1
|
Jorgensen D, Grassly NC, Pons-Salort M. Global age-stratified seroprevalence of enterovirus D68: a systematic literature review. THE LANCET. MICROBE 2025; 6:100938. [PMID: 39332429 DOI: 10.1016/j.lanmic.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/29/2024]
Abstract
Enterovirus D68 (EV-D68), first isolated in 1962, emerged in 2014, causing outbreaks of severe respiratory infections and acute flaccid myelitis. In this systematic review, we have compiled all available literature on age-stratified seroprevalence estimates of EV-D68. Ten studies from six countries were retained, all conducted using microneutralisation assays, despite wide variations in protocols and challenge viruses. The age profiles of seroprevalence were similar across time and regions; seroprevalence increased quickly with age, reaching roughly 100% by the age of 20 years and with no sign of decline throughout adulthood. This suggests continuous or frequent exposure of the populations to the virus, or possible cross-reactivity with other viruses. Studies with two or more cross-sectional surveys reported consistently higher seroprevalence at later timepoints, suggesting a global increase in transmission over time. This systematic review concludes that standardising serological protocols, understanding the contribution of cross-reactivity with other pathogens to the high reported seroprevalence, and quantifying individual exposure to EV-D68 over time are the main research priorities for the future.
Collapse
Affiliation(s)
- David Jorgensen
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| | - Nicholas C Grassly
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Margarita Pons-Salort
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
2
|
Fall A, Abdullah O, Han L, Norton JM, Gallagher N, Forman M, Morris CP, Klein E, Mostafa HH. Enterovirus D68: Genomic and Clinical Comparison of 2 Seasons of Increased Viral Circulation and Discrepant Incidence of Acute Flaccid Myelitis-Maryland, USA. Open Forum Infect Dis 2024; 11:ofae656. [PMID: 39564148 PMCID: PMC11575685 DOI: 10.1093/ofid/ofae656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Background Enterovirus D68 (EV-D68) is associated with severe respiratory disease and acute flaccid myelitis (AFM). The 2022 outbreaks showed increased viral circulation and hospital admissions, but the expected rise in AFM cases did not occur. We analyzed EV-D68 genomes and infection outcomes from 2022 (a year without a national increase in AFM cases) and 2018 (a year with a national surge in AFM cases) to understand how viral genomic changes might influence disease outcomes. Methods Residual respiratory samples that tested positive for rhinovirus/enterovirus at the Johns Hopkins Health System between 2018 and 2022 were collected for EV-D68 polymerase chain reaction, genotyping, and whole genome sequencing. Clinical and metadata were collected in bulk from the electronic medical records. Results A total of 351 EV-D68 cases were identified, with most cases in children aged <5 years. Infections in 2018 were associated with higher odds of hospital admissions and intensive care unit care. Of 272 EV-D68 genomes, subclades B3 and A2/D1 were identified with B3 predominance (95.2%). A comparative analysis of the 2018 and 2022 whole genomes identified a cluster of amino acids (554D, 650T, 918T, 945N, 1445I, 1943I) that was associated with higher odds of severe outcomes. Conclusions Our results show significant differences in the clinical outcomes of EV-D68 infections in 2018 and 2022 and highlight a 2018 cluster of genomic changes associated with these differences. Seasonal viral genomic surveillance-with in vitro characterization of the significance of these changes to viral fitness, immune responses, and neuropathogenesis-should shed light on the viral determinants of AFM.
Collapse
Affiliation(s)
- Amary Fall
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Omar Abdullah
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lijie Han
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Julie M Norton
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - C Paul Morris
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Center for Disease Dynamics, Economics, and Policy, Washington DC, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Grizer CS, Messacar K, Mattapallil JJ. Enterovirus-D68 - A Reemerging Non-Polio Enterovirus that Causes Severe Respiratory and Neurological Disease in Children. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2024; 4:1328457. [PMID: 39246649 PMCID: PMC11378966 DOI: 10.3389/fviro.2024.1328457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The past decade has seen the global reemergence and rapid spread of enterovirus D68 (EV-D68), a respiratory pathogen that causes severe respiratory illness and paralysis in children. EV-D68 was first isolated in 1962 from children with pneumonia. Sporadic cases and small outbreaks have been reported since then with a major respiratory disease outbreak in 2014 associated with an increased number of children diagnosed with polio-like paralysis. From 2014-2018, major outbreaks have been reported every other year in a biennial pattern with > 90% of the cases occurring in children under the age of 16. With the outbreak of SARS-CoV-2 and the subsequent COVID-19 pandemic, there was a significant decrease in the prevalence EV-D68 cases along with other respiratory diseases. However, since the relaxation of pandemic social distancing protocols and masking mandates the number of EV-D68 cases have begun to rise again - culminating in another outbreak in 2022. Here we review the virology, pathogenesis, and the immune response to EV-D68, and discuss the epidemiology of EV-D68 infections and the divergence of contemporary strains from historical strains. Finally, we highlight some of the key challenges in the field that remain to be addressed.
Collapse
Affiliation(s)
- Cassandra S Grizer
- Department of Microbiology & Immunology, The Henry M. Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kevin Messacar
- The Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
STOKES CALEB, J. MELVIN ANN. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2024:450-486.e24. [DOI: 10.1016/b978-0-323-82823-9.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Dai W, Li X, Liu Z, Zhang C. Identification of four neutralizing antigenic sites on the enterovirus D68 capsid. J Virol 2023; 97:e0160023. [PMID: 38047678 PMCID: PMC10734511 DOI: 10.1128/jvi.01600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Enterovirus D68 (EV-D68) is an emerging respiratory pathogen associated with acute flaccid myelitis. Currently, no approved vaccines or antiviral drugs are available. Here, we report four functionally independent neutralizing antigenic sites (I to IV) by analyses of neutralizing monoclonal antibody (MAb)-resistant mutants. Site I is located in the VP1 BC loop near the fivefold axis. Site II resides in the VP2 EF loop, and site III is situated in VP1 C-terminus; both sites are located at the south rim of the canyon. Site IV is composed of residue in VP2 βB strand and residues in the VP3 BC loop and resides around the threefold axis. The developed MAbs targeting the antigenic sites can inhibit viral binding to cells. These findings advance the understanding of the recognition of EV-D68 by neutralizing antibodies and viral evolution and immune escape and also have important implications for the development of novel EV-D68 vaccines.
Collapse
Affiliation(s)
- Wenlong Dai
- Department of Pharmaceutics, National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xue Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Fall A, Han L, Abdullah O, Norton JM, Eldesouki RE, Forman M, Morris CP, Klein E, Mostafa HH. An increase in enterovirus D68 circulation and viral evolution during a period of increased influenza like illness, The Johns Hopkins Health System, USA, 2022. J Clin Virol 2023; 160:105379. [PMID: 36652754 DOI: 10.1016/j.jcv.2023.105379] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND An increase in influenza like illness in children and adolescents at the Johns Hopkins Health system during summer 2022 was associated with increased positivity for enterovirus/ rhinovirus. We sought to characterize the epidemiology and viral evolution of enterovirus D68 (EV-D68). METHODS A cohort of remnant respiratory samples tested at the Johns Hopkins Microbiology Laboratory was screened for EV-D68. EV-D68 positives were characterized by whole genome sequencing and viral loads were assessed by droplet digital PCR (ddPCR). Genomic changes and viral loads were analyzed along with patients' clinical presentations. RESULTS Of 566 screened samples, 126 were EV-D68 (22.3%). The median age of EV-D68 infected patients was four years, a total of 52 required supplemental oxygen (41.3%), and 35 (27.8%) were admitted. Lung disease was the most frequent comorbidity that was associated with hospitalization. A total of 75 complete and 32 partial genomes were characterized that made a new cluster within the B3 subclade that was closest to US genomes from 2018. Amino acid changes within the BC and DE loops were identified from 31 genomes (29%) which correlated with an increase in average viral load in respiratory specimens and the need for supplemental oxygen. CONCLUSIONS EV-D68 outbreaks continue to cause influenza like illness that could be overwhelming for the health system due to a significant demand for high flow oxygen. Viral evolution and an increase in the susceptible population are likely driving the trends of the increased EV-D68 infections.
Collapse
Affiliation(s)
- Amary Fall
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Lijie Han
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Omar Abdullah
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Julie M Norton
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Raghda E Eldesouki
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Michael Forman
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - C Paul Morris
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States; National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, United States; Center for Disease Dynamics, Economics, and Policy, Washington DC, United States
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States.
| |
Collapse
|
7
|
Hodcroft EB, Dyrdak R, Andrés C, Egli A, Reist J, García Martínez de Artola D, Alcoba-Flórez J, Niesters HGM, Antón A, Poelman R, Reynders M, Wollants E, Neher RA, Albert J. Evolution, geographic spreading, and demographic distribution of Enterovirus D68. PLoS Pathog 2022; 18:e1010515. [PMID: 35639811 PMCID: PMC9212145 DOI: 10.1371/journal.ppat.1010515] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/21/2022] [Accepted: 04/10/2022] [Indexed: 12/26/2022] Open
Abstract
Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome (‘whole genome’) sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68’s rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future. Enterovirus D68 (EV-D68) has caused punctuated, global outbreaks of respiratory illness and neurological disease, including being implicated as the cause of acute flaccid myelitis (AFM). Serology studies and surveillance data suggests almost everyone is infected during early childhood. The majority of sequences collected are from young children, while adults retain high antibody titers against strains that circulated when they were young. However, little is known about how outbreaks are connected and how the virus evolves and spreads around the globe. Despite EV-D68’s apparent reliance on young, naive hosts, EV-D68 antibody binding sites are reportedly evolving under antigenic pressure, and EV-D68 seems to spread rapidly during outbreaks. In this multi-center European collaboration, we confirm that subclade specific age differences are present in those infected. Further, we were able to quantify between- and within-country migration and the ‘hidden’ diversification that indicates unsampled circulation between outbreaks. We conclude that the evolution of EV-D68 may be driven by substantial re-infection of adults, explaining the rapid geographic mixing and continuous antigenic evolution. The presence of largely unsampled circulation prior to outbreaks suggests there are gaps in current surveillance practices which could be addressed by expanding genetic surveillance.
Collapse
Affiliation(s)
- Emma B. Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| | - Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Adrian Egli
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josiane Reist
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Julia Alcoba-Flórez
- Department of Clinical Microbiology, Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
| | - Hubert G. M. Niesters
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Randy Poelman
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Marijke Reynders
- Unit of Molecular Microbiology, Medical Microbiology, Department of Laboratory Medicine, AZ Sint-Jan Brugge AV, Bruges, Belgium
| | - Elke Wollants
- KU Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical & Epidemiological Virology, Leuven, Belgium
| | - Richard A. Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
8
|
Larsson SB, Vracar D, Karlsson M, Ringlander J, Norder H. Epidemiology and clinical manifestations of different enterovirus and rhinovirus types show EV‐D68 may still impact on severity of respiratory infections. J Med Virol 2022; 94:3829-3839. [PMID: 35403229 PMCID: PMC9321759 DOI: 10.1002/jmv.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Respiratory infections are often caused by enteroviruses (EVs). The aim of this study was to identify whether certain types of EV were more likely to cause severe illness in 2016, when an increasing spread of upper respiratory infections was observed in Gothenburg, Sweden. The EV strain in 137 of 1341 nasopharyngeal samples reactive for EV by polymerase chain reaction could be typed by sequencing the viral 5′‐untranslated region and VP1 regions. Phylogenetic trees were constructed. Patient records were reviewed. Hospital care was needed for 46 of 74 patients with available medical records. The majority of the patients (83) were infected with the rhinovirus (RV). The remaining 54 were infected with EV A, B, C, and D strains of 13 different types, with EV‐D68 and CV‐A10 being the most common (17 vs. 14). Significantly more patients with EV‐D68 presented with dyspnea, both when compared with other EV types (p = 0.003) and compared to all other EV and RV infections (p = 0.04). Phylogenetic analysis of the sequences revealed the spread of both Asian and European CV‐A10 strains and 12 different RV C types. This study showed an abundance of different EV types spreading during a year with increased upper respiratory increased infections. EV‐D68 infections were associated with more severe disease manifestation. Other EV and RV types were more evenly distributed between hospitalized and nonhospitalized patients. The EV type CV‐A10 was also found in infected patients, which warrants further studies and surveillance, as this pathogen could cause more severe disease and outbreaks of hand, foot, and mouth disease.
Collapse
Affiliation(s)
- Simon B. Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Beroendekliniken, Region Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Diana Vracar
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Marie Karlsson
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
9
|
Complete Genome Sequences of Enterovirus D68 Clade A and D Strains in the Philippines. Microbiol Resour Announc 2021; 10:e0070921. [PMID: 34591667 PMCID: PMC8483712 DOI: 10.1128/mra.00709-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Complete genome sequences were determined for 4 clade A and 12 clade D enterovirus D68 strains detected in nasopharyngeal swabs from children with acute respiratory illness in the Philippines. These sequence data will be useful for future epidemiological monitoring, including watching for viral evolution.
Collapse
|
10
|
Ebada MA, Fayed N, Alkanj S, Allah AW. Enterovirus D-68 Molecular Virology, Epidemiology, and Treatment: an Update and Way Forward. Infect Disord Drug Targets 2021; 21:320-327. [PMID: 32669078 DOI: 10.2174/1871526520666200715101230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Enterovirus D68 (EV-D68) is a single-stranded positive-sense RNA virus, and it is one of the family members of Picornaviridae. Except for EV-D68, the entire family Picornaviridae has been illustrated in literature. EV-D68 was first discovered and isolated in California, USA, in 1962. EV-D68 has resulted in respiratory disorders' outbreaks among children worldwide, and it has been detected in cases of various neurological diseases such as acute flaccid myelitis (AFM). A recent study documented a higher number of EV-D68 cases associated with AFM in Europe in 2016 compared to the 2014 outbreak. EV-D68 is mainly diagnosed by quantitative PCR, and there is an affirmative strategy for EV-D68 detection by using pan-EV PCR on the untranslated region and/or the VP1 or VP2, followed by sequencing of the PCR products. Serological tests are limited due to cross-reactivity of the antigens between the different serotypes. Many antiviral drugs for EV-D68 have been evaluated and showed promising results. In our review, we discuss the current knowledge about EV-D68 and its role in the development of AFM.
Collapse
Affiliation(s)
| | - Notila Fayed
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Souad Alkanj
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Ahmed Wadaa Allah
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Sooksawasdi Na Ayudhya S, Laksono BM, van Riel D. The pathogenesis and virulence of enterovirus-D68 infection. Virulence 2021; 12:2060-2072. [PMID: 34410208 PMCID: PMC8381846 DOI: 10.1080/21505594.2021.1960106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In 2014, enterovirus D68 (EV-D68) emerged causing outbreaks of severe respiratory disease in children worldwide. In a subset of patients, EV-D68 infection was associated with the development of central nervous system (CNS) complications, including acute flaccid myelitis (AFM). Since then, the number of reported outbreaks has risen biennially, which emphasizes the need to unravel the systemic pathogenesis in humans. We present here a comprehensive review on the different stages of the pathogenesis of EV-D68 infection – infection in the respiratory tract, systemic dissemination and infection of the CNS – based on observations in humans as well as experimental in vitro and in vivo studies. This review highlights the knowledge gaps on the mechanisms of systemic dissemination, routes of entry into the CNS and mechanisms to induce AFM or other CNS complications, as well as the role of virus and host factors in the pathogenesis of EV-D68.
Collapse
Affiliation(s)
| | - Brigitta M Laksono
- Department of Viroscience, Erasmus MC, Dr Molewaterplein 40, GD Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Dr Molewaterplein 40, GD Rotterdam, The Netherlands
| |
Collapse
|
12
|
Duval M, Mirand A, Lesens O, Bay JO, Caillaud D, Gallot D, Lautrette A, Montcouquiol S, Schmidt J, Egron C, Jugie G, Bisseux M, Archimbaud C, Lambert C, Henquell C, Bailly JL. Retrospective Study of the Upsurge of Enterovirus D68 Clade D1 among Adults (2014-2018). Viruses 2021; 13:1607. [PMID: 34452471 PMCID: PMC8402803 DOI: 10.3390/v13081607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
Enterovirus D68 (EV-D68) has emerged as an agent of epidemic respiratory illness and acute flaccid myelitis in the paediatric population but data are lacking in adult patients. We performed a 4.5-year single-centre retrospective study of all patients who tested positive for EV-D68 and analysed full-length EV-D68 genomes of the predominant clades B3 and D1. Between 1 June 2014, and 31 December 2018, 73 of the 11,365 patients investigated for respiratory pathogens tested positive for EV-D68, of whom 20 (27%) were adults (median age 53.7 years [IQR 34.0-65.7]) and 53 (73%) were children (median age 1.9 years [IQR 0.2-4.0]). The proportion of adults increased from 12% in 2014 to 48% in 2018 (p = 0.01). All adults had an underlying comorbidity factor, including chronic lung disease in 12 (60%), diabetes mellitus in six (30%), and chronic heart disease in five (25%). Clade D1 infected a higher proportion of adults than clades B3 and B2 (p = 0.001). Clade D1 was more divergent than clade B3: 5 of 19 amino acid changes in the capsid proteins were located in putative antigenic sites. Adult patients with underlying conditions are more likely to present with severe complications associated with EV-D68, notably the emergent clade D1.
Collapse
Affiliation(s)
- Maxime Duval
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
| | - Audrey Mirand
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Olivier Lesens
- CHU Clermont-Ferrand, Service Des Maladies Infectieuses et Tropicales, 63003 Clermont-Ferrand, France;
| | - Jacques-Olivier Bay
- CHU Clermont-Ferrand, Service de Thérapie Cellulaire et Hématologie Clinique, 63003 Clermont-Ferrand, France;
| | - Denis Caillaud
- CHU Clermont-Ferrand, Service de Pneumologie, 63003 Clermont-Ferrand, France;
| | - Denis Gallot
- CHU Clermont-Ferrand, Service de Gynécologie-Obstétrique, 63003 Clermont-Ferrand, France;
| | | | - Sylvie Montcouquiol
- CHU Clermont-Ferrand, Centre de Référence et de Compétence Mucoviscidose, 63003 Clermont-Ferrand, France;
| | - Jeannot Schmidt
- CHU Clermont-Ferrand, Service Des Urgences, 63003 Clermont-Ferrand, France;
| | - Carole Egron
- CHU Clermont-Ferrand, Service de Pédiatrie Générale, 63003 Clermont-Ferrand, France;
| | - Gwendoline Jugie
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
| | - Maxime Bisseux
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Christine Archimbaud
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Céline Lambert
- CHU Clermont-Ferrand, Service Biométrie et Médico-Economie—Direction de la Recherche Clinique et Innovation, 63003 Clermont-Ferrand, France;
| | - Cécile Henquell
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (M.D.); (A.M.); (G.J.); (M.B.); (C.A.); (C.H.)
| |
Collapse
|
13
|
The role of conformational epitopes in the evolutionary divergence of enterovirus D68 clades: A bioinformatics-based study. INFECTION GENETICS AND EVOLUTION 2021; 93:104992. [PMID: 34242773 DOI: 10.1016/j.meegid.2021.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
Enterovirus D68 (EV-D68), as one of the major pathogens of paediatric respiratory disease, has been widely spread in the population in recent years. As the basis of virus antigenicity, antigenic epitopes are essential to monitoring the transformation of virus antigenicity. However, there is a lack of systematic studies on the antigenic epitopes of EV-D68. In this study, a bioinformatics-based prediction algorithm for human enteroviruses was used to predict the conformational epitopes of EV-D68. The prediction results showed that the conformational epitopes of EV-D68 were clustered into three sites: site 1, site 2, and site 3. Site 1 was located in the "north rim" region of the canyon near the fivefold axis; site 2 was located in the "puff" region near the twofold axis; and site 3 consisted of two parts, one in the "knob" region on the south rim of the canyon and the other in the threefold axis region. The predicted epitopes overlapped highly with the binding regions of four reported monoclonal antibodies (mAbs), indicating that the predictions were highly reliable. Phylogenetic analysis showed that amino acid mutations in the epitopes of the VP1 BC loop, DE loop, C-terminus, and VP2 EF loop played a crucial role in the evolutionary divergence of EV-D68 clades/subclades and epidemics. This finding indicated that the VP1 BC loop, DE loop, C-terminus, and VP2 EF loop were the most important epitopes of EV-D68. Research on the epitopes of EV-D68 will contribute to outbreak surveillance and to the development of diagnostic reagents and recombinant vaccines.
Collapse
|
14
|
Lerner AM, DeRocco AJ, Yang L, Robinson DA, Eisinger RW, Bushar ND, Nath A, Erbelding E. Unraveling the Mysteries of Acute Flaccid Myelitis: Scientific Opportunities and Priorities for Future Research. Clin Infect Dis 2021; 72:2044-2048. [PMID: 32964217 DOI: 10.1093/cid/ciaa1432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/18/2020] [Indexed: 11/12/2022] Open
Abstract
Since 2014, cases of acute flaccid myelitis (AFM) have been reported in the United States in increasing numbers biennially, occurring in the late summer and early fall. Although there is unlikely to be a single causative agent of this syndrome, non-polio enteroviruses, including enterovirus D-68 (EV-D68), have had epidemiological and laboratory associations with AFM. Much remains to be known about AFM and AFM-associated enteroviruses, including disease pathogenesis and the best strategies for development of therapeutics or preventive modalities including vaccines. To catalyze research that addresses these scientific and clinical gaps, the National Institute of Allergy and Infectious Diseases convened a workshop entitled "AFM Preparedness: Addressing EV-D68 and Other AFM-Associated Enteroviruses" on 19-20 February 2020.
Collapse
Affiliation(s)
- Andrea M Lerner
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda J DeRocco
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Linda Yang
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daphne A Robinson
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert W Eisinger
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas D Bushar
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Erbelding
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Freeman MC, Wells AI, Ciomperlik-Patton J, Myerburg MM, Yang L, Konopka-Anstadt J, Coyne CB. Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to contemporary EV-D68 isolates. eLife 2021; 10:e66687. [PMID: 34196272 PMCID: PMC8285104 DOI: 10.7554/elife.66687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Enterovirus D68 (EV-D68) has been implicated in outbreaks of severe respiratory illness and is associated with acute flaccid myelitis (AFM). EV-D68 is often detected in patient respiratory samples but has also been detected in stool and wastewater, suggesting the potential for both respiratory and enteric routes of transmission. Here, we used a panel of EV-D68 isolates, including a historical pre-2014 isolate and multiple contemporary isolates from AFM outbreak years, to define the dynamics of viral replication and the host response to infection in primary human airway cells and stem cell-derived enteroids. We show that some recent EV-D68 isolates have decreased sensitivity to acid and temperature compared with earlier isolates and that the respiratory, but not intestinal, epithelium induces a robust type III interferon response that restricts infection. Our findings define the differential responses of the respiratory and intestinal epithelium to contemporary EV-D68 isolates and suggest that a subset of isolates have the potential to target both the human airway and gastrointestinal tracts.
Collapse
Affiliation(s)
- Megan Culler Freeman
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| | - Alexandra I Wells
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| | | | - Michael M Myerburg
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Liheng Yang
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| | | | - Carolyn B Coyne
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| |
Collapse
|
16
|
Tang SH, Yuan Y, Xie ZH, Chen MJ, Fan XD, Guo YH, Hong MH, Tao SH, Yu N. Enterovirus D68 in hospitalized children with respiratory symptoms in Guangdong from 2014 to 2018: Molecular epidemiology and clinical characteristics. J Clin Virol 2021; 141:104880. [PMID: 34153861 DOI: 10.1016/j.jcv.2021.104880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Enterovirus D68 (EV-D68) is an emerging pathogen in humans. EV-D68 causes a wide range of respiratory symptoms in children and has the propensity to cause severe complications. EV-D68 outbreaks are rarely investigated in mainland China. Therefore, in this study, we aimed to investigate the prevalence of EV-D68 in children and to describe the clinical manifestations as well as the phylogeny of EV-D68 in Guangdong Province from 2014 to 2018. METHODS Nasopharyngeal swabs were collected from hospitalized children with respiratory symptoms and screened for respiratory pathogens by fluorescence quantitative PCR and culture. The EV-positive samples were subsequently typed by sequencing the 5'-untranslated region and EV-D68-specific VP1 capsid gene. A phylogenetic tree was constructed by the maximum-likelihood method based on the VP1 gene using ClustalW. RESULTS A total of 1,498 (59.8%) out of 2,503 children were screened positive for ≥1 virus species. Among the 158 (6.31%) EV-positive samples, 17 (0.68%) were identified as EV-D68. Most EV-D68 cases (n = 14) were diagnosed with pneumonia and bronchial pneumonia. No deaths were found in EV-D68 cases. Wheezing occurred in EV-D68 cases more frequently (70.59% vs. 43.26%, P = 0.040) than that of other EVs. All the EV-D68 were of clade B3, which were highly similar to the strains circulating in China. CONCLUSION EV-D68 was the predominant enterovirus type in hospitalized children with respiratory symptoms in Guangdong Province. All the EV-D68 strains belong to clade B3. The development of diagnostic tools is warranted in order to monitor EV-D68 infections in China.
Collapse
Affiliation(s)
- Shi-Huan Tang
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Ying Yuan
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zheng-Hua Xie
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Man-Jun Chen
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiao-Di Fan
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yong-Hui Guo
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Meng-Hui Hong
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Shao-Hua Tao
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Nan Yu
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
17
|
Elrick MJ, Pekosz A, Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J Biol Chem 2021; 296:100317. [PMID: 33484714 PMCID: PMC7949111 DOI: 10.1016/j.jbc.2021.100317] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, enterovirus D68 (EV-D68) has advanced from a rarely detected respiratory virus to a widespread pathogen responsible for increasing rates of severe respiratory illness and acute flaccid myelitis (AFM) in children worldwide. In this review, we discuss the accumulating data on the molecular features of EV-D68 and place these into the context of enterovirus biology in general. We highlight similarities and differences with other enteroviruses and genetic divergence from own historical prototype strains of EV-D68. These include changes in capsid antigens, host cell receptor usage, and viral RNA metabolism collectively leading to increased virulence. Furthermore, we discuss the impact of EV-D68 infection on the biology of its host cells, and how these changes are hypothesized to contribute to motor neuron toxicity in AFM. We highlight areas in need of further research, including the identification of its primary receptor and an understanding of the pathogenic cascade leading to motor neuron injury in AFM. Finally, we discuss the epidemiology of the EV-D68 and potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Li L, Wang M, Chen Y, Hu T, Yang Y, Zhang Y, Bi G, Wang W, Liu E, Han J, Lu T, Su D. Structure of the enterovirus D68 RNA-dependent RNA polymerase in complex with NADPH implicates an inhibitor binding site in the RNA template tunnel. J Struct Biol 2020; 211:107510. [PMID: 32353513 DOI: 10.1016/j.jsb.2020.107510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/05/2023]
Abstract
Enterovirus D68 (EV-D68) is an emerging viral pathogen belonging to the Enterovirus genus of the Picornaviridae family, which is a serious threat to human health and has resulted in significant economic losses. The EV-D68 genome encodes an RNA-dependent RNA polymerase (RdRp) 3Dpol, which is central for viral genome replication and considered as a promising target for specific antiviral therapeutics. In this study, we report the crystal structures of human EV-D68 RdRp in the apo state and in complex with the inhibitor NADPH, which was selected by using a structure-based virtual screening approach. The EV-D68-RdRp-NADPH complex is the first RdRp-inhibitor structure identified in the species Enterovirus D. The inhibitor NADPH occupies the RNA template binding channel of EV-D68 RdRp with a novel binding pocket. Additionally, residues involved in the NADPH binding pocket of EV-D68 RdRp are highly conserved in RdRps of enteroviruses. Therefore, the enzyme activity of three RdRps from EV-D68, poliovirus, and enterovirus A71 is shown to decrease when titrated with NADPH separately in vitro. Furthermore, we identified that NADPH plays a pivotal role as an RdRp inhibitor instead of a chain terminator during restriction of RNA-dependent RNA replication. In the future, derivatives of NADPH may pave the way for novel inhibitors of RdRp through compound modification, providing potential antiviral agents for treating enteroviral infection and related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Meilin Wang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yiping Chen
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Hu
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Yang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yang Zhang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gang Bi
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junhong Han
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tao Lu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
| | - Dan Su
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Meyers L, Dien Bard J, Galvin B, Nawrocki J, Niesters HGM, Stellrecht KA, St George K, Daly JA, Blaschke AJ, Robinson C, Wang H, Cook CV, Hassan F, Dominguez SR, Pretty K, Naccache S, Olin KE, Althouse BM, Jones JD, Ginocchio CC, Poritz MA, Leber A, Selvarangan R. Enterovirus D68 outbreak detection through a syndromic disease epidemiology network. J Clin Virol 2020; 124:104262. [PMID: 32007841 DOI: 10.1016/j.jcv.2020.104262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND In 2014, enterovirus D68 (EV-D68) was responsible for an outbreak of severe respiratory illness in children, with 1,153 EV-D68 cases reported across 49 states. Despite this, there is no commercial assay for its detection in routine clinical care. BioFire® Syndromic Trends (Trend) is an epidemiological network that collects, in near real-time, deidentified. BioFire test results worldwide, including data from the BioFire® Respiratory Panel (RP). OBJECTIVES Using the RP version 1.7 (which was not explicitly designed to differentiate EV-D68 from other picornaviruses), we formulate a model, Pathogen Extended Resolution (PER), to distinguish EV-D68 from other human rhinoviruses/enteroviruses (RV/EV) tested for in the panel. Using PER in conjunction with Trend, we survey for historical evidence of EVD68 positivity and demonstrate a method for prospective real-time outbreak monitoring within the network. STUDY DESIGN PER incorporates real-time polymerase chain reaction metrics from the RPRV/EV assays. Six institutions in the United States and Europe contributed to the model creation, providing data from 1,619 samples spanning two years, confirmed by EV-D68 gold-standard molecular methods. We estimate outbreak periods by applying PER to over 600,000 historical Trend RP tests since 2014. Additionally, we used PER as a prospective monitoring tool during the 2018 outbreak. RESULTS The final PER algorithm demonstrated an overall sensitivity and specificity of 87.1% and 86.1%, respectively, among the gold-standard dataset. During the 2018 outbreak monitoring period, PER alerted the research network of EV-D68 emergence in July. One of the first sites to experience a significant increase, Nationwide Children's Hospital, confirmed the outbreak and implemented EV-D68 testing at the institution in response. Applying PER to the historical Trend dataset to determine rates among RP tests, we find three potential outbreaks with predicted regional EV-D68 rates as high as 37% in 2014, 16% in 2016, and 29% in 2018. CONCLUSIONS Using PER within the Trend network was shown to both accurately predict outbreaks of EV-D68 and to provide timely notifications of its circulation to participating clinical laboratories.
Collapse
Affiliation(s)
- Lindsay Meyers
- BioFire Diagnostics, Salt Lake City, UT, 84103, United States.
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90027, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA 90039, United States.
| | - Ben Galvin
- BioFire Diagnostics, Salt Lake City, UT, 84103, United States.
| | - Jeff Nawrocki
- BioFire Diagnostics, Salt Lake City, UT, 84103, United States.
| | - Hubert G M Niesters
- The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands.
| | - Kathleen A Stellrecht
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, United States.
| | - Kirsten St George
- New York State Department of Health, Albany, NY, 12202, United States.
| | - Judy A Daly
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, United States; Division of Inpatient Medicine, Primary Children's Hospital, Salt Lake City, UT 84132, United States.
| | - Anne J Blaschke
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Christine Robinson
- Department of Pathology and Laboratory Medicine, Children's Colorado, Aurora, CO 80045, United States.
| | - Huanyu Wang
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, United States.
| | - Camille V Cook
- BioFire Diagnostics, Salt Lake City, UT, 84103, United States.
| | - Ferdaus Hassan
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, United States.
| | - Sam R Dominguez
- Department of Pathology and Laboratory Medicine, Children's Colorado, Aurora, CO 80045, United States.
| | - Kristin Pretty
- Department of Pathology and Laboratory Medicine, Children's Colorado, Aurora, CO 80045, United States.
| | - Samia Naccache
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90027, United States.
| | | | - Benjamin M Althouse
- Information School, University of Washington, Seattle, WA, 98105, United States; Department of Biology, New Mexico State University, Las Cruces, NM, 88003, United States.
| | - Jay D Jones
- BioFire Diagnostics, Salt Lake City, UT, 84103, United States.
| | - Christine C Ginocchio
- BioFire Diagnostics, Salt Lake City, UT, 84103, United States; Global Medical Affairs, bioMérieux, Durham, NC 27712, United States; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States.
| | - Mark A Poritz
- BioFire Defense, Salt Lake City, UT 84107, United States.
| | - Amy Leber
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, United States.
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, United States.
| |
Collapse
|
20
|
Manifestations of enterovirus D68 and high seroconversion among children attending a kindergarten. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:858-864. [DOI: 10.1016/j.jmii.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 01/28/2023]
|
21
|
Neurotropism of Enterovirus D68 Isolates Is Independent of Sialic Acid and Is Not a Recently Acquired Phenotype. mBio 2019; 10:mBio.02370-19. [PMID: 31641090 PMCID: PMC6805996 DOI: 10.1128/mbio.02370-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since 2014, numerous outbreaks of childhood infections with enterovirus D68 (EV-D68) have occurred worldwide. Most infections are associated with flu-like symptoms, but paralysis may develop in young children. It has been suggested that infection only with recent viral isolates can cause paralysis. To address the hypothesis that EV-D68 has recently acquired neurotropism, murine organotypic brain slice cultures, induced human motor neurons and astrocytes, and mice lacking the alpha/beta interferon receptor were infected with multiple virus isolates. All EV-D68 isolates, from 1962 to the present, can infect neural cells, astrocytes, and neurons. Furthermore, our results show that sialic acid binding does not play a role in EV-D68 neuropathogenesis. The study of EV-D68 infection in organotypic brain slice cultures, induced motor neurons, and astrocytes will allow for the elucidation of the mechanism by which the virus infection causes disease. Acute flaccid myelitis (AFM) is a rare but serious illness of the nervous system, specifically affecting the gray matter of the spinal cord, motor-controlling regions of the brain, and cranial nerves. Most cases of AFM are pathogen associated, typically with poliovirus and enterovirus infections, and occur in children under the age of 6 years. Enterovirus D68 (EV-D68) was first isolated from children with pneumonia in 1962, but an association with AFM was not observed until the 2014 outbreak. Organotypic mouse brain slice cultures generated from postnatal day 1 to 10 mice and adult ifnar knockout mice were used to determine if neurotropism of EV-D68 is shared among virus isolates. All isolates replicated in organotypic mouse brain slice cultures, and three isolates replicated in primary murine astrocyte cultures. All four EV-D68 isolates examined caused paralysis and death in adult ifnar knockout mice. In contrast, no viral disease was observed after intracranial inoculation of wild-type mice. Six of the seven EV-D68 isolates, including two from 1962 and four from the 2014 outbreak, replicated in induced human neurons, and all of the isolates replicated in induced human astrocytes. Furthermore, a putative viral receptor, sialic acid, is not required for neurotropism of EV-D68, as viruses replicated within neurons and astrocytes independent of binding to sialic acid. These observations demonstrate that EV-D68 is neurotropic independent of its genetic lineage and can infect both neurons and astrocytes and that neurotropism is not a recently acquired characteristic as has been suggested. Furthermore, the results show that in mice the innate immune response is critical for restricting EV-D68 disease.
Collapse
|
22
|
Hixon AM, Frost J, Rudy MJ, Messacar K, Clarke P, Tyler KL. Understanding Enterovirus D68-Induced Neurologic Disease: A Basic Science Review. Viruses 2019; 11:E821. [PMID: 31487952 PMCID: PMC6783995 DOI: 10.3390/v11090821] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022] Open
Abstract
In 2014, the United States (US) experienced an unprecedented epidemic of enterovirus D68 (EV-D68)-induced respiratory disease that was temporally associated with the emergence of acute flaccid myelitis (AFM), a paralytic disease occurring predominantly in children, that has a striking resemblance to poliomyelitis. Although a definitive causal link between EV-D68 infection and AFM has not been unequivocally established, rapidly accumulating clinical, immunological, and epidemiological evidence points to EV-D68 as the major causative agent of recent seasonal childhood AFM outbreaks in the US. This review summarizes evidence, gained from in vivo and in vitro models of EV-D68-induced disease, which demonstrates that contemporary EV-D68 strains isolated during and since the 2014 outbreak differ from historical EV-D68 in several factors influencing neurovirulence, including their genomic sequence, their receptor utilization, their ability to infect neurons, and their neuropathogenicity in mice. These findings provide biological plausibility that EV-D68 is a causal agent of AFM and provide important experimental models for studies of pathogenesis and treatment that are likely to be difficult or impossible in humans.
Collapse
Affiliation(s)
- Alison M Hixon
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua Frost
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin Messacar
- Hospital Medicine and Pediatric Infectious Disease Sections, Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA.
- Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Kenneth L Tyler
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Klaiber N, McVoy MA, Zhao W. Susceptibility of Enterovirus-D68 to RNAi-mediated antiviral knockdown. Antiviral Res 2019; 170:104565. [PMID: 31336148 DOI: 10.1016/j.antiviral.2019.104565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 01/22/2023]
Abstract
Enterovirus D68 (EV-D68) represents an emerging pathogen which has demonstrated a capacity for causing epidemic illness in pediatric and immunocompromised patients. With no effective antiviral treatment available, therapeutic interventions are currently limited to supportive care. Utilizing available genomic sequences from the 2014 B3 Epidemic EV-D68 clade and the 1962 Fermon EV-D68 strains, we performed in silico comparative genomic analysis, identifying several islands of phylogenetic conservation within the viral RNA-dependent RNA polymerase gene. The effects of transfecting short-interfering double-stranded RNA (siRNA) molecules targeting these conserved sequences were tested in vitro using a human rhabdomyosarcoma cell-based model of EV-D68 infection. Two siRNA sequences demonstrated reproducible ability to abrogate EV-D68-mediated cytopathic effect in vitro. These siRNA sequences were also able to decrease EV-D68 genome replication, VP-2 capsid protein expression, and infectious particle production in vitro. EV-D68 knockdown was sequence-specific and not observed in cells treated with a negative control siRNA lacking sequence homology to the viral genome. The regions targeted by these siRNA's are located in highly conserved regions of the RNA-dependent RNA polymerase gene. The most potent siRNA targeted a sequence found in subsequent enzyme crystallographic studies to enhance the enzyme's thermostability (Wang et al., 2017). Topical nebulized siRNAs have recently been utilized as antivirals in human studies, with no adverse effects or toxicities noted (Gottlieb et al., 2016). Sequence selection is likely one primary factor determining the potential efficacy of such therapeutics. These results demonstrate that the identified siRNA sequences are able to suppress EV-D68 replication and cytopathic effect in vitro.
Collapse
Affiliation(s)
- Nicholas Klaiber
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, USA
| | - Wei Zhao
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
24
|
Wang H, Tao K, Leung CY, Hon KL, Yeung CMA, Chen Z, Chan KSP, Leung TF, Chan WYR. Molecular epidemiological study of enterovirus D68 in hospitalised children in Hong Kong in 2014-2015 and their complete coding sequences. BMJ Open Respir Res 2019; 6:e000437. [PMID: 31354952 PMCID: PMC6615781 DOI: 10.1136/bmjresp-2019-000437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
Background Human enterovirus D68 (EV-D68) was first isolated in 1962 and has aroused public concern recently because of a nationwide outbreak among children in 2014–2015 in the USA. The symptoms include fever, runny nose, sneezing, cough and muscle pains. It might be associated with severe respiratory illness in individuals with pre-existing respiratory conditions and its potential association with acute flaccid myelitis is under investigation. In Asia, EV-D68 cases have been reported in several countries. The study We aimed to understand the EV-D68 prevalence and their genetic diversity in Hong Kong children. Methods A total of 10 695 nasopharyngeal aspirate (NPA) samples from hospitalised patients aged <18 years were collected from September 2014 to December 2015 in two regional hospitals. NPAs tested positive for enterovirus/rhinovirus (EV/RV) were selected for genotyping. For those identified as EV-D68, their complete coding sequences (CDSs) were obtained by Sanger sequencing. A maximum-likelihood phylogeny was constructed using all EV-D68 complete coding sequences available in GenBank (n=482). Results 2662/10 695 (24.9%) were tested positive with EV/RV and 882/2662 (33.1%) were selected randomly and subjected to molecular classification. EV-D68 was detected in 15 (1.70%) samples from patients with clinical presentations ranging from wheezing to pneumonia and belonged to subclade B3. Eight CDSs were successfully obtained. A total of 10 amino acid residue polymorphisms were detected in the viral capsid proteins, proteases, ATPase and RNA polymerase. Conclusion B3 subclade was the only subclade found locally. Surveillance of EV-D68 raises public awareness and provides the information to determine the most relevant genotypes for vaccine development.
Collapse
Affiliation(s)
- Haichao Wang
- Paediatrics, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong
| | - Kinpong Tao
- Paediatrics, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong.,Chinese University of Hong Kong-University Medical Centre Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, New Territories, Hong Kong
| | - Cheuk Yin Leung
- Paediatrics, Prince of Wales Hospital, New Territories, Hong Kong
| | - Kam Lun Hon
- Paediatrics, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong.,PICU, The Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - C M Apple Yeung
- Microbiology, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong
| | - Zigui Chen
- Microbiology, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong
| | - K S Paul Chan
- Chinese University of Hong Kong-University Medical Centre Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, New Territories, Hong Kong.,Microbiology, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong
| | - Ting-Fan Leung
- Paediatrics, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong.,Chinese University of Hong Kong-University Medical Centre Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, New Territories, Hong Kong
| | - W Y Renee Chan
- Paediatrics, Chinese University of Hong Kong Faculty of Medicine, New Territories, Hong Kong.,Chinese University of Hong Kong-University Medical Centre Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, New Territories, Hong Kong
| |
Collapse
|
25
|
Abstract
Since 2014, acute flaccid myelitis (AFM), a long-recognized condition associated with polioviruses, nonpolio enteroviruses, and various other viral and nonviral causes, has been reemerging globally in epidemic form. This unanticipated reemergence is ironic, given that polioviruses, once the major causes of AFM, are now at the very threshold of global eradication and cannot therefore explain any aspect of AFM reemergence. Instead, the new AFM epidemic has been temporally associated with reemergences of nonpolio enteroviruses such as EV-D68, until recently thought to be an obscure virus of extremely low endemicity. This perspective reviews the enigmatic epidemiologic, virologic, and diagnostic aspects of epidemic AFM reemergence; examines current options for clinical management; discusses future research needs; and suggests that the AFM epidemic offers important clues to mechanisms of viral disease emergence.
Collapse
|
26
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Divergent Pathogenic Properties of Circulating Coxsackievirus A6 Associated with Emerging Hand, Foot, and Mouth Disease. J Virol 2018; 92:JVI.00303-18. [PMID: 29563294 DOI: 10.1128/jvi.00303-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) is an emerging pathogen associated with hand, foot, and mouth disease (HFMD). Its genetic characterization and pathogenic properties are largely unknown. Here, we report 39 circulating CV-A6 strains isolated in 2013 from HFMD patients in northeast China. Three major clusters of CV-A6 were identified and related to CV-A6, mostly from Shanghai, indicating that domestic CV-A6 strains were responsible for HFMD emerging in northeast China. Four full-length CV-A6 genomes representing each cluster were sequenced and analyzed further. Bootscanning tests indicated that all four CV-A6-Changchun strains were most likely recombinants between the CV-A6 prototype Gdula and prototype CV-A4 or CV-A4-related viruses, while the recombination pattern was related to, yet distinct from, the strains isolated from other regions of China. Furthermore, different CV-A6 strains showed different capabilities of viral replication, release, and pathogenesis in a mouse model. Further analyses indicated that viral protein 2C contributed to the diverse pathogenic abilities of CV-A6 by causing autophagy and inducing cell death. To our knowledge, this study is the first to report lethal and nonlethal strains of CV-A6 associated with HFMD. The 2C protein region may play a key role in the pathogenicity of CV-A6 strains.IMPORTANCE Hand, foot, and mouth disease (HFMD) is a major and persistent threat to infants and children. Besides the most common pathogens, such as enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16), other enteroviruses are increasingly contributing to HFMD. The present study focused on the recently emerged CV-A6 strain. We found that CV-A6 strains isolated in Changchun City in northeast China were associated with domestic origins. These Changchun viruses were novel recombinants of the CV-A6 prototype Gdula and CV-A4. Our results imply that measures to control CV-A6 transmission are urgently needed. Further analyses revealed differing pathogenicities in strains isolated in a neonatal mouse model. One of the possible causes has been narrowed down to the viral protein 2C, using phylogenetic studies, viral sequences, and direct tests on cultured human cells. Thus, the viral 2C protein is a promising target for antiviral drugs to prevent CV-A6-induced tissue damage.
Collapse
|
28
|
Dyda A, Stelzer-Braid S, Adam D, Chughtai AA, MacIntyre CR. The association between acute flaccid myelitis (AFM) and Enterovirus D68 (EV-D68) - what is the evidence for causation? Euro Surveill 2018; 23:17-00310. [PMID: 29386095 PMCID: PMC5792700 DOI: 10.2807/1560-7917.es.2018.23.3.17-00310] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundEnterovirus D68 (EV-D68) has historically been a sporadic disease, causing occasional small outbreaks of generally mild infection. In recent years, there has been evidence of an increase in EV-D68 infections globally. Large outbreaks of EV-D68, with thousands of cases, occurred in the United States, Canada and Europe in 2014. The outbreaks were associated temporally and geographically with an increase in clusters of acute flaccid myelitis (AFM).
Aims: We aimed to evaluate a causal association between EV-D68 and AFM.
Methods: Using data from the published and grey literature, we applied the Bradford Hill criteria, a set of nine principles applied to examine causality, to evaluate the relationship between EV-D68 and AFM. Based on available evidence, we defined the Bradford Hill Criteria as being not met, or met minimally, partially or fully.
Results: Available evidence applied to EV-D68 and AFM showed that six of the Bradford Hill criteria were fully met and two were partially met. The criterion of biological gradient was minimally met. The incidence of EV-D68 infections is increasing world-wide. Phylogenetic epidemiology showed diversification from the original Fermon and Rhyne strains since the year 2000, with evolution of a genetically distinct outbreak strain, clade B1. Clade B1, but not older strains, is associated with AFM and is neuropathic in animal models.
Conclusion: While more research is needed on dose-response relationship, application of the Bradford Hill criteria supported a causal relationship between EV-D68 and AFM.
Collapse
Affiliation(s)
- Amalie Dyda
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Sacha Stelzer-Braid
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,Division of Serology and Virology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, Australia
| | - Dillon Adam
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Abrar A Chughtai
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - C Raina MacIntyre
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,College of Public Service and Community Solutions and College of Health Solutions, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
29
|
"Spike" in acute asthma exacerbations during enterovirus D68 epidemic in Japan: A nation-wide survey. Allergol Int 2018; 67:55-60. [PMID: 28455155 DOI: 10.1016/j.alit.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In September 2015, Japan experienced an unusual increase in acute asthma hospitalizations of children that coincided with an enterovirus D68 (EV-D68) epidemic. The objective of this study is to investigate whether EV-D68 had a causal relationship with the spike in asthma hospitalizations. METHODS A nation-wide retrospective survey of asthma hospitalizations of children was performed for the period from January 2010 through October 2015. The Japanese Society of Pediatric Allergy and Clinical Immunology asked its affiliated hospitals to report monthly numbers of hospitalizations, ICU admissions and mechanical ventilations due to acute asthma exacerbation. The data were retrieved from medical databases using predefined search criteria: diagnosis of asthma or asthmatic bronchitis, admission, and age <20 years. Monthly numbers of EV-D68 detection were also obtained from the Infectious Disease Surveillance Center of Japan. A Granger causality test was used to analyze the association of EV-D68 detections for asthma exacerbation. RESULTS A total of 157 hospitals reported 87,189 asthma hospitalizations, including 477 ICU admissions and 1193 mechanical ventilations, during the survey period of 5 years and 10 months. The numbers of these events increased drastically in September 2015. The Granger causality test verified the association between EV-D68 and asthma hospitalizations/mechanical ventilations. The most-affected age group was 3-6 years old. CONCLUSIONS The spike in pediatric asthma hospitalizations in Japan in September 2015 was found to be associated with the EV-D68 epidemic. Respiratory pathogens can cause "epidemics" of asthma exacerbation. Coordinated surveillance of infectious diseases and asthma may be beneficial for prevention and better control of both illnesses.
Collapse
|
30
|
Schleiss MR, Marsh KJ. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2018:482-526.e19. [DOI: 10.1016/b978-0-323-40139-5.00037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Ceccanti M, Sbardella E, Letteri F, De Michele M, Falcou A, Romanzi F, Onesti E, Inghilleri M. Acute Flaccid Paralysis by Enterovirus D68 Infection: First Italian Description in Adult Patient and Role of Electrophysiology. Front Neurol 2017; 8:638. [PMID: 29230194 PMCID: PMC5711819 DOI: 10.3389/fneur.2017.00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022] Open
Abstract
A Peruvian woman was admitted to the Emergency Department, due to an acute flaccid paralysis (AFP) of the upper limbs that progressively involved also lower limbs and respiratory muscles. She previously suffered from non-Hodgkin’s lymphoma and had to undergo hematopoietic stem cell transplantation. A magnetic resonance imaging showed a T2 hyperintensity in the anterior and central region of the cervical segment with an elective involvement of gray matter. This finding, combined with other clinical, laboratory, and electrophysiological data, led to a diagnosis of AFP. Enterovirus D68 was isolated in the patient’s cerebrospinal fluid, plasma, and throat swab. To our knowledge, this is the first Italian case of AFP by Enterovirus D68 infection in an adult. The diagnostic assessment and management of AFP by Enterovirus D68 are discussed.
Collapse
Affiliation(s)
- Marco Ceccanti
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Emilia Sbardella
- Emergency Department, Stroke Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Federica Letteri
- Emergency Department, Stroke Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Manuela De Michele
- Emergency Department, Stroke Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Anne Falcou
- Emergency Department, Stroke Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Federica Romanzi
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Emanuela Onesti
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | | |
Collapse
|
32
|
Kaida A, Iritani N, Yamamoto SP, Kanbayashi D, Hirai Y, Togawa M, Amo K, Kohdera U, Nishigaki T, Shiomi M, Asai S, Kageyama T, Kubo H. Distinct genetic clades of enterovirus D68 detected in 2010, 2013, and 2015 in Osaka City, Japan. PLoS One 2017; 12:e0184335. [PMID: 28902862 PMCID: PMC5597212 DOI: 10.1371/journal.pone.0184335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
The first upsurge of enterovirus D68 (EV-D68), a causative agent of acute respiratory infections (ARIs), in Japan was reported in Osaka City in 2010. In this study, which began in 2010, we surveyed EV-D68 in children with ARIs and analyzed sequences of EV-D68 strains detected. Real-time PCR of 19 respiratory viruses or subtypes of viruses, including enterovirus, was performed on 2,215 specimens from ARI patients (<10 years of age) collected between November 2010 and December 2015 in Osaka City, Japan. EV-D68 was identified in 18 enterovirus-positive specimens (n = 4 in 2013, n = 1 in 2014, and n = 13 in 2015) by analysis of viral protein 1 (VP1) or VP4 sequences, followed by a BLAST search for similar sequences. All EV-D68 strains were detected between June and October (summer to autumn), except for one strain detected in 2014. A phylogenetic analysis of available VP1 sequences revealed that the Osaka strains detected in 2010, 2013, and 2015 belonged to distinct clusters (Clades C, A, and B [Subclade B3], respectively). Comparison of the 5' untranslated regions of these viruses showed that Osaka strains in Clades A, B (Subclade B3), and C commonly had deletions at nucleotide positions 681-703 corresponding to the prototype Fermon strain. Clades B and C had deletions from nucleotide positions 713-724. Since the EV-D68 epidemic in 2010, EV-D68 re-emerged in Osaka City, Japan, in 2013 and 2015. Results of this study indicate that distinct clades of EV-D68 contributed to re-emergences of this virus in 2010, 2013, and 2015 in this limited region.
Collapse
Affiliation(s)
- Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
- * E-mail:
| | - Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Seiji P. Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Daiki Kanbayashi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yuki Hirai
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | | | - Kiyoko Amo
- Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
33
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
34
|
Ny NTH, Anh NT, Hang VTT, Nguyet LA, Thanh TT, Ha DQ, Minh NNQ, Ha DLA, McBride A, Tuan HM, Baker S, Tam PTT, Phuc TM, Huong DT, Loi TQ, Vu NTA, Hung NV, Minh TTT, Xang NV, Dong N, Nghia HDT, Chau NVV, Thwaites G, van Doorn HR, Anscombe C, Le Van T. Enterovirus D68 in Viet Nam (2009-2015). Wellcome Open Res 2017. [PMID: 28852711 DOI: 10.12688/wellcomeopenres.11558.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Since 1962, enterovirus D68 (EV-D68) has been implicated in multiple outbreaks and sporadic cases of respiratory infection worldwide, but especially in the USA and Europe with an increasing frequency between 2010 and 2014. We describe the detection, associated clinical features and molecular characterization of EV-D68 in central and southern Viet Nam between 2009 and 2015. METHODS Enterovirus/rhinovirus PCR positive respiratory or CSF samples taken from children and adults with respiratory/central nervous system infections in Viet Nam were tested by an EV-D68 specific PCR. The included samples were derived from 3 different observational studies conducted at referral hospitals across central and southern Viet Nam between 2009 and 2015. Whole-genome sequencing was carried out using a MiSeq based approach. Phylogenetic reconstruction and estimation of evolutionary rate and recombination were carried out in BEAST and Recombination Detection Program, respectively. RESULTS EV-D68 was detected in 21/625 (3.4%) enterovirus/rhinovirus PCR positive respiratory samples but in none of the 15 CSF. All the EV-D68 patients were young children (age range: 11.8 - 24.5 months) and had moderate respiratory infections. Phylogenetic analysis suggested that the Vietnamese sequences clustered with those from Asian countries, of which 9 fell in the B1 clade, and the remaining sequence was identified within the A2 clade. One intra sub-clade recombination event was detected, representing the second reported recombination within EV-D68. The evolutionary rate of EV-D68 was estimated to be 5.12E -3 substitutions/site/year. Phylogenetic analysis indicated that the virus was imported into Viet Nam in 2008. CONCLUSIONS We have demonstrated for the first time EV-D68 has been circulating at low levels in Viet Nam since 2008, associated with moderate acute respiratory infection in children. EV-D68 in Viet Nam is most closely related to Asian viruses, and clusters separately from recent US and European viruses that were suggested to be associated with acute flaccid paralysis.
Collapse
Affiliation(s)
- Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Ho Chi Minh City University of Science, Ho Chi Minh City, Vietnam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thi Ty Hang
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do Quang Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Do Lien Anh Ha
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ha Manh Tuan
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tran My Phuc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Dang Thao Huong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Quoc Loi
- Dong Thap General Hospital, Ban Me Thuot City, Vietnam
| | | | | | | | | | - Nguyen Dong
- Khanh Hoa General Hospital, Nha Trang City, Vietnam
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Pham Ngoc Thach University, Ho Chi Minh City, Vietnam
| | | | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tan Le Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
35
|
Ny NTH, Anh NT, Hang VTT, Nguyet LA, Thanh TT, Ha DQ, Minh NNQ, Ha DLA, McBride A, Tuan HM, Baker S, Tam PTT, Phuc TM, Huong DT, Loi TQ, Vu NTA, Hung NV, Minh TTT, Xang NV, Dong N, Nghia HDT, Chau NVV, Thwaites G, van Doorn HR, Anscombe C, Le Van T. Enterovirus D68 in Viet Nam (2009-2015). Wellcome Open Res 2017; 2:41. [PMID: 28852711 PMCID: PMC5553084 DOI: 10.12688/wellcomeopenres.11558.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
Background: Since 1962, enterovirus D68 (EV-D68) has been implicated in multiple outbreaks and sporadic cases of respiratory infection worldwide, especially in the USA and Europe with an increasing frequency between 2010 and 2014. We describe the detection, associated clinical features and molecular characterization of EV-D68 in central and southern Viet Nam between 2009 and 2015. Methods: Enterovirus/rhinovirus PCR positive respiratory or CSF samples taken from children and adults with respiratory/central nervous system infections in Viet Nam were tested by an EV-D68 specific PCR. The included samples were derived from 3 different observational studies conducted at referral hospitals across central and southern Viet Nam 2009 2015. Whole-genome sequencing was carried out using a MiSeq based approach. Phylogenetic reconstruction and estimation of evolutionary rate and recombination were carried out in BEAST and Recombination Detection Program, respectively. Results: EV-D68 was detected in 21/625 (3.4%) enterovirus/rhinovirus PCR positive respiratory samples but in none of the 15 CSF. All the EV-D68 patients were young children (age range: 11.8 – 24.5 months) and had moderate respiratory infections. Phylogenetic analysis suggested that the Vietnamese sequences clustered with those from Asian countries, of which 9 fell in the B1 clade, and the remaining sequence was identified within the A2 clade. One intra sub-clade recombination event was detected, representing the second reported recombination within EV-D68. The evolutionary rate of EV-D68 was estimated to be 5.12E
-3 substitutions/site/year. Phylogenetic analysis indicated that the virus was imported into Viet Nam in 2008. Conclusions: We have demonstrated for the first time EV-D68 has been circulating at low levels in Viet Nam since 2008, associated with moderate acute respiratory infection in children. EV-D68 in Viet Nam is most closely related to Asian viruses, and clusters separately from recent US and European viruses that were suggested to be associated with acute flaccid paralysis.
Collapse
Affiliation(s)
- Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Ho Chi Minh City University of Science, Ho Chi Minh City, Vietnam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thi Ty Hang
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do Quang Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Do Lien Anh Ha
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ha Manh Tuan
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tran My Phuc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Dang Thao Huong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Quoc Loi
- Dong Thap General Hospital, Ban Me Thuot City, Vietnam
| | | | | | | | | | - Nguyen Dong
- Khanh Hoa General Hospital, Nha Trang City, Vietnam
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Pham Ngoc Thach University, Ho Chi Minh City, Vietnam
| | | | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tan Le Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
36
|
First Report of a Fatal Case Associated with EV-D68 Infection in Hong Kong and Emergence of an Interclade Recombinant in China Revealed by Genome Analysis. Int J Mol Sci 2017; 18:ijms18051065. [PMID: 28509856 PMCID: PMC5454976 DOI: 10.3390/ijms18051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
A fatal case associated with enterovirus D68 (EV-D68) infection affecting a 10-year-old boy was reported in Hong Kong in 2014. To examine if a new strain has emerged in Hong Kong, we sequenced the partial genome of the EV-D68 strain identified from the fatal case and the complete VP1, and partial 5′UTR and 2C sequences of nine additional EV-D68 strains isolated from patients in Hong Kong. Sequence analysis indicated that a cluster of strains including the previously recognized A2 strains should belong to a separate clade, clade D, which is further divided into subclades D1 and D2. Among the 10 EV-D68 strains, 7 (including the fatal case) belonged to the previously described, newly emerged subclade B3, 2 belonged to subclade B1, and 1 belonged to subclade D1. Three EV-D68 strains, each from subclades B1, B3, and D1, were selected for complete genome sequencing and recombination analysis. While no evidence of recombination was noted among local strains, interclade recombination was identified in subclade D2 strains detected in mainland China in 2008 with VP2 acquired from clade A. This study supports the reclassification of subclade A2 into clade D1, and demonstrates interclade recombination between clades A and D2 in EV-D68 strains from China.
Collapse
|
37
|
Wang G, Zhuge J, Huang W, Nolan SM, Gilrane VL, Yin C, Dimitrova N, Fallon JT. Enterovirus D68 Subclade B3 Strain Circulating and Causing an Outbreak in the United States in 2016. Sci Rep 2017; 7:1242. [PMID: 28455514 PMCID: PMC5430842 DOI: 10.1038/s41598-017-01349-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/24/2017] [Indexed: 11/09/2022] Open
Abstract
In 2014 the United States experienced a nationwide outbreak of Enterovirus D68 (EV-D68) infection. There were no confirmed cases of EV-D68 in 2015 and CDC was only aware of limited sporadic EV-D68 detection in the US in 2016. In this report, we analyzed 749 nasopharyngeal (NP) specimens collected in 2015 and 2016 from patients in the Lower Hudson Valley, New York using a previously validated EV-D68-specific rRT-PCR assay. EV-D68 was detected in none of 199 NP specimens collected in 2015, and in one of 108 (0.9%) samples from January to May and 159 of 442 (36.0%) samples from July to October 2016. Complete EV-D68 genome sequences from 22 patients in 2016 were obtained using a metagenomic next-generation sequencing assay. Comparative genome analysis confirmed that a new EV-D68 strain belonging to subclade B3, with 3.2-4.8% divergence in nucleotide from subclade B1 strains identified during the 2014 US outbreak, was circulating in the US in 2016 and caused an outbreak in the Lower Hudson Valley, New York with 160 laboratory-confirmed cases. Our data highlight the genetic variability and capacity in causing outbreak by diverse EV-D68 strains, and the necessity of awareness and more surveillance on their active circulation worldwide.
Collapse
Affiliation(s)
- Guiqing Wang
- Department of Pathology, New York Medical College, Valhalla, New York, USA. .,Department of Pathology and Clinical Laboratories, Westchester Medical Center, Valhalla, New York, USA.
| | - Jian Zhuge
- Department of Pathology and Clinical Laboratories, Westchester Medical Center, Valhalla, New York, USA
| | - Weihua Huang
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | - Sheila M Nolan
- Department of Pediatrics, Division of Infectious Disease, New York Medical College and Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York, USA
| | - Victoria L Gilrane
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | - Changhong Yin
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | | | - John T Fallon
- Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Pathology and Clinical Laboratories, Westchester Medical Center, Valhalla, New York, USA
| |
Collapse
|
38
|
Bosis S, Esposito S. Enterovirus D68-Associated Community-Acquired Pneumonia in the Pediatric Age Group. Curr Infect Dis Rep 2017; 19:12. [PMID: 28251508 DOI: 10.1007/s11908-017-0567-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the current knowledge regarding the role of Enterovirus D68 (EV-D68) in community-acquired pneumonia (CAP) in children. RECENT FINDINGS EV-D68 is an emergent viral pathogen. Since its first isolation in 1962 in California in four children suffering from CAP and bronchiolitis, EV-D68 has been rarely detected from respiratory specimens. However, recently, EV-D68 infection has raised concerns in the international community because of outbreaks in 2014 in the USA and the increased number of children with EV-D68-associated severe respiratory illnesses, including pneumonia, that have been reported in many other countries around the world. EV-D68 causes severe and life-threatening respiratory diseases in the pediatric population, particularly in children with underlying conditions such as prematurity or chronic diseases. Since no specific treatment or vaccinations are available for EV-D68 infections, greater surveillance as well as the use of sensitive and rapid diagnostic methods are essential to prevent and manage new outbreaks.
Collapse
Affiliation(s)
- Samantha Bosis
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy. .,Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy.
| |
Collapse
|
39
|
Hellferscee O, Treurnicht FK, Tempia S, Variava E, Dawood H, Kahn K, Cohen AL, Pretorius M, Cohen C, Madhi SA, Venter M. Enterovirus D68 and other enterovirus serotypes identified in South African patients with severe acute respiratory illness, 2009-2011. Influenza Other Respir Viruses 2017; 11:211-219. [PMID: 28122175 PMCID: PMC5410726 DOI: 10.1111/irv.12444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/03/2022] Open
Abstract
Background Human enteroviruses (EV) have been associated with severe acute respiratory illness (SARI) in South Africa. Objectives We aimed to describe the molecular epidemiology of EV serotypes among patients hospitalized with SARI during 2009‐2011. Patients/Methods Study samples from patients were tested for the presence of enterovirus using a polymerase chain reaction assay. Results 8.2% (842/10 260) of SARI cases tested positive for enterovirus; 16% (7/45) were species EV‐A, 44% (20/45) EV‐B, 18% (8/45) EV‐C and 22% (10/45) EV‐D. Seventeen different EV serotypes were identified within EV‐A to EV‐D, of which EV‐D68 (22%; 10/45) and Echovirus 3 (11%; 5/45) were the most prevalent. Conclusions EV‐D68 should be monitored in South Africa to assess the emergence of highly pathogenic strains.
Collapse
Affiliation(s)
- Orienka Hellferscee
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- University of the Witwatersrand; Johannesburg South Africa
| | - Florette K. Treurnicht
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- Centres for Disease Control and Prevention; Atlanta Georgia USA
| | - Ebrahim Variava
- University of the Witwatersrand; Johannesburg South Africa
- Pietermaritzburg Metropolitan Hospital; Pietermaritzburg South Africa
| | - Halima Dawood
- Pietermaritzburg Metropolitan Hospital; Pietermaritzburg South Africa
- Caprisa; University of KwaZulu-Natal; Pietermaritzburg South Africa
| | - Kathleen Kahn
- University of the Witwatersrand; Johannesburg South Africa
| | - Adam L. Cohen
- Centres for Disease Control and Prevention; Atlanta Georgia USA
| | | | - Cheryl Cohen
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- University of the Witwatersrand; Johannesburg South Africa
| | - Shabir A. Madhi
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- University of the Witwatersrand; Johannesburg South Africa
| | - Marietjie Venter
- Centres for Disease Control and Prevention; Atlanta Georgia USA
- University of Pretoria; Pretoria South Africa
| |
Collapse
|
40
|
Moyer K, Wang H, Salamon D, Leber A, Mejias A. Enterovirus D68 in Hospitalized Children: Sequence Variation, Viral Loads and Clinical Outcomes. PLoS One 2016; 11:e0167111. [PMID: 27875593 PMCID: PMC5119825 DOI: 10.1371/journal.pone.0167111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Background An outbreak of enterovirus D68 (EV-D68) caused severe respiratory illness in 2014. The disease spectrum of EV-D68 infections in children with underlying medical conditions other than asthma, the role of EV-D68 loads on clinical illness, and the variation of EV-D68 strains within the same institution over time have not been described. We sought to define the association between EV-D68 loads and sequence variation, and the clinical characteristic in hospitalized children at our institution from 2011 to 2014. Methods May through November 2014, and August to September 2011 to 2013, a convenience sample of nasopharyngeal specimens from children with rhinovirus (RV)/EV respiratory infections were tested for EV-D68 by RT-PCR. Clinical data were compared between children with RV/EV-non-EV-D68 and EV-D68 infections, and among children with EV-D68 infections categorized as healthy, asthmatics, and chronic medical conditions. EV-D68 loads were analyzed in relation to disease severity parameters and sequence variability characterized over time. Results In 2014, 44% (192/438) of samples tested positive for EV-D68 vs. 10% (13/130) in 2011–13 (p<0.0001). PICU admissions (p<0.0001) and non-invasive ventilation (p<0.0001) were more common in children with EV-D68 vs. RV/EV-non-EV-D68 infections. Asthmatic EV-D68+ children, required supplemental oxygen administration (p = 0.03) and PICU admissions (p <0.001) more frequently than healthy children or those with chronic medical conditions; however oxygen duration (p<0.0001), and both PICU and total hospital stay (p<0.01) were greater in children with underlying medical conditions, irrespective of viral burden. By phylogenetic analysis, the 2014 EV-D68 strains clustered into a new sublineage within clade B. Conclusions This is one of the largest pediatric cohorts described from the EV-D68 outbreak. Irrespective of viral loads, EV-D68 was associated with high morbidity in children with asthma and co-morbidities. While EV-D68 circulated before 2014, the outbreak isolates clustered differently than those from prior years.
Collapse
Affiliation(s)
- Katherine Moyer
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Huanyu Wang
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Douglas Salamon
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Amy Leber
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (AM); (AL)
| | - Asuncion Mejias
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (AM); (AL)
| |
Collapse
|
41
|
Patel MC, Wang W, Pletneva LM, Rajagopala SV, Tan Y, Hartert TV, Boukhvalova MS, Vogel SN, Das SR, Blanco JCG. Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon hispidus). PLoS One 2016; 11:e0166336. [PMID: 27814404 PMCID: PMC5096705 DOI: 10.1371/journal.pone.0166336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a significant increase in detection of Enterovirus D-68 (EV-D68) among patients with severe respiratory infections worldwide. EV-D68 is now recognized as a re-emerging pathogen; however, due to lack of a permissive animal model for EV-D68, a comprehensive understanding of the pathogenesis and immune response against EV-D68 has been hampered. Recently, it was shown that EV-D68 has a strong affinity for α2,6-linked sialic acids (SAs) and we have shown previously that α2,6-linked SAs are abundantly present in the respiratory tract of cotton rats (Sigmodon hispidus). Thus, we hypothesized that cotton rats could be a potential model for EV-D68 infection. Here, we evaluated the ability of two recently isolated EV-D68 strains (VANBT/1 and MO/14/49), along with the historical prototype Fermon strain (ATCC), to infect cotton rats. We found that cotton rats are permissive to EV-D68 infection without virus adaptation. The different strains of EV-D68 showed variable infection profiles and the ability to produce neutralizing antibody (NA) upon intranasal infection or intramuscular immunization. Infection with the VANBT/1 resulted in significant induction of pulmonary cytokine gene expression and lung pathology. Intramuscular immunization with live VANBT/1 or MO/14/49 induced strong homologous antibody responses, but a moderate heterologous NA response. We showed that passive prophylactic administration of serum with high content of NA against VANBT/1 resulted in an efficient antiviral therapy. VANBT/1-immunized animals showed complete protection from VANBT/1 challenge, but induced strong pulmonary Th1 and Th2 cytokine responses and enhanced lung pathology, indicating the generation of exacerbated immune response by immunization. In conclusion, our data illustrate that the cotton rat is a powerful animal model that provides an experimental platform to investigate pathogenesis, immune response, anti-viral therapies and vaccines against EV-D68 infection.
Collapse
Affiliation(s)
- Mira C. Patel
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Wei Wang
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Seesandra V. Rajagopala
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Suman R. Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| | - Jorge C. G. Blanco
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| |
Collapse
|
42
|
Gong YN, Yang SL, Shih SR, Huang YC, Chang PY, Huang CG, Kao KC, Hu HC, Liu YC, Tsao KC. Molecular evolution and the global reemergence of enterovirus D68 by genome-wide analysis. Medicine (Baltimore) 2016; 95:e4416. [PMID: 27495059 PMCID: PMC4979813 DOI: 10.1097/md.0000000000004416] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human enterovirus D68 (EV-D68) was first reported in the United States in 1962; thereafter, a few cases were reported from 1970 to 2005, but 2 outbreaks occurred in the Philippines (2008) and the United States (2014). However, little is known regarding the molecular evolution of this globally reemerging virus due to a lack of whole-genome sequences and analyses. Here, all publically available sequences including 147 full and 1248 partial genomes from GenBank were collected and compared at the clade and subclade level; 11 whole genomes isolated in Taiwan (TW) in 2014 were also added to the database. Phylogenetic trees were constructed to identify a new subclade, B3, and represent clade circulations among strains. Nucleotide sequence identities of the VP1 gene were 94% to 95% based on a comparison of subclade B3 to B1 and B2 and 87% to 91% when comparing A, C, and D. The patterns of clade circulation need to be clarified to improve global monitoring of EV-D68, even though this virus showed lower diversity among clades compared with the common enterovirus EV-71. Notably, severe cases isolated from Taiwan and China in 2014 were found in subclade B3. One severe case from Taiwan occurred in a female patient with underlying angioimmunoblastic T-cell lymphoma, from whom a bronchoalveolar lavage specimen was obtained. Although host factors play a key role in disease severity, we cannot exclude the possibility that EV-D68 may trigger clinical symptoms or death. To further investigate the genetic diversity of EV-D68, we reported 34 amino acid (aa) polymorphisms identified by comparing subclade B3 to B1 and B2. Clade D strains had a 1-aa deletion and a 2-aa insertion in the VP1 gene, and 1 of our TW/2014 strains had a shorter deletion in the 5' untranslated region than a previously reported deletion. In summary, a new subclade, genetic indels, and polymorphisms in global strains were discovered elucidating evolutionary and epidemiological trends of EV-D68, and 11 genomes were added to the database. Virus variants may contribute to disease severity and clinical manifestations, and further studies are needed to investigate the associations between genetic diversity and clinical outcomes.
Collapse
Affiliation(s)
- Yu-Nong Gong
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Shu-Li Yang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
| | - Yhu-Chering Huang
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital
- College of Medicine, Chang Gung University
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
| | - Kuo-Chin Kao
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Han-Chung Hu
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chun Liu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
- Correspondence: Kuo-ChienTsao, Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan (e-mail: )
| |
Collapse
|
43
|
Holm-Hansen CC, Midgley SE, Fischer TK. Global emergence of enterovirus D68: a systematic review. THE LANCET. INFECTIOUS DISEASES 2016; 16:e64-e75. [PMID: 26929196 DOI: 10.1016/s1473-3099(15)00543-5] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Since its discovery in California in 1962, reports of enterovirus D68 have been infrequent. Before 2014, infections were confirmed in only 699 people worldwide. In August, 2014, two paediatric hospitals in the USA reported increases in the number of patients with severe respiratory illness, with an over-representation in children with asthma. Shortly after, the authorities recognised a nationwide outbreak, which then spread to Canada, Europe, and Asia. In 2014, more than 2000 cases of enterovirus D68 were reported in 20 countries. Concurrently, clusters of children with acute flaccid paralysis of unknown cause were reported in several US states and in Europe. Enterovirus D68 infection was confirmed in some of the paralysed children, but not all. Complications in patients who were severely neurologically affected resemble those caused by poliomyelitis. In this paper we systematically review reports on enterovirus D68 to estimate its global epidemiology and its ability to cause respiratory infections and neurological damage in children. We extracted data from 70 papers to report on prevalence, symptoms, hospitalisation and mortality, and complications of enterovirus D68, both before and during the large outbreak of 2014. The magnitude and severity of the enterovirus D68 outbreak underscores a need for improved diagnostic work-up of paediatric respiratory illness, not only to prevent unnecessary use of antibiotics, but also to ensure better surveillance of diseases. Existing surveillance systems should be assessed in terms of capacity and ability to detect and report any upsurge of respiratory viruses such as enterovirus D68 in a timely manner, and focus should be paid to development of preventive measures against these emerging enteroviruses that have potential for severe disease.
Collapse
Affiliation(s)
- Charlotte Carina Holm-Hansen
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Elisabeth Midgley
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark; Center for Global Health and Department of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|