1
|
Anurogo D, Liu CL, Chang YC, Chang YH, Qiu JT. Discovery of differentially expressed proteins for CAR-T therapy of ovarian cancers with a bioinformatics analysis. Aging (Albany NY) 2024; 16:11409-11433. [PMID: 39033780 PMCID: PMC11315388 DOI: 10.18632/aging.206024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Target antigens are crucial for developing chimeric antigen receptor (CAR)-T cells, but their application to ovarian cancers is limited. This study aimed to identify potential genes as CAR-T-cell antigen candidates for ovarian cancers. A differential gene expression analysis was performed on ovarian cancer samples from four datasets obtained from the GEO datasets. Functional annotation, pathway analysis, protein localization, and gene expression analysis were conducted using various datasets and tools. An oncogenicity analysis and network analysis were also performed. In total, 153 differentially expressed genes were identified in ovarian cancer samples, with 60 differentially expressed genes expressing plasma membrane proteins suitable for CAR-T-cell antigens. Among them, 21 plasma membrane proteins were predicted to be oncogenes in ovarian cancers, with nine proteins playing crucial roles in the network. Key genes identified in the oncogenic pathways of ovarian cancers included MUC1, CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3, suggesting them as recommended antigens for CAR-T-cell therapy for ovarian cancers. This study sheds light on potential targets for immunotherapy in ovarian cancers.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, Indonesia
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - J. Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
2
|
Soltantoyeh T, Akbari B, Shahosseini Z, Mirzaei HR, Hadjati J. Simultaneous targeting of Tim3 and A2a receptors modulates MSLN-CAR T cell antitumor function in a human cervical tumor xenograft model. Front Immunol 2024; 15:1362904. [PMID: 38855110 PMCID: PMC11157064 DOI: 10.3389/fimmu.2024.1362904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of hematological malignancies. However, its efficacy in solid tumors is limited by the immunosuppressive tumor microenvironment that compromises CAR T cell antitumor function in clinical settings. To overcome this challenge, researchers have investigated the potential of inhibiting specific immune checkpoint receptors, including A2aR (Adenosine A2 Receptor) and Tim3 (T cell immunoglobulin and mucin domain-containing protein 3), to enhance CAR T cell function. In this study, we evaluated the impact of genetic targeting of Tim3 and A2a receptors on the antitumor function of human mesothelin-specific CAR T cells (MSLN-CAR) in vitro and in vivo. Methods Second-generation anti-mesothelin CAR T cells were produced using standard cellular and molecular techniques. A2aR-knockdown and/or Tim3- knockdown anti-mesothelin-CAR T cells were generated using shRNA-mediated gene silencing. The antitumor function of CAR T cells was evaluated by measuring cytokine production, proliferation, and cytotoxicity in vitro through coculture with cervical cancer cells (HeLa cell line). To evaluate in vivo antitumor efficacy of manufactured CAR T cells, tumor growth and mouse survival were monitored in a human cervical cancer xenograft model. Results In vitro experiments demonstrated that knockdown of A2aR alone or in combination with Tim3 significantly improved CAR T cell proliferation, cytokine production, and cytotoxicity in presence of tumor cells in an antigen-specific manner. Furthermore, in the humanized xenograft model, both double knockdown CAR T cells and control CAR T cells could effectively control tumor growth. However, single knockdown CAR T cells were associated with reduced survival in mice. Conclusion These findings highlight the potential of concomitant genetic targeting of Tim3 and A2a receptors to augment the efficacy of CAR T cell therapy in solid tumors. Nevertheless, caution should be exercised in light of our observation of decreased survival in mice treated with single knockdown MSLN-CAR T cells, emphasizing the need for careful efficacy considerations.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahosseini
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yuan Y, Li J, Chen J, Han L, Wang L, Yue Y, Liu J, Zhang B, Yuan Y, Wu M, Bian Y, Xie Y, Zhu J. Characterization of a novel T cell-engaging bispecific antibody for elimination of L1CAM-positive tumors. Biomed Pharmacother 2024; 174:116565. [PMID: 38603888 DOI: 10.1016/j.biopha.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yuan Yuan
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Han
- Jecho Institute, Co. Ltd, Shanghai 200241, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueqing Xie
- Jecho Institute, Co. Ltd, Shanghai 200241, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutical Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Institute, Co. Ltd, Shanghai 200241, China.
| |
Collapse
|
4
|
Domínguez-Prieto V, Qian S, Villarejo-Campos P, Meliga C, González-Soares S, Guijo Castellano I, Jiménez-Galanes S, García-Arranz M, Guadalajara H, García-Olmo D. Understanding CAR T cell therapy and its role in ovarian cancer and peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1104547. [PMID: 37274261 PMCID: PMC10233107 DOI: 10.3389/fonc.2023.1104547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Ovarian cancer is the seventh most common cancer worldwide in women and the most lethal gynecologic malignancy due to the lack of accurate screening tools for early detection and late symptom onset. The absence of early-onset symptoms often delays diagnosis until the disease has progressed to advanced stages, frequently when there is peritoneal involvement. Although ovarian cancer is a heterogeneous malignancy with different histopathologic types, treatment for advanced tumors is usually based on chemotherapy and cytoreduction surgery. CAR T cells have shown promise for the treatment of hematological malignancies, though their role in treating solid tumors remains unclear. Outcomes are less favorable owing to the low capacity of CAR T cells to migrate to the tumor site, the influence of the protective tumor microenvironment, and the heterogeneity of surface antigens on tumor cells. Despite these results, CAR T cells have been proposed as a treatment approach for peritoneal carcinomatosis from colorectal and gastric origin. Local intraperitoneal administration of CAR T cells has been found to be superior to systemic administration, as this route is associated with increased tumor reduction, a more durable effect, protection against local relapse and distant metastases, and fewer systemic adverse effects. In this article we review the application of CAR T cells for the treatment of ovarian cancer and peritoneal carcinomatosis from ovarian cancer.
Collapse
Affiliation(s)
| | - Siyuan Qian
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | - Cecilia Meliga
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Sara González-Soares
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | | | | | - Mariano García-Arranz
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
| | - Héctor Guadalajara
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Damián García-Olmo
- Department of Surgery, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
| |
Collapse
|
5
|
Wiedenhoefer R, Schmoeckel E, Grube M, Sulyok M, Pasternak I, Beschorner C, Greif K, Brucker S, Mayr D, Kommoss S, Fend F, Staebler A, Fischer AK. L1-CAM in Mucinous Ovarian Carcinomas and Borderline Tumors: Impact on Tumor Recurrence and Potential Role in Tumor Progression. Am J Surg Pathol 2023; 47:558-567. [PMID: 36852510 DOI: 10.1097/pas.0000000000002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Mucinous ovarian carcinoma (MOC) is a rare histotype of primary ovarian carcinoma. Frequent pathogenic molecular alterations include mutations in KRAS , TP53 , and overexpression of human epidermal growth factor receptor 2, but without having prognostic relevance. As L1-CAM (cell adhesion molecule) has previously shown prognostic relevance in other epithelial tumors of the female genital tract, we analyzed whether L1-CAM expression affected MOC prognosis. In addition, we investigated L1-CAM expression in mucinous borderline tumors (MBOTs) with and without adjacent MOC to identify its potential role in the pathogenesis of MOC. We examined a well-characterized collective of 39 MOCs by immunohistochemistry and compared their expression with clinicopathologic data. L1-CAM positivity was defined as any (even single-cell) positivity. Furthermore, we compared the L1-CAM expression in 20 MBOT regions adjacent to a MOC with that of 15 pure MBOTs. L1-CAM expression in MOC was significantly associated with recurrence, independent of tumor stage. Overall, 7/20 positive cases recurred versus 0/19 L1-CAM-negative cases ( P =0.032), showing a significant difference in time to progression. Furthermore, the presence of at least 1 defined molecular alteration (L1-CAM, aberrant p53, or human epidermal growth factor receptor 2) was found more frequently in the MBOT regions adjacent to a MOC (14/20) than in pure MBOTs (3/15) ( P =0.024). Expression of the tumor marker L1-CAM is frequent (51%) in MOC and is associated with tumor recurrence. The lack of L1-CAM may serve to characterize cases with a low risk of recurrence. Furthermore, the presence of specific molecular alterations in MBOTs is associated with adjacent carcinomas and may define potential pathways in tumor progression.
Collapse
Affiliation(s)
| | | | - Marcel Grube
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | | | - Iana Pasternak
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | | | | | - Sara Brucker
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | - Doris Mayr
- Institute of Pathology, LMU Munich, Munich, Germany
| | - Stefan Kommoss
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | | | | | | |
Collapse
|
6
|
Ornella MSC, Badrinath N, Kim KA, Kim JH, Cho E, Hwang TH, Kim JJ. Immunotherapy for Peritoneal Carcinomatosis: Challenges and Prospective Outcomes. Cancers (Basel) 2023; 15:cancers15082383. [PMID: 37190310 DOI: 10.3390/cancers15082383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Peritoneal metastasis, also known as peritoneal carcinomatosis (PC), is a refractory cancer that is typically resistant to conventional therapies. The typical treatment for PC is a combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Recently, research in this area has seen significant advances, particularly in immunotherapy as an alternative therapy for PC, which is very encouraging. Catumaxomab is a trifunctional antibody intraperitoneal (IP) immunotherapy authorized in Europe that can be used to diminish malignant ascites by targeting EpCAM. Intraperitoneal (IP) immunotherapy breaks immunological tolerance to treat peritoneal illness. Increasing T-cell responses and vaccination against tumor-associated antigens are two methods of treatment. CAR-T cells, vaccine-based therapeutics, dendritic cells (DCs) in combination with pro-inflammatory cytokines and NKs, adoptive cell transfer, and immune checkpoint inhibitors are promising treatments for PC. Carcinoembryonic antigen-expressing tumors are suppressed by IP administration of CAR-T cells. This reaction was strengthened by anti-PD-L1 or anti-Gr1. When paired with CD137 co-stimulatory signaling, CAR-T cells for folate receptor cancers made it easier for T-cell tumors to find their way to and stay alive in the body.
Collapse
Affiliation(s)
- Mefotse Saha Cyrelle Ornella
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Narayanasamy Badrinath
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Kyeong-Ae Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jung Hee Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Euna Cho
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jae-Joon Kim
- Division of Hematology & Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Espinosa-Cotton M, Guo HF, Tickoo SK, Cheung NKV. Identification of immunotherapy and radioimmunotherapy targets on desmoplastic small round cell tumors. Front Oncol 2023; 13:1104693. [PMID: 37091153 PMCID: PMC10119788 DOI: 10.3389/fonc.2023.1104693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Background Development of successful antibody-based immunotherapeutic and radioimmunotherapeutic strategies rely on the identification of cell surface tumor-associated antigens (TAA) with restricted expression on normal tissues. Desmoplastic small round cell tumor (DSRCT) is a rare and generally neglected malignancy that primarily affects adolescent and young adult males. New therapies capable of treating disseminated disease are needed for DSRCT, which is often widespread at diagnosis. Methods We used immunohistochemistry (IHC) on fresh frozen surgical specimens and patient-derived xenograft (PDX) tumors and flow cytometry on DSRCT cell lines to evaluate expression of TAAs in these tumors. In vitro cytotoxicity assays were used to evaluate the efficacy of T cell-engaging bispecific antibodies (T-BsAbs) directed at these targets. In vivo, we used an intraperitoneal xenograft mouse model of DSRCT to test T-BsAbs against several TAAs. Results In DSRCT specimens we found widespread expression of B7-H3, EGFR, GD2, HER2, mesothelin, and polysialic acid, clinical targets for which specific antibody therapeutics are available. The expression of B7-H3, EGFR, HER2, and mesothelin was confirmed on the cell surface of DSRCT cell lines. In vitro cytotoxicity assays confirmed the efficacy of T cell-engaging bispecific antibodies (T-BsAbs) directed at these targets against DSRCT cells. Remarkably, a HER2xCD3 T-BsAb was capable of completely shrinking established tumors in an intraperitoneal mouse model of DSRCT. Conclusions We propose that these TAAs should be further investigated in preclinical models as targets for immunotherapy and radioimmunotherapy with the hope of providing a rationale to extend these therapies to patients with advanced DSRCT.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Satish K. Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
8
|
Wang L, Chen X, Zhang L, Niu B, Li L, Sun Y, Yuan X. CAR cell design strategies in solid tumors. Int Immunopharmacol 2022; 113:109345. [DOI: 10.1016/j.intimp.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
9
|
Rao A, Stewart A, Eljalby M, Ramakrishnan P, Anderson LD, Awan FT, Chandra A, Vallabhaneni S, Zhang K, Zaha VG. Cardiovascular disease and chimeric antigen receptor cellular therapy. Front Cardiovasc Med 2022; 9:932347. [PMID: 36211558 PMCID: PMC9538377 DOI: 10.3389/fcvm.2022.932347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR T) therapy is a revolutionary personalized therapy that has significantly impacted the treatment of patients with hematologic malignancies refractory to other therapies. Cytokine release syndrome (CRS) is a major side effect of CAR T therapy that can occur in 70–90% of patients, with roughly 40% of patients at grade 2 or higher. CRS can cause an intense inflammatory state leading to cardiovascular complications, including troponin elevation, arrhythmias, hemodynamic instability, and depressed left ventricular systolic function. There are currently no standardized guidelines for the management of cardiovascular complications due to CAR T therapy, but systematic practice patterns are emerging. In this review, we contextualize the history and indications of CAR T cell therapy, side effects related to this treatment, strategies to optimize the cardiovascular health prior to CAR T and the management of cardiovascular complications related to CRS. We analyze the existing data and discuss potential future approaches.
Collapse
Affiliation(s)
- Anjali Rao
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Andrew Stewart
- Parkland Health and Hospital System, Dallas, TX, United States
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Mahmoud Eljalby
- Parkland Health and Hospital System, Dallas, TX, United States
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Larry D. Anderson
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Myeloma, Waldenstrom's, and Amyloidosis Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| | - Farrukh T. Awan
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Alvin Chandra
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Srilakshmi Vallabhaneni
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Kathleen Zhang
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Vlad G. Zaha
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
- *Correspondence: Vlad G. Zaha
| |
Collapse
|
10
|
Wei GX, Du Y, Zhou YW, Li LJ, Qiu M. Peritoneal carcinomatosis with intraperitoneal immunotherapy: current treatment options and perspectives. Expert Rev Gastroenterol Hepatol 2022; 16:851-861. [PMID: 36107723 DOI: 10.1080/17474124.2022.2125866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peritoneal carcinomatosis (PC) is an advanced malignancy that is not sensitive to systemic conventional chemotherapy. Treatment options for PC are usually palliative rather than curative. Cytoreductive surgery and hyperthermic intraperitoneal (IP) chemotherapy are associated with limited efficacy in patients with PC. However, the peritoneum can produce effective immunity by inducing T-lymphocyte recruitment and proliferation, and the unique immune environment of the peritoneum provides the rationale for IP immunotherapy in PC. AREAS COVERED The authors retrieved relevant documents of IP immunotherapy for PC from PubMed and Medline. This review elaborates on the knowledge of the peritoneal immune microenvironment and IP immunotherapy for PC covering immune stimulators, radioimmunotherapy, catumaxomab, cancer vaccines, chimeric antigen receptor (CAR)-T cells, and immune checkpoint inhibitors. EXPERT OPINION The prognosis of PC is poor. However, the peritoneal cavity is a unique immune compartment with abundant immune cells which can produce effective immunity. IP immunotherapy may be a promising strategy in patients with PC.
Collapse
Affiliation(s)
- Gui-Xia Wei
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Du
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lin-Juan Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Guerra E, Di Pietro R, Basile M, Trerotola M, Alberti S. Cancer-Homing CAR-T Cells and Endogenous Immune Population Dynamics. Int J Mol Sci 2021; 23:405. [PMID: 35008832 PMCID: PMC8745734 DOI: 10.3390/ijms23010405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) therapy is based on patient blood-derived T cells and natural killer cells, which are engineered in vitro to recognize a target antigen in cancer cells. Most CAR-T recognize target antigens through immunoglobulin antigen-binding regions. Hence, CAR-T cells do not require the major histocompatibility complex presentation of a target peptide. CAR-T therapy has been tremendously successful in the treatment of leukemias. On the other hand, the clinical efficacy of CAR-T cells is rarely detected against solid tumors. CAR-T-cell therapy of cancer faces many hurdles, starting from the administration of engineered cells, wherein CAR-T cells must encounter the correct chemotactic signals to traffic to the tumor in sufficient numbers. Additional obstacles arise from the hostile environment that cancers provide to CAR-T cells. Intense efforts have gone into tackling these pitfalls. However, we argue that some CAR-engineering strategies may risk missing the bigger picture, i.e., that a successful CAR-T-cell therapy must efficiently intertwine with the complex and heterogeneous responses that the body has already mounted against the tumor. Recent findings lend support to this model.
Collapse
Affiliation(s)
- Emanuela Guerra
- Center for Advanced Studies and Technology (CAST), Laboratory of Cancer Pathology, University “G. d’Annunzio”, 66100 Chieti, Italy; (E.G.); (M.T.)
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, University “G. d’Annunzio”, 66100 Chieti, Italy; (R.D.P.); (M.B.)
| | - Mariangela Basile
- Department of Medicine and Aging Sciences, Section of Biomorphology, University “G. d’Annunzio”, 66100 Chieti, Italy; (R.D.P.); (M.B.)
| | - Marco Trerotola
- Center for Advanced Studies and Technology (CAST), Laboratory of Cancer Pathology, University “G. d’Annunzio”, 66100 Chieti, Italy; (E.G.); (M.T.)
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
12
|
Masoumi J, Jafarzadeh A, Abdolalizadeh J, Khan H, Philippe J, Mirzaei H, Mirzaei HR. Cancer stem cell-targeted chimeric antigen receptor (CAR)-T cell therapy: Challenges and prospects. Acta Pharm Sin B 2021; 11:1721-1739. [PMID: 34386318 PMCID: PMC8343118 DOI: 10.1016/j.apsb.2020.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) with their self-renewal ability are accepted as cells which initiate tumors. CSCs are regarded as interesting targets for novel anticancer therapeutic agents because of their association with tumor recurrence and resistance to conventional therapies, including radiotherapy and chemotherapy. Chimeric antigen receptor (CAR)-T cells are engineered T cells which express an artificial receptor specific for tumor associated antigens (TAAs) by which they accurately target and kill cancer cells. In recent years, CAR-T cell therapy has shown more efficiency in cancer treatment, particularly regarding blood cancers. The expression of specific markers such as TAAs on CSCs in varied cancer types makes them as potent tools for CAR-T cell therapy. Here we review the CSC markers that have been previously targeted with CAR-T cells, as well as the CSC markers that may be used as possible targets for CAR-T cell therapy in the future. Furthermore, we will detail the most important obstacles against CAR-T cell therapy and suggest solutions.
Collapse
Affiliation(s)
- Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 77181759111, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Jeandet Philippe
- Research Unit “Induced Resistance and Plant Bioprotection”, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences University of Reims Champagne-Ardenne, BP 1039, 51687, Reims Cedex 2, France
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8713781147, Iran
- Corresponding authors. Tel./fax: +98 31 55540022; Tel./fax: +98 21 66419536.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Corresponding authors. Tel./fax: +98 31 55540022; Tel./fax: +98 21 66419536.
| |
Collapse
|
13
|
Soltantoyeh T, Akbari B, Karimi A, Mahmoodi Chalbatani G, Ghahri-Saremi N, Hadjati J, Hamblin MR, Mirzaei HR. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021; 10:cells10061450. [PMID: 34207884 PMCID: PMC8230324 DOI: 10.3390/cells10061450] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is the most aggressive and difficult to treat type of skin cancer, with a survival rate of less than 10%. Metastatic melanoma has conventionally been considered very difficult to treat; however, recent progress in understanding the cellular and molecular mechanisms involved in the tumorigenesis, metastasis and immune escape have led to the introduction of new therapies. These include targeted molecular therapy and novel immune-based approaches such as immune checkpoint blockade (ICB), tumor-infiltrating lymphocytes (TILs), and genetically engineered T-lymphocytes such as chimeric antigen receptor (CAR) T cells. Among these, CAR T cell therapy has recently made promising strides towards the treatment of advanced hematological and solid cancers. Although CAR T cell therapy might offer new hope for melanoma patients, it is not without its shortcomings, which include off-target toxicity, and the emergence of resistance to therapy (e.g., due to antigen loss), leading to eventual relapse. The present review will not only describe the basic steps of melanoma metastasis, but also discuss how CAR T cells could treat metastatic melanoma. We will outline specific strategies including combination approaches that could be used to overcome some limitations of CAR T cell therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa;
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
- Correspondence: ; Tel.: +98-21-64053268; Fax: +98-21-66419536
| |
Collapse
|
14
|
Chimeric Antigen Receptor Design and Efficacy in Ovarian Cancer Treatment. Int J Mol Sci 2021; 22:ijms22073495. [PMID: 33800608 PMCID: PMC8037934 DOI: 10.3390/ijms22073495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023] Open
Abstract
Our increased understanding of tumour biology gained over the last few years has led to the development of targeted molecular therapies, e.g., vascular endothelial growth factor A (VEGF-A) antagonists, poly[ADP-ribose] polymerase 1 (PARP1) inhibitors in hereditary breast and ovarian cancer syndrome (BRCA1 and BRCA2 mutants), increasing survival and improving the quality of life. However, the majority of ovarian cancer (OC) patients still do not have access to targeted molecular therapies that would be capable of controlling their disease, especially resistant or relapsed. Chimeric antigen receptors (CARs) are recombinant receptor constructs located on T lymphocytes or other immune cells that change its specificity and functions. Therefore, in a search for a successful solid tumour therapy using CARs the specific cell surface antigens identification is crucial. Numerous in vitro and in vivo studies, as well as studies on humans, prove that targeting overexpressed molecules, such as mucin 16 (MUC16), annexin 2 (ANXA2), receptor tyrosine-protein kinase erbB-2 (HER2/neu) causes high tumour cells toxicity and decreased tumour burden. CARs are well tolerated, side effects are minimal and they inhibit disease progression. However, as OC is heterogenic in its nature with high mutation diversity and overexpression of different receptors, there is a need to consider an individual approach to treat this type of cancer. In this publication, we would like to present the history and status of therapies involving the CAR T cells in treatment of OC tumours, suggest potential T cell-intrinsic determinants of response and resistance as well as present extrinsic factors impacting the success of this approach.
Collapse
|
15
|
Ning F, Cole CB, Annunziata CM. Driving Immune Responses in the Ovarian Tumor Microenvironment. Front Oncol 2021; 10:604084. [PMID: 33520713 PMCID: PMC7843421 DOI: 10.3389/fonc.2020.604084] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the leading cause of death among gynecological neoplasms, with an estimated 14,000 deaths in 2019. First-line treatment options center around a taxane and platinum-based chemotherapy regimen. However, many patients often have recurrence due to late stage diagnoses and acquired chemo-resistance. Recent approvals for bevacizumab and poly (ADP-ribose) polymerase inhibitors have improved treatment options but effective treatments are still limited in the recurrent setting. Immunotherapy has seen significant success in hematological and solid malignancies. However, effectiveness has been limited in ovarian cancer. This may be due to a highly immunosuppressive tumor microenvironment and a lack of tumor-specific antigens. Certain immune cell subsets, such as regulatory T cells and tumor-associated macrophages, have been implicated in ovarian cancer. Consequently, therapies augmenting the immune response, such as immune checkpoint inhibitors and dendritic cell vaccines, may be unable to properly enact their effector functions. A better understanding of the various interactions among immune cell subsets in the peritoneal microenvironment is necessary to develop efficacious therapies. This review will discuss various cell subsets in the ovarian tumor microenvironment, current immunotherapy modalities to target or augment these immune subsets, and treatment challenges.
Collapse
Affiliation(s)
| | | | - Christina M. Annunziata
- Translational Genomics Section, Women’s Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
16
|
Benard E, Casey NP, Inderberg EM, Wälchli S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand J Immunol 2020; 92:e12917. [PMID: 32557659 DOI: 10.1111/sji.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Ovarian Cancer (OC) is currently difficult to cure, mainly due to its late detection and the advanced state of the disease at the time of diagnosis. Therefore, conventional treatments such as debulking surgery and combination chemotherapy are rarely able to control progression of the tumour, and relapses are frequent. Alternative therapies are currently being evaluated, including immunotherapy and advanced T cell-based therapy. In the present review, we will focus on a description of those Chimeric Antigen Receptors (CARs) that have been validated in the laboratory or are being tested in the clinic. Numerous target antigens have been defined due to the identification of OC biomarkers, and many are being used as CAR targets. We provide an exhaustive list of these constructs and their current status. Despite being innovative and efficient, the OC-specific CARs face a barrier to their clinical efficacy: the tumour microenvironment (TME). Indeed, effector cells expressing CARs have been shown to be severely inhibited, rendering the CAR T cells useless once at the tumour site. Herein, we give a thorough description of the highly immunosuppressive OC TME and present recent studies and innovations that have enabled CAR T cells to counteract this negative environment and to destroy tumours.
Collapse
Affiliation(s)
- Emmanuelle Benard
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Martinez A, Delord JP, Ayyoub M, Devaud C. Preclinical and Clinical Immunotherapeutic Strategies in Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:E1761. [PMID: 32630708 PMCID: PMC7409311 DOI: 10.3390/cancers12071761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
In the past 20 years, the immune system has increasingly been recognized as a major player in tumor cell control, leading to considerable advances in cancer treatment. While promising with regards to melanoma, renal cancer and non-small cell lung cancer, immunotherapy provides, for the time being, limited success in other cancers, including ovarian cancer, potentially due to insufficient immunogenicity or to a particularly immunosuppressive microenvironment. In this review, we provide a global description of the immune context of ovarian cancer, in particular epithelial ovarian cancer (EOC). We describe the adaptive and innate components involved in the EOC immune response, including infiltrating tumor-specific T lymphocytes, B lymphocytes, and natural killer and myeloid cells. In addition, we highlight the rationale behind the use of EOC preclinical mouse models to assess resistance to immunotherapy, and we summarize the main preclinical studies that yielded anti-EOC immunotherapeutic strategies. Finally, we focus on major published or ongoing immunotherapy clinical trials concerning EOC.
Collapse
Affiliation(s)
- Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse (IUCT), 31037 Toulouse, France
| | - Jean-Pierre Delord
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| | - Christel Devaud
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| |
Collapse
|
18
|
Giordano M, Cavallaro U. Different Shades of L1CAM in the Pathophysiology of Cancer Stem Cells. J Clin Med 2020; 9:E1502. [PMID: 32429448 PMCID: PMC7291284 DOI: 10.3390/jcm9051502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in several tumor types where it is causally linked to malignancy and therapy resistance, acting also as a poor prognosis factor. Accordingly, several approaches have been developed to interfere with L1CAM function or to deliver cytotoxic agents to L1CAM-expressing tumors. Metastatic dissemination, tumor relapse and drug resistance can be fueled by a subpopulation of neoplastic cells endowed with peculiar biological properties that include self-renewal, efficient DNA repair, drug efflux machineries, quiescence, and immune evasion. These cells, known as cancer stem cells (CSC) or tumor-initiating cells, represent, therefore, an ideal target for tumor eradication. However, the molecular and functional traits of CSC have been unveiled only to a limited extent. In this context, it appears that L1CAM is expressed in the CSC compartment of certain tumors, where it plays a causal role in stemness itself and/or in biological processes intimately associated with CSC (e.g., epithelial-mesenchymal transition (EMT) and chemoresistance). This review summarizes the role of L1CAM in cancer focusing on its functional contribution to CSC pathophysiology. We also discuss the clinical usefulness of therapeutic strategies aimed at targeting L1CAM in the context of anti-CSC treatments.
Collapse
Affiliation(s)
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, 20128 Milan, Italy;
| |
Collapse
|
19
|
Miller AM, Lemke-Miltner CD, Blackwell S, Tomanek-Chalkley A, Gibson-Corely KN, Coleman KL, Weiner GJ, Chan CHF. Intraperitoneal CMP-001: A Novel Immunotherapy for Treating Peritoneal Carcinomatosis of Gastrointestinal and Pancreaticobiliary Cancer. Ann Surg Oncol 2020; 28:1187-1197. [PMID: 32409965 DOI: 10.1245/s10434-020-08591-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The treatment options for patients with peritoneal carcinomatosis (PC) of gastrointestinal and pancreaticobiliary origins are limited. The virus-like particle, CMP-001, composed of the Qβ bacteriophage capsid protein encapsulating a CpG-A oligodeoxynucleotide, activates plasmacytoid dendritic cells (pDCs) and triggers interferon alpha (IFNα) release, leading to a cascade of anti-tumor immune effects. METHODS To evaluate the ability of CMP-001 to trigger an immune response in patients with PC, peritoneal cells were isolated and stimulated ex vivo with CMP-001. Both IFNα release and percentage of pDC were quantified using enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. To evaluate the anti-tumor response in vivo, murine PC models were generated using mouse cancer cell lines (Panc02 and MC38) in immunocompetent mice treated with intraperitoneal CMP-001 or saline control. Survival was followed, and the immunophenotype of cells in the peritoneal tumor microenvironment was evaluated. RESULTS The pDCs accounted for 1% (range 0.1-3.9%; n = 17) of the isolated peritoneal cells. Ex vivo CMP-001 stimulation of the peritoneal cells released an average of 0.77 ng/ml of IFNα (range, 0-4700 pg/ml; n = 14). The IFNα concentration was proportional to the percentage of pDCs present in the peritoneal cell mixture (r = 0.6; p = 0.037). In murine PC models, intraperitoneal CMP-001 treatment elicited an anti-tumor immune response including an increase in chemokines (RANTES and MIP-1β), pro-inflammatory cytokines (IFNγ, interleukin 6 [IL-6], and IL-12), and peritoneal/tumor immune infiltration (CD4+/CD8+ T and natural killer [NK] cells). The CMP-001 treatment improved survival in both the Panc02 (median, 35 vs 28 days) and the MC38 (median: 57 vs 35 days) PC models (p < 0.05). CONCLUSIONS As a novel immunotherapeutic agent, CMP-001 may be effective for treating patients with PC.
Collapse
Affiliation(s)
- Ann M Miller
- Department of Surgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, USA
| | - Caitlin D Lemke-Miltner
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sue Blackwell
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Ann Tomanek-Chalkley
- Department of Surgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corely
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Kristen L Coleman
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - George J Weiner
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Carlos H F Chan
- Department of Surgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
20
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Farolfi A, Gurioli G, Fugazzola P, Burgio SL, Casanova C, Ravaglia G, Altavilla A, Costantini M, Amadori A, Framarini M, Ansaloni L, De Giorgi U. Immune System and DNA Repair Defects in Ovarian Cancer: Implications for Locoregional Approaches. Int J Mol Sci 2019; 20:E2569. [PMID: 31130614 PMCID: PMC6566239 DOI: 10.3390/ijms20102569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 01/26/2023] Open
Abstract
In the last few years, substantial progress has been made in the treatment of ovarian cancer, with increased knowledge about the biology of the disease. Ovarian cancer is a neoplasm strongly linked to defects in DNA repair mechanisms, where deficiency in the homologous recombination (HR) system results in a better response of ovarian cancers to therapy, whether platinum-based chemotherapy, anthracyclines, or poly (ADP-ribose) polymerase (PARP) inhibitors. More recently, it has been demonstrated that different ovarian cancer histotypes may have different immunogenicity. Interestingly, defects in HR systems are associated more frequently with higher tumor infiltrating lymphocytes, providing a rationale for developing combination therapy with immune-modulating agents and PARP inhibitors. Again, locoregional therapies combining heat shock and chemotherapy delivery have been shown to induce an anticancer immune response in vitro. Thus, the potential for locoregional therapeutic approaches that may impact the immune system, perhaps in combination with immune-modulating agents or PARP inhibitors, needs to be further explored. With this premise, we reviewed the main biological and clinical data demonstrating a strict interplay between the immune system, DNA repair mechanisms, and intraperitoneal therapies in ovarian cancer, with a focus on potential future therapeutic implications.
Collapse
Affiliation(s)
- Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Paola Fugazzola
- General and Emergency Surgery, Maurizio Bufalini Hospital, Cesena 47521, Italy.
| | - Salvatore Luca Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Claudia Casanova
- Oncology Department, Santa Maria delle Croci Hospital, Ravenna 48121, Italy.
| | - Giorgia Ravaglia
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| | | | - Andrea Amadori
- Department of Gynecological, Morgagni-Pierantoni Hospital, Forlì 47121, Italy.
| | - Massimo Framarini
- Department of General Surgery, Morgagni-Pierantoni Hospital, Forlì 47121, Italy.
| | - Luca Ansaloni
- General and Emergency Surgery, Maurizio Bufalini Hospital, Cesena 47521, Italy.
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy.
| |
Collapse
|
22
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 592] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Marth C, Wieser V, Tsibulak I, Zeimet AG. Immunotherapy in ovarian cancer: fake news or the real deal? Int J Gynecol Cancer 2019; 29:201-211. [PMID: 30640705 DOI: 10.1136/ijgc-2018-000011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has emerged as one of the most promising approaches in oncology, and comprises the activation of the immune system to induce tumor immune surveillance or to reverse the tumor immune escape. Different therapeutic strategies for ovarian carcinoma have evolved over the years. Already 30 years ago, the first clinical studies focused on modulating the tumor cytokine network with special attention to interferon-mediated immune responses. With the exploration of specific tumor antigens such as NY-ESO-1, which is expressed in ovarian carcinoma and other malignancies, the development of therapeutic cancer vaccines has been pursued initiating the era of personalized anti-cancer medicine. Almost at the same time, the adoptive transfer of genetically modified autologous tumor-reactive T-cells occurred, but response rates in ovarian carcinoma were disappointing. Today, probably the most promising therapeutic approach in this context is the blockade of immune checkpoints, such as programed cell death protein 1 (PD-1) and one of its ligands (PD-L1) or cytotoxic T-cell lymphocyte-associated antigen 4 (CTLA-4), which has demonstrated impressive response rates in malignant melanoma and non-small cell lung cancer. Despite increasing availability of treatment approaches that target tumor immune surveillance in ovarian carcinoma, selecting patient groups that particularly benefit from these treatment modalities is clinically challenging as predictive biomarkers are lacking. Here, we summarize different immunotherapy approaches in ovarian cancer and discuss why immunotherapy in ovarian cancer is still in its infancy.
Collapse
Affiliation(s)
- Christian Marth
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Murad JP, Kozlowska AK, Lee HJ, Ramamurthy M, Chang WC, Yazaki P, Colcher D, Shively J, Cristea M, Forman SJ, Priceman SJ. Effective Targeting of TAG72 + Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Front Immunol 2018; 9:2268. [PMID: 30510550 PMCID: PMC6254427 DOI: 10.3389/fimmu.2018.02268] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Impressive clinical efficacy of chimeric antigen receptor (CAR)-engineered T cell therapy for hematological malignancies have prompted significant efforts in achieving similar responses in solid tumors. The lack of truly restricted and uniform expression of tumor-associated antigens, as well as limited T cell persistence and/or tumor trafficking pose major challenges for successful translation of CAR T cell therapy in solid tumors. Recent studies have demonstrated that aberrantly glycosylated cell surface proteins on tumor cells are amenable CAR targets. Tumor-associated glycoprotein 72 (TAG72) antigen is the sialyl-Tn found on multiple O-glycoproteins expressed at high levels on the surface of several cancer types, including ovarian cancer. Here, we developed a humanized TAG72-specific CAR containing a 4-1BB intracellular co-stimulatory signaling domain (TAG72-BBζ). TAG72-BBζ CAR T cells showed potent antigen-dependent cytotoxicity and cytokine production against multiple TAG72+ ovarian cancer cell lines and patient-derived ovarian cancer ascites. Using in vivo xenograft models of peritoneal ovarian tumors, regional intraperitoneal delivery of TAG72-BBζ CAR T cells significantly reduced tumor growth, extended overall survival of mice, and was further improved with repeat infusions of CAR T cells. However, reduced TAG72 expression was observed in early recurring tumors, which coincided with a lack of T cell persistence. Taken together, we demonstrate efficacy with TAG72-CAR T cells in ovarian cancer, warranting further investigations as a CAR T cell therapeutic strategy for this disease.
Collapse
Affiliation(s)
- John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - Anna K Kozlowska
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States.,Chair of Medical Biotechnology, Poznan University Medical Sciences, Poznań, Poland
| | - Hee Jun Lee
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Maya Ramamurthy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Paul Yazaki
- Department of Molecular Imaging & Therapy, Diabetes Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - David Colcher
- Department of Molecular Imaging & Therapy, Diabetes Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - John Shively
- Department of Molecular Imaging & Therapy, Diabetes Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Mihaela Cristea
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, United States
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
25
|
Mirzaei HR, Mirzaei H, Namdar A, Rahmati M, Till BG, Hadjati J. Predictive and therapeutic biomarkers in chimeric antigen receptor T‐cell therapy: A clinical perspective. J Cell Physiol 2018; 234:5827-5841. [DOI: 10.1002/jcp.27519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology School of Medicine, Mashhad University of Medical Sciences Mashahd Iran
| | - Afshin Namdar
- Department of Dentistry Faculty of Medicine and Dentistry, University of Alberta Edmonton Canada
| | - Majid Rahmati
- Cancer Prevention Research Center Shahroud University of Medical Sciences Shahroud Iran
| | - Brian G. Till
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle WA United States
| | - Jamshid Hadjati
- Department of Medical Immunology School of Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
26
|
Thadi A, Khalili M, Morano WF, Richard SD, Katz SC, Bowne WB. Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis. Vaccines (Basel) 2018; 6:E54. [PMID: 30103457 PMCID: PMC6160982 DOI: 10.3390/vaccines6030054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022] Open
Abstract
Peritoneal metastasis (PM) is an advanced stage malignancy largely refractory to modern therapy. Intraperitoneal (IP) immunotherapy offers a novel approach for the control of regional disease of the peritoneal cavity by breaking immune tolerance. These strategies include heightening T-cell response and vaccine induction of anti-cancer memory against tumor-associated antigens. Early investigations with chimeric antigen receptor T cells (CAR-T cells), vaccine-based therapies, dendritic cells (DCs) in combination with pro-inflammatory cytokines and natural killer cells (NKs), adoptive cell transfer, and immune checkpoint inhibitors represent significant advances in the treatment of PM. IP delivery of CAR-T cells has shown demonstrable suppression of tumors expressing carcinoembryonic antigen. This response was enhanced when IP injected CAR-T cells were combined with anti-PD-L1 or anti-Gr1. Similarly, CAR-T cells against folate receptor α expressing tumors improved T-cell tumor localization and survival when combined with CD137 co-stimulatory signaling. Moreover, IP immunotherapy with catumaxomab, a trifunctional antibody approved in Europe, targets epithelial cell adhesion molecule (EpCAM) and has shown considerable promise with control of malignant ascites. Herein, we discuss immunologic approaches under investigation for treatment of PM.
Collapse
Affiliation(s)
- Anusha Thadi
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Marian Khalili
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - William F Morano
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Scott D Richard
- Department of Obstetrics and Gynecology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA.
| | - Steven C Katz
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Wilbur B Bowne
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
27
|
Weist MR, Starr R, Aguilar B, Chea J, Miles JK, Poku E, Gerdts E, Yang X, Priceman SJ, Forman SJ, Colcher D, Brown CE, Shively JE. PET of Adoptively Transferred Chimeric Antigen Receptor T Cells with 89Zr-Oxine. J Nucl Med 2018; 59:1531-1537. [PMID: 29728514 DOI: 10.2967/jnumed.117.206714] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising clinical approach for reducing tumor progression and prolonging patient survival. However, improvements in both the safety and the potency of CAR T cell therapy demand quantitative imaging techniques to determine the distribution of cells after adoptive transfer. The purpose of this study was to optimize 89Zr-oxine labeling of CAR T cells and evaluate PET as a platform for imaging adoptively transferred CAR T cells. Methods: CAR T cells were labeled with 0-1.4 MBq of 89Zr-oxine per 106 cells and assessed for radioactivity retention, viability, and functionality. In vivo trafficking of 89Zr-oxine-labeled CAR T cells was evaluated in 2 murine xenograft tumor models: glioblastoma brain tumors with intracranially delivered IL13Rα2-targeted CAR T cells, and subcutaneous prostate tumors with intravenously delivered prostate stem cell antigen (PSCA)-targeted CAR T cells. Results: CAR T cells were efficiently labeled (75%) and retained more than 60% of the 89Zr over 6 d. In vitro cytokine production, migration, and tumor cytotoxicity, as well as in vivo antitumor activity, were not significantly reduced when labeled with 70 kBq/106 cells. IL13Rα2-CAR T cells delivered intraventricularly were detectable by PET for at least 6 d throughout the central nervous system and within intracranial tumors. When intravenously administered, PSCA-CAR T cells also showed tumor tropism, with a 9-fold greater tumor-to-muscle ratio than for CAR-negative T cells. Conclusion: 89Zr-oxine can be used for labeling and imaging CAR T cells while maintaining cell viability and function. On the basis of these studies, we conclude that 89Zr-oxine is a clinically translatable platform for real-time assessment of cell therapies.
Collapse
Affiliation(s)
- Michael R Weist
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California.,Irell and Manella Graduate School of Biological Sciences, City of Hope Medical Center, Duarte, California; and
| | - Renate Starr
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Brenda Aguilar
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Junie Chea
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Joshua K Miles
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Erasmus Poku
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Ethan Gerdts
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Xin Yang
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Saul J Priceman
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Stephen J Forman
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - David Colcher
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Christine E Brown
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - John E Shively
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
28
|
Genta S, Ghisoni E, Giannone G, Mittica G, Valabrega G. Reprogramming T-cells for adoptive immunotherapy of ovarian cancer. Expert Opin Biol Ther 2018; 18:359-367. [PMID: 29307234 DOI: 10.1080/14712598.2018.1425679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the most common cause of death among gynecological malignancies. Despite surgical and pharmacological efforts to improve patients' outcome, persistent and recurrent EOC remains an un-eradicable disease. Chimeric associated antigens (CAR) T cells are T lymphocytes expressing an engineered T cell receptor that activate the immune response after an MHC unrestricted recognition of specific antigens, including tumor associated antigens (TAAs). CART cells have been shown to be effective in the treatment of hematologic tumors even if frequently associated with potentially severe toxicity and high production costs. AREAS COVERED In this review, we will focus on preclinical and clinical studies evaluating CART activity in EOC in order to identify possible difficulties and advantages of their use in this particular setting. EXPERT OPINION The pattern of diffusion within the peritoneal cavity, the tumor microenvironment and the high rate of TAAs make EOC a particularly interesting model for CART cells use. Data from preclinical studies indicate a potential activity of CARTs in EOC, but robust clinical data are still awaited. Further studies are needed to determine the best methods of administration and the most effective CAR type to treat EOC patients.
Collapse
Affiliation(s)
- Sofia Genta
- a Candiolo Cancer Institute-FPO- IRCCS , Turin , Italy .,b Department of Oncology , University of Torino , Turin , Italy
| | - Eleonora Ghisoni
- a Candiolo Cancer Institute-FPO- IRCCS , Turin , Italy .,b Department of Oncology , University of Torino , Turin , Italy
| | - Gaia Giannone
- a Candiolo Cancer Institute-FPO- IRCCS , Turin , Italy .,b Department of Oncology , University of Torino , Turin , Italy
| | - Gloria Mittica
- a Candiolo Cancer Institute-FPO- IRCCS , Turin , Italy .,b Department of Oncology , University of Torino , Turin , Italy
| | - Giorgio Valabrega
- a Candiolo Cancer Institute-FPO- IRCCS , Turin , Italy .,b Department of Oncology , University of Torino , Turin , Italy
| |
Collapse
|
29
|
Wu Y, Xu R, Jia K, Shi H. The efficacy of chimeric antigen receptor (CAR) immunotherapy in animal models for solid tumors: A systematic review and meta-analysis. PLoS One 2017; 12:e0187902. [PMID: 29141027 PMCID: PMC5687736 DOI: 10.1371/journal.pone.0187902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/28/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Most recently, an emerging theme in the field of tumor immunology predominates: chimeric antigen receptor (CAR) therapy in treating solid tumors. The number of related preclinical trials was surging. However, an evaluation of the effects of preclinical studies remained absent. Hence, a meta-analysis was conducted on the efficacy of CAR in animal models for solid tumors. METHODS The authors searched PubMed/Medline, Embase, and Google scholar up to April 2017. HR for survival was extracted based on the survival curve. The authors used fixed effect models to combine the results of all the trials. Heterogeneity was assessed by I-square statistic. Quality assessment was conducted following the Stroke Therapy Academic Industry Roundtable standard. Publication bias was assessed using Egger's test. RESULTS Eleven trials were included, including 54 experiments with a total of 362 animals involved. CAR immunotherapy significantly improved the survival of animals (HR: 0.25, 95% CI: 0.13-0.37, P < 0.001). The quality assessment revealed that no study reported whether allocation concealment and blinded outcome assessment were conducted, and only five studies implemented randomization. CONCLUSIONS This meta-analysis indicated that CAR therapy may be a potential clinical strategy in treating solid tumors.
Collapse
Affiliation(s)
- Yingcheng Wu
- Medical School of Nantong University, Jiangsu, China
| | - Ran Xu
- Medical School of Nantong University, Jiangsu, China
| | - Keren Jia
- Medical School of Nantong University, Jiangsu, China
| | - Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
30
|
CAR T-cell therapy of solid tumors. Immunol Cell Biol 2016; 95:356-363. [PMID: 28003642 DOI: 10.1038/icb.2016.128] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
The potential for immunotherapy as a treatment option for cancer is clear from remarkable responses of some leukemia patients to adoptive cell transfer using autologous T cells genetically modified to express chimeric antigen receptors (CARs). However, the vast majority of cancers, in particular the more common solid cancers, such as those of the breast, colon and lung, fail to respond significantly to infusions of CAR T cells. Solid cancers present some formidable barriers to adoptive cell transfer, including suppression of T-cell function and inhibition of T-cell localization. In this review, we discuss the current state of CAR T-cell therapy in solid cancers, the variety of concepts being investigated to overcome these barriers as well as approaches aimed at increasing the specificity and safety of adoptive cell transfer.
Collapse
|
31
|
Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther 2016; 23:373-381. [PMID: 27834358 DOI: 10.1038/cgt.2016.49] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
Intraperitoneal immunotherapy represents a novel strategy for the management of peritoneal metastases (PM). Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) has remained the gold standard of treatment for patients with PM, yet despite optimal treatment, recurrence rates remain high and long-term survival poor. From Coley's toxins to immune checkpoint inhibitors, the wide variety of anticancer immunotherapeutic strategies are now garnering attention for control of regional disease of the peritoneal cavity. Early studies with vaccine-based therapies, adoptive cell transfer, immune checkpoint inhibitors, and chimeric T cells with tumor-specific antigen receptors (CAR-T cells) are being performed, showing promise for control of peritoneal spread and induction of lasting anticancer immunity. In addition, catumaxomab, a trifunctional antibody, has been approved for intraperitoneal immunotherapy in Europe for the control of malignant ascites in patients with epithelial cell adhesion molecule positive cancers. We review a brief history of immunotherapy and current modalities under investigation for intraperitoneal use in the treatment of PM.
Collapse
|
32
|
Künkele A, Taraseviciute A, Finn LS, Johnson AJ, Berger C, Finney O, Chang CA, Rolczynski LS, Brown C, Mgebroff S, Berger M, Park JR, Jensen MC. Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility. Clin Cancer Res 2016; 23:466-477. [PMID: 27390347 DOI: 10.1158/1078-0432.ccr-16-0354] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE The identification and vetting of cell surface tumor-restricted epitopes for chimeric antigen receptor (CAR)-redirected T-cell immunotherapy is the subject of intensive investigation. We have focused on CD171 (L1-CAM), an abundant cell surface molecule on neuroblastomas and, specifically, on the glycosylation-dependent tumor-specific epitope recognized by the CE7 monoclonal antibody. EXPERIMENTAL DESIGN CD171 expression was assessed by IHC using CE7 mAb in tumor microarrays of primary, metastatic, and recurrent neuroblastoma, as well as human and rhesus macaque tissue arrays. The safety of targeting the CE7 epitope of CD171 with CE7-CAR T cells was evaluated in a preclinical rhesus macaque trial on the basis of CD171 homology and CE7 cross reactivity. The feasibility of generating bioactive CAR T cells from heavily pretreated pediatric patients with recurrent/refractory disease was assessed. RESULTS CD171 is uniformly and abundantly expressed by neuroblastoma tumor specimens obtained at diagnoses and relapse independent of patient clinical risk group. CD171 expression in normal tissues is similar in humans and rhesus macaques. Infusion of up to 1 × 108/kg CE7-CAR+ CTLs in rhesus macaques revealed no signs of specific on-target off-tumor toxicity. Manufacturing of lentivirally transduced CD4+ and CD8+ CE7-CAR T-cell products under GMP was successful in 4 out of 5 consecutively enrolled neuroblastoma patients in a phase I study. All four CE7-CAR T-cell products demonstrated in vitro and in vivo antitumor activity. CONCLUSIONS Our preclinical assessment of the CE7 epitope on CD171 supports its utility and safety as a CAR T-cell target for neuroblastoma immunotherapy. Clin Cancer Res; 23(2); 466-77. ©2016 AACR.
Collapse
Affiliation(s)
- Annette Künkele
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Agne Taraseviciute
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Fred Hutchinson Cancer Research Center, Seattle, Washington.,Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Laura S Finn
- Seattle Children's Hospital, Department of Pathology, University of Washington, Seattle, Washington
| | - Adam J Johnson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Carolina Berger
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Olivia Finney
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Cindy A Chang
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Lisa S Rolczynski
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Christopher Brown
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Stephanie Mgebroff
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Michael Berger
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Julie R Park
- Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. .,Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington.,University of Washington, Department of Bioengineering, Seattle, Washington
| |
Collapse
|
33
|
Yazdanifar M, Zhou R, Mukherjee P. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:95-115. [PMID: 28659689 PMCID: PMC5484157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
More than 80% of all cancers arise from epithelial cells referred to as carcinomas. Adenocarcinomas are the most common type of carcinomas arising from the specialized epithelial cells that line the ducts of our major organs. Despite many advances in cancer therapies, metastatic and treatment-refractory cancers remain the 2nd leading cause of death. Immunotherapy has offered potential opportunities with specific targeting of tumor cells and inducing remission in many cancer patients. Numerous therapies using antibodies as antagonists or checkpoint inhibitors/immune modulators, peptide or cell vaccines, cytokines, and adoptive T cell therapies have been developed. The most innovative immunotherapy approach so far has been the use of engineered T cell, also referred to as chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are genetically modified naïve T cells that express a chimeric molecule which comprises of the antigen-recognition domains (scFv) of an anti-tumor antibody and one, two, or three intracellular signaling domains of the T cell receptor (TCR). When these engineered T cells recognize and bind to the tumor antigen target via the scFv fragment, a signal is sent to the intracellular TCR domains of the CAR, leading to activation of the T cells to become cytolytic against the tumor cells. CAR-T cell therapy has shown tremendous success for certain hematopoietic malignancies, but this success has not been extrapolated to adenocarcinomas. This is due to multiple factors associated with adenocarcinoma that are different from hematopoietic tumors. Although many advances have been made in targeting multiple cancers by CAR-T cells, clinical trials have shown adverse effects and toxicity related to this treatment. New strategies are yet to be devised to manage side effects associated with CAR-T cell therapies. In this review, we report some of the promising immunotherapeutic strategies being developed for treatment of most common adenocarcinomas with particular emphasis on the future generation of CAR-T cell therapy.
Collapse
Affiliation(s)
| | | | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|