1
|
Ortiz PS, Young M, Mahmud T, Sohag MMH, Kearney CM. Generation of VacA-targeting guide peptides to increase specific antimicrobial peptide toxicity against Helicobacter pylori. J Biotechnol 2025; 403:17-29. [PMID: 40157455 DOI: 10.1016/j.jbiotec.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The H. pylori virulence factors VacA and CagA are the primary determinants of gastric cancer globally. In this study we increased the activity of antimicrobial peptides (AMPs) against H. pylori by using phage display against VacA to rapidly generate peptides targeting VacA, subsequently fusing these peptides to the AMP N-terminus to confer specificity. RESULTS After four rounds of phage display, 36 phage clones were ranked for whole cell H. pylori binding by ELISA. The displayed 12-mer peptides of the top nine candidate clones were fused to GFP as guide peptides and analyzed for binding to wild type H. pylori 60190 and a ∆vacA strain. The three guides with the best differential binding were fused to the AMP pexiganan using two different linker peptides. All guide/linker combinations led to increased toxicity against H. pylori and most also decreased off-target toxicity. Guide P5 linked to pexiganan was the top configuration, delivering 64- to > 256-fold differential toxicity against H. pylori compared to off-target bacteria and a therapeutic window exceeding 128-fold when tested against cultured gastric cells. CONCLUSIONS Guide peptide biopanning provides an effective, scalable method to increase specific activity of antimicrobial peptides based on attraction to a key virulence factor.
Collapse
Affiliation(s)
- Patrick S Ortiz
- Baylor University, Department of Biology, 101 Bagby Ave., Waco, TX 76706, USA
| | - Mikaeel Young
- Baylor University, Department of Biology, 101 Bagby Ave., Waco, TX 76706, USA
| | - Toslim Mahmud
- Baylor University, Department of Biology, 101 Bagby Ave., Waco, TX 76706, USA
| | | | | |
Collapse
|
2
|
Bosso A, Di Nardo I, Culurciello R, Palumbo I, Gaglione R, Zannella C, Pinto G, Siciliano A, Carraturo F, Amoresano A, Galdiero M, Cafaro V, Arciello A, Pizzo E, Notomista E. KNR50: a moonlighting bioactive peptide hidden in the C-terminus of bovine casein αS2 with powerful antimicrobial, antibiofilm, antiviral and immunomodulatory activities. Int J Biol Macromol 2025; 311:143718. [PMID: 40339849 DOI: 10.1016/j.ijbiomac.2025.143718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Milk is a primary nutrition source for newborns and adults and, in addition, is also a valuable reservoir of bioactive peptides. Many of these peptides are hidden as "cryptic" sequences in milk proteins and released in the bioactive form through protease digestions. Caseins, the most abundant proteins in bovine milk, host several cryptic bioactive peptides including those antimicrobials. In this study we report in-silico identification, production in recombinant form and extensive characterization of KNR50, a novel cationic antimicrobial peptide (CAMP) located at the C-terminus of bovine casein αS2. KNR50 shows antimicrobial activity against a large panel of bacteria and does not induce resistance development. In addition, KNR50 shows a remarkably wide spectrum of functional properties, as antibiofilm and antiviral activities, immunomodulatory and antioxidant properties as well as promising in-vivo anti-infective properties in a Caenorhabditis elegans model. These findings suggest that KNR50 could serve as a promising multifunctional agent with potential applications not only in combating infectious diseases and enhancing immune responses but also in non-clinical settings such as food preservation, where its antimicrobial properties could be exploited to extend shelf-life and improve food safety.
Collapse
Affiliation(s)
- Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ida Palumbo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Federica Carraturo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy; Complex Operative Unit of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
3
|
Lou M, Ji S, Wu R, Zhu Y, Wu J, Zhang J. Microbial production systems and optimization strategies of antimicrobial peptides: a review. World J Microbiol Biotechnol 2025; 41:66. [PMID: 39920500 DOI: 10.1007/s11274-025-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Antibiotic resistance has become a public safety issue of the twenty-first century, posing a growing threat and drawing increased attention. Compared to traditional antibiotics, antimicrobial peptides (AMPs), as naturally produced small peptides, can target multiple pathways within pathogens and render them less prone to developing resistance. This makes them promising alternatives to antibiotics. However, traditional chemical synthesis methods face challenges, such as high costs, low yields, and poor stability, limiting the large-scale industrial production of AMPs. Despite extensive research to improve AMP production efficiency, issues such as low yields and complex extraction processes continue to pose significant barriers to commercial application. Therefore, there is an urgent need for new biosynthesis strategies and optimization methods to enhance AMP production efficiency and quality. This review summarizes the sources, classification, mechanisms of action and recent advances in the microbial synthesis of AMPs. It also explores innovative production methods, including recombinant microbial expression systems, fusion tags, codon optimization, tandem multimer expression, and hybrid peptide expression. Furthermore, we review the applications of gene editing technologies and artificial intelligence in AMP production, providing new perspectives and strategies for efficient, large-scale AMP production.
Collapse
Affiliation(s)
- Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China.
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
4
|
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics (Basel) 2024; 14:1. [PMID: 39858288 PMCID: PMC11762488 DOI: 10.3390/antibiotics14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.
Collapse
Affiliation(s)
- Lenka Dzurová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic; (E.H.); (H.P.); (J.F.)
| | | | | | | | | |
Collapse
|
5
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
6
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Cafaro V, Bosso A, Di Nardo I, D’Amato A, Izzo I, De Riccardis F, Siepi M, Culurciello R, D’Urzo N, Chiarot E, Torre A, Pizzo E, Merola M, Notomista E. The Antimicrobial, Antibiofilm and Anti-Inflammatory Activities of P13#1, a Cathelicidin-like Achiral Peptoid. Pharmaceuticals (Basel) 2023; 16:1386. [PMID: 37895857 PMCID: PMC10610514 DOI: 10.3390/ph16101386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are powerful molecules with antimicrobial, antibiofilm and endotoxin-scavenging activities. These properties make CAMPs very attractive drugs in the face of the rapid increase in multidrug-resistant (MDR) pathogens, but they are limited by their susceptibility to proteolytic degradation. An intriguing solution to this issue could be the development of functional mimics of CAMPs with structures that enable the evasion of proteases. Peptoids (N-substituted glycine oligomers) are an important class of peptidomimetics with interesting benefits: easy synthetic access, intrinsic proteolytic stability and promising bioactivities. Here, we report the characterization of P13#1, a 13-residue peptoid specifically designed to mimic cathelicidins, the best-known and most widespread family of CAMPs. P13#1 showed all the biological activities typically associated with cathelicidins: bactericidal activity over a wide spectrum of strains, including several ESKAPE pathogens; the ability to act in combination with different classes of conventional antibiotics; antibiofilm activity against preformed biofilms of Pseudomonas aeruginosa, comparable to that of human cathelicidin LL-37; limited toxicity; and an ability to inhibit LPS-induced proinflammatory effects which is comparable to that of "the last resource" antibiotic colistin. We further studied the interaction of P13#1 with SDS, LPSs and bacterial cells by using a fluorescent version of P13#1. Finally, in a subcutaneous infection mouse model, it showed antimicrobial and anti-inflammatory activities comparable to ampicillin and gentamicin without apparent toxicity. The collected data indicate that P13#1 is an excellent candidate for the formulation of new antimicrobial therapies.
Collapse
Affiliation(s)
- Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Assunta D’Amato
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Nunzia D’Urzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | | | | | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| |
Collapse
|
8
|
Li X, Zhang B, Hu Q, Chen C, Huang J, Liu L, Wang S. Refinement of the Fusion Tag PagP for Effective Formation of Inclusion Bodies in Escherichia coli. Microbiol Spectr 2023; 11:e0380322. [PMID: 37222613 PMCID: PMC10269538 DOI: 10.1128/spectrum.03803-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Methods for efficient insoluble protein production require further exploration. PagP, an Escherichia coli outer membrane protein with high β-sheet content, could function as an efficient fusion partner for inclusion body-targeted expression of recombinant peptides. The primary structure of a given polypeptide determines to a large extent its propensity to aggregate. Herein, aggregation "hot spots" (HSs) in PagP were analyzed using the web-based software AGGRESCAN, leading to identification of a C-terminal region harboring numerous HSs. Moreover, a proline-rich region was found in the β-strands. Substitution of these prolines by residues with high β-sheet propensity and hydrophobicity significantly improved its ability to form aggregates. Consequently, the absolute yields of recombinant antimicrobial peptides Magainin II, Metchnikowin, and Andropin were increased significantly when expressed in fusion with this refined version of PagP. We describe separation of recombinant target proteins expressed in inclusion bodies fused with the tag. An artificial NHT linker peptide with three motifs was implemented for separation and purification of authentic recombinant antimicrobial peptides. IMPORTANCE Fusion tag-induced formation of inclusion bodies provides a powerful means to express unstructured or toxic proteins. For a given fusion tag, how to enhance the formation of inclusion bodies remains to be explored. Our study illustrated that the aggregation HSs in a fusion tag played important roles in mediating its insoluble expression. Efficient production of inclusion bodies could also be implemented by refining its primary structure to form a more stable β-sheet with higher hydrophobicity. This study provides a promising method for improvement of the insoluble expression of recombinant proteins.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Baorong Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Quan Hu
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Changchao Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Jiahua Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Lu Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Shengbin Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
10
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
12
|
Gaglione R, Pane K, De Luca M, Franzese M, Arciello A, Trama F, Brancorsini S, Salvatore M, Illiano E, Costantini E. Novel Antimicrobial Strategies to Prevent Biofilm Infections in Catheters after Radical Cystectomy: A Pilot Study. Life (Basel) 2022; 12:life12060802. [PMID: 35743833 PMCID: PMC9225455 DOI: 10.3390/life12060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Catheter-associated infections in bladder cancer patients, following radical cystectomy or ureterocutaneostomy, are very frequent, and the development of antibiotic resistance poses great challenges for treating biofilm-based infections. Here, we characterized bacterial communities from catheters of patients who had undergone radical cystectomy for muscle-invasive bladder cancer. We evaluated the efficacy of conventional antibiotics, alone or combined with the human ApoB-derived antimicrobial peptide r(P)ApoBLAla, to treat ureteral catheter-colonizing bacterial communities on clinically isolated bacteria. Microbial communities adhering to indwelling catheters were collected during the patients’ regular catheter change schedules (28 days) and extracted within 48 h. Living bacteria were characterized using selective media and biochemical assays. Biofilm growth and novel antimicrobial strategies were analyzed using confocal laser scanning microscopy. Statistical analyses confirmed the relevance of the biofilm reduction induced by conventional antibiotics (fosfomycin, ceftriaxone, ciprofloxacin, gentamicin, and tetracycline) and a well-characterized human antimicrobial peptide r(P)ApoBLAla (1:20 ratio, respectively). Catheters showed polymicrobial communities, with Enterobactericiae and Proteus isolates predominating. In all samples, we recorded a meaningful reduction in biofilms, in both biomass and thickness, upon treatment with the antimicrobial peptide r(P)ApoBLAla in combination with low concentrations of conventional antibiotics. The results suggest that combinations of conventional antibiotics and human antimicrobial peptides might synergistically counteract biofilm growth on ureteral catheters, suggesting novel avenues for preventing catheter-associated infections in patients who have undergone radical cystectomy and ureterocutaneostomy.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (M.D.L.); (A.A.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Katia Pane
- IRCCS Synlab SDN, Via E. Gianturco 113, 80143 Naples, Italy; (M.F.); (M.S.)
- Correspondence:
| | - Maria De Luca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (M.D.L.); (A.A.)
| | - Monica Franzese
- IRCCS Synlab SDN, Via E. Gianturco 113, 80143 Naples, Italy; (M.F.); (M.S.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (M.D.L.); (A.A.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Francesco Trama
- Andrological and Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, 05100 Terni, Italy; (F.T.); (E.I.); (E.C.)
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy;
| | - Marco Salvatore
- IRCCS Synlab SDN, Via E. Gianturco 113, 80143 Naples, Italy; (M.F.); (M.S.)
| | - Ester Illiano
- Andrological and Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, 05100 Terni, Italy; (F.T.); (E.I.); (E.C.)
| | - Elisabetta Costantini
- Andrological and Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, 05100 Terni, Italy; (F.T.); (E.I.); (E.C.)
| |
Collapse
|
13
|
Recent advances in molecular farming using monocot plants. Biotechnol Adv 2022; 58:107913. [DOI: 10.1016/j.biotechadv.2022.107913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
14
|
Siepi M, Oliva R, Masino A, Gaglione R, Arciello A, Russo R, Di Maro A, Zanfardino A, Varcamonti M, Petraccone L, Del Vecchio P, Merola M, Pizzo E, Notomista E, Cafaro V. Environment-Sensitive Fluorescent Labelling of Peptides by Luciferin Analogues. Int J Mol Sci 2021; 22:ijms222413312. [PMID: 34948103 PMCID: PMC8706149 DOI: 10.3390/ijms222413312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Environment-sensitive fluorophores are very valuable tools in the study of molecular and cellular processes. When used to label proteins and peptides, they allow for the monitoring of even small variations in the local microenvironment, thus acting as reporters of conformational variations and binding events. Luciferin and aminoluciferin, well known substrates of firefly luciferase, are environment-sensitive fluorophores with unusual and still-unexploited properties. Both fluorophores show strong solvatochromism. Moreover, luciferin fluorescence is influenced by pH and water abundance. These features allow to detect local variations of pH, solvent polarity and local water concentration, even when they occur simultaneously, by analyzing excitation and emission spectra. Here, we describe the characterization of (amino)luciferin-labeled derivatives of four bioactive peptides: the antimicrobial peptides GKY20 and ApoBL, the antitumor peptide p53pAnt and the integrin-binding peptide RGD. The two probes allowed for the study of the interaction of the peptides with model membranes, SDS micelles, lipopolysaccharide micelles and Escherichia coli cells. Kd values and binding stoichiometries for lipopolysaccharide were also determined. Aminoluciferin also proved to be very well-suited to confocal laser scanning microscopy. Overall, the characterization of the labeled peptides demonstrates that luciferin and aminoluciferin are previously neglected environment-sensitive labels with widespread potential applications in the study of proteins and peptides.
Collapse
Affiliation(s)
- Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Antonio Masino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (R.R.); (A.D.M.)
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (R.R.); (A.D.M.)
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
- Correspondence:
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| |
Collapse
|
15
|
Gaglione R, Smaldone G, Cesaro A, Rumolo M, De Luca M, Di Girolamo R, Petraccone L, Del Vecchio P, Oliva R, Notomista E, Pedone E, Arciello A. Impact of a Single Point Mutation on the Antimicrobial and Fibrillogenic Properties of Cryptides from Human Apolipoprotein B. Pharmaceuticals (Basel) 2021; 14:ph14070631. [PMID: 34209895 PMCID: PMC8308739 DOI: 10.3390/ph14070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | | | - Angela Cesaro
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Mariano Rumolo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Maria De Luca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rosario Oliva
- Physical Chemistry I—Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Naples, Italy;
- Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence: ; Tel.: +39-081-679147
| |
Collapse
|
16
|
Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS NANO 2021; 15:2143-2164. [PMID: 33538585 PMCID: PMC8734659 DOI: 10.1021/acsnano.0c09509] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Antibiotic resistance is one of the greatest challenges of our time. This global health problem originated from a paucity of truly effective antibiotic classes and an increased incidence of multi-drug-resistant bacterial isolates in hospitals worldwide. Indeed, it has been recently estimated that 10 million people will die annually from drug-resistant infections by the year 2050. Therefore, the need to develop out-of-the-box strategies to combat antibiotic resistance is urgent. The biological world has provided natural templates, called antimicrobial peptides (AMPs), which exhibit multiple intrinsic medical properties including the targeting of bacteria. AMPs can be used as scaffolds and, via engineering, can be reconfigured for optimized potency and targetability toward drug-resistant pathogens. Here, we review the recent development of tools for the discovery, design, and production of AMPs and propose that the future of peptide drug discovery will involve the convergence of computational and synthetic biology principles.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jicong Cao
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
- S-inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS 79117010, Brazil
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
de Oliveira Costa B, Franco OL. Cryptic Host Defense Peptides: Multifaceted Activity and Prospects for Medicinal Chemistry. Curr Top Med Chem 2021; 20:1274-1290. [PMID: 32209042 DOI: 10.2174/1568026620666200325112425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Host defense peptides (HDPs) comprise a heterogeneous group of evolutionarily conserved and biologically active small molecules that are produced by different organisms. HDPs are widely researched because they often have multiple biological activities, for example antimicrobial, immunomodulatory and anticancer activity. In this context, in this review we focus on cryptic HDPs, molecules derived specifically from proteolytic processing of endogenous precursor proteins. Here, we explore the biological activity of such molecules and we further discuss the development of optimized sequences based on these natural cryptic HDPs. In addition, we present clinical-phase studies of cryptic HDPs (natural or optimized), and point out the possible applicability of these molecules in medicinal chemistry.
Collapse
Affiliation(s)
- Bruna de Oliveira Costa
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil.,Department of Genomic Sciences and Biotechnology, Center for Analysis of Proteomics and Biochemistry, Catholic University of Brasília, Brasília, DF, Brazil.,Department of Molecular Pathology, Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
18
|
Bosso A, Di Maro A, Cafaro V, Di Donato A, Notomista E, Pizzo E. Enzymes as a Reservoir of Host Defence Peptides. Curr Top Med Chem 2021; 20:1310-1323. [PMID: 32223733 DOI: 10.2174/1568026620666200327173815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Host defence peptides (HDPs) are powerful modulators of cellular responses to various types of insults caused by pathogen agents. To date, a wide range of HDPs, from species of different kingdoms including bacteria, plant and animal with extreme diversity in structure and biological activity, have been described. Apart from a limited number of peptides ribosomally synthesized, a large number of promising and multifunctional HDPs have been identified within protein precursors, with properties not necessarily related to innate immunity, consolidating the fascinating hypothesis that proteins have a second or even multiple biological mission in the form of one or more bio-active peptides. Among these precursors, enzymes constitute certainly an interesting group, because most of them are mainly globular and characterized by a fine specific internal structure closely related to their catalytic properties and also because they are yet little considered as potential HDP releasing proteins. In this regard, the main aim of the present review is to describe a panel of HDPs, identified in all canonical classes of enzymes, and to provide a detailed description on hydrolases and their corresponding HDPs, as there seems to exist a striking link between these structurally sophisticated catalysts and their high content in cationic and amphipathic cryptic peptides.
Collapse
Affiliation(s)
- Andrea Bosso
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Alberto Di Donato
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
19
|
Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Detecting aspartate isomerization and backbone cleavage after aspartate in intact proteins by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2021; 75:71-82. [PMID: 33475951 PMCID: PMC7897204 DOI: 10.1007/s10858-020-00356-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 05/14/2023]
Abstract
The monitoring of non-enzymatic post-translational modifications (PTMs) in therapeutic proteins is important to ensure drug safety and efficacy. Together with methionine and asparagine, aspartic acid (Asp) is very sensitive to spontaneous alterations. In particular, Asp residues can undergo isomerization and peptide-bond hydrolysis, especially when embedded in sequence motifs that are prone to succinimide formation or when followed by proline (Pro). As Asp and isoAsp have the same mass, and the Asp-Pro peptide-bond cleavage may lead to an unspecific mass difference of + 18 Da under native conditions or in the case of disulfide-bridged cleavage products, it is challenging to directly detect and characterize such modifications by mass spectrometry (MS). Here we propose a 2D NMR-based approach for the unambiguous identification of isoAsp and the products of Asp-Pro peptide-bond cleavage, namely N-terminal Pro and C-terminal Asp, and demonstrate its applicability to proteins including a therapeutic monoclonal antibody (mAb). To choose the ideal pH conditions under which the NMR signals of isoAsp and C-terminal Asp are distinct from other random coil signals, we determined the pKa values of isoAsp and C-terminal Asp in short peptides. The characteristic 1H-13C chemical shift correlations of isoAsp, N-terminal Pro and C-terminal Asp under standardized conditions were used to identify these PTMs in lysozyme and in the therapeutic mAb rituximab (MabThera) upon prolonged storage under acidic conditions (pH 4-5) and 40 °C. The results show that the application of our 2D NMR-based protocol is straightforward and allows detecting chemical changes of proteins that may be otherwise unnoticed with other analytical methods.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlovic
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Christof Regl
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| |
Collapse
|
20
|
Shimamoto S, Mitsuoka N, Takahashi S, Kawakami T, Hidaka Y. Chemical Digestion of the -Asp-Cys- Sequence for Preparation of Post-translationally Modified Proteins. Protein J 2020; 39:711-716. [PMID: 33175310 DOI: 10.1007/s10930-020-09940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Numerous studies of native proteins have been reported on protein folding in this half century. Recently, post-translationally modified proteins are also focused on protein folding. However, it is still difficult to prepare such types of proteins because it requires not only the chemical but also the recombinant techniques. Native chemical ligation (NCL) is a powerful technique for producing target proteins when combined with recombinant techniques, such as expressed protein ligation (EPL). NCL basically requires an N-terminal peptide with a thioester and a C-terminal peptide which should possess a Cys residue at the N-terminus. Numerous efforts have been made to prepare N-terminal peptides carrying a thioester or a derivative thereof. However, a method for preparing C-terminal Cys-peptides with post-translational modifications has not been well developed, making it difficult to prepare such C-terminal Cys-peptides, except for chemical syntheses or enzymatic digestion. We report here on the development of a convenient technique that involves acid hydrolysis at the -Asp-Cys- sequence, to effectively obtain a C-terminal peptide fragment that can be used for any protein synthesis when combined with EPL, even under denatured conditions. Thus, this chemical digestion strategy permits the NCL strategy to be dramatically accelerated for protein syntheses in which post-translational modifications, such as glycosylation, phosphorylation, etc. are involved. In addition, this method should be useful to prepare the post-translationally modified proteins for protein folding.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| | - Natsumi Mitsuoka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Saki Takahashi
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Hidaka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
21
|
Kaur N, Dilawari R, Kaur A, Sahni G, Rishi P. Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus. Sci Rep 2020; 10:12164. [PMID: 32699335 PMCID: PMC7376037 DOI: 10.1038/s41598-020-69039-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Cryptdins are disulfide-rich cationic antimicrobial peptides secreted by mouse Paneth cells and are known to exhibit potent antimicrobial activity against various deadly pathogens. Keeping in view the extremely low yield obtained from mouse Paneth cells and high cost of synthetic peptide(s), herein, we have attempted to produce cryptdin-2 in Escherichia coli using recombinant technology. To avoid lethal effects of peptide on the host cells, cryptdin-2 was expressed as a fusion protein with thioredoxin as fusion partner which yielded 40 mg/L protein in the soluble fraction. Subsequently, mature cryptdin-2 was cleaved from the fusion partner and purified by cation exchange chromatography. Since conjugation of poly(ethylene) glycol (PEG) has been known to improve the biological properties of biomolecules, therefore, we further attempted to prepare PEG-conjugated variant of cryptdin-2 using thiol specific PEGylation. Though the antimicrobial activity of PEGylated cryptdin-2 was compromised to some extent, but it was found to have enhanced serum stability for longer duration as compared to its un-modified forms. Also, it was found to exhibit reduced toxicity to the host cells. Further, its synergism with gentamicin suggests that PEGylated cryptdin-2 can be used with conventional antibiotics, thereby indicating its possibility to be used as an adjunct therapy.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India.,CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Rahul Dilawari
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Amrita Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Girish Sahni
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
22
|
Der Torossian Torres M, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun (Camb) 2019; 55:15020-15032. [PMID: 31782426 DOI: 10.1039/c9cc07898c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the rapid spread of resistance among parasites and bacterial pathogens, antibiotic-resistant infections have drawn much attention worldwide. Consequently, there is an urgent need to develop new strategies to treat neglected diseases and drug-resistant infections. Here, we outline several new strategies that have been developed to counter pathogenic microorganisms by designing and constructing antimicrobial peptides (AMPs). In addition to traditional discovery and design mechanisms guided by chemical biology, synthetic biology and computationally-based approaches offer useful tools for the discovery and generation of bioactive peptides. We believe that the convergence of such fields, coupled with systematic experimentation in animal models, will help translate biological peptides into the clinic. The future of anti-infective therapeutics is headed towards specifically designed molecules whose form is driven by computer-based frameworks. These molecules are selective, stable, and active at therapeutic doses.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
23
|
Gaglione R, Pane K, Dell’Olmo E, Cafaro V, Pizzo E, Olivieri G, Notomista E, Arciello A. Cost-effective production of recombinant peptides in Escherichia coli. N Biotechnol 2019; 51:39-48. [DOI: 10.1016/j.nbt.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
|
24
|
Oliva R, Del Vecchio P, Grimaldi A, Notomista E, Cafaro V, Pane K, Schuabb V, Winter R, Petraccone L. Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation and domain formation. Phys Chem Chem Phys 2019; 21:3989-3998. [PMID: 30706924 DOI: 10.1039/c8cp06280c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are membrane-active peptides with a broad spectrum of activity against different pathogenic organisms and they represent promising new drugs to overcome the emergence of resistance to antibiotics in bacteria. (P)GKY20 is an antimicrobial peptide with a low hemolytic effect on eukaryotic cells and a strong antimicrobial activity especially against Gram-negative bacteria. However, its mechanism of action is still unknown. Here, we use fluorescence spectroscopy and differential scanning calorimetry combined with atomic force microscopy to characterise the binding of (P)GKY20 with model biomembranes and its effect on the membrane's microstructure and thermotropic properties. We found that (P)GKY20 selectively perturbs the bacterial-like membrane via a carpet-like mechanism employing peptide conformational changes, lipid segregation and domain formation as key steps in promoting membrane disruption. These results shed a first light on the action mechanism of (P)GKY20 and could represent an important contribution to the development of new peptides serving as antimicrobial agents.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Seyfi R, Babaeipour V, Mofid MR, Kahaki FA. Expression and production of recombinant scorpine as a potassium channel blocker protein in Escherichia coli. Biotechnol Appl Biochem 2018; 66:119-129. [DOI: 10.1002/bab.1704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Roghayyeh Seyfi
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry; Bioinformatics Research Center; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; Isfahan Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
26
|
Novel Self-Assembled Micelles Based on Cholesterol-Modified Antimicrobial Peptide (DP7) for Safe and Effective Systemic Administration in Animal Models of Bacterial Infection. Antimicrob Agents Chemother 2018; 62:AAC.00368-18. [PMID: 30201818 DOI: 10.1128/aac.00368-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023] Open
Abstract
Owing to their broad-spectrum antibacterial properties, multitarget effects, and low drug resistance, antimicrobial peptides (AMPs) have played critical roles in the clinical therapy of drug-resistant bacterial infections. However, the potential hazard of hemolysis following systemic administration has greatly limited their application. Here, we developed a novel AMP derivative, DP7-C, by modifying a formerly identified highly active AMP (DP7) with cholesterol to form an amphiphilic conjugate. The prepared DP7-C easily self-assembled into stable nanomicelles in aqueous solution. The DP7-C micelles showed lower hemolytic activity than their unconjugated counterparts toward human red blood cells and a maximum tolerated dose of 80 mg/kg of body weight in mice via intravenous injection, thus demonstrating improved safety. Moreover, by eliciting specific immunomodulatory activities in immune cells, the DP7-C micelles exerted distinct therapeutic effects in zebrafish and mouse models of infection. In conclusion, DP7-C micelles may be an excellent candidate for the treatment of bacterial infections in the clinic.
Collapse
|
27
|
Wang M, Zheng K, Lin J, Huang M, Ma Y, Li S, Luo X, Wang J. Rapid and efficient production of cecropin A antibacterial peptide in Escherichia coli by fusion with a self-aggregating protein. BMC Biotechnol 2018; 18:62. [PMID: 30290795 PMCID: PMC6173929 DOI: 10.1186/s12896-018-0473-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cecropin A (CeA), a natural cationic antimicrobial peptide, exerts potent antimicrobial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, making it an attractive candidate substitute for antimicrobials. However, the low production rate and cumbersome, expensive processes required for both its recombinant and chemical synthesis have seriously hindered the exploitation and application of CeA. Here, we utilized a short β-structured self-aggregating protein, ELK16, as a fusion partner of CeA, which allowed the efficient production of high-purity CeA antibacterial peptide with a simple inexpensive process. RESULTS In this study, three different approaches to the production of CeA peptide were investigated: an affinity tag (His-tag)-fused protein expression system (AT-HIS system), a cell-free protein expression system (CF system), and a self-assembling peptide (ELK16)-fused protein expression system (SA-ELK16 system). In the AT-HIS and CF systems, the CeA peptide was obtained with purities of 92.1% and 90.4%, respectively, using one or more affinity-chromatographic purification steps. The procedures were tedious and costly, with CeA yields of only 0.41 and 0.93 μg/mg wet cell weight, respectively. Surprisingly, in the SA-ELK16 system, about 6.2 μg/mg wet cell weight of high-purity (approximately 99.8%) CeA peptide was obtained with a simple low-cost process including steps such as centrifugation and acetic acid treatment. An antimicrobial test showed that the high-purity CeA produced in this study had the same antimicrobial activity as synthetic CeA peptide. CONCLUSIONS In this study, we designed a suitable expression system (SA-ELK16 system) for the production of the antibacterial peptide CeA and compared it with two other protein expression systems. A high yield of high-purity CeA peptide was obtained with the SA-ELK16 system, which greatly reduced the cost and time required for downstream processing. This system may provide a platform for the laboratory scale production of the CeA antibacterial peptide.
Collapse
Affiliation(s)
- Meng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Kaiwen Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Jinglian Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Minhua Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaochun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| |
Collapse
|
28
|
Pane K, Cafaro V, Avitabile A, Torres MDT, Vollaro A, De Gregorio E, Catania MR, Di Maro A, Bosso A, Gallo G, Zanfardino A, Varcamonti M, Pizzo E, Di Donato A, Lu TK, de la Fuente-Nunez C, Notomista E. Identification of Novel Cryptic Multifunctional Antimicrobial Peptides from the Human Stomach Enabled by a Computational-Experimental Platform. ACS Synth Biol 2018; 7:2105-2115. [PMID: 30124040 DOI: 10.1021/acssynbio.8b00084] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel approaches are needed to combat antibiotic resistance. Here, we describe a computational-experimental framework for the discovery of novel cryptic antimicrobial peptides (AMPs). The computational platform, based on previously validated antimicrobial scoring functions, indicated the activation peptide of pepsin A, the main human stomach protease, and its N- and C-terminal halves as antimicrobial peptides. The three peptides from pepsinogen A3 isoform were prepared in a recombinant form using a fusion carrier specifically developed to express toxic peptides in Escherichia coli. Recombinant pepsinogen A3-derived peptides proved to be wide-spectrum antimicrobial agents with MIC values in the range 1.56-50 μM (1.56-12.5 μM for the whole activation peptide). Moreover, the activation peptide was bactericidal at pH 3.5 for relevant foodborne pathogens, suggesting that this new class of previously unexplored AMPs may contribute to microbial surveillance within the human stomach. The peptides showed no toxicity toward human cells and exhibited anti-infective activity in vivo, reducing by up to 4 orders of magnitude the bacterial load in a mouse skin infection model. These peptides thus represent a promising new class of antibiotics. We envision that computationally guided data mining approaches such as the one described here will lead to the discovery of antibiotics from previously unexplored sources.
Collapse
Affiliation(s)
- Katia Pane
- IRCCS SDN, Via E. Gianturco, 113, 80143 Naples, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Angela Avitabile
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Marcelo Der Torossian Torres
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples 80131, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples 80131, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples 80131, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Naples, Vanvitelli, Caserta 81100, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Giovanni Gallo
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Alberto Di Donato
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, Naples 80126, Italy
| |
Collapse
|
29
|
Zanfardino A, Bosso A, Gallo G, Pistorio V, Di Napoli M, Gaglione R, Dell'Olmo E, Varcamonti M, Notomista E, Arciello A, Pizzo E. Human apolipoprotein E as a reservoir of cryptic bioactive peptides: The case of ApoE 133-167. J Pept Sci 2018; 24:e3095. [PMID: 29900637 DOI: 10.1002/psc.3095] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 11/06/2022]
Abstract
Bioactive peptides derived from the receptor-binding region of human apolipoprotein E have previously been reported. All these peptides, encompassing fragments of this region or designed on the basis of short repeated cationic sequences identified in the same region, show toxic activities against a broad spectrum of bacteria and interesting immunomodulatory effects. However, the ability of these molecules to exert antibiofilm properties has not been described so far. In the present work, we report the characterization of a novel peptide, corresponding to residues 133 to 167 of human apolipoprotein E, here named ApoE (133-167). This peptide, besides presenting interesting properties comparable with those reported for other ApoE-derived peptides, such as a direct killing activity against a broad spectrum of bacteria or the ability to downregulate lipopolysaccharide-induced cytokine release, is also endowed with significant antibiofilm properties. Indeed, the peptide is able to strongly affect the formation of the extracellular matrix and also the viability of encapsulated bacteria. Noteworthy, ApoE (133-167) is not toxic toward human and murine cell lines and is able to assume ordered conformations in the presence of membrane mimicking agents. Taken together, collected evidences about biological and structural properties of ApoE (133-167) open new perspectives in the design of therapeutic agents based on human-derived bioactive peptides.
Collapse
Affiliation(s)
- Anna Zanfardino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Giovanni Gallo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Eliana Dell'Olmo
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,INBB-Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| |
Collapse
|
30
|
Oliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, D'Errico G, Pavone V, Lombardi A, Del Vecchio P, Notomista E, Nastri F, Petraccone L. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep 2018; 8:8888. [PMID: 29892005 PMCID: PMC5995839 DOI: 10.1038/s41598-018-27231-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are a promising alternative to treat multidrug-resistant bacteria, which have developed resistance to all the commonly used antimicrobial, and therefore represent a serious threat to human health. One of the major drawbacks of CAMPs is their sensitivity to proteases, which drastically limits their half-life. Here we describe the design and synthesis of three nine-residue CAMPs, which showed high stability in serum and broad spectrum antimicrobial activity. As for all peptides a very low selectivity between bacterial and eukaryotic cells was observed, we performed a detailed biophysical characterization of the interaction of one of these peptides with liposomes mimicking bacterial and eukaryotic membranes. Our results show a surface binding on the DPPC/DPPG vesicles, coupled with lipid domain formation, and, above a threshold concentration, a deep insertion into the bilayer hydrophobic core. On the contrary, mainly surface binding of the peptide on the DPPC bilayer was observed. These observed differences in the peptide interaction with the two model membranes suggest a divergence in the mechanisms responsible for the antimicrobial activity and for the observed high toxicity toward mammalian cell lines. These results could represent an important contribution to unravel some open and unresolved issues in the development of synthetic CAMPs.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Katia Pane
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini, 5, I-80131, Naples, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy.
| |
Collapse
|
31
|
Novel bioactive peptides from PD-L1/2, a type 1 ribosome inactivating protein from Phytolacca dioica L. Evaluation of their antimicrobial properties and anti-biofilm activities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1425-1435. [PMID: 29684330 DOI: 10.1016/j.bbamem.2018.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023]
Abstract
Antimicrobial peptides, also called Host Defence Peptides (HDPs), are effectors of innate immune response found in all living organisms. In a previous report, we have identified by chemical fragmentation, and characterized the first cryptic antimicrobial peptide in PD-L4, a type 1 ribosome inactivating protein (RIP) from leaves of Phytolacca dioica L. We applied a recently developed bioinformatic approach to a further member of the differently expressed pool of type 1 RIPs from P. dioica (PD-L1/2), and identified two novel putative cryptic HDPs in its N-terminal domain. These two peptides, here named IKY31 and IKY23, exhibit antibacterial activities against planktonic bacterial cells and, interestingly, significant anti-biofilm properties against two Gram-negative strains. Here, we describe that PD-L1/2 derived peptides are able to induce a strong dose-dependent reduction in biofilm biomass, affect biofilm thickness and, in the case of IKY31, interfere with cell-to-cell adhesion, likely by affecting biofilm structural components. In addition to these findings, we found that both PD-L1/2 derived peptides are able to assume stable helical conformations in the presence of membrane mimicking agents (SDS and TFE) and intriguingly beta structures when incubated with extracellular bacterial wall components (LPS and alginate). Overall, the data collected in this work provide further evidence of the importance of cryptic peptides derived from type 1 RIPs in host/pathogen interactions, especially under pathophysiological conditions induced by biofilm forming bacteria. This suggests a new possible role of RIPs as precursors of antimicrobial and anti-biofilm agents, likely released upon defensive proteolytic processes, which may be involved in plant homeostasis.
Collapse
|
32
|
New trends in aggregating tags for therapeutic protein purification. Biotechnol Lett 2018; 40:745-753. [PMID: 29605942 DOI: 10.1007/s10529-018-2543-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
The rapid growth of the therapeutic protein market calls for more efficient purification methods. Various aggregating tags have recently emerged as simple, fast, cost-effective and column-free technologies for protein (and peptide) purification. In general, these column-free protein purification technologies involve the use of aggregating tags that induce the target protein into insoluble aggregates. These aggregates can be easily separated from soluble impurities and the target protein or peptide is then liberated by a cleavage process. This review summarizes the current state-of-the-art in using aggregating tags for protein purification. The methods are here categorized as follows: (1) tags that allow soluble expression of target protein in vivo and induce aggregation in vitro; (2) tags that induce soluble expression and self-assembling of target protein on insoluble biological polyester beads in vivo; (3) tags that induce formation of inactive aggregates in vivo; (4) tags that induce formation of active aggregates in vivo.
Collapse
|
33
|
Pane K, Verrillo M, Avitabile A, Pizzo E, Varcamonti M, Zanfardino A, Di Maro A, Rega C, Amoresano A, Izzo V, Di Donato A, Cafaro V, Notomista E. Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue. Bioconjug Chem 2018. [DOI: 10.1021/acs.bioconjchem.8b00083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Mariavittoria Verrillo
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, Portici 80055, Italy
| | | | | | | | | | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Camilla Rega
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | | | - Viviana Izzo
- Department of Medicine and Surgery, Università degli Studi di Salerno, via S. Allende, Baronissi 84081, Italy
| | | | | | | |
Collapse
|
34
|
Hoffmann D, Ebrahimi M, Gerlach D, Salzig D, Czermak P. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins. Crit Rev Biotechnol 2017; 38:729-744. [DOI: 10.1080/07388551.2017.1398134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Hoffmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Doreen Gerlach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
35
|
Recombinant Production and Antimicrobial Assessment of Beta Casein- IbAMP4 as a Novel Antimicrobial Polymeric Protein and its Synergistic Effects with Thymol. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9605-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Fahimirad S, Abtahi H, Razavi SH, Alizadeh H, Ghorbanpour M. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol. Molecules 2017; 22:molecules22060822. [PMID: 28561787 PMCID: PMC6152712 DOI: 10.3390/molecules22060822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023] Open
Abstract
Accelerating emergence of antimicrobial resistance among food pathogens and consumers’ increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in milk with a high polymeric film production capability—as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3), and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope) results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak 38181-76941, Iran
- Correspondence: ; Tel.: +98-913-114-6154
| | - Seyed Hadi Razavi
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Houshang Alizadeh
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 3815688349, Iran;
| |
Collapse
|
37
|
Gaglione R, Dell'Olmo E, Bosso A, Chino M, Pane K, Ascione F, Itri F, Caserta S, Amoresano A, Lombardi A, Haagsman HP, Piccoli R, Pizzo E, Veldhuizen EJA, Notomista E, Arciello A. Novel human bioactive peptides identified in Apolipoprotein B: Evaluation of their therapeutic potential. Biochem Pharmacol 2017; 130:34-50. [PMID: 28131846 DOI: 10.1016/j.bcp.2017.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
Host defence peptides (HDPs) are short, cationic amphipathic peptides that play a key role in the response to infection and inflammation in all complex life forms. It is increasingly emerging that HDPs generally have a modest direct activity against a broad range of microorganisms, and that their anti-infective properties are mainly due to their ability to modulate the immune response. Here, we report the recombinant production and characterization of two novel HDPs identified in human Apolipoprotein B (residues 887-922) by using a bioinformatics method recently developed by our group. We focused our attention on two variants of the identified HDP, here named r(P)ApoBL and r(P)ApoBS, 38- and 26-residue long, respectively. Both HDPs were found to be endowed with a broad-spectrum antimicrobial activity while they show neither toxic nor haemolytic effects towards eukaryotic cells. Interestingly, both HDPs were found to display a significant anti-biofilm activity, and to act in synergy with either commonly used antibiotics or EDTA. The latter was selected for its ability to affect bacterial outer membrane permeability, and to sensitize bacteria to several antibiotics. Circular dichroism analyses showed that SDS, TFE, and LPS significantly alter r(P)ApoBL conformation, whereas slighter or no significant effects were detected in the case of r(P)ApoBS peptide. Interestingly, both ApoB derived peptides were found to elicit anti-inflammatory effects, being able to mitigate the production of pro-inflammatory interleukin-6 and nitric oxide in LPS induced murine macrophages. It should also be emphasized that r(P)ApoBL peptide was found to play a role in human keratinocytes wound closure in vitro. Altogether, these findings open interesting perspectives on the therapeutic use of the herein identified HDPs.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Eliana Dell'Olmo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Andrea Bosso
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Katia Pane
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Flora Ascione
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Francesco Itri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Sergio Caserta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; CEINGE Biotecnologie Avanzate, Via Sergio Pansini, 5, 80131 Naples, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Tecchio, 80, 80125 Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angelina Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Edwin J A Veldhuizen
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy.
| |
Collapse
|
38
|
Hunt JP, Yang SO, Wilding KM, Bundy BC. The growing impact of lyophilized cell-free protein expression systems. Bioengineered 2016; 8:325-330. [PMID: 27791452 DOI: 10.1080/21655979.2016.1241925] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently reported shelf-stable, on-demand protein synthesis platforms are enabling new possibilities in biotherapeutics, biosensing, biocatalysis, and high throughput protein expression. Lyophilized cell-free protein expression systems not only overcome cold-storage limitations, but also enable stockpiling for on-demand synthesis and completely sterilize the protein synthesis platform. Recently reported high-yield synthesis of cytotoxic protein Onconase from lyophilized E. coli extract preparations demonstrates the utility of lyophilized cell-free protein expression and its potential for creating on-demand biotherapeutics, vaccines, biosensors, biocatalysts, and high throughput protein synthesis.
Collapse
Affiliation(s)
- J Porter Hunt
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| | - Seung Ook Yang
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| | - Kristen M Wilding
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| | - Bradley C Bundy
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| |
Collapse
|
39
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
40
|
Pane K, Sgambati V, Zanfardino A, Smaldone G, Cafaro V, Angrisano T, Pedone E, Di Gaetano S, Capasso D, Haney EF, Izzo V, Varcamonti M, Notomista E, Hancock REW, Di Donato A, Pizzo E. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J 2016; 283:2115-31. [PMID: 27028511 DOI: 10.1111/febs.13725] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/28/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
Abstract
Cationic antimicrobial peptides (AMPs) possess fast and broad-spectrum activity against both Gram-negative and Gram-positive bacteria, as well as fungi. It has become increasingly evident that many AMPs, including those that derive from fragments of host proteins, are multifunctional and able to mediate various immunomodulatory functions and angiogenesis. Among these, synthetic apolipoprotein-derived peptides are safe and well tolerated in humans and have emerged as promising candidates in the treatment of various inflammatory conditions. Here, we report the characterization of a new AMP corresponding to residues 133-150 of human apolipoprotein E. Our results show that this peptide, produced either by chemical synthesis or by recombinant techniques in Escherichia coli, possesses a broad-spectrum antibacterial activity. As shown for several other AMPs, ApoE (133-150) is structured in the presence of TFE and of membrane-mimicking agents, like SDS, or bacterial surface lipopolysaccharide (LPS), and an anionic polysaccharide, alginate, which mimics anionic capsular exo-polysaccharides of several pathogenic microorganisms. Noteworthy, ApoE (133-150) is not toxic toward several human cell lines and triggers a significant innate immune response, assessed either as decreased expression levels of proinflammatory cytokines in differentiated THP-1 monocytic cells or by the induction of chemokines released from PBMCs. This novel bioactive AMP also showed a significant anti-inflammatory effect on human keratinocytes, suggesting its potential use as a model for designing new immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Katia Pane
- Department of Biology, University of Naples Federico II, Naples, Italy.,Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Valeria Sgambati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, C.N.R., Naples, Italy
| | - Domenica Capasso
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Evan F Haney
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Viviana Izzo
- Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Alberto Di Donato
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|