1
|
Buzilă ER, Dorneanu OS, Trofin F, Sima CM, Iancu LS. Assessing Salmonella Typhi Pathogenicity and Prevention: The Crucial Role of Vaccination in Combating Typhoid Fever. Int J Mol Sci 2025; 26:3981. [PMID: 40362220 PMCID: PMC12071698 DOI: 10.3390/ijms26093981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Enteric fever is caused by Salmonella enterica serovar Typhi (S. Typhi) and Salmonella enterica serovar Paratyphi (S. Paratyphi) A, B, and C. Globally, an estimated 11 to 21 million cases of typhoid and paratyphoid fever occur annually, with approximately 130,000-160,000 deaths, most of which are reported in South/Southeast Asia and sub-Saharan Africa. The antibiotic susceptibility of S. Typhi strains varies between countries within broad limits, from 3% to 97% for ampicillin, 9% to 95% for ciprofloxacin, 4% to 94% for chloramphenicol (India vs. Pakistan), and 0% to 99% for ceftriaxone (India vs. Iraq). With S. Typhi increasingly exhibiting resistance to antibiotics, vaccination becomes an essential preventive measure. Currently, three vaccines are licensed for typhoid fever: the typhoid conjugate vaccine (TCV), live-attenuated oral vaccine Ty21a (Ty21a), and Vi capsular polysaccharide vaccine (Vi-CPS). While no specific vaccine exists for paratyphoid fever, the genetic and antigenic similarities between S. Paratyphi and S. Typhi offer potential for the development of such a vaccine. Early studies show promising results, demonstrating both safety and immunogenicity in preclinical trials. Whole genome sequencing (WGS) provides a powerful tool for assigning genotypes, identifying plasmids, comparing genetic elements, and investigating molecular factors that contribute to antibiotic resistance and virulence.
Collapse
Affiliation(s)
- Elena Roxana Buzilă
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania
| | - Felicia Trofin
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- “Sf. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Mihaela Sima
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania
| | - Luminița Smaranda Iancu
- Microbiology Discipline, Preventive Medicine and Interdisciplinarity Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (E.R.B.); (F.T.); (C.M.S.); (L.S.I.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| |
Collapse
|
2
|
Zhang Y, Xie Z, Yang F, Zhan L, Zhang Z, Sheng X, Xia L. Vi capsular polysaccharide of Salmonella enterica serovar Typhi disturbs autophagy to increase intracellular survival in macrophages. Microb Pathog 2025; 199:107265. [PMID: 39732413 DOI: 10.1016/j.micpath.2024.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever. Vi capsular polysaccharide not only forms a physical barrier on the surface of S. Typhi but also serves as an important virulence factor. Here, the effects of Vi expression on autophagy of host cells were investigated. Vi was highly expressed in super optimal broth (SOB) medium for 8 h and in the early stage of macrophage infection. Strains of S. Typhi with a mutation in Vi capsule, ΔtviA and ΔvexE, were constructed and showed lower intracellular survival in macrophage THP-1 cells compared with wild type strain. Western blot, immunofluorescence and flow cytometry were used to detected the autophagy level of macrophages infected by Vi mutant and wild type strains, respectively. Autophagy receptor p62 protein level significantly decreased and LC3-II protein level significantly increased in Vi mutant strains compared with wild type strain, which indicated increased autophagy in macrophages infected by Vi mutant strains. The qRT-PCR and Western blot results showed that not Nod1, but Nod2 and Galectin-8 were up-regulated in Vi mutant strains. In summary, we propose that Vi capsule of S. Typhi decreased autophagy of macrophages to increase its survival in host cells by decreasing the expression of Nod2 and Galectin-8.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhongyi Xie
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310000, China
| | - Fanfan Yang
- Department of Microorganism Examination, Ningbo Center for Disease Control and Prevention, Ningbo, Zhejiang, 315000, China
| | - Lina Zhan
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zuowei Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
3
|
Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis 2025; 25:84. [PMID: 39833704 PMCID: PMC11744889 DOI: 10.1186/s12879-025-10478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Salmonella infections represent a major global public health concern due to their widespread zoonotic transmission, antimicrobial resistance, and associated morbidity and mortality. This review aimed to summarize the zoonotic nature of Salmonella, the challenges posed by antimicrobial resistance, the global burden of infections, and the need for effective vaccination strategies to mitigate the rising threat of Salmonella. METHODS A systematic review of literature was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. Relevant studies published in English were identified using keywords including Salmonella, vaccination, antimicrobial resistance, and public health. Articles focusing on epidemiology, vaccine development, and strategies to control Salmonella infections were included, while conference abstracts and non-peer-reviewed studies were excluded. RESULTS Salmonella infections result in approximately 95 million global cases annually, with an estimated 150,000 deaths. Regional variations were evident, with higher infection rates in low- and middle-income countries due to poor sanitation and food safety standards. Salmonella Enteritidis and S. Typhimurium were the most prevalent serovars associated with human infections. The review highlighted an alarming rise in multidrug-resistant (MDR) Salmonella strains, particularly due to the overuse of antibiotics in humans and livestock. Despite progress in vaccine development, challenges remain in achieving a universal vaccine that targets diverse Salmonella serovars. Live-attenuated, killed, recombinant, subunit, and conjugate vaccines are currently under development, but limitations such as efficacy, cost, and accessibility persist. CONCLUSIONS Salmonella infections continue to impose a significant burden on global health, exacerbated by rising antimicrobial resistance. There is an urgent need for a multifaceted approach, including improved sanitation, prudent antibiotic use, and the development of affordable, broad-spectrum vaccines. Strengthening surveillance systems and promoting collaborative global efforts are essential to effectively control and reduce the burden of Salmonella.
Collapse
Affiliation(s)
- Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Shabir Khan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India.
| |
Collapse
|
4
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. Nat Commun 2024; 15:5258. [PMID: 38898034 PMCID: PMC11187135 DOI: 10.1038/s41467-024-49590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
Affiliation(s)
- Gi Young Lee
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
6
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573590. [PMID: 38260632 PMCID: PMC10802248 DOI: 10.1101/2023.12.28.573590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S . Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control the length or acetylation of Vi is enough to create different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper-capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo-capsule variants have primarily been identified in Africa, whereas the hyper-capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
|
8
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
9
|
Meiring JE, Khanam F, Basnyat B, Charles RC, Crump JA, Debellut F, Holt KE, Kariuki S, Mugisha E, Neuzil KM, Parry CM, Pitzer VE, Pollard AJ, Qadri F, Gordon MA. Typhoid fever. Nat Rev Dis Primers 2023; 9:71. [PMID: 38097589 DOI: 10.1038/s41572-023-00480-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Typhoid fever is an invasive bacterial disease associated with bloodstream infection that causes a high burden of disease in Africa and Asia. Typhoid primarily affects individuals ranging from infants through to young adults. The causative organism, Salmonella enterica subsp. enterica serovar Typhi is transmitted via the faecal-oral route, crossing the intestinal epithelium and disseminating to systemic and intracellular sites, causing an undifferentiated febrile illness. Blood culture remains the practical reference standard for diagnosis of typhoid fever, where culture testing is available, but novel diagnostic modalities are an important priority under investigation. Since 2017, remarkable progress has been made in defining the global burden of both typhoid fever and antimicrobial resistance; in understanding disease pathogenesis and immunological protection through the use of controlled human infection; and in advancing effective vaccination programmes through strategic multipartner collaboration and targeted clinical trials in multiple high-incidence priority settings. This Primer thus offers a timely update of progress and perspective on future priorities for the global scientific community.
Collapse
Affiliation(s)
- James E Meiring
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Farhana Khanam
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Richelle C Charles
- Massachusetts General Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | | | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Emmanuel Mugisha
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Parry
- Department of Clinical Sciences and Education, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases and Public Health Modelling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Firdausi Qadri
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Saha T, Arisoyin AE, Bollu B, Ashok T, Babu A, Issani A, Jhaveri S, Avanthika C. Enteric Fever: Diagnostic Challenges and the Importance of Early Intervention. Cureus 2023; 15:e41831. [PMID: 37575696 PMCID: PMC10423039 DOI: 10.7759/cureus.41831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Enteric fever is a systemic infection caused by highly virulent Salmonella enterica serovars: Typhi and Paratyphi. Diagnosis of enteric fever is challenging due to a wide variety of clinical features which overlap with other febrile illnesses. The current diagnostic methods are limited because of the suboptimal sensitivity of conventional tests like blood culture in detecting organisms and the invasive nature of bone marrow culture. It emphasizes the need to develop improved and more reliable diagnostic modalities. The rising rates of multidrug-resistant Salmonella strains call for an accurate understanding of the current management of the disease. Proper public health measures and large-scale immunization programs will help reduce the burden of the disease. A comprehensive surveillance system can help detect the chronic carrier state and is crucial in understanding antibiotic susceptibility patterns. We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar till May 2022. The following search words and medical subject headings (MeSH) were used: "enteric fever," "Salmonella Typhi," "multidrug-resistant Salmonella," chronic carrier state," "Salmonella detection, "and "typhoid vaccine." We reviewed the literature on clinical features, pathophysiology, new diagnostic tests, and interventions to prevent the disease. This article explores enteric fever and its various clinical features and addresses the emerging threat of multidrug resistance. It focuses on novel methods for diagnosis and prevention strategies, including vaccines and the use of surveillance systems employed across different parts of the world.
Collapse
Affiliation(s)
- Tias Saha
- Internal Medicine, Samorita General Hospital, Faridpur, BGD
- Internal Medicine, Diabetic Association Medical College, Faridpur, BGD
| | | | - Bhaswanth Bollu
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Tejaswini Ashok
- Internal Medicine, Jagadguru Sri Shivarathreeshwara Medical College, Mysore, IND
| | - Athira Babu
- Pediatrics, Saudi German Hospital, Dubai, ARE
| | - Ali Issani
- Emergency Medicine, Aga Khan University, Karachi, PAK
| | - Sharan Jhaveri
- Internal Medicine, Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
| |
Collapse
|
11
|
Jossi SE, Arcuri M, Alshayea A, Persaud RR, Marcial-Juárez E, Palmieri E, Di Benedetto R, Pérez-Toledo M, Pillaye J, Channell WM, Schager AE, Lamerton RE, Cook CN, Goodall M, Haneda T, Bäumler AJ, Jackson-Jones LH, Toellner KM, MacLennan CA, Henderson IR, Micoli F, Cunningham AF. Vi polysaccharide and conjugated vaccines afford similar early, IgM or IgG-independent control of infection but boosting with conjugated Vi vaccines sustains the efficacy of immune responses. Front Immunol 2023; 14:1139329. [PMID: 37033932 PMCID: PMC10076549 DOI: 10.3389/fimmu.2023.1139329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Vaccination with Vi capsular polysaccharide (Vi-PS) or protein-Vi typhoid conjugate vaccine (TCV) can protect adults against Salmonella Typhi infections. TCVs offer better protection than Vi-PS in infants and may offer better protection in adults. Potential reasons for why TCV may be superior in adults are not fully understood. Methods and results Here, we immunized wild-type (WT) mice and mice deficient in IgG or IgM with Vi-PS or TCVs (Vi conjugated to tetanus toxoid or CRM197) for up to seven months, with and without subsequent challenge with Vi-expressing Salmonella Typhimurium. Unexpectedly, IgM or IgG alone were similarly able to reduce bacterial burdens in tissues, and this was observed in response to conjugated or unconjugated Vi vaccines and was independent of antibody being of high affinity. Only in the longer-term after immunization (>5 months) were differences observed in tissue bacterial burdens of mice immunized with Vi-PS or TCV. These differences related to the maintenance of antibody responses at higher levels in mice boosted with TCV, with the rate of fall in IgG titres induced to Vi-PS being greater than for TCV. Discussion Therefore, Vi-specific IgM or IgG are independently capable of protecting from infection and any superior protection from vaccination with TCV in adults may relate to responses being able to persist better rather than from differences in the antibody isotypes induced. These findings suggest that enhancing our understanding of how responses to vaccines are maintained may inform on how to maximize protection afforded by conjugate vaccines against encapsulated pathogens such as S. Typhi.
Collapse
Affiliation(s)
- Siân E. Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Melissa Arcuri
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- GSK Vaccines Institute for Global Health SRL, Siena, Italy
| | - Areej Alshayea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ruby R. Persaud
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health SRL, Siena, Italy
| | | | - Marisol Pérez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jamie Pillaye
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Will M. Channell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Anna E. Schager
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel E. Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte N. Cook
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, United States
| | - Lucy H. Jackson-Jones
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Bill & Melinda Gates Foundation, London, United Kingdom
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
The Vi Capsular Polysaccharide of Salmonella Typhi Promotes Macrophage Phagocytosis by Binding the Human C-Type Lectin DC-SIGN. mBio 2022; 13:e0273322. [PMID: 36286551 PMCID: PMC9765441 DOI: 10.1128/mbio.02733-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharides are common virulence factors of extracellular, but not intracellular bacterial pathogens, due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi, an intracellular pathogen, synthesizes a virulence-associated (Vi) capsule, which exhibits antiphagocytic properties. Here, we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN, purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever, but the role the capsule plays during pathogenesis remains incompletely understood. Here, we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus, the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development.
Collapse
|
13
|
Multiple immunodominant O-epitopes co-expression in live attenuated Salmonella serovars induce cross-protective immune responses against S. Paratyphi A, S. Typhimurium and S. Enteritidis. PLoS Negl Trop Dis 2022; 16:e0010866. [PMID: 36228043 PMCID: PMC9595534 DOI: 10.1371/journal.pntd.0010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Salmonella enterica subsp. enterica (S. enterica) is a significant public health concern and is estimated to cause more than 300,000 deaths annually. Nowadays, the vaccines available for human Salmonellosis prevention are all targeting just one serovar, i.e., S. Typhi, leaving a huge potential risk of Salmonella disease epidemiology change. In this study, we explored the strategy of multiple immunodominant O-epitopes co-expression in S. enterica serovars and evaluated their immunogenicity to induce cross-immune responses and cross-protections against S. Paratyphi A, S. Typhimurium and S. Enteritidis. We found that nucleotide sugar precursors CDP-Abe and CDP-Par (or CDP-Tyv) could be utilized by S. enterica serovars simultaneously, exhibiting O2&O4 (or O4&O9) double immunodominant O-serotypes without obvious growth defects. More importantly, a triple immunodominant O2&O4&O9 O-serotypes could be achieved in S. Typhimurium by improving the substrate pool of CDP-Par, glycosyltransferase WbaV and flippase Wzx via a dual-plasmid overexpressing system. Through immunization in a murine model, we found that double or triple O-serotypes live attenuated vaccine candidates could induce significantly higher heterologous serovar-specific antibodies than their wild-type parent strain. Meanwhile, the bacterial agglutination, serum bactericidal assays and protection efficacy experiments had all shown that these elicited serum antibodies are cross-reactive and cross-protective. Our work highlights the potential of developing a new type of live attenuated Salmonella vaccines against S. Paratyphi A, S. Typhimurium and S. Enteritidis simultaneously.
Collapse
|
14
|
Khan M, Shamim S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022; 10:2006. [PMID: 36296282 PMCID: PMC9606911 DOI: 10.3390/microorganisms10102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is a Gram-negative pathogen that causes typhoid fever in humans. Though many serotypes of Salmonella spp. are capable of causing disease in both humans and animals alike, S. Typhi and S. Paratyphi are common in human hosts only. The global burden of typhoid fever is attributable to more than 27 million cases each year and approximately 200,000 deaths worldwide, with many regions such as Africa, South and Southeast Asia being the most affected in the world. The pathogen is able to cause disease in hosts by evading defense systems, adhesion to epithelial cells, and survival in host cells in the presence of several virulence factors, mediated by virulence plasmids and genes clustered in distinct regions known as Salmonella pathogenicity islands (SPIs). These factors, coupled with plasmid-mediated antimicrobial resistance genes, enable the bacterium to become resistant to various broad-spectrum antibiotics used in the treatment of typhoid fever and other infections caused by Salmonella spp. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains in many countries of the world has raised great concern over the rise of antibiotic resistance in pathogens such as S. Typhi. In order to identify the key virulence factors involved in S. Typhi pathogenesis and infection, this review delves into various mechanisms of virulence, pathogenicity, and antimicrobial resistance to reinforce efficacious disease management.
Collapse
Affiliation(s)
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road Campus, Lahore 54000, Pakistan
| |
Collapse
|
15
|
Sztein MB, Booth JS. Controlled human infectious models, a path forward in uncovering immunological correlates of protection: Lessons from enteric fevers studies. Front Microbiol 2022; 13:983403. [PMID: 36204615 PMCID: PMC9530043 DOI: 10.3389/fmicb.2022.983403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused byS. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.
Collapse
Affiliation(s)
- Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Marcelo B. Sztein,
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Jayaum S. Booth,
| |
Collapse
|
16
|
Barai L, Hasan MR, Haq JA, Ahsan CR. Salmonellacidal antibody response to Salmonella enterica serovar Typhi in enteric fever and after vaccination with Vi capsular polysaccharide. Int J Infect Dis 2022; 121:120-125. [PMID: 35568365 DOI: 10.1016/j.ijid.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/08/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Serum salmonellacidal (bactericidal) antibody could be used to detect functional capacity of antibody in patients with enteric fever and after typhoid vaccination. METHODS Salmonellacidal antibody response was measured by colorimetric serum salmonellacidal assay from 70 acute and 11 convalescence sera of patients infected with Salmonella Typhi and Paratyphi A and also from 15 control and 6 Vi capsular polysaccharide vaccinated volunteer's sera. RESULTS Sera from patients with typhoid and paratyphoid A showed significant (p < 0.05) levels of salmonellacidal antibody titer (549.9 ± 108.5 and 528.7 ± 187.3) compared with control (0.133 ± 0.1). Moreover, this titer increased significantly (p <0.05) in sera collected between 7 and 10 days and between 11 and 25 days of fever (titer 535.7 ± 119.2 and 794.6 ± 235.6) compared with sera collected from patients with fever for less than 7 days (136.4 ± 52.7). The mean titer significantly (p < 0.05) decreased to 5.5 ± 2.1 after 6-8 weeks onset of illness. Although, very low salmonellacidal titers (2.5 ± 1.5 and 2.3 ± 1.5) were detected after Vi CPS vaccine among the human volunteers, but mean titer was raised 15-fold from pre- to postvaccinated sera (0.166-2.5). CONCLUSION The serum salmonellacidal antibody by colorimetric salmonellacidal assay could be used to detect acute typhoidal cases and also to monitor immune response of typhoid vaccine.
Collapse
Affiliation(s)
- Lovely Barai
- Department of Microbiology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh.
| | - Md Rokibul Hasan
- Department of Microbiology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh
| | | | | |
Collapse
|
17
|
Siggins MK, MacLennan CA. An adsorption method to prepare specific antibody-depleted normal human serum as a source of complement for human serum bactericidal assays for Salmonella. Vaccine 2021; 39:7503-7509. [PMID: 34794820 DOI: 10.1016/j.vaccine.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
Serum bactericidal assays (SBA) are valuable for assessing the functional activity of natural and vaccine-induced antibodies against many Gram-negative bacteria, such as meningococcus and Salmonella. However, SBA often require an exogenous source of complement and the presence of pre-existing naturally acquired antibodies limits the use of human complement for this purpose. To remove pre-existing Salmonella-specific antibodies, in the context of SBA for Salmonella vaccine research, we incubated human sera with preparations of Salmonella. By incubating at 4 °C, pre-existing antibodies were adsorbed onto the Salmonella bacteria with only minimal complement deposition. We assessed the effects of adsorption on specific antibody levels, complement activity and the bactericidal activity of sera using flow cytometry, SBA and haemolytic assays. Adsorption removed Salmonella-specific antibodies and bactericidal activity against Salmonella from whole serum but was not detrimental to serum complement activity, even after five adsorption cycles. Bactericidal activity could be reconstituted in the adsorbed serum by the addition of exogenous specific antibodies. Sera preadsorbed with Salmonella are suitable as a source of human complement to measure the bactericidal activity of Salmonella antibodies. The adsorption method can be used to deplete, simply and rapidly, specific antibodies from serum to prepare a source of human complement for use in SBA for vaccine research and assessment.
Collapse
Affiliation(s)
- Matthew K Siggins
- The Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom; National Heart and Lung Institute, St Mary's Hospital, Faculty of Medicine, Imperial College London, W2 1PG, United Kingdom.
| | - Calman A MacLennan
- The Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom; The Jenner Institute, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom; Bill & Melinda Gates Foundation, 62 Buckingham Gate, London SW1E 6AJ, United Kingdom.
| |
Collapse
|
18
|
Jones E, Jin C, Stockdale L, Dold C, Pollard AJ, Hill J. A Salmonella Typhi Controlled Human Infection Study for Assessing Correlation between Bactericidal Antibodies and Protection against Infection Induced by Typhoid Vaccination. Microorganisms 2021; 9:microorganisms9071394. [PMID: 34203328 PMCID: PMC8304662 DOI: 10.3390/microorganisms9071394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Vi-polysaccharide conjugate vaccines are efficacious against typhoid fever in children living in endemic settings, their recent deployment is a promising step in the control of typhoid fever. However, there is currently no accepted correlate of protection. IgG and IgA antibodies generated in response to Vi conjugate or Vi plain polysaccharide vaccination are important but there are no definitive protective titre thresholds. We adapted a luminescence-based serum bactericidal activity (SBA) for use with S. Typhi and assessed whether bactericidal antibodies induced by either Vi tetanus toxoid conjugate (Vi-TT) or Vi plain polysaccharide (Vi-PS) were associated with protection in a controlled human infection model of typhoid fever. Both Vi-PS and Vi-TT induced significant increase in SBA titre after 28 days (Vi-PS; p < 0.0001, Vi-TT; p = 0.003), however higher SBA titre at the point of challenge did not correlate with protection from infection or reduced symptom severity. We cannot eliminate the role of SBA as part of a multifactorial immune response which protects against infection, however, our results do not support a strong role for SBA as a mechanism of Vi vaccine mediated protection in the CHIM setting.
Collapse
|
19
|
Salmonella Paratyphi A Outer Membrane Vesicles Displaying Vi Polysaccharide as a Multivalent Vaccine against Enteric Fever. Infect Immun 2021; 89:IAI.00699-20. [PMID: 33318138 DOI: 10.1128/iai.00699-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Typhoid and paratyphoid fevers have a high incidence worldwide and coexist in many geographical areas, especially in low-middle-income countries (LMIC) in South and Southeast Asia. There is extensive consensus on the urgent need for better and affordable vaccines against systemic Salmonella infections. Generalized modules for membrane antigens (GMMA), outer membrane exosomes shed by Salmonella bacteria genetically manipulated to increase blebbing, resemble the bacterial surface where protective antigens are displayed in their native environment. Here, we engineered S Paratyphi A using the pDC5-viaB plasmid to generate GMMA displaying the heterologous S Typhi Vi antigen together with the homologous O:2 O antigen. The presence of both Vi and O:2 was confirmed by flow cytometry on bacterial cells, and their amount was quantified on the resulting vesicles through a panel of analytical methods. When tested in mice, such GMMA induced a strong antibody response against both Vi and O:2, and these antibodies were functional in a serum bactericidal assay. Our approach yielded a bivalent vaccine candidate able to induce immune responses against different Salmonella serovars, which could benefit LMIC residents and travelers.
Collapse
|
20
|
J Barton A, Hill J, J Blohmke C, J Pollard A. Host restriction, pathogenesis and chronic carriage of typhoidal Salmonella. FEMS Microbiol Rev 2021; 45:6159486. [PMID: 33733659 PMCID: PMC8498562 DOI: 10.1093/femsre/fuab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
While conjugate vaccines against typhoid fever have recently been recommended by the World Health Organization for deployment, the lack of a vaccine against paratyphoid, multidrug resistance and chronic carriage all present challenges for the elimination of enteric fever. In the past decade, the development of in vitro and human challenge models has resulted in major advances in our understanding of enteric fever pathogenesis. In this review, we summarise these advances, outlining mechanisms of host restriction, intestinal invasion, interactions with innate immunity and chronic carriage, and discuss how this knowledge may progress future vaccines and antimicrobials.
Collapse
Affiliation(s)
- Amber J Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK.,Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
| |
Collapse
|
21
|
Jin C, Hill J, Gunn BM, Yu WH, Dahora LC, Jones E, Johnson M, Gibani MM, Spreng RL, Alam SM, Nebykova A, Juel HB, Dennison SM, Seaton KE, Fallon JK, Tomaras GD, Alter G, Pollard AJ. Vi-specific serological correlates of protection for typhoid fever. J Exp Med 2020; 218:211531. [PMID: 33180929 PMCID: PMC7668386 DOI: 10.1084/jem.20201116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/13/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Typhoid Vi vaccines have been shown to be efficacious in children living in endemic regions; however, a widely accepted correlate of protection remains to be established. We applied a systems serology approach to identify Vi-specific serological correlates of protection using samples obtained from participants enrolled in an experimental controlled human infection study. Participants were vaccinated with Vi-tetanus toxoid conjugate (Vi-TT) or unconjugated Vi-polysaccharide (Vi-PS) vaccines and were subsequently challenged with Salmonella Typhi bacteria. Multivariate analyses identified distinct protective signatures for Vi-TT and Vi-PS vaccines in addition to shared features that predicted protection across both groups. Vi IgA quantity and avidity correlated with protection from S. Typhi infection, whereas higher fold increases in Vi IgG responses were associated with reduced disease severity. Targeted antibody-mediated functional responses, particularly neutrophil phagocytosis, were also identified as important components of the protective signature. These humoral markers could be used to evaluate and develop efficacious Vi-conjugate vaccines and assist with accelerating vaccine availability to typhoid-endemic regions.
Collapse
Affiliation(s)
- Celina Jin
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Bronwyn M Gunn
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Wen-Han Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Lindsay C Dahora
- Departments of Immunology, Surgery, and Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Mari Johnson
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Malick M Gibani
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Rachel L Spreng
- Departments of Immunology, Surgery, and Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Duke University, Durham, NC
| | - S Munir Alam
- Departments of Immunology, Surgery, and Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Anna Nebykova
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Helene B Juel
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - S Moses Dennison
- Departments of Immunology, Surgery, and Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Kelly E Seaton
- Departments of Immunology, Surgery, and Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Jonathan K Fallon
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Georgia D Tomaras
- Departments of Immunology, Surgery, and Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Duke University, Durham, NC
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
22
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A. Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review. Infect Drug Resist 2020; 13:11-26. [PMID: 32021316 PMCID: PMC6954085 DOI: 10.2147/idr.s230604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
Salmonella can be categorized into many serotypes, which are specific to known hosts or broadhosts. It makes no difference which one of the serotypes would penetrate the gastrointestinal tract because they all face similar obstacles such as mucus and microbiome. However, following their penetration, some species remain in the gastrointestinal tract; yet, others spread to another organ like gallbladder. Salmonella is required to alter the immune response to sustain its intracellular life. Changing the host response requires particular effector proteins and vehicles to translocate them. To this end, a categorized gene called Salmonella pathogenicity island (SPI) was developed; genes like Salmonella pathogenicity island encode aggressive or modulating proteins. Initially, Salmonella needs to be attached and stabilized via adhesin factor, without which no further steps can be taken. In this review, an attempt has been made to elaborate on each factor attached to the host cell or to modulating and aggressive proteins that evade immune systems. This review includes four sections: (A) attachment factors or T3SS- independent entrance, (B) effector proteins or T3SS-dependent entrance, (c) regulation of invasive genes, and (D) regulation of immune responses.
Collapse
Affiliation(s)
- Taher Azimi
- Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zamirnasta
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| | - Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, Environmental health Department, School of Public Health, Tehran University of medical sciences, Tehran, Iran
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
24
|
Karlinsey JE, Stepien TA, Mayho M, Singletary LA, Bingham-Ramos LK, Brehm MA, Greiner DL, Shultz LD, Gallagher LA, Bawn M, Kingsley RA, Libby SJ, Fang FC. Genome-wide Analysis of Salmonella enterica serovar Typhi in Humanized Mice Reveals Key Virulence Features. Cell Host Microbe 2019; 26:426-434.e6. [PMID: 31447308 DOI: 10.1016/j.chom.2019.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhi causes typhoid fever only in humans. Murine infection with S. Typhimurium is used as a typhoid model, but its relevance to human typhoid is limited. Non-obese diabetic-scid IL2rγnull mice engrafted with human hematopoietic stem cells (hu-SRC-SCID) are susceptible to lethal S. Typhi infection. In this study, we use a high-density S. Typhi transposon library in hu-SRC-SCID mice to identify virulence loci using transposon-directed insertion site sequencing (TraDIS). Vi capsule, lipopolysaccharide (LPS), and aromatic amino acid biosynthesis were essential for virulence, along with the siderophore salmochelin. However, in contrast to the murine S. Typhimurium model, neither the PhoPQ two-component system nor the SPI-2 pathogenicity island was required for lethal S. Typhi infection, nor was the CdtB typhoid toxin. These observations highlight major differences in the pathogenesis of typhoid and non-typhoidal Salmonella infections and demonstrate the utility of humanized mice for understanding the pathogenesis of a human-specific pathogen.
Collapse
Affiliation(s)
- Joyce E Karlinsey
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Taylor A Stepien
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dale L Greiner
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Larry A Gallagher
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich, UK; Earlham Institute, Norwich, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich, UK; School of Biological Science, University of East Anglia, Norwich, UK
| | - Stephen J Libby
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ferric C Fang
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Abstract
Purpose of review Enteric fever remains a major global-health concern, estimated to be responsible for between 11.9 and 26.9 million cases annually. Long-term prevention of enteric fever will require improved access to safe drinking water combined with investment in sanitation and hygiene interventions. In the short-to-medium term, new control strategies for typhoid fever have arrived in the form of typhoid Vi-conjugate vaccines (TCVs), offering hope that disease control can be achieved in the near future. Recent findings The diagnosis of enteric fever is complicated by its nonspecific clinical presentation, coupled with the low sensitivity of commonly used diagnostics. Investment in diagnostics has the potential to improve management, to refine estimates of disease burden and to facilitate vaccine impact studies. A new generation of reliable, diagnostic tests is needed that are simultaneously accessible, cost-effective, sensitive, and specific. The emergence and global dissemination of multidrug-resistant, fluoroquinolone-resistant, and extensively drug-resistant (XDR) strains of Salmonella Typhi emphasizes the importance of continued surveillance and appropriate antibiotic stewardship, integrated into a global strategy to address antimicrobial resistance (AMR). Current empirical treatment guidelines are out of date and should be updated to respond to local trends in AMR, so as to guide treatment choices in the absence of robust diagnostics and laboratory facilities. In September 2017, the WHO Strategic Advisory Group of Experts (SAGE) immunization recommended the programmatic use of TCVs in high burden countries. Ongoing and future studies should aim to study the impact of these vaccines in a diverse range of setting and to support the deployment of TCVs in high-burden countries. Summary The advent of new generation TCVs offers us a practical and affordable public-health tool that – for the first time – can be integrated into routine childhood immunization programmes. In this review, we advocate for the deployment of TCVs in line with WHO recommendations, to improve child health and limit the spread of antibiotic-resistant S. Typhi.
Collapse
|
26
|
Hiyoshi H, Wangdi T, Lock G, Saechao C, Raffatellu M, Cobb BA, Bäumler AJ. Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell Rep 2019; 22:1787-1797. [PMID: 29444431 PMCID: PMC5826628 DOI: 10.1016/j.celrep.2018.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Typhoid fever caused by Salmonella enterica serovar (S.) Typhi differs in its clinical presentation from gastroenteritis caused by S. Typhimurium and other non-typhoidal Salmonella serovars. The different clinical presentations are attributed in part to the virulence-associated capsular polysaccharide (Vi antigen) of S. Typhi, which prevents phagocytes from triggering a respiratory burst by preventing antibody-mediated complement activation. Paradoxically, the Vi antigen is absent from S. Paratyphi A, which causes a disease that is indistinguishable from typhoid fever. Here, we show that evasion of the phagocyte respiratory burst by S. Paratyphi A required very long O antigen chains containing the O2 antigen to inhibit antibody binding. We conclude that the ability to avoid the phagocyte respiratory burst is a property distinguishing typhoidal from non-typhoidal Salmonella serovars that was acquired by S. Typhi and S. Paratyphi A independently through convergent evolution.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Tamding Wangdi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| | - Gabriel Lock
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Cheng Saechao
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Manuela Raffatellu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian A Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Dasgupta S, Das S, Biswas A, Bhadra RK, Das S. Small alarmones (p)ppGpp regulate virulence associated traits and pathogenesis of Salmonella enterica serovar Typhi. Cell Microbiol 2019; 21:e13034. [PMID: 31013389 DOI: 10.1111/cmi.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
How Salmonella enterica serovar Typhi (S. Typhi), an important human pathogen, survives the stressful microenvironments inside the gastrointestinal tract and within macrophages remains poorly understood. We report here that S. Typhi has a bonafide stringent response (SR) system, which is mediated by (p)ppGpp and regulates multiple virulence-associated traits and the pathogenicity of the S. Typhi Ty2 strain. In an iron overload mouse model of S. Typhi infection, the (p)ppGpp0 (Ty2ΔRelAΔSpoT) strain showed minimal systemic spread and no mortality, as opposed to 100% death of the mice challenged with the isogenic wild-type strain. Ty2ΔRelAΔSpoT had markedly elongated morphology with incomplete septa formation and demonstrated severely attenuated motility and chemotaxis due to the loss of flagella. Absence of the Vi-polysaccharide capsule rendered the mutant strain highly susceptible to complement-mediated lysis. The phenotypes of Ty2ΔRelAΔSpoT was contributed by transcriptional repression of several genes, including fliC, tviA, and ftsZ, as found by reverse transcriptase quantitative polymerase chain reaction and gene complementation studies. Finally, Ty2ΔRelAΔSpoT had markedly reduced invasion into intestinal epithelial cells and significantly attenuated survival within macrophages. To the best of our knowledge, this was the first study that addressed SR in S. Typhi and showed that (p)ppGpp was essential for optimal pathogenic fitness of the organism.
Collapse
Affiliation(s)
- Shreya Dasgupta
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asim Biswas
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
28
|
Dickinson GS, Levenson EA, Walker JA, Kearney JF, Alugupalli KR. IL-7 Enables Antibody Responses to Bacterial Polysaccharides by Promoting B Cell Receptor Diversity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1229-1240. [PMID: 30006375 PMCID: PMC6085875 DOI: 10.4049/jimmunol.1800162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022]
Abstract
Polysaccharide vaccines such as the Vi polysaccharide (ViPS) of Salmonella enterica serovar Typhi induce efficient Ab responses in adults but not in young children. The reasons for this difference are not understood. IL-7 dependency in B cell development increases progressively with age. IL-7Rα-mediated signals are required for the expression of many VH gene segments that are distal to DH-JH in the IgH locus and for the complete diversification of the BCR repertoire. Therefore, we hypothesized that B cells generated in the absence of IL-7 do not recognize a wide range of Ags because of a restricted BCR repertoire. Compared with adult wildtype mice, young wildtype mice and IL-7-deficient adult mice generated a significantly reduced Ab response to ViPS. Additionally, ViPS-binding B cells in adult wildtype mice predominantly used distal VH gene segments. Transgenic expression of either IL-7 or a BCR encoded by a distal VH gene segment permitted young mice to respond efficiently to bacterial polysaccharides. These results indicate that restricted VH gene usage early in life results in a paucity of Ag-specific B cell precursors, thus limiting antipolysaccharide responses.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Antibody Diversity/genetics
- Antibody Diversity/immunology
- Antibody Formation/genetics
- Antibody Formation/immunology
- B-Lymphocytes/immunology
- Genes, Immunoglobulin Heavy Chain/genetics
- Genes, Immunoglobulin Heavy Chain/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Interleukin-7/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Polysaccharides, Bacterial/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
Collapse
Affiliation(s)
- Gregory S Dickinson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Eric A Levenson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107; and
| |
Collapse
|
29
|
Johnson R, Mylona E, Frankel G. TyphoidalSalmonella: Distinctive virulence factors and pathogenesis. Cell Microbiol 2018; 20:e12939. [DOI: 10.1111/cmi.12939] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Rebecca Johnson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Elli Mylona
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| |
Collapse
|
30
|
Terminal Deoxynucleotidyl Transferase Is Not Required for Antibody Response to Polysaccharide Vaccines against Streptococcus pneumoniae and Salmonella enterica Serovar Typhi. Infect Immun 2018; 86:IAI.00211-18. [PMID: 29967094 DOI: 10.1128/iai.00211-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022] Open
Abstract
B cell antigen receptor (BCR) diversity increases by several orders of magnitude due to the action of terminal deoxynucleotidyl transferase (TdT) during V(D)J recombination. Unlike adults, infants have limited BCR diversity, in part due to reduced expression of TdT. Since human infants and young mice respond poorly to polysaccharide vaccines, such as the pneumococcal polysaccharide vaccine Pneumovax23 and Vi polysaccharide (ViPS) of Salmonella enterica serovar Typhi, we tested the contribution of TdT-mediated BCR diversity in response to these vaccines. We found that TdT+/- and TdT-/- mice generated comparable antibody responses to Pneumovax23 and survived Streptococcus pneumoniae challenge. Moreover, passive immunization of B cell-deficient mice with serum from Pneumovax23-immunized TdT+/- or TdT-/- mice conferred protection. TdT+/- and TdT-/- mice generated comparable levels of anti-ViPS antibodies and antibody-dependent, complement-mediated bactericidal activity against S Typhi in vitro To test the protective immunity conferred by ViPS immunization in vivo, TdT+/- and TdT-/- mice were challenged with a chimeric Salmonella enterica serovar Typhimurium strain expressing ViPS, since mice are nonpermissive hosts for S Typhi infection. Compared to their unimmunized counterparts, immunized TdT+/- and TdT-/- mice challenged with ViPS-expressing S Typhimurium exhibited a significant reduction in the bacterial burden and liver pathology. These data suggest that the impaired antibody response to the Pneumovax23 and ViPS vaccines in the young is not due to limited TdT-mediated BCR diversification.
Collapse
|
31
|
Tanner JR, Kingsley RA. Evolution of Salmonella within Hosts. Trends Microbiol 2018; 26:986-998. [PMID: 29954653 PMCID: PMC6249985 DOI: 10.1016/j.tim.2018.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 11/18/2022]
Abstract
Within-host evolution has resulted in thousands of variants of Salmonella that exhibit remarkable diversity in host range and disease outcome, from broad host range to exquisite host restriction, causing gastroenteritis to disseminated disease such as typhoid fever. Within-host evolution is a continuing process driven by genomic variation that occurs during each infection, potentiating adaptation to a new niche resulting from changes in animal husbandry, the use of antimicrobials, and emergence of immune compromised populations. We discuss key advances in our understanding of the evolution of Salmonella within the host, inferred from (i) the process of host adaptation of Salmonella pathovars in the past, and (ii) direct observation of the generation of variation and selection of beneficial traits during single infections. Salmonella is a bacterial pathogen with remarkable diversity in its host range and pathogenicity due to past within-host evolution in vertebrate species that modified ancestral mechanisms of pathogenesis. Variation arising during infection includes point mutations, new genes acquired through horizontal gene transfer (HGT), deletions, and genomic rearrangements. Beneficial mutations increase in frequency within the host and, if they retain the ability to be transmitted to subsequent hosts, may become fixed in the population. Whole-genome sequencing of sequential isolates from clinical infections reveals within-host HGT and point mutations that impact therapy and clinical management. HGT is the primary mechanism for evolution in prokaryotes and is synergised by complex networks of transfer involving the microbiome. Within-host evolution of Salmonella, resulting in new pathovars, can proceed in the absence of HGT.
Collapse
Affiliation(s)
- Jennifer R Tanner
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich, UK.
| |
Collapse
|
32
|
Hiyoshi H, Tiffany CR, Bronner DN, Bäumler AJ. Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar. FEMS Microbiol Rev 2018; 42:527-541. [DOI: 10.1093/femsre/fuy024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise N Bronner
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
33
|
Pandya KD, Palomo-Caturla I, Walker JA, K Sandilya V, Zhong Z, Alugupalli KR. An Unmutated IgM Response to the Vi Polysaccharide of Salmonella Typhi Contributes to Protective Immunity in a Murine Model of Typhoid. THE JOURNAL OF IMMUNOLOGY 2018; 200:4078-4084. [PMID: 29743315 DOI: 10.4049/jimmunol.1701348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022]
Abstract
T cell-dependent B cell responses typically develop in germinal centers. Abs generated during such responses are isotype switched and have a high affinity to the Ag because of somatic hypermutation of Ab genes. B cell responses to purified polysaccharides are T cell independent and do not result in the formation of bona fide germinal centers, and the dominant Ab isotype produced during such responses is IgM with very few or no somatic mutations. Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and Ig isotype switching in humans and mice. To test the extent to which unmutated polysaccharide-specific IgM confers protective immunity, we immunized wildtype and AID-/- mice with either heat-killed Salmonella enterica serovar Typhi (S. Typhi) or purified Vi polysaccharide (ViPS). We found that wildtype and AID-/- mice immunized with heat-killed S. Typhi generated similar anti-ViPS IgM responses. As expected, wildtype, but not AID-/- mice generated ViPS-specific IgG. However, the differences in the Ab-dependent killing of S. Typhi mediated by the classical pathway of complement activation were not statistically significant. In ViPS-immunized wildtype and AID-/- mice, the ViPS-specific IgM levels and S. Typhi bactericidal Ab titers at 7 but not at 28 d postimmunization were also comparable. To test the protective immunity conferred by these immunizations, mice were challenged with a chimeric S. Typhimurium strain expressing ViPS. Compared with their naive counterparts, immunized wildtype and AID-/- mice exhibited significantly reduced bacterial burden regardless of the route of infection. These data indicate that an unmutated IgM response to ViPS contributes to protective immunity to S. Typhi.
Collapse
Affiliation(s)
- Kalgi D Pandya
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Isabel Palomo-Caturla
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Vijay K Sandilya
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Zhijiu Zhong
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107; and .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
34
|
Humoral immunity to memory antigens and pathogens is maintained in patients with chronic kidney disease. PLoS One 2018; 13:e0195730. [PMID: 29659606 PMCID: PMC5901993 DOI: 10.1371/journal.pone.0195730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/28/2018] [Indexed: 01/29/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have an increased risk of infection and poorer responses to vaccination. This suggests that CKD patients have an impaired responsiveness to all antigens, even those first encountered before CKD onset. To examine this we evaluated antibody responses against two childhood vaccine antigens, tetanus (TT) and diphtheria toxoids (DT) and two common pathogens, cytomegalovirus (CMV) and Salmonella enterica serovar Enteritidis (SEn) in two independent cohorts consisting of age-matched individuals with and without CKD. Sera were evaluated for antigen-specific IgG titres and the functionality of antibody to SEn was assessed in a serum bactericidal assay. Surprisingly, patients with CKD and control subjects had comparable levels of IgG against TT and DT, suggesting preserved humoral memory responses to antigens encountered early in life. Lipopolysaccharide-specific IgG titres and serum bactericidal activity in patients with CKD were also not inferior to controls. CMV-specific IgG titres in seropositive CKD patients were similar or even increased compared to controls. Therefore, whilst responses to new vaccines in CKD are typically lower than expected, antibody responses to antigens commonly encountered prior to CKD onset are not. The immunodeficiency of CKD is likely characterised by failure to respond to new antigenic challenges and efforts to improve patient outcomes should be focussed here.
Collapse
|
35
|
Juel HB, Thomaides-Brears HB, Darton TC, Jones C, Jones E, Shrestha S, Sie R, Eustace A, Galal U, Kurupati P, Van TT, Thieu NTV, Baker S, Blohmke CJ, Pollard AJ. Salmonella Typhi Bactericidal Antibodies Reduce Disease Severity but Do Not Protect against Typhoid Fever in a Controlled Human Infection Model. Front Immunol 2018; 8:1916. [PMID: 29387052 PMCID: PMC5776093 DOI: 10.3389/fimmu.2017.01916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
Effective vaccines against Salmonella Typhi, a major cause of febrile illness in tropical regions, can have a significant effect as a disease control measure. Earlier work has shown that immunization with either of two Salmonella Typhi vaccines, licensed Ty21a or candidate M01ZH09, did not provide full immunity in a controlled human infection model. Here, we describe the human humoral immune responses to these oral vaccines and their functional role in protection after challenge with S. Typhi. Serum, obtained from healthy volunteers before and after vaccination with Ty21a or M01ZH09 or placebo and before and after oral challenge with wild-type S. Typhi, was assessed for bactericidal activity. Single-dose vaccination with M01ZH09 induced an increase in serum bactericidal antibodies (p = 0.001) while three doses of Ty21a did not. No association between bactericidal activity and protection against typhoid after challenge was seen in either vaccine arm. Bactericidal activity after vaccination correlated significantly with delayed disease onset (p = 0.013), lower bacterial burden (p = 0.006), and decreased disease severity scores (p = 0.021). Depletion of antibodies directed against lipopolysaccharide significantly reduced bactericidal activity (p = 0.009). We conclude that antibodies induced after ingestion of oral live-attenuated typhoid vaccines or after challenge with wild-type S. Typhi exhibit bactericidal activity. This bactericidal activity is mediated by anti-O:LPS antibodies and significantly reduces clinical symptoms but does not provide sterile immunity. This directs future vaccine studies toward other antigens or mechanisms of protection against typhoid.
Collapse
Affiliation(s)
- Helene B Juel
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,Statens Serum Institut, Copenhagen, Denmark
| | - Helena B Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Rebecca Sie
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew Eustace
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, United Kingdom
| | - Prathiba Kurupati
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Tan T Van
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nga T V Thieu
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,The Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
36
|
Bi-valent polysaccharides of Vi capsular and O9 O-antigen in attenuated Salmonella Typhimurium induce strong immune responses against these two antigens. NPJ Vaccines 2018; 3:1. [PMID: 29354293 PMCID: PMC5760606 DOI: 10.1038/s41541-017-0041-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 11/17/2022] Open
Abstract
Salmonella Typhi is the causative agent of typhoid fever in humans, responsible for approximately 21 million infections and 222,000 deaths globally each year. The current licensed vaccines provide moderate protection to recipients aged >2 years. Prior work on typhoid vaccines has focused on injectable Vi capsular polysaccharide or Vi–protein conjugates and live, oral attenuated S. Typhi vaccines to induce humoral anti-Vi antibodies, while the value and importance of anti-O9 antibodies is less well established. In this study, we constructed a S. Typhimurium strain that synthesizes Vi capsular antigen in vivo and produces the immunodominant O9-antigen polysaccharide instead of its native O4-antigen. The live recombinant attenuated S. Typhimurium mutants were effective in stimulating anti-Vi and anti-O9 antibodies in a mouse model, and the surface Vi capsular expression did not affect the immune responses against the O9 O-antigen polysaccharide. Moreover, the resulting anti-Vi and anti-O9 antibodies were effective at killing S. Typhi and other Salmonella spp. expressing Vi or O9 antigen polysaccharides and provided efficient protection against lethal challenge by S. Typhimurium and S. Enteritidis. Our work highlights the strategy of developing live attenuated S. Typhimurium vaccines to prevent typhoid fever by targeting the both Vi capsular and O9 O-polysaccharide antigens simultaneously. An attenuated strain of modified Salmonella Typhimurium bacteria could answer calls for a more effective typhoid fever vaccine. Current vaccines against typhoid-causing Salmonella Typhi are only moderately effective and potentially ineffective in children under 5 years. Qingke Kong and Roy Curtiss, leading a team of US and Chinese researchers, developed an attenuated version of the less-pathogenic S. Typhimurium that, when orally dosed in mice, expresses bacterial sugar-chain molecules known to elicit a strong immune response. In an in vitro assay, the antibodies produced by the mice in response to these molecules killed S. Typhi and related Salmonella bacteria with similar surface molecules, indicating a potential cross-protective ability. Further research would reveal whether this two-pronged live vaccine has the potential to protect in vivo, in live animals and in humans.
Collapse
|
37
|
Haque A. Significance of Vi Negative Isolates of Salmonella Enterica Serovar Typhi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1052:9-18. [PMID: 29785477 DOI: 10.1007/978-981-10-7572-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Typhoid is a major global disease. The causative agent, Salmonella enterica serovar Typhi (S. Typhi) has a capsular antigen called Vi antigen which is traditionally considered to be the main cause of virulence. All the current vaccines are based on Vi antigen. However, the realization of the fact that there are S. Typhi strains which lack Vi antigen but still exist naturally and can cause disease has stirred great scientific interest. It is also interesting to note that their relative prevalence is affected by climatic conditions. Now it is established that Vi positive and Vi negative S. Typhi have different modes of pathogenesis; and as recent studies suggest, different structure of polysaccharide antigens. This means that current vaccines are not effective against a significant number of S. Typhi strains which not only affect the success of vaccination programs but also help in rapid emergence of Vi negative S. Typhi due to natural selection. The focus should be on vaccines based on antigens which are universally present in all S. Typhi. One such candidate is O-specific polysaccharides (OSPs). Successful attempts have been made to prepare conjugate vaccines based on OSPs.
Collapse
Affiliation(s)
- Abdul Haque
- Postgraduate Research Laboratory, Health Sciences Campus, The University of Faisalabad, Sargodha Road, Faisalabad, Pakistan.
| |
Collapse
|
38
|
Relationship of Triamine-Biocide Tolerance of Salmonella enterica Serovar Senftenberg to Antimicrobial Susceptibility, Serum Resistance and Outer Membrane Proteins. Int J Mol Sci 2017; 18:ijms18071459. [PMID: 28696348 PMCID: PMC5535950 DOI: 10.3390/ijms18071459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023] Open
Abstract
A new emerging phenomenon is the association between the incorrect use of biocides in the process of disinfection in farms and the emergence of cross-resistance in Salmonella populations. Adaptation of the microorganisms to the sub-inhibitory concentrations of the disinfectants is not clear, but may result in an increase of sensitivity or resistance to antibiotics, depending on the biocide used and the challenged Salmonella serovar. Exposure of five Salmonella enterica subsp. enterica serovar Senftenberg (S. Senftenberg) strains to triamine-containing disinfectant did not result in variants with resistance to antibiotics, but has changed their susceptibility to normal human serum (NHS). Three biocide variants developed reduced sensitivity to NHS in comparison to the sensitive parental strains, while two isolates lost their resistance to serum. For S. Senftenberg, which exhibited the highest triamine tolerance (6 × MIC) and intrinsic sensitivity to 22.5% and 45% NHS, a downregulation of flagellin and enolase has been demonstrated, which might suggest a lower adhesion and virulence of the bacteria. This is the first report demonstrating the influence of biocide tolerance on NHS resistance. In conclusion, there was a potential in S. Senftenberg to adjust to the conditions, where the biocide containing triamine was present. However, the adaptation did not result in the increase of antibiotic resistance, but manifested in changes within outer membrane proteins’ patterns. The strategy of bacterial membrane proteins’ analysis provides an opportunity to adjust the ways of infection treatments, especially when it is connected to the life-threating bacteremia caused by Salmonella species.
Collapse
|
39
|
Prabagaran SR, Kalaiselvi V, Chandramouleeswaran N, Deepthi KNG, Brahmadathan KN, Mani M. Molecular diagnosis of Salmonella typhi and its virulence in suspected typhoid blood samples through nested multiplex PCR. J Microbiol Methods 2017; 139:150-154. [PMID: 28545919 DOI: 10.1016/j.mimet.2017.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
A nested multiplex polymerase chain reaction (PCR) based diagnosis was developed for the detection of virulent Salmonella typhi in the blood specimens from patients suspected for typhoid fever. After the Widal test, two pairs of primers were used for the detection of flagellin gene (fliC) of S. typhi. Among them, those positive for fliC alone were subjected to identification of genes in Via B operon of Salmonella Pathogenesity Island (SPI-7) where four primer pairs were used to detect tviA and tviB genes. Among 250 blood samples tested, 115 were positive by fliC PCR; 22 of these were negative for tviA and tviB. Hence, the method described here can be used to diagnose the incidence of Vi-negative serovar typhi especially in endemic regions where the Vi vaccine is administered.
Collapse
Affiliation(s)
| | - Vellingiri Kalaiselvi
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu 641 046, India
| | | | | | | | - Mariappa Mani
- Microbiological Laboratory, Cowley Brown Road (East), R. S. Puram, Coimbatore- 641 002, India
| |
Collapse
|
40
|
Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition. Infect Immun 2017; 85:IAI.01021-16. [PMID: 28167670 PMCID: PMC5364305 DOI: 10.1128/iai.01021-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains were engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonellagtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.
Collapse
|
41
|
From Immunologically Archaic to Neoteric Glycovaccines. Vaccines (Basel) 2017; 5:vaccines5010004. [PMID: 28134792 PMCID: PMC5371740 DOI: 10.3390/vaccines5010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Polysaccharides (PS) are present in the outermost surface of bacteria and readily come in contact with immune cells. They interact with specific antibodies, which in turn confer protection from infections. Vaccines with PS from pneumococci, meningococci, Haemophilus influenzae type b, and Salmonella typhi may be protective, although with the important constraint of failing to generate permanent immunological memory. This limitation has in part been circumvented by conjugating glycovaccines to proteins that stimulate T helper cells and facilitate the establishment of immunological memory. Currently, protection evoked by conjugated PS vaccines lasts for a few years. The same approach failed with PS from staphylococci, Streptococcus agalactiae, and Klebsiella. All those germs cause severe infections in humans and often develop resistance to antibiotic therapy. Thereby, prevention is of increasing importance to better control outbreaks. As only 23 of more than 90 pneumococcal serotypes and 4 of 13 clinically relevant Neisseria meningitidis serogroups are covered by available vaccines there is still tremendous clinical need for PS vaccines. This review focuses on glycovaccines and the immunological mechanisms for their success or failure. We discuss recent advances that may facilitate generation of high affinity anti-PS antibodies and confer specific immunity and long-lasting protection.
Collapse
|
42
|
Hu X, Chen Z, Xiong K, Wang J, Rao X, Cong Y. Vi capsular polysaccharide: Synthesis, virulence, and application. Crit Rev Microbiol 2016; 43:440-452. [PMID: 27869515 DOI: 10.1080/1040841x.2016.1249335] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Vi capsular polysaccharide, a linear homopolymer of α-1,4-linked N-acetylgalactosaminuronate, is characteristically produced by Salmonella enterica serovar Typhi. The Vi capsule covers the surface of the producing bacteria and serves as an virulence factor via inhibition of complement-mediated killing and promoting resistance against phagocytosis. Furthermore, Vi also represents a predominant protective antigen and plays a key role in the development of vaccines against typhoid fever. Herein, we reviewed the latest advances associated with the Vi polysaccharide, from its synthesis and transport within bacterial cells, mechanisms involved in virulence, immunological characteristics, and applications in vaccine, as well as its purification and detection methods.
Collapse
Affiliation(s)
- Xiaomei Hu
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Zhijin Chen
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Kun Xiong
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Jing Wang
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Xiancai Rao
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Yanguang Cong
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| |
Collapse
|