing allergic responses in the intestine, which lasted for at least for 12 months. CONCLUSIONS Long-term effects of specific immunotherapy on intestinal allergy can be achieved with Gal-1/SIT therapy by inhibiting mast cell activation and facilitating Treg development.
Collapse
Affiliation(s)
- L.‐T. Yang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
- Brain Body Institute McMaster University Hamilton ON Canada
| | - Q. Shu
- The Department of Gastroenterology The First Affiliated Hospital Shenzhen University Shenzhen China
| | - X.‐Q. Luo
- Department of Pediatric Otolaryngology Shenzhen Hospital Southern Medical University Shenzhen China
| | - Z.‐Q. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
- Brain Body Institute McMaster University Hamilton ON Canada
| | - S.‐Q. Qiu
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
| | - J.‐Q. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
- Brain Body Institute McMaster University Hamilton ON Canada
| | - H.‐J. Guo
- The Department of Gastroenterology The First Affiliated Hospital Shenzhen University Shenzhen China
| | - L.‐J. Li
- Brain Body Institute McMaster University Hamilton ON Canada
| | - M.‐G. Li
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - D.‐B. Liu
- Department of Pediatric Otolaryngology Shenzhen Hospital Southern Medical University Shenzhen China
| | - L.‐X. Xia
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - Z.‐G. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - P.‐C. Yang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| |
Collapse
|
31
|
Abstract
The gastrointestinal tract has an abundant mucosal immune system to develop and maintain oral tolerance. The oral route of administration takes advantage of the unique set of immune cells and pathways involved in the induction of oral tolerance. Food allergy results from a loss of oral tolerance toward ingested antigens. Oral immunotherapy is thought to initiate desensitization through interaction of an allergen with mucosal dendritic cells that initiate downstream immune system modulation through regulatory T cells and effector T cells.
Collapse
Affiliation(s)
- Erik Wambre
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | - David Jeong
- Virginia Mason Medical Center, 1201 Terry Avenue, Seattle, WA 98101, USA
| |
Collapse
|
32
|
Arasi S, Pajno GB. Evidence Gaps in Oral Immunotherapy for Food Allergy. CURRENT TREATMENT OPTIONS IN ALLERGY 2017. [DOI: 10.1007/s40521-017-0146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Srivastava KD, Song Y, Yang N, Liu C, Goldberg IE, Nowak-Węgrzyn A, Sampson HA, Li XM. B-FAHF-2 plus oral immunotherapy (OIT) is safer and more effective than OIT alone in a murine model of concurrent peanut/tree nut allergy. Clin Exp Allergy 2017; 47:1038-1049. [PMID: 28397379 PMCID: PMC5533629 DOI: 10.1111/cea.12936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Concurrent sensitization to peanut (PN) and tree nuts (TN), the most dangerous food allergies, is common. Current oral immunotherapy (OIT) is not fully satisfactory. OBJECTIVE To determine whether the herbal formula B-FAHF-2 (BF2) ameliorates PN/TN OIT adverse reactions and enhances persistence of a tolerant state. METHODS Concurrently sensitized PN-, walnut- (WN) and cashew (CSH)-allergic mice received 1-day PN/WN/CSH rush OIT plus 3 weeks of maintenance dosing, with or without 3 weeks prior and 3 weeks BF2 co-treatment. Anaphylactic symptom scores, core body temperatures, plasma histamine levels, basophil numbers, antigen-specific IgE, cytokine levels, and IL-4, INF-γ and Foxp3 gene promoter DNA methylation status, and their correlation with final challenge symptom scores were determined. RESULTS BF2+OIT-treated mice experienced significantly fewer and less severe adverse reactions than OIT-only-treated mice (P<.01) during the 1-day rush OIT build-up dose phase. Both OIT-only and BF2+OIT mice showed significant desensitization (P<.01 and .001, respectively) at 1 week post-therapy challenge, being greater in BF2+OIT mice. All sham-treated and 91% of OIT-treated mice experienced anaphylaxis whereas only 21% of BF2+OIT-treated mice exhibited reactions during 5-6 weeks of dose escalation single PN and TN challenges. Greater and more persistent protection in BF2+OIT mice was associated with significantly lower plasma histamine and IgE levels, increased IFN-γ/IL-4 and IL-10/IL-4 ratios, DNA remethylation at the IL-4 promoter and demethylation at IFN-γ and Foxp3 promoters. Final challenge symptom scores were inversely correlated with IL-4 DNA methylation levels (P<.0002) and positively correlated with IFN-γ and Foxp3 gene promoter methylation levels (P<.0011) (P<.0165). CONCLUSIONS AND CLINICAL RELEVANCE Combined BF2/OIT therapy was safer and produced longer post-treatment protection and more tolerance-prone immunological and epigenetic modifications than OIT alone. BF2/OIT may provide an additional OIT option for patients with concurrent PN/TN and other food allergies.
Collapse
Affiliation(s)
- K D Srivastava
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y Song
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N Yang
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Liu
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - I E Goldberg
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Nowak-Węgrzyn
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H A Sampson
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - X-M Li
- Department of Pediatrics, Jaffe Food Allergy Institute, Center for Integrative Medicine for Immunology and Wellness, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Hara A, Iwasa Y. When is allergen immunotherapy effective? J Theor Biol 2017; 425:23-42. [PMID: 28483565 DOI: 10.1016/j.jtbi.2017.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
Allergen immunotherapy is used to treat allergic symptoms such as rhinitis and itchy eyes in Japanese patients with cedar pollen allergy (JCPA). Administration of small amounts of pollen over several years may suppress severe allergic symptoms when these patients are later exposed to large amounts of pollen in the environment. Herein, we developed a simple mathematical model to identify conditions in which allergen immunotherapy is effective. We considered the dynamics of type 2 T helper cells (Th2) and regulatory T cells (Treg), both of which differentiate from naive T cells. Therapy was considered successful under the following three conditions: (1) Without therapy patients develop allergic symptoms upon exposure to environmental pollen, (2) with therapy patients do not develop symptoms upon exposure, and (3) patients do not develop allergic symptoms to the therapy itself. We defined scores for therapeutic success and identified ranges of parameters in which allergen immunotherapy is likely to be successful. Treg cells have a longer lifespan than Th2 cells, allowing accumulation over many years. In accordance, therapy with linear dose increases (rather than constant doses) reduced the risk of allergies to the therapy itself, and led to stronger accumulation of resistance to pollen exposure.
Collapse
Affiliation(s)
- Akane Hara
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan .
| | - Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Zundler S, Neurath MF. Pathogenic T cell subsets in allergic and chronic inflammatory bowel disorders. Immunol Rev 2017; 278:263-276. [DOI: 10.1111/imr.12544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| | - Markus F. Neurath
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| |
Collapse
|
36
|
Perezabad L, López-Abente J, Alonso-Lebrero E, Seoane E, Pion M, Correa-Rocha R. The establishment of cow's milk protein allergy in infants is related with a deficit of regulatory T cells (Treg) and vitamin D. Pediatr Res 2017; 81:722-730. [PMID: 28099424 DOI: 10.1038/pr.2017.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cow's milk protein allergy (CMPA) is the most common food allergy in infants. However, little is known about which specific immune mechanisms are related with the CMPA onset. The objective was to investigate which immune alterations constitute differential factors between allergy and tolerance, and hence could be implicated in the CMPA establishment in infants. METHODS An extensive analysis of immune subsets, including Treg and cytokine-secreting cells was performed in blood samples from 28 infants younger than 9 mo obtained 1-4 d after the first adverse reaction to milk. RESULTS Less than 4 d after first allergic reaction, infants who developed CMPA had decreased Treg counts and increased frequency of IL4-secreting CD4 T cells compared to controls. The deficit of Tregs was correlated with decreased serum levels of vitamin D. Values of Tregs, IL4-secreting cells and vitamin D were good predictors of CMPA diagnosis. Basal vitamin D levels in CMPA infants also predicted those CMPA patients developing spontaneous tolerance in the first year. CONCLUSION Establishment of CMPA in infants was related with lower Treg and vitamin D levels. These immune alterations would be crucial factors behind the CMPA establishment and they could constitute a therapeutic target for treatment of CMPA.
Collapse
Affiliation(s)
- Laura Perezabad
- Department of Bioactivity and Food Analysis of the CIAL-CSIC, Madrid, Spain
| | - Jacobo López-Abente
- Laboratory of Immune-regulation, Hospital General Universitario Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Elena Alonso-Lebrero
- Pediatric-Allergy Division, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Elena Seoane
- Laboratory of Immune-regulation, Hospital General Universitario Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Immunology and Allergy Pediatric Division, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-regulation, Hospital General Universitario Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-regulation, Hospital General Universitario Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
37
|
Di Claudio F, Muglia CI, Smaldini PL, Orsini Delgado ML, Trejo FM, Grigera JR, Docena GH. Use of a Collagen Membrane to Enhance the Survival of Primary Intestinal Epithelial Cells. J Cell Physiol 2017; 232:2489-2496. [PMID: 27626762 DOI: 10.1002/jcp.25594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cell culture is important for biological, functional, and immunological studies. Since enterocytes have a short in vivo life span due to anoikis, we aimed to establish a novel and reproducible method to prolong the survival of mouse and human cells. Cells were isolated following a standard procedure, and cultured on ordered-cow's collagen membranes. A prolonged cell life span was achieved; cells covered the complete surface of bio-membranes and showed a classical enterocyte morphology with high expression of enzymes supporting the possibility of cryopreservation. Apoptosis was dramatically reduced and cultured enterocytes expressed cytokeratin and LGR5 (low frequency). Cells exposed to LPS or flagellin showed the induction of TLR4 and TLR5 expression and a functional phenotype upon exposure to the probiotic Bifidobacterium bifidum or the pathogenic Clostridium difficile. The secretion of the homeostatic (IL-25 and TSLP), inhibitory (IL-10 and TGF-β), or pro-inflammatory mediators (IL-1β and TNF) were induced. In conclusion, this novel protocol using cow's collagen-ordered membrane provides a simple and reproducible method to maintain intestinal epithelial cells functional for cell-microorganism interaction studies and stem cell expansion. J. Cell. Physiol. 232: 2489-2496, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fiorella Di Claudio
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia I Muglia
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Paola L Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - María Lucía Orsini Delgado
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Fernando M Trejo
- Centro de Investigación y Desarrollo en Tecnología de Alimentos (CIDCA), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - J Raúl Grigera
- Centro de Química Inorgánica (CEQUINOR), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
38
|
Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol 2016; 137:984-997. [PMID: 27059726 DOI: 10.1016/j.jaci.2016.02.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Ingestion of innocuous antigens, including food proteins, normally results in local and systemic immune nonresponsiveness in a process termed oral tolerance. Oral tolerance to food proteins is likely to be intimately linked to mechanisms that are responsible for gastrointestinal tolerance to large numbers of commensal microbes. Here we review our current understanding of the immune mechanisms responsible for oral tolerance and how perturbations in these mechanisms might promote the loss of oral tolerance and development of food allergies. Roles for the commensal microbiome in promoting oral tolerance and the association of intestinal dysbiosis with food allergy are discussed. Growing evidence supports cutaneous sensitization to food antigens as one possible mechanism leading to the failure to develop or loss of oral tolerance. A goal of immunotherapy for food allergies is to induce sustained desensitization or even true long-term oral tolerance to food allergens through mechanisms that might in part overlap with those associated with the development of natural oral tolerance.
Collapse
Affiliation(s)
- R Sharon Chinthrajah
- Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Kari C Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
39
|
Release from Th1-type immune tolerance in spleen and enhanced production of IL-5 in Peyer’s patch by cholera toxin B induce the glomerular deposition of IgA. Immunobiology 2016; 221:577-85. [DOI: 10.1016/j.imbio.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
|
40
|
Hussain K, Letley DP, Greenaway AB, Kenefeck R, Winter JA, Tomlinson W, Rhead J, Staples E, Kaneko K, Atherton JC, Robinson K. Helicobacter pylori-Mediated Protection from Allergy Is Associated with IL-10-Secreting Peripheral Blood Regulatory T Cells. Front Immunol 2016; 7:71. [PMID: 27014260 PMCID: PMC4779884 DOI: 10.3389/fimmu.2016.00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori infections are usually established in early childhood and continuously stimulate immunity, including T-helper 1 (Th1), Th17, and regulatory T-cell (Treg) responses, throughout life. Although known to be the major cause of peptic ulcer disease and gastric cancer, disease occurs in a minority of those who are infected. Recently, there has been much interest in beneficial effects arising from infection with this pathogen. Published data robustly show that the infection is protective against asthma in mouse models. Epidemiological studies show that H. pylori is inversely associated with human allergy and asthma, but there is a paucity of mechanistic data to explain this. Since Th1 and Treg responses are reported to protect against allergic responses, we investigated if there were links between the human systemic Th1 and Treg response to H. pylori and allergen-specific IgE levels. The human cytokine and T-cell responses were examined using peripheral blood mononuclear cells (PBMCs) from 49 infected and 58 uninfected adult patients. Concentrations of total and allergen-specific plasma IgE were determined by ELISA and ImmunoCAP assays. These responses were analyzed according to major virulence factor genotypes of the patients' colonizing H. pylori strains. An in vitro assay was employed, using PBMCs from infected and uninfected donors, to determine the role of Treg cytokines in the suppression of IgE. Significantly higher frequencies of IL-10-secreting CD4(+)CD25(hi) Tregs, but not H. pylori-specific Th1 cells, were present in the peripheral blood of infected patients. Total and allergen-specific IgE concentrations were lower when there was a strong Treg response, and blocking IL-10 in vitro dramatically restored IgE responses. IgE concentrations were also significantly lower when patients were infected with CagA(+) strains or those expressing the more active i1 form of VacA. The systemic IL-10(+) Treg response is therefore likely to play a role in H. pylori-mediated protection against allergy in humans.
Collapse
Affiliation(s)
- Khiyam Hussain
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Darren P Letley
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - A Borgel Greenaway
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Rupert Kenefeck
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Jody A Winter
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - William Tomlinson
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Joanne Rhead
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Emily Staples
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - John C Atherton
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|