1
|
Chen D, Zhang QT, Li WJ, Han HL, Smagghe G, Yan Y, Jiang HB, Wang JJ, Wei D. The competing endogenous RNA lnc94641-miR957-3p mediates male fertility in Zeugodacus cucurbitae Coquillett. PEST MANAGEMENT SCIENCE 2025. [PMID: 40371678 DOI: 10.1002/ps.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/03/2025] [Accepted: 04/20/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Insect spermatogenesis is a complex process. Numerous genes are involved in sperm motility, which is crucial for male fertility. Few long non-coding RNAs (lncRNAs) in the testis regulate insect spermatogenesis. We previously identified 364 testis-enriched lncRNAs in the globally invasive pest Zeugodacus cucurbitae Coquillett. One of these lncRNAs, lnc94641, is abundantly expressed in the testis; however, its role in spermatogenesis remains unknown. RESULTS Suppression of lnc94641 expression led to a 60% decrease in spermatozoa count and a 29% decrease in offspring hatchability. A microRNA (miRNA), miR-957-3p, was experimentally demonstrated to bind to lnc94641 competitively. miR-957-3p overexpression recapitulated reproductive defect phenotypes similar to those caused by lnc94641 knockdown. Furthermore, target gene predictions combined with quantitative reverse transcription PCR, RNA pull-down, and dual luciferase reporter assays confirmed that miR-957-3p targets voltage-gated potassium channel 5 (VGKC5) and odorant receptor 85c (OR85c), elucidating a functional lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory axis. Fluorescence in situ hybridization (FISH) assays demonstrated the co-localization of lnc94641, miR-957-3p, and VGKC5/OR85c in the mature and transformed regions of the testes. Suppression of VGKC5/OR85c expression resulted in a 68% and 50% decrease in spermatozoa number and an 18% and 21% decrease in offspring hatchability, mirroring the phenotype observed with lnc94641-silencing, thereby reinforcing the mechanistic coherence of this regulatory network. CONCLUSION These results revealed a ceRNA axis mediated by 'lnc94641-miR957-3p-VGKC5/OR85c' involved in spermatogenesis that impairs male fertility in the melon fly. Molecular perturbations (lncRNA knockdown or miRNA overexpression) consistently impair sperm production and offspring viability by dysregulating ion channels and chemosensory genes. This mechanistically resolved pathway, centered on the core components VGKC5 and OR85c, revealed conserved reproductive vulnerabilities that could enable the targeted genetic control of this agricultural pest. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Qi-Tong Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Wei-Jun Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hong-Bo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
2
|
Hu XF, Jin MJ, Gong ZX, Lin ZL, Zhang LZ, Zeng ZJ, Wang ZL. Full-Length Transcriptome Profile of Apis cerana Revealed by Nanopore Sequencing. Int J Mol Sci 2024; 25:10833. [PMID: 39409163 PMCID: PMC11476444 DOI: 10.3390/ijms251910833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The Asian honey bee (Apis cerana) plays a crucial role in providing abundant bee products and in maintaining ecological balance. Despite the availability of the genomic sequence of the Asian honey bee, its transcriptomic information remains largely incomplete. To address this issue, here we constructed three pooled RNA samples from the queen, drone, and worker bees of A. cerana and performed full-length RNA sequencing using Nanopore single-molecule sequencing technology. Ultimately, we obtained 160,811 full-length transcript sequences from 19,859 genes, with 141,189 being novel transcripts, of which 130,367 were functionally annotated. We detected 520, 324, and 1823 specifically expressed transcripts in the queen, worker, and drone bees, respectively. Furthermore, we identified 38,799 alternative splicing (AS) events from 5710 genes, 44,243 alternative polyadenylation (APA) sites from 1649 gene loci, 88,187 simple sequence repeats (SSRs), and 17,387 long noncoding RNAs (lncRNAs). Leveraging these transcripts as references, we identified 6672, 7795, and 6804 differentially expressed transcripts (DETs) in comparisons of queen ovaries vs drone testes, worker ovaries vs drone testes, and worker ovaries vs queen ovaries, respectively. Our research results provide a comprehensive set of reference transcript datasets for Apis cerana, offering important sequence information for further exploration of its gene functions.
Collapse
Affiliation(s)
- Xiao-Fen Hu
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China; (X.-F.H.); (M.-J.J.); (Z.-X.G.); (L.-Z.Z.); (Z.-J.Z.)
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng-Jie Jin
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China; (X.-F.H.); (M.-J.J.); (Z.-X.G.); (L.-Z.Z.); (Z.-J.Z.)
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhi-Xian Gong
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China; (X.-F.H.); (M.-J.J.); (Z.-X.G.); (L.-Z.Z.); (Z.-J.Z.)
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zong-Liang Lin
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China; (X.-F.H.); (M.-J.J.); (Z.-X.G.); (L.-Z.Z.); (Z.-J.Z.)
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li-Zhen Zhang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China; (X.-F.H.); (M.-J.J.); (Z.-X.G.); (L.-Z.Z.); (Z.-J.Z.)
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhi-Jiang Zeng
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China; (X.-F.H.); (M.-J.J.); (Z.-X.G.); (L.-Z.Z.); (Z.-J.Z.)
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Long Wang
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China; (X.-F.H.); (M.-J.J.); (Z.-X.G.); (L.-Z.Z.); (Z.-J.Z.)
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Wei Z, Wang Y, Zheng K, Wang Z, Liu R, Wang P, Li Y, Gao P, Akbari OS, Yang X. Loss-of-function in testis-specific serine/threonine protein kinase triggers male infertility in an invasive moth. Commun Biol 2024; 7:1256. [PMID: 39363033 PMCID: PMC11450154 DOI: 10.1038/s42003-024-06961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Genetic biocontrol technologies present promising and eco-friendly strategies for the management of pest and insect-transmitted diseases. Although considerable advancements achieve in gene drive applications targeting mosquitoes, endeavors to combat agricultural pests have been somewhat restricted. Here, we identify that the testis-specific serine/threonine kinases (TSSKs) family is uniquely expressed in the testes of Cydia pomonella, a prominent global invasive species. We further generated male moths with disrupted the expression of TSSKs and those with TSSKs disrupted using RNA interference and CRISPR/Cas9 genetic editing techniques, resulting in significant disruptions in spermiogenesis, decreased sperm motility, and hindered development of eggs. Further explorations into the underlying post-transcriptional regulatory mechanisms reveales the involvement of lnc117962 as a competing endogenous RNA (ceRNA) for miR-3960, thereby regulating TSSKs. Notably, orchard trials demonstrates that the release of male strains can effectively suppress population growth. Our findings indicate that targeting TSSKs could serve as a feasible avenue for managing C. pomonella populations, offering significant insights and potential strategies for controlling invasive pests through genetic sterile insect technique (gSIT) technology.
Collapse
Affiliation(s)
- Zihan Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yaqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Kangwu Zheng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
| | - Ronghua Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Pengcheng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Yuting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
4
|
Peng Y, Zhu M, Gong Y, Wang C. Identification and functional prediction of lncRNAs associated with intramuscular lipid deposition in Guangling donkeys. Front Vet Sci 2024; 11:1410109. [PMID: 39036793 PMCID: PMC11258529 DOI: 10.3389/fvets.2024.1410109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024] Open
Abstract
Many studies have shown that long non-coding RNAs (lncRNAs) play key regulatory roles in various biological processes. However, the importance and molecular regulatory mechanisms of lncRNAs in donkey intramuscular fat deposition remain to be further investigated. In this study, we used published transcriptomic data from the longissimus dorsi muscle of Guangling donkeys to identify lncRNAs and obtained 196 novel lncRNAs. Compared with the coding genes, the novel lncRNAs and the known lncRNAs exhibited some typical features, such as shorter transcript length and smaller exons. A total of 272 coding genes and 52 lncRNAs were differentially expressed between the longissimus dorsi muscles of the low-fat and high-fat groups. The differentially expressed genes were found to be involved in various biological processes related to lipid metabolism. The potential target genes of differentially expressed lncRNAs were predicted by cis and trans. Functional analysis of lncRNA targets showed that some lncRNAs may act on potential target genes involved in lipid metabolism processes and regulate lipid deposition in the longissimus dorsi muscle. This study provides valuable information for further investigation of the molecular mechanisms of lipid deposition traits in donkeys, which may improve meat traits and facilitate the selection process of donkeys in future breeding.
Collapse
Affiliation(s)
- Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Zhang Q, Zhang C, Zhong H, He Q, Xia ZY, Hu Y, Liao YX, Yi L, Lu ZJ, Yu HZ. A Combinatorial Single-Molecule Real-Time and Illumina Sequencing Analysis of Postembryonic Gene Expression in the Asian Citrus Psyllid Diaphorina citri. INSECTS 2024; 15:391. [PMID: 38921106 PMCID: PMC11203772 DOI: 10.3390/insects15060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Huanglongbing (HLB) is a systemic plant disease caused by 'Candidatus Liberibacter asiaticus (CLas)' and transmitted by Diaphorina citri. D. citri acquires the CLas bacteria in the nymph stage and transmits it in the adult stage, indicating that molting from the nymph to adult stages is crucial for HLB transmission. However, the available D. citri reference genomes are incomplete, and gene function studies have been limited to date. In the current research, PacBio single-molecule real-time (SMRT) and Illumina sequencing were performed to investigate the transcriptome of D. citri nymphs and adults. In total, 10,641 full-length, non-redundant transcripts (FLNRTs), 594 alternative splicing (AS) events, 4522 simple sequence repeats (SSRs), 1086 long-coding RNAs (lncRNAs), 281 transcription factors (TFs), and 4459 APA sites were identified. Furthermore, 3746 differentially expressed genes (DEGs) between nymphs and adults were identified, among which 30 DEGs involved in the Hippo signaling pathway were found. Reverse transcription-quantitative PCR (RT-qPCR) further validated the expression levels of 12 DEGs and showed a positive correlation with transcriptome data. Finally, the spatiotemporal expression pattern of genes involved in the Hippo signaling pathway exhibited high expression in the D. citri testis, ovary, and egg. Silencing of the D. citri transcriptional co-activator (DcYki) gene significantly increased D. citri mortality and decreased the cumulative molting. Our results provide useful information and a reliable data resource for gene function research of D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Can Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Hong Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Qing He
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Zhao-Ying Xia
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu Hu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Yu-Xin Liao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (Q.Z.); (C.Z.); (H.Z.); (Q.H.); (Z.-Y.X.); (Y.H.); (Y.-X.L.); (L.Y.); (Z.-J.L.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
6
|
Xing K, Li H, Wang X, Sun Y, Zhang J. A Full-Length Transcriptome and Analysis of the NHL-1 Gene Family in Neocaridina denticulata sinensis. BIOLOGY 2024; 13:366. [PMID: 38927246 PMCID: PMC11200715 DOI: 10.3390/biology13060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Neocaridina denticulata sinensis has emerged as a promising model organism for basic studies in Decapod. However, the current transcriptome information on this species is based on next-generation sequencing technologies, which are limited by a short read length. Therefore, the present study aimed to generate a full-length transcriptome assembly of N. denticulata sinensis utilizing the PacBio Sequel Ⅱ platform. The resulting transcriptome assembly comprised 5831 transcripts with an N50 value of 3697 bp. Remarkably, 90.5% of these transcripts represented novel isoforms of known genes. The transcripts were further searched against the NR, SwissProt, KEGG, KOG, GO, NT, and Pfam databases. A total of 24.8% of the transcripts can be annotated across all seven databases. Additionally, 1236 alternative splicing events, 344 transcription factors, and 124 long non-coding RNAs (LncRNAs) were predicted. Based on the alternative splicing annotation results, a RING finger protein NHL-1 gene from N. denticulata sinensis (NdNHL-1) was identified. There are 15 transcripts in NdNHL-1. The longest transcript is 4995 bp in length and encodes a putative protein of 1665 amino acids. A phylogenetic analysis showed its close relationship with NHL-1 from other crustacean species. This report represents the full-length transcriptome of N. denticulata sinensis and will facilitate research on functional genomics and environmental adaptation in this species.
Collapse
Affiliation(s)
- Kefan Xing
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Huimin Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Xiongfei Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
7
|
Zhang B, Zhang C, Zhang J, Lu S, Zhao H, Jiang Y, Ma W. Regulatory roles of long non-coding RNAs in short-term heat stress in adult worker bees. BMC Genomics 2024; 25:506. [PMID: 38778290 PMCID: PMC11110378 DOI: 10.1186/s12864-024-10399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial modulators of post-transcriptional gene expression regulation, cell fate determination, and disease development. However, lncRNA functions during short-term heat stress in adult worker bees are poorly understood. Here, we performed deep sequencing and bioinformatic analyses of honeybee lncRNAs. RNA interference was performed by using siRNA targeting the most highly expressed lncRNA. The silencing effect on lncRNA and the relative expression levels of seven heat shock protein (HSP) genes, were subsequently examined. Overall, 7,842 lncRNAs and 115 differentially expressed lncRNAs (DELs) were identified in adult worker bees following heat stress exposure. Structural analysis revealed that the overall expression abundance, length of transcripts, exon number, and open reading frames of lncRNAs were lower than those of mRNAs. GO analysis revealed that the target genes were mainly involved in "metabolism," "protein folding," "response to stress," and "signal transduction" pathways. KEGG analysis indicated that the "protein processing in endoplasmic reticulum" and "longevity regulating pathway-multiple species" pathways were most enriched. Quantitative real-time polymerase chain reaction (qRT-PCR) detection of the selected DELs confirmed the reliability of the sequencing data. Moreover, the siRNA experiment indicated that feeding siRNA yielded a silencing efficiency of 77.51% for lncRNA MSTRG.9645.5. Upon silencing this lncRNA, the expression levels of three HSP genes were significantly downregulated (p < 0.05), whereas those of three other HSP genes were significantly upregulated (p < 0.05). Our results provide a new perspective for understanding the regulatory mechanisms of lncRNAs in adult worker bees under short-term heat stress.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chaoying Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiangchao Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Surong Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
8
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
9
|
Rahman MM, Omoto C, Kim J. Genome-Wide Exploration of Long Non-Coding RNAs of Helicoverpa armigera in Response to Pyrethroid Insecticide Resistance. INSECTS 2024; 15:146. [PMID: 38535342 PMCID: PMC10971460 DOI: 10.3390/insects15030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 01/04/2025]
Abstract
Genome-wide long non-coding RNAs (lncRNAs) in low, moderate, and high pyrethroid insecticide-resistant and -susceptible strains of Helicoverpa armigera were identified in this study. Using 45 illumina-based RNA-sequencing datasets, 8394 lncRNAs were identified. In addition, a sublethal dose of deltamethrin was administered to a Korean-resistant strain (Kor-T). The average length of lncRNAs was approximately 531 bp, and the expression ratio of lncRNAs was 28% of the total RNA. The identified lncRNAs were divided into six categories-intronic, intergenic, sense, antisense, cis-RNA, and trans-RNA-based on their location and mechanism of action. Intergenic and intronic lncRNA transcripts were the most abundant (38% and 33%, respectively). Further, 828 detoxification-related lncRNAs were selected using the Gene Ontology analysis. The cytochrome P450-related lncRNA expression levels were significantly higher in susceptible strains than in resistant strains. In contrast, cuticle protein-related lncRNA expression levels were significantly higher in all resistant strains than in susceptible strains. Our findings suggest that certain lncRNAs contribute to the downregulation of insecticide resistance-related P450 genes in susceptible strains, whereas other lncRNAs may be involved in the overexpression of cuticle protein genes, potentially affecting the pyrethroid resistance mechanism.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Celso Omoto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of Sao Paulo, Piracicaba 13418-900, Brazil;
| | - Juil Kim
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department of Plant Medicine, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
10
|
Guo R, Wang S, Guo S, Fan X, Zang H, Gao X, Jing X, Liu Z, Na Z, Zou P, Chen D. Regulatory Roles of Long Non-Coding RNAs Relevant to Antioxidant Enzymes and Immune Responses of Apis cerana Larvae Following Ascosphaera apis Invasion. Int J Mol Sci 2023; 24:14175. [PMID: 37762477 PMCID: PMC10532054 DOI: 10.3390/ijms241814175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an essential part in controlling gene expression and a variety of biological processes such as immune defense and stress-response. However, whether and how lncRNAs regulate responses of Apis cerana larvae to Ascosphaera apis invasion has remained unclear until now. Here, the identification and structural analysis of lncRNAs in the guts of A. cerana worker larvae were conducted, and the expression profile of larval lncRNAs during the A. apis infection process was then analyzed, followed by an investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in the host response. In total, 76 sense lncRNAs, 836 antisense lncRNAs, 184 intron lncRNAs, 362 bidirectional lncRNAs, and 2181 intron lncRNAs were discovered in the larval guts. Additionally, 30 known and 9 novel lncRNAs were potential precursors for 36 and 11 miRNAs, respectively. In the three comparison groups, 386, 351, and 272 DElncRNAs were respectively identified, indicating the change in the overall expression pattern of host lncRNAs following the A. apis invasion. Analysis of cis-acting effect showed that DElncRNAs in the 4-, 5-, and 6-day-old comparison groups putatively regulated 55, 30, and 20 up- and down-stream genes, respectively, which were involved in a series of crucial functional terms and pathways, such as MAPK signaling pathway, and cell process. Analysis showed that 31, 8, and 11 DElncRNAs as potential antisense lncRNAs may interact with 26, 8, and 9 sense-strand mRNAs. Moreover, investigation of the competing endogenous RNA (ceRNA) network indicated that 148, 283, and 257 DElncRNAs were putatively regulated. The expression of target genes by targeting corresponding DEmiRNAs included those associated with antioxidant enzymes and immune responses. These results suggested that DElncRNAs played a potential part in the larval guts responding to the A. apis infection through a cis-acting manner and ceRNA mechanisms. Our findings deepen our understanding of interactions between A. cerana larvae and A. apis and offer a basis for clarifying the DElncRNA-mediated mechanisms underlying the host response to fungal invasion.
Collapse
Affiliation(s)
- Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xin Jing
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhitan Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Zafar J, Wu H, Xu Y, Lin L, Kang Z, Zhang J, Zhang R, Lu Y, Jin F, Xu X. Transcriptomic Analysis of Metarhizium anisopliae-Induced Immune-Related Long Non-Coding RNAs in Polymorphic Worker Castes of Solenopsis invicta. Int J Mol Sci 2023; 24:13983. [PMID: 37762284 PMCID: PMC10531276 DOI: 10.3390/ijms241813983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a class of RNA molecules that do not encode proteins. Generally studied for their regulatory potential in model insects, relatively little is known about their immunoregulatory functions in different castes of eusocial insects, including Solenopsis invicta, a notoriously invasive insect pest. In the current study, we used Metarhizium anisopliae, an entomopathogenic fungus, to infect the polymorphic worker castes (Major and Minor Workers) and subjected them to RNA sequencing at different intervals (6, 24, and 48 h post-infection (hpi)). Comprehensive bioinformatic analysis identified 5719 (1869 known and 3850 novel) lncRNAs in all libraries. Genomic characteristics analysis showed that S. invicta lncRNAs exhibited structural similarities with lncRNAs from other eusocial insects, including lower exon numbers, shorter intron and exon lengths, and a lower expression profile. A comparison of lncRNAs in major and minor worker ants revealed that several lncRNAs were exclusively expressed in one worker caste and remained absent in the other. LncRNAs such as MSTRG.12029.1, XR_005575440.1 (6 h), MSTRG.16728.1, XR_005575440.1 (24 h), MSTRG.20263.41, and MSTRG.11994.5 (48 h) were only present in major worker ants, while lncRNAs such as MSTRG.8896.1, XR_005574239.1 (6 h), MSTRG.20289.8, XR_005575051.1 (24 h), MSTRG.20289.8, and MSTRG.6682.1 (48 h) were only detected in minor workers. Additionally, we performed real-time quantitative PCR and experimentally validated these findings. Functional annotation of cis-acting lncRNAs in major worker ants showed that lncRNAs targeted genes such as serine protease, trypsin, melanization protease-1, spaetzle-3, etc. In contrast, apoptosis and autophagy-related genes were identified as targets of lncRNAs in minor ants. Lastly, we identified several lncRNAs as precursors of microRNAs (miRNAs), such as miR-8, miR-14, miR-210, miR-6038, etc., indicating a regulatory relationship between lncRNAs, miRNAs, and mRNAs in antifungal immunity. These findings will serve as a genetic resource for lncRNAs in polymorphic eusocial ants and provide a theoretical basis for exploring the function of lncRNAs from a unique and novel perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengliang Jin
- National Key Laboratory of Green Pesticide, “Belt and Road” Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (H.W.); (Y.X.); (L.L.); (Z.K.); (J.Z.); (R.Z.); (Y.L.)
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, “Belt and Road” Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (H.W.); (Y.X.); (L.L.); (Z.K.); (J.Z.); (R.Z.); (Y.L.)
| |
Collapse
|
12
|
Ren Y, Chen J, Wang Y, Fu S, Bu W, Xue H. The lncRNA-mediated ceRNA network of Altica viridicyanea is involved in the regulation of the Toll/Imd signaling pathway under antibiotic treatment. Front Physiol 2023; 14:1244190. [PMID: 37664435 PMCID: PMC10470016 DOI: 10.3389/fphys.2023.1244190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play significant roles in the regulation of mRNA expression or in shaping the competing endogenous RNA (ceRNA) network by targeting miRNA. The insect gut is one of the most important tissues due to direct contact with external pathogens and functions in the immune defense against pathogen infection through the innate immune system and symbionts, but there are limited observations on the role of the lncRNA-involved ceRNA network of the Toll/Imd pathway and correlation analysis between this network and bacterial microbiota in the Altica viridicyanea gut. In this research, we constructed and sequenced six RNA sequencing libraries using normal and antibiotic-reared samples, generating a total of 17,193 lncRNAs and 26,361 mRNAs from massive clean data by quality control and bioinformatic analysis. Furthermore, a set of 8,539 differentially expressed lncRNAs (DELs) and 13,263 differentially expressed mRNAs (DEMs), of which related to various immune signaling pathways, such as the Toll/Imd, JAK/STAT, NF-κB, and PI3K-Akt signaling pathways, were obtained between the two experimental groups in A. viridicyanea. In addition, numerous GO and KEGG enrichment analyses were used to annotate the DELs and their target genes. Moreover, six Toll family members and nineteen signal genes from the Toll/Imd signaling pathway were identified and characterized using online tools, and phylogenetic analyses of the above genes proved their classification. Next, a lncRNA-miRNA-mRNA network of the Toll/Imd pathway was built, and it contained different numbers of DEMs in this pathway and related DELs based on prediction and annotation. In addition, qRT-PCR validation and sequencing data were conducted to show the expression patterns of the above DELs and DEMs related to the Toll/Imd signaling pathway. Finally, the correlated investigations between DELs or DEMs of the Toll/Imd signaling pathway and most changes in the gut bacterial microbiota revealed significantly positive or negative relationships between them. The present findings provide essential evidence for innate immune ceRNAs in the beetle gut and uncover new potential relationships between innate immune pathways and the gut bacterial microbiota in insects.
Collapse
Affiliation(s)
| | | | | | | | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Shen Z, Yang Q, Luo L, Li T, Ke Z, Li T, Chen J, Meng X, Xiang H, Li C, Zhou Z, Chen P, Pan G. Non-coding RNAs identification and regulatory networks in pathogen-host interaction in the microsporidia congenital infection. BMC Genomics 2023; 24:420. [PMID: 37495972 PMCID: PMC10373312 DOI: 10.1186/s12864-023-09490-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The interaction networks between coding and non-coding RNAs (ncRNAs) including long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA) and miRNA are significant to elucidate molecular processes of biological activities and interactions between host and pathogen. Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-feeding industry. However, little is known about ncRNAs that take place in the microsporidia congenital infection. Here we conducted whole-transcriptome RNA-Seq analyses to identify ncRNAs and regulatory networks for both N. bombycis and host including silkworm embryos and larvae during the microsporidia congenital infection. RESULTS A total of 4,171 mRNAs, 403 lncRNA, 62 circRNAs, and 284 miRNAs encoded by N. bombycis were identified, among which some differentially expressed genes formed cross-talk and are involved in N. bombycis proliferation and infection. For instance, a lncRNA/circRNA competing endogenous RNA (ceRNA) network including 18 lncRNAs, one circRNA, and 20 miRNAs was constructed to describe 14 key parasites genes regulation, such as polar tube protein 3 (PTP3), ricin-B-lectin, spore wall protein 4 (SWP4), and heat shock protein 90 (HSP90). Regarding host silkworm upon N. bombycis congenital infection, a total of 14,889 mRNAs, 3,038 lncRNAs, 19,039 circRNAs, and 3,413 miRNAs were predicted based on silkworm genome with many differentially expressed coding and non-coding genes during distinct developmental stages. Different species of RNAs form interacting network to modulate silkworm biological processes, such as growth, metamorphosis and immune responses. Furthermore, a lncRNA/circRNA ceRNA network consisting of 140 lncRNAs, five circRNA, and seven miRNAs are constructed hypothetically to describe eight key host genes regulation, such as Toll-6, Serpin-6, inducible nitric oxide synthase (iNOS) and Caspase-8. Notably, cross-species analyses indicate that parasite and host miRNAs play a vital role in pathogen-host interaction in the microsporidia congenital infection. CONCLUSION This is the first comprehensive pan-transcriptome study inclusive of both N. bombycis and its host silkworm with a specific focus on the microsporidia congenital infection, and show that ncRNA-mediated regulation plays a vital role in the microsporidia congenital infection, which provides a new insight into understanding the basic biology of microsporidia and pathogen-host interaction.
Collapse
Affiliation(s)
- Zigang Shen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Qiong Yang
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
| | - Lie Luo
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Tangxin Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Zhuojun Ke
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
- College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
| | - Ping Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China.
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, People's Republic of China.
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China.
| |
Collapse
|
14
|
Shang Y, Feng Y, Ren L, Zhang X, Yang F, Zhang C, Guo Y. Genome-wide analysis of long noncoding RNAs and their association in regulating the metamorphosis of the Sarcophaga peregrina (Diptera: Sarcophagidae). PLoS Negl Trop Dis 2023; 17:e0011411. [PMID: 37363930 DOI: 10.1371/journal.pntd.0011411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The flesh fly, Sarcophaga peregrina (Diptera: Sarcophagidae), is an important hygiene pest, that causes myiasis in humans and other mammals, typically livestock, and as a vector for various parasitic agents, including bacteria, viruses, and parasites. The role of long non-coding RNAs (lncRNAs) in regulating gene expression during metamorphosis of the flesh fly has not been well established. METHODOLOGY/PRINCIPAL FINDINGS In this study, we performed genome-wide identification and characterization of lncRNAs from the early pupal stage (1-days pupae), mid-term pupal stage (5-days pupae), and late pupal stage (9-days pupae) of S. peregrina by RNA-seq, and a total of 6921 lncRNAs transcripts were identified. RT-qPCR and enrichment analyses revealed the differentially expressed lncRNAs (DE lncRNAs) that might be associated with insect metamorphosis development. Furthermore, functional analysis revealed that the DE lncRNA (SP_lnc5000) could potentially be involved in regulating the metamorphosis of S. peregrina. RNA interference of SP_lnc5000 caused reduced expression of metamorphosis-related genes in 20-hydroxyecdysone (20E) signaling (Br-c, Ftz-F1), cuticle tanning pathway (TH, DOPA), and chitin related pathway (Cht5). Injection of dsSP_lnc5000 in 3rd instar larvae of S. peregrina resulted in deformed pupae, stagnation of pupal-adult metamorphosis, and a decrease in development time of pupal, pupariation rates and eclosion rates. Hematoxylin-eosin staining (H&E), scanning electron microscope (SEM) observation and cuticle hydrocarbons (CHCs) analysis indicated that SP_lnc5000 had crucial roles in the metamorphosis developmental by modulating pupal cuticular development. CONCLUSIONS/SIGNIFICANCE We established that the lncRNA SP_lnc5000 potentially regulates the metamorphosis of S. peregrina by putatively affecting the structure and composition of the pupal cuticle. This study enhances our understanding of lncRNAs as regulators of metamorphosis in S. peregrina, and provide valuable insights into the identification of potential targets for vector control and the development of effective strategies for controlling the spread of myiasis and parasitic diseases.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yakai Feng
- Department of Forensic Science, School of Basic Medical Sciences, Xinjiang Medical University Ürümqi, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Fan YX, Andoh V, Chen L. Multi-omics study and ncRNA regulation of anti-BmNPV in silkworms, Bombyx mori: an update. Front Microbiol 2023; 14:1123448. [PMID: 37275131 PMCID: PMC10232802 DOI: 10.3389/fmicb.2023.1123448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Bombyx mori silkworm is an important economic insect which has a significant contribution to the improvement of the economy. Bombyx mori nucleopolyhedrovirus (BmNPV) is a vitally significant purulent virus that impedes the sustainable and stable development of the silkworm industry, resulting in substantial economic losses. In recent years, with the development of biotechnology, transcriptomics, proteomics, metabolomics, and the related techniques have been used to select BmNPV-resistant genes, proteins, and metabolites. The regulatory networks between viruses and hosts have been gradually clarified with the discovery of ncRNAs, such as miRNA, lncRNA, and circRNA in cells. Thus, this paper aims to highlight the results of current multi-omics and ncRNA studies on BmNPV resistance in the silkworm, providing some references for resistant strategies in the silkworm to BmNPV.
Collapse
|
16
|
Lin S, Yin HT, Zhao ZM, Chen ZK, Zhou XMI, Zhang ZD, Guo XJ, Zhao WG, Wu P. LincRNA_XR209691.3 could promote Bombyx mori nucleopolyhedrovirus replication by interacting with BmHSP70. INSECT MOLECULAR BIOLOGY 2023; 32:160-172. [PMID: 36482511 DOI: 10.1111/imb.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Long non-coding RNAs (lncRNAs), a class of transcripts exceeding 200 nucleotides and lacking protein coding potential, have been proven to play important roles in viral infection and host immunity. Bombyx mori nucleopolyhedrovirus (BmNPV) is an important pathogen, which causes the silkworm disease and leads to a huge challenge to the sericultural industry. At present, research on the roles of insect lncRNAs in host-virus interaction are relatively few. In this study, we explored the function of lincRNA_XR209691.3 that was significantly up-regulated in the silkworm fat body upon BmNPV infection. Firstly, the subcellular localization experiment confirmed that lincRNA_XR209691.3 was present in both the nucleus and cytoplasm. Enhancing the expression of lincRNA_XR209691.3 in BmN cells could promote the proliferation of BmNPV, while inhibition of lincRNA_XR209691.3 by RNA interference suppresses the proliferation of BmNPV. Combining RNA pull-down and mass spectrometry, we identified the host and BmNPV proteins that could interact with lincRNA_XR209691.3. Next, by using truncation experiment and RNA immunoprecipitation (RIP) assay, it was found that lincRNA_XR209691.3 could bind to the Actin domain of BmHSP70. Subsequently, overexpression of lncRNA_XR209691.3 in BmN cells promoted the expression of BmHSP70, while knockdown of BmHsp70 suppressed the replication of BmNPV. Based on the above results, it is speculated that lincRNA_XR209691.3 could promote the proliferation of BmNPV through interaction with BmHSP70, possibly by improving the stability of BmHSP70 and thereby enhancing the expression of BmHSP70. Our results shed light on the lncRNA function in insect-pathogen interactions and provide a new clue to elucidate the molecular mechanism of BmNPV infection.
Collapse
Affiliation(s)
- Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hao Tong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhi Meng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zi Kang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xue MIng Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zheng Dong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xi Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Wei Guo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
17
|
Wang Z, Wang S, Fan X, Zhang K, Zhang J, Zhao H, Gao X, Zhang Y, Guo S, Zhou D, Li Q, Na Z, Chen D, Guo R. Systematic Characterization and Regulatory Role of lncRNAs in Asian Honey Bees Responding to Microsporidian Infestation. Int J Mol Sci 2023; 24:ijms24065886. [PMID: 36982959 PMCID: PMC10058195 DOI: 10.3390/ijms24065886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are pivotal regulators in gene expression and diverse biological processes, such as immune defense and host-pathogen interactions. However, little is known about the roles of lncRNAs in the response of the Asian honey bee (Apis cerana) to microsporidian infestation. Based on our previously obtained high-quality transcriptome datasets from the midgut tissues of Apis cerana cerana workers at 7 days post inoculation (dpi) and 10 dpi with Nosema ceranae (AcT7 and AcT10 groups) and the corresponding un-inoculated midgut tissues (AcCK7 and AcCK10 groups), the transcriptome-wide identification and structural characterization of lncRNAs were conducted, and the differential expression pattern of lncRNAs was then analyzed, followed by investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in host response. Here, 2365, 2322, 2487, and 1986 lncRNAs were, respectively, identified in the AcCK7, AcT7, AcCK7, and AcT10 groups. After removing redundant ones, a total of 3496 A. c. cerana lncRNAs were identified, which shared similar structural characteristics with those discovered in other animals and plants, such as shorter exons and introns than mRNAs. Additionally, 79 and 73 DElncRNAs were screened from the workers' midguts at 7 dpi and 10 dpi, respectively, indicating the alteration of the overall expression pattern of lncRNAs in host midguts after N. ceranae infestation. These DElncRNAs could, respectively, regulate 87 and 73 upstream and downstream genes, involving a suite of functional terms and pathways, such as metabolic process and Hippo signaling pathway. Additionally, 235 and 209 genes co-expressed with DElncRNAs were found to enrich in 29 and 27 terms, as well as 112 and 123 pathways, such as ABC transporters and the cAMP signaling pathway. Further, it was detected that 79 (73) DElncRNAs in the host midguts at 7 (10) dpi could target 321 (313) DEmiRNAs and further target 3631 (3130) DEmRNAs. TCONS_00024312 and XR_001765805.1 were potential precursors for ame-miR-315 and ame-miR-927, while TCONS_00006120 was the putative precursor for both ame-miR-87-1 and ame-miR-87-2. These results together suggested that DElncRNAs are likely to play regulatory roles in the host response to N. ceranae infestation through the regulation of neighboring genes via a cis-acting effect, modulation of co-expressed mRNAs via trans-acting effect, and control of downstream target genes' expression via competing endogenous RNA networks. Our findings provide a basis for disclosing the mechanism underlying DElncRNA-mediated host N. ceranae response and a new perspective into the interaction between A. c. cerana and N. ceranae.
Collapse
Affiliation(s)
- Zixin Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
18
|
Zheng SY, Pan LX, Cheng FP, Jin MJ, Wang ZL. A Global Survey of the Full-Length Transcriptome of Apis mellifera by Single-Molecule Long-Read Sequencing. Int J Mol Sci 2023; 24:ijms24065827. [PMID: 36982901 PMCID: PMC10059051 DOI: 10.3390/ijms24065827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
As important pollinators, honey bees play a crucial role in both maintaining the ecological balance and providing products for humans. Although several versions of the western honey bee genome have already been published, its transcriptome information still needs to be refined. In this study, PacBio single-molecule sequencing technology was used to sequence the full-length transcriptome of mixed samples from many developmental time points and tissues of A. mellifera queens, workers and drones. A total of 116,535 transcripts corresponding to 30,045 genes were obtained. Of these, 92,477 transcripts were annotated. Compared to the annotated genes and transcripts on the reference genome, 18,915 gene loci and 96,176 transcripts were newly identified. From these transcripts, 136,554 alternative splicing (AS) events, 23,376 alternative polyadenylation (APA) sites and 21,813 lncRNAs were detected. In addition, based on the full-length transcripts, we identified many differentially expressed transcripts (DETs) between queen, worker and drone. Our results provide a complete set of reference transcripts for A. mellifera that dramatically expand our understanding of the complexity and diversity of the honey bee transcriptome.
Collapse
Affiliation(s)
- Shuang-Yan Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lu-Xia Pan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fu-Ping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng-Jie Jin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
19
|
Zhang B, Liu B, Huang C, Xing L, Li Z, Liu C, Zhou H, Zheng G, Li J, Han J, Yu Q, Yang C, Qian W, Wan F, Li C. A chromosome-level genome assembly of the beet armyworm Spodoptera exigua. Genomics 2023; 115:110571. [PMID: 36746219 DOI: 10.1016/j.ygeno.2023.110571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND The beet armyworm Spodoptera exigua is a polyphagous caterpillar that causes serious damage to many species of crops and vegetables. To gain insight into how this polyphagous insect differs from less harmful oligophagous species, we generated a chromosome-level assembly and compared it to closely related species with the same or different feeding habits. RESULTS Based on Illumina and Pacific Biosciences data and Hi-C technology, 425.6 Mb of genome sequences were anchored and oriented into 31 linkage groups, with an N50 length of 14.8 Mb. A total of 24,649 gene models were predicted, of which 97.4% were identified in the genome assembly. Chemosensory genes are vital for locating food: of the four main families, odorant-binding proteins, chemosensory proteins and olfactory receptors showed little difference, whereas gustatory receptors are greatly expanded in S. exigua. Examination of other polyphagous insects confirmed this difference from oligophagous congeners and further identified the bitter receptor subfamily as being particularly affected. CONCLUSION Our high-quality genome sequence for beet armyworm identified a key expansion of the bitter gustatory receptor subfamily in this and other pests that differs crucially from more benign relatives and offers insight into the biology and possible future means of control for these economically important insects.
Collapse
Affiliation(s)
- Bin Zhang
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bo Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cong Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Longsheng Xing
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zaiyuan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Entomological Science, College of Agriculture, Yangtze University, Jingzhou, China
| | - Conghui Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongxu Zhou
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guiling Zheng
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiachen Han
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianlong Yu
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chunhong Yang
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wanqiang Qian
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Fanghao Wan
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Changyou Li
- Key Lab of Integrated Crop Pest Management of Shandong, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
20
|
Recent Advances and Future Potential of Long Non-Coding RNAs in Insects. Int J Mol Sci 2023; 24:ijms24032605. [PMID: 36768922 PMCID: PMC9917219 DOI: 10.3390/ijms24032605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, long non-coding RNAs (lncRNAs) have witnessed a steep rise in interest amongst the scientific community. Because of their functional significance in several biological processes, i.e., alternative splicing, epigenetics, cell cycle, dosage compensation, and gene expression regulation, lncRNAs have transformed our understanding of RNA's regulatory potential. However, most knowledge concerning lncRNAs comes from mammals, and our understanding of the potential role of lncRNAs amongst insects remains unclear. Technological advances such as RNA-seq have enabled entomologists to profile several hundred lncRNAs in insect species, although few are functionally studied. This article will review experimentally validated lncRNAs from different insects and the lncRNAs identified via bioinformatic tools. Lastly, we will discuss the existing research challenges and the future of lncRNAs in insects.
Collapse
|
21
|
Tian Y, Hou Y, Song Y. LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape. PLANT SIGNALING & BEHAVIOR 2022; 17:2014677. [PMID: 35352623 PMCID: PMC8973372 DOI: 10.1080/15592324.2021.2014677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been described as having irreplaceable functions in biological environment adaptation, especially in biotic and abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual cross-regulation to achieve quantitative expression of key environmental response genes to external signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and their coordination mechanism to achieve the high adaptability of plants in low-temperature environments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment changes during plant growth under low temperature via chromatin modification complexes, including target gene specificity for different lncRNA.
Collapse
Affiliation(s)
- Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Ali A, Salem M. Genome-wide identification of antisense lncRNAs and their association with susceptibility to Flavobacterium psychrophilum in rainbow trout. Front Immunol 2022; 13:1050722. [PMID: 36561762 PMCID: PMC9763276 DOI: 10.3389/fimmu.2022.1050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic genomes encode long noncoding natural antisense transcripts (lncNATs) that have been increasingly recognized as regulatory members of gene expression. Recently, we identified a few antisense transcripts correlating in expression with immune-related genes. However, a systematic genome-wide analysis of lncNATs in rainbow trout is lacking. This study used 134 RNA-Seq datasets from five different projects to identify antisense transcripts. A total of 13,503 lncNATs were identified genome-wide. About 75% of lncNATs showed multiple exons compared to 36.5% of the intergenic lncRNAs. RNA-Seq datasets from resistant, control, and susceptible rainbow trout genetic lines with significant differences in survival rate following Flavobacterium psychrophilum (Fp) infection were analyzed to investigate the potential role of the lncNATs during infection. Twenty-four pairwise comparisons between the different genetic lines, infectious status, and time points revealed 581 differentially expressed (DE) lncNATs and 179 differentially used exons (DUEs). Most of the DE lncNATs strongly and positively correlated in expression with their corresponding sense transcripts across 24 RNA-Seq datasets. LncNATs complementary to genes related to immunity, muscle contraction, proteolysis, and iron/heme metabolism were DE following infection. LncNATs complementary to hemolysis-related genes were DE in the resistant fish compared to susceptible fish on day 5 post-infection, suggesting enhanced clearance of free hemoglobin (Hb) and heme and increased erythropoiesis. LncNATs complementary to hepcidin, a master negative regulator of the plasma iron concentration, were the most downregulated lncNATs on day 5 of bacterial infection in the resistant fish. Ninety-four DE lncNAT, including five complementary to hepcidin, are located within 26 QTL regions previously identified in association with bacterial cold water disease (BCWD) in rainbow trout. Collectively, lncNATs are involved in the molecular architecture of fish immunity and should be further investigated for potential applications in genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
23
|
Shi L, Li WL, Zeng HX, Shi Y, Liao XL. Systematic identification and functional analysis of long noncoding RNAs involved in indoxacarb resistance in Spodoptera litura. INSECT SCIENCE 2022; 29:1721-1736. [PMID: 35150054 DOI: 10.1111/1744-7917.13015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are noncoding transcripts that are more than 200 nucleotides long. They play essential roles in regulating a variety of biological processes in many species, including insects, and some lncRNAs have been found to be associated with insecticide resistance. However, the characteristics and biological functions of lncRNAs involved in indoxacarb resistance are unknown in Spodoptera litura. We performed RNA sequencing in the SS, InRS, and FInRS of S. litura and identified 11 978 lncRNAs, including 3 136 intergenic lncRNAs, 7 393 intronic lncRNAs, and 1 449 anti-sense lncRNAs. Compared with the SS, 51 lncRNAs were upregulated and 134 lncRNAs were downregulated in the two resistant strains, and 908 differentially expressed mRNAs were predicted as the target genes of the 185 differentially expressed lncRNAs. Further analysis showed that 112 of differentially expressed lncRNAs may be associated with indoxacarb resistance by regulating the expression of 14 P450s, seven CCEs, one GST, six UGTs, five ABC transporters, and 24 cuticle protein genes, and 79 of differentially expressed lncRNAs may regulate the expression of 14 detoxification genes and 19 cuticle protein genes to participate in indoxacarb resistance by sponging 10 microRNAs. Interestingly, 47 of differentially expressed lncRNAs may mediate indoxacarb resistance through both lncRNA-mRNA and lncRNA-miRNA-mRNA regulatory pathways. Furthermore, quantitative PCR, RNA interference, and indoxacarb bioassay analyses indicated that overexpressed LNC_004867 and LNC_006576 were involved in indoxacarb resistance. This study provides comprehensive information for lncRNAs of S. litura, and presents evidence that lncRNAs have key roles in conferring insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Li Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Wen-Lin Li
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Hai-Xin Zeng
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Yao Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Xiao-Lan Liao
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| |
Collapse
|
24
|
Mu D, Wu X, Feijó A, Wu W, Wen Z, Cheng J, Xia L, Yang Q, Shan W, Ge D. Transcriptome analysis of pika heart tissue reveals mechanisms underlying the adaptation of a keystone species on the roof of the world. Front Genet 2022; 13:1020789. [PMID: 36506315 PMCID: PMC9728954 DOI: 10.3389/fgene.2022.1020789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
High-altitude environments impose intense stresses on living organisms and drive striking phenotypic and genetic adaptations, such as hypoxia resistance, cold tolerance, and increases in metabolic capacity and body mass. As one of the most successful and dominant mammals on the Qinghai-Tibetan Plateau (QHTP), the plateau pika (Ochotona curzoniae) has adapted to the extreme environments of the highest altitudes of this region and exhibits tolerance to cold and hypoxia, in contrast to closely related species that inhabit the peripheral alpine bush or forests. To explore the potential genetic mechanisms underlying the adaptation of O. curzoniae to a high-altitude environment, we sequenced the heart tissue transcriptomes of adult plateau pikas (comparing specimens from sites at two different altitudes) and Gansu pikas (O. cansus). Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify differentially expressed genes (DEGs) and their primary functions. Key genes and pathways related to high-altitude adaptation were identified. In addition to the biological processes of signal transduction, energy metabolism and material transport, the identified plateau pika genes were mainly enriched in biological pathways such as the negative regulation of smooth muscle cell proliferation, the apoptosis signalling pathway, the cellular response to DNA damage stimulus, and ossification involved in bone maturation and heart development. Our results showed that the plateau pika has adapted to the extreme environments of the QHTP via protection against cardiomyopathy, tissue structure alterations and improvements in the blood circulation system and energy metabolism. These adaptations shed light on how pikas thrive on the roof of the world.
Collapse
Affiliation(s)
- Danping Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinlai Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Shan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China,*Correspondence: Wenjuan Shan, ; Deyan Ge,
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Wenjuan Shan, ; Deyan Ge,
| |
Collapse
|
25
|
Zafar J, Huang J, Xu X, Jin F. Analysis of Long Non-Coding RNA-Mediated Regulatory Networks of Plutella xylostella in Response to Metarhizium anisopliae Infection. INSECTS 2022; 13:916. [PMID: 36292864 PMCID: PMC9604237 DOI: 10.3390/insects13100916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a diverse class of RNAs that are structurally similar to messenger RNAs (mRNAs) but do not encode proteins. Growing evidence suggests that in response to biotic and abiotic stresses, the lncRNAs play crucial regulatory roles in plants and animals. However, the potential role of lncRNAs during fungal infection has yet to be characterized in Plutella xylostella, a devastating pest of cruciferous crops. In the current study, we performed a strand-specific RNA sequencing of Metarhizium anisopliae-infected (Px36hT, Px72hT) and uninfected (Px36hCK, Px72hCK) P. xylostella fat body tissues. Comprehensive bioinformatic analysis revealed a total of 5665 and 4941 lncRNAs at 36 and 72-h post-infection (hpi), including 563 (Px36hT), 532 (Px72hT) known and 5102 (Px36hT), 4409 (Px72hT) novel lncRNA transcripts. These lncRNAs shared structural similarities with their counterparts in other species, including shorter exon and intron length, fewer exon numbers, and a lower expression profile than mRNAs. LncRNAs regulate the expression of neighboring protein-coding genes by acting in a cis and trans manner. Functional annotation and pathway analysis of cis-acting lncRNAs revealed their role in several immune-related genes, including Toll, serpin, transferrin, βGRP etc. Furthermore, we identified multiple lncRNAs acting as microRNA (miRNA) precursors. These miRNAs can potentially regulate the expression of mRNAs involved in immunity and development, suggesting a crucial lncRNA-miRNA-mRNA complex. Our findings will provide a genetic resource for future functional studies of lncRNAs involved in P. xylostella immune responses to M. anisopliae infection and shed light on understanding insect host-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Xiaoxia Xu
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| | - Fengliang Jin
- Correspondence: (X.X.); (F.J.); Tel.: +86-135-6047-8369 (F.J.)
| |
Collapse
|
26
|
CircRNA-Associated ceRNA Network Reveals Focal Adhesion and Metabolism Pathways in Neuropathic Pain. JOURNAL OF ONCOLOGY 2022; 2022:7246904. [PMID: 36065302 PMCID: PMC9440820 DOI: 10.1155/2022/7246904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Background. Increasing evidence has shown that noncoding RNAs perform a remarkable function in neuropathic pain (NP); nonetheless, the mechanisms underlying the modulation of competitive endogenous RNA in NP remain uncertain. The goal of this research was to investigate the molecular processes underlying NP. Methods. We utilized the Gene Expression Omnibus (GEO) to obtain NP-related microarray datasets that included the expression patterns of circular RNAs (circRNAs) and messenger RNAs (mRNAs). Following that, bioinformatics analyses and a molecular biology experiment were carried out. Results. According to the findings, carrying out enrichment studies of the targeted genes had an impact on a variety of NP-related pathways. Notably, we isolated a ceRNA subnetwork incorporating two upregulated circRNAs (Esrrg and Map3k3) which primarily participate in the focal adhesion pathway by regulating Integrin Subunit Beta 4 (ITGB4) and two downregulated circRNAs (Dgkb and Atp2a2), which potentially regulate metabolism-related molecule Lipase A (LIPA). Conclusions. According to our findings, the focal adhesion and metabolic signaling pathways could be critical in the advancement of NP, and some circRNA might regulate this biological process through the ceRNA network, which might offer pertinent insights into the underlying mechanisms.
Collapse
|
27
|
Neiro J, Sridhar D, Dattani A, Aboobaker A. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. eLife 2022; 11:79675. [PMID: 35997250 PMCID: PMC9522251 DOI: 10.7554/elife.79675] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Planarians have become an established model system to study regeneration and stem cells, but the regulatory elements in the genome remain almost entirely undescribed. Here, by integrating epigenetic and expression data we use multiple sources of evidence to predict enhancer elements active in the adult stem cell populations that drive regeneration. We have used ChIP-seq data to identify genomic regions with histone modifications consistent with enhancer activity, and ATAC-seq data to identify accessible chromatin. Overlapping these signals allowed for the identification of a set of high-confidence candidate enhancers predicted to be active in planarian adult stem cells. These enhancers are enriched for predicted transcription factor (TF) binding sites for TFs and TF families expressed in planarian adult stem cells. Footprinting analyses provided further evidence that these potential TF binding sites are likely to be occupied in adult stem cells. We integrated these analyses to build testable hypotheses for the regulatory function of TFs in stem cells, both with respect to how pluripotency might be regulated, and to how lineage differentiation programs are controlled. We found that our predicted GRNs were independently supported by existing TF RNAi/RNA-seq datasets, providing further evidence that our work predicts active enhancers that regulate adult stem cells and regenerative mechanisms.
Collapse
Affiliation(s)
- Jakke Neiro
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Divya Sridhar
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Fu Y, Wang Y, Huang Q, Zhao C, Li X, Kan Y, Li D. Long Noncoding RNA lncR17454 Regulates Metamorphosis of Silkworm Through let-7 miRNA Cluster. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:12. [PMID: 35640247 PMCID: PMC9155153 DOI: 10.1093/jisesa/ieac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 06/15/2023]
Abstract
A number of long noncoding RNAs (lncRNAs) have been identified in silkworm, but little is known about their functions. Recent study showed that the let-7 miRNA cluster (contains let-7, miR-2795, and miR-100) was transcribed from the last exon of lncRNA lncR17454 in silkworm. To investigate the functional role of lncR17454, dsRNAs of lncR17454 were injected into the hemolymph of 1-d-old third-instar larvae of Bombyx mori, repression of lncR17454 led to molting arrestment during the larval-larval and larval-pupal transition of silkworm, which was consistent to the result as let-7 knockdown in other studies. The expression level of mature let-7, miR-100, and miR-2795 decreased 40%, 36%, and 40%, respectively, while the mRNA level of two predicted target genes of let-7, the Broad Complex isoform 2 (BR-C-Z2) and the BTB-Zinc finger transcription repression factor gene Abrupt (Ab), increased significantly after lncR17454 knockdown. In contrast, when adding the 20-Hydroxyecdysone (20E) to silkworm BmN4 cell lines, the expression level of lncR17454 and let-7 cluster all increased significantly, but the expression of Abrupt, the predicted target gene of let-7, was repressed. Dual-luciferase reporter assays confirmed Abrupt was the real target of let-7. Here we found that the lncRNA lncR17454 can play regulator roles in the metamorphosis of silkworm through let-7 miRNA cluster and the ecdysone signaling pathway, which will provide new clues for lepidopteran pest control.
Collapse
Affiliation(s)
| | | | - Qunxia Huang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Chenyue Zhao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Xinmei Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | | | | |
Collapse
|
29
|
Liu W, Cheng P, Zhang K, Gong M, Zhang Z, Zhang R. Systematic identification and characterization of long noncoding RNAs (lncRNAs) during Aedes albopictus development. PLoS Negl Trop Dis 2022; 16:e0010245. [PMID: 35417446 PMCID: PMC9007367 DOI: 10.1371/journal.pntd.0010245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Background
Aedes albopictus originated in the tropical forests of Southeast Asia and can currently be found on all continents. As one of the main arboviral vectors, the control of Ae. albopictus requires novel strategies, informed by a deep knowledge of its biology. Little is known regarding mosquito long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential and have roles in developmental regulation.
Results
Based on RNA-seq data from five developmental time points, eggs, early larvae, late larvae, pupae, and adults (female and male) of Ae. albopictus, 21,414 lncRNAs were characterized in this study. Differential expression analysis revealed that lncRNAs exhibited developmental stage specificity. The expression of most lncRNAs was upregulated at the onset of metamorphosis developmental stages. More differentially expressed lncRNAs were observed between eggs and early larvae. Weighted gene co-expression network analysis (WGCNA) further confirmed that the expression patterns of lncRNAs were obviously correlated with specific developmental time points. Functional annotation using co-expression analysis revealed that lncRNAs may be involved in the regulation of metamorphic developmental transitions of Ae. albopictus. The hub lncRNAs and hub gene clusters were identified for each module that were highly associated with specific developmental time points.
Conclusions
The results of this study will facilitate future researches to elucidate the regulatory mechanisms of lncRNAs in the development of Ae. albopictus and utilize lncRNAs to assist with mosquito control.
Collapse
Affiliation(s)
- Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| | - Peng Cheng
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| | - Maoqing Gong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
- * E-mail: (MG); (ZZ); (RZ)
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- * E-mail: (MG); (ZZ); (RZ)
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- * E-mail: (MG); (ZZ); (RZ)
| |
Collapse
|
30
|
Genome-Wide Identification of the Long Noncoding RNAs of Tribolium castaneum in Response to Terpinen-4-ol Fumigation. INSECTS 2022; 13:insects13030283. [PMID: 35323581 PMCID: PMC8951367 DOI: 10.3390/insects13030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Long noncoding RNAs (lncRNAs) are important regulatory factors in multiple biological processes, including genomic imprinting, cancer, RNA interference, and protein translation. Several lncRNAs can respond to insecticides. However, lncRNA functions associated with terpinen-4-ol resistance in the red flour beetle (Tribolium castaneum) have not yet been identified. In previous work, we found terpinen-4-ol to have strong fumigation activity against store-product pests. As a pesticide from plants, terpinen-4-ol shows nearly no residual danger to the environment; however, resistance is inevitable if people use terpinen-4-ol immoderately. To avoid resistance to terpinen-4-ol occurring in the red flour beetle, we deeply sequenced and tried to find some lncRNAs that can regulate target mRNA expression to reduce terpinen-4-ol. Abstract Long noncoding RNAs (lncRNAs) are important regulatory factors in multiple biological processes, and several lncRNAs are known to respond to insecticides. However, the lncRNA functions that are associated with terpinen-4-ol resistance in the red flour beetle (Tribolium castaneum) have not yet been identified. In this study, we determined the differentially transcribed lncRNAs between fumigated and control experimental groups. In the six libraries that underwent RNA sequencing, 34,546 transcripts were identified, including 8267 novel lncRNAs, 4155 novel mRNAs, 1151 known lncRNAs, and 20,973 known mRNAs. Among these, we found that the expression of 1858 mRNAs and 1663 lncRNAs was significantly different in the fumigated group compared with the control group. Among the differentially transcribed lncRNAs, 453 were up-regulated and 1210 were down-regulated lncRNAs. In addition, we identified the regulatory function targets of the lncRNAs. Functionally, all lncRNAs and target genes associated with terpinen-4-ol metabolism were enriched in several metabolic pathways, like the ATP-binding cassette transporter, pentose interconversion, and glucuronate interconversion. To the best of our knowledge, this study represents the first global identification of lncRNAs and their potential association with terpinen-4-ol metabolism in the red flour beetle. These results will provide reference information for studies on the resistance to terpinen-4-ol and other essential oil compounds and chemical pesticides, as well as an understanding of other biological processes in T. castaneum.
Collapse
|
31
|
Wang KX, Chen CB, Wan QX, Zha XF. Long Non-Coding RNA Bmdsx-AS1 Effects on Male External Genital Development in Silkworm. INSECTS 2022; 13:insects13020188. [PMID: 35206761 PMCID: PMC8875567 DOI: 10.3390/insects13020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/07/2022]
Abstract
Simple Summary LncRNAs are a class of non-coding RNAs longer than 200 nt that are involved in a variety of biological processes. Studies on lncRNAs in Bombyx mori have shown that some lncRNAs are involved in brain development, silk production and the response to virus infection of the host. However, the roles of lncRNAs are still largely unknown in the silkworm. In this study, we analyzed the function of lncRNAs Bmdsx-AS1 in silkworm by transgenic overexpression, which not only affects the development of male silkworm external genitalia, but also participates in the regulation of EGFR signaling pathway. Moreover, we studied the upstream promoter of Bmdsx-AS1 and found that the BmAbd-B transcription factor of the Hox gene family can negatively regulate the expression of Bmdsx-AS1. These results laid a substantial foundation for in-depth study of the function of lncRNAs in the silkworm. Abstract Long non-coding RNAs (lncRNAs) have been suggested to play important roles in some biological processes. However, the detailed mechanisms are not fully understood. We previously identified an antisense lncRNA, Bmdsx-AS1, that is involved in pre-mRNA splicing of the sex-determining gene Bmdsx in the silkworm. In this study, we analyzed the changes in the male external genitalia of transgenic overexpressed Bmdsx-AS1 silkworm lines and analyzed downstream and upstream responses. We found that Bmdsx-AS1 transgenic silkworms, compared with wild type, showed more claspers in the male external genitalia. Quantitative real-time PCR (qPCR) results indicated that overexpression of Bmdsx-AS1 decreased the expression of genes in the EGFR signaling pathway. Knockdown of Bmdsx-AS1 increased the activity of the EGFR pathway. Through promoter prediction, promoter truncation and electrophoretic mobility shift assay (EMSA) analyses, we found that the protein encoded by the Hox gene BmAbd-B specifically binds to the promoter of Bmdsx-AS1. Moreover, overexpression of BmAbd-B in the silkworm BmE cell line indicated that BmAbd-B negatively regulates the mRNA expression of Bmdsx-AS1. Our study provides insights into the regulatory mechanism of the lncRNA in the silkworm.
Collapse
|
32
|
Abd El Halim HM, Ali A. Long noncoding RNAs: Emerging players regulating innate immune memory in the red flour beetle. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104304. [PMID: 34756931 DOI: 10.1016/j.dci.2021.104304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
A variety of strategies have been evolved to eradicate invading microbes. Phagocytes have developed in vertebrates and invertebrates to confer a non-specific immune response to pathogens. Besides, vertebrates have evolved lymphocytes to develop memory cells that can quickly respond upon the next exposure to the same pathogen. Although lymphocytes are absent in invertebrates, historical evidence, dating back to the 1920s, indicated the presence of immune memory in invertebrates. However, the concept of long-lasting non-specific defense predominated until recent evidence has been introduced in the first decade of the 21st century. Although more evidence has been introduced later, the molecular mechanism underlying the innate immune memory is largely undefined in invertebrates. Long noncoding RNAs (lncRNAs) have demonstrated a role in regulating various biological processes, including immune response. In this review, we will explore the potential role of lncRNAs in developing innate immune memory in the red flour beetle (Tribolium castaneum).
Collapse
Affiliation(s)
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742-231, USA; Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt.
| |
Collapse
|
33
|
Li WJ, Wei D, Han HL, Song YJ, Wang Y, Xu HQ, Smagghe G, Wang JJ. lnc94638 is a testis-specific long non-coding RNA involved in spermatozoa formation in Zeugodacus cucurbitae (Coquillett). INSECT MOLECULAR BIOLOGY 2021; 30:605-614. [PMID: 34318563 DOI: 10.1111/imb.12729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) generally display tissue-specific distributions, and testis-specific lncRNAs form the highest proportion of lncRNAs in many species. Here, we presented a detailed analysis of testis-specific lncRNAs in the melon fly, Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. Most testis-specific lncRNAs were found to be long intergenic non-coding RNAs (lincRNA). The size distribution of these lncRNAs ranged between 600 and 1000 nucleotides. Testis-specific lncRNAs that harboured one isoform number and two exons were the most abundant. Compared to other male tissues, the testis had more highly expressed lncRNAs. The quantitative real-time polymerase chain reaction results of 10 randomly selected testis-specific lncRNAs showed expression patterns consistent with RNA-seq data. Further analysis of the most highly expressed testis-specific lncRNA, lnc94638, was undertaken. Fluorescent in situ hybridization assays localized lnc94638 to the apical region of the testis that contains mature spermatozoa. RNA interference-mediated knockdown of lnc94638 expression reduced spermatozoa numbers and impaired the fertility of Z. cucurbitae male. This study provides a catalogue of testis-specific lncRNAs, shows that the testis-specific lnc94638 is involved in spermatogenesis and has the potential to be used for treating male sterility.
Collapse
Affiliation(s)
- W-J Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - D Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - H-L Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Y-J Song
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Y Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - H-Q Xu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - G Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - J-J Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
34
|
Dai Z, Ren J, Tong X, Hu H, Lu K, Dai F, Han MJ. The Landscapes of Full-Length Transcripts and Splice Isoforms as Well as Transposons Exonization in the Lepidopteran Model System, Bombyx mori. Front Genet 2021; 12:704162. [PMID: 34594358 PMCID: PMC8476886 DOI: 10.3389/fgene.2021.704162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The domesticated silkworm, Bombyx mori, is an important model system for the order Lepidoptera. Currently, based on third-generation sequencing, the chromosome-level genome of Bombyx mori has been released. However, its transcripts were mainly assembled by using short reads of second-generation sequencing and expressed sequence tags which cannot explain the transcript profile accurately. Here, we used PacBio Iso-Seq technology to investigate the transcripts from 45 developmental stages of Bombyx mori. We obtained 25,970 non-redundant high-quality consensus isoforms capturing ∼60% of previous reported RNAs, 15,431 (∼47%) novel transcripts, and identified 7,253 long non-coding RNA (lncRNA) with a large proportion of novel lncRNA (∼56%). In addition, we found that transposable elements (TEs) exonization account for 11,671 (∼45%) transcripts including 5,980 protein-coding transcripts (∼32%) and 5,691 lncRNAs (∼79%). Overall, our results expand the silkworm transcripts and have general implications to understand the interaction between TEs and their host genes. These transcripts resource will promote functional studies of genes and lncRNAs as well as TEs in the silkworm.
Collapse
Affiliation(s)
- Zongrui Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China.,WESTA College, Southwest University, Chongqing, China
| | - Jianyu Ren
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Kunpeng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Min-Jin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Yang L, Wang YW, Lu YY, Li B, Chen KP, Li CJ. Genome-wide identification and characterization of long non-coding RNAs in Tribolium castaneum. INSECT SCIENCE 2021; 28:1262-1276. [PMID: 32978885 DOI: 10.1111/1744-7917.12867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) are poorly understood in insects. In this study, we performed genome-wide analysis of lncRNAs in Tribolium castaneum by RNA-seq. In total, 4516 lncRNA transcripts corresponding to 3917 genes were identified from late embryos, early larvae, late larvae, early pupae, late pupae and early adults of T. castaneum, including 3152 novel lncRNAs and 1364 known lncRNAs. These lncRNAs have few exons and transcripts, and are short in length. During development, they exhibited nine different expression patterns. Functionally, they can act either by targeting messenger RNAs (1813 lncRNAs) and lncRNAs (45 lncRNAs) or as micro RNA (miRNA) precursors (46 lncRNAs). LncRNAs were observed to target the metabolic enzymes of glycolysis, TCA cycle and amino acids, demonstrating that lncRNAs control metabolism by regulating metabolic enzymes. Moreover, lncRNAs were shown to participate in cell differentiation and development via their targets. As miRNA precursors, lncRNAs could participate in the ecdysone signaling pathway. This study provides comprehensive information for lncRNAs of T. castaneum, and will promote functional analysis and target identification of lncRNAs in the insect.
Collapse
Affiliation(s)
- Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - You-Wei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yao-Yao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Cheng-Jun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
36
|
Using weighted gene co-expression network analysis (WGCNA) to identify the hub genes related to hypoxic adaptation in yak (Bos grunniens). Genes Genomics 2021; 43:1231-1246. [PMID: 34338989 DOI: 10.1007/s13258-021-01137-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND As a mammal living at the highest altitude in the world, the yak has strong adaptability to the harsh natural environment (such as low temperature, scarce food, especially low oxygen) of Qinghai-Tibet Plateau (QTP) after a long process of natural selection. OBJECTIVE Here, we used Weighted Correlation Network Analysis (WGCNA), a systematic biology method, to identify hypoxic adaptation-related modules and hub genes. The research of the adaptability of yak against hypoxia is of great significance to identify the genetic characteristics and yak breeding. METHODS Based on the transcriptome sequencing data (PRJNA362606), the R package DESeq2 and WGCNA were conducted to analyze differentially expressed genes (DEGs) and construct the gene co-expression network. The module hub genes were identified and characterized by the correlation of gene and trait, module membership (kME). In addition, GO and KEGG enrichment analyses were used to explore the functions of hub genes. RESULTS Our results revealed that 1098, 1429, and 1645 DEGs were identified in muscle, spleen, and lung, respectively. Besides, a total of 13 gene co-expression modules were detected, of which two hypoxic adaptation-related modules (saddlebrown and turquoise) were found. We identified 39 and 150 hub genes in these two modules. Functional enrichment analyses showed that 12 GO terms and 18 KEGG pathways were enriched in the saddlebrown module while 85 GO terms and 22 KEGG pathways were enriched in the turquoise module. The significant pathways related to hypoxia adaptation include FoxO signaling pathway, Thermogenesis pathway, and Retrograde endocannabinoid signaling pathway, etc. CONCLUSIONS: In this study, we obtained two hypoxia-related specific modules and identified hub genes based on the connectivity by constructing a weighted gene co-expression network. Function enrichment analysis of two modules revealed mitochondrion is the most important organelle for hypoxia adaptation. Moreover, the insulin-related pathways and thermogenic-related pathways played a major role. The results of this study provide theoretical guidance for further understanding the molecular mechanism of yak adaptation to hypoxia.
Collapse
|
37
|
Azlan A, Halim MA, Mohamad F, Azzam G. Identification and characterization of long noncoding RNAs and their association with acquisition of blood meal in Culex quinquefasciatus. INSECT SCIENCE 2021; 28:917-928. [PMID: 32621332 DOI: 10.1111/1744-7917.12847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The Southern house mosquito, Culex quinquefasciatus (Cx. quinquefasciatus) is an important vector that transmit multiple diseases including West Nile encephalitis, Japanese encephalitis, St. Louis encephalitis and lymphatic filariasis. Long noncoding RNAs (lncRNAs) involve in many biological processes such as development, infection, and virus-host interaction. However, there is no systematic identification and characterization of lncRNAs in Cx. quinquefasciatus. Here, we report the first lncRNA identification in Cx. quinquefasciatus. By using 31 public RNA-seq datasets, a total of 4763 novel lncRNA transcripts were identified, of which 3591, 569, and 603 were intergenic, intronic, and antisense respectively. Examination of genomic features revealed that Cx. quinquefasciatus shared similar characteristics with other species such as short in length, low GC content, low sequence conservation, and low coding potential. Furthermore, compared to protein-coding genes, Cx. quinquefasciatus lncRNAs had lower expression values, and tended to be expressed in temporally specific fashion. In addition, weighted correlation network and functional annotation analyses showed that lncRNAs may have roles in blood meal acquisition of adult female Cx. quinquefasciatus mosquitoes. This study presents the first systematic identification and analysis of Cx. quinquefasciatus lncRNAs and their association with blood feeding. Results generated from this study will facilitate future investigation on the function of Cx. quinquefasciatus lncRNAs.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Faisal Mohamad
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
38
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
39
|
Li G, Liu X, Smagghe G, Niu J, Wang J. Genome-Wide Characterization and Identification of Long Non-Coding RNAs during the Molting Process of a Spider Mite, Panonychus citri. Int J Mol Sci 2021; 22:6909. [PMID: 34199120 PMCID: PMC8269015 DOI: 10.3390/ijms22136909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Molting is essential for arthropods to grow. As one of the important arthropod pests in agriculture, key spider mite species (Tetranychus and Panonychus) can normally molt three times from the larva to adult stage within a week. This physiological strategy results in the short lifecycle of spider mites and difficulties in their control in the field. Long non-coding RNAs (lncRNAs) regulate transcriptional editing, cellular function, and biological processes. Thus, analysis of the lncRNAs in the spider mite molting process may provide new insights into their roles in the molting mechanism. For this purpose, we used high-throughput RNA-seq to examine the expression dynamics of lncRNAs and mRNAs in the molting process of different development stages in Panonychus citri. We identified 9199 lncRNAs from 18 transcriptomes. Analysis of the lncRNAs suggested that they were shorter and had fewer exons and transcripts than mRNAs. Among these, 356 lncRNAs were differentially expressed during three molting processes: late larva to early protonymph, late protonymph to early deutonymph, and late deutonymph to early adult. A time series profile analysis of differentially expressed lncRNAs showed that 77 lncRNAs were clustered into two dynamic expression profiles (Pattern a and Pattern c), implying that lncRNAs were involved in the molting process of spider mites. Furthermore, the lncRNA-mRNA co-expression networks showed that several differentially expressed hub lncRNAs were predicted to be functionally associated with typical molting-related proteins, such as cuticle protein and chitin biosynthesis. These data reveal the potential regulatory function of lncRNAs in the molting process and provide datasets for further analysis of lncRNAs and mRNAs in spider mites.
Collapse
Affiliation(s)
- Gang Li
- Provincial Key Laboratory of Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China;
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| | - Xunyan Liu
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| | - Guy Smagghe
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jinzhi Niu
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| | - Jinjun Wang
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; (X.L.); (G.S.); (J.N.)
| |
Collapse
|
40
|
Qiao H, Wang J, Wang Y, Yang J, Wei B, Li M, Wang B, Li X, Cao Y, Tian L, Li D, Yao L, Kan Y. Transcriptome analysis reveals potential function of long non-coding RNAs in 20-hydroxyecdysone regulated autophagy in Bombyx mori. BMC Genomics 2021; 22:374. [PMID: 34022797 PMCID: PMC8140452 DOI: 10.1186/s12864-021-07692-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background 20-hydroxyecdysone (20E) plays important roles in insect molting and metamorphosis. 20E-induced autophagy has been detected during the larval–pupal transition in different insects. In Bombyx mori, autophagy is induced by 20E in the larval fat body. Long non-coding RNAs (lncRNAs) function in various biological processes in many organisms, including insects. Many lncRNAs have been reported to be potential for autophagy occurrence in mammals, but it has not been investigated in insects. Results RNA libraries from the fat body of B. mori dissected at 2 and 6 h post-injection with 20E were constructed and sequenced, and comprehensive analysis of lncRNAs and mRNAs was performed. A total of 1035 lncRNAs were identified, including 905 lincRNAs and 130 antisense lncRNAs. Compared with mRNAs, lncRNAs had longer transcript length and fewer exons. 132 lncRNAs were found differentially expressed at 2 h post injection, compared with 64 lncRNAs at 6 h post injection. Thirty differentially expressed lncRNAs were common at 2 and 6 h post-injection, and were hypothesized to be associated with the 20E response. Target gene analysis predicted 6493 lncRNA-mRNA cis pairs and 42,797 lncRNA-mRNA trans pairs. The expression profiles of LNC_000560 were highly consistent with its potential target genes, Atg4B, and RNAi of LNC_000560 significantly decreased the expression of LNC_000560 and Atg4B. These results indicated that LNC_000560 was potentially involved in the 20E-induced autophagy of the fat body by regulating Atg4B. Conclusions This study provides the genome-wide identification and functional characterization of lncRNAs associated with 20E-induced autophagy in the fat body of B. mori. LNC_000560 and its potential target gene were identified to be related to 20-regulated autophagy in B. mori. These results will be helpful for further studying the regulatory mechanisms of lncRNAs in autophagy and other biological processes in this insect model. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07692-1.
Collapse
Affiliation(s)
- Huili Qiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Jingya Wang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China.,School of Life Science, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yuanzhuo Wang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Juanjuan Yang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Bofan Wei
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Miaomiao Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China.,School of Life Science, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Bo Wang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Xiaozhe Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Yang Cao
- State Key Laboratory of Silkworm Genome Biology / Biological Science Research Center, Southwest University, 400716, Chongqing, China.,Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Ling Tian
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Lunguang Yao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 473061, Nanyang, Henan, China.
| |
Collapse
|
41
|
Meng LW, Yuan GR, Chen ML, Dou W, Jing TX, Zheng LS, Peng ML, Bai WJ, Wang JJ. Genome-wide identification of long non-coding RNAs (lncRNAs) associated with malathion resistance in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2021; 77:2292-2301. [PMID: 33423365 DOI: 10.1002/ps.6256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/09/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the regulation of biological processes and have been identified in many species including insects. However, the association between lncRNAs and pesticide resistance in insect species such as Bactrocera dorsalis is unknown. RESULTS RNA-seq was performed on malathion resistant (MR1) and susceptible (MS) strains of B. dorsalis and a total of 6171 lncRNAs transcripts were identified. These included 3728 lincRNAs, 653 antisense lncRNAs, 1402 intronic lncRNAs, and 388 sense lncRNAs. A total of 40 and 52 upregulated lncRNAs were found in females and males of the MR1 strain compared to 54 and 49 in the same sexes of the MS strain, respectively. Twenty-seven of these lncRNAs showed the same trend of expression in both females and males in the MR1 strain, in which 15 lncRNAs were upregulated and 12 were downregulated. RT-qPCR results indicated that the differentially expressed lncRNAs were associated with malathion resistance. The lnc15010.10 and lnc3774.2 were highly expressed in the cuticle of the MR1 strain, indicating that these two lncRNAs may be related to malathion resistance. RNAi of lnc3774.2 and a bioassay showed that malathion resistance was possibly influenced by changes in the B. dorsalis cuticle. CONCLUSION LncRNAs of B. dorsalis potentially related to the malathion resistance were identified. Two lncRNAs appear to influence malathion resistance via modulating the structure, or components, of the cuticle. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li-Sha Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Lan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wen-Jie Bai
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
42
|
Choudhary C, Sharma S, Meghwanshi KK, Patel S, Mehta P, Shukla N, Do DN, Rajpurohit S, Suravajhala P, Shukla JN. Long Non-Coding RNAs in Insects. Animals (Basel) 2021; 11:1118. [PMID: 33919662 PMCID: PMC8069800 DOI: 10.3390/ani11041118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Only a small subset of all the transcribed RNAs are used as a template for protein translation, whereas RNA molecules that are not translated play a very important role as regulatory non-coding RNAs (ncRNAs). Besides traditionally known RNAs (ribosomal and transfer RNAs), ncRNAs also include small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs). The lncRNAs, which were initially thought to be junk, have gained a great deal attention because of their regulatory roles in diverse biological processes in animals and plants. Insects are the most abundant and diverse group of animals on this planet. Recent studies have demonstrated the role of lncRNAs in almost all aspects of insect development, reproduction, and genetic plasticity. In this review, we describe the function and molecular mechanisms of the mode of action of different insect lncRNAs discovered up to date.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Shivasmi Sharma
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Smit Patel
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Prachi Mehta
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
| | - Duy Ngoc Do
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Subhash Rajpurohit
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
- Bioclues.org, Vivekananda Nagar, Kukatpally, Hyderabad, Telangana 500072, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| |
Collapse
|
43
|
Zhang Z, Zhao Z, Lin S, Wu W, Tang W, Dong Y, Shen M, Wu P, Guo X. Identification of long noncoding RNAs in silkworm larvae infected with Bombyx mori cypovirus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:1-12. [PMID: 33619747 DOI: 10.1002/arch.21777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is one of the most important pathogens causing severe disease to silkworm. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play importantly regulatory roles in virus infection and host immune response. To better understand the interaction between silkworm, Bombyx mori and BmCPV, we performed a comparative transcriptome analysis on lncRNAs and mRNAs between the virus-infected and noninfected silkworm larvae midgut at two time points postinoculation. A total of 16,753 genes and 1845 candidate lncRNAs were identified, among which 356 messenger RNA (mRNAs) and 41 lncRNAs were differentially expressed (DE). Target gene prediction revealed that most of DEmRNAs (123) were coexpressed with 28 DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans- regulation by BmCPV-induced lncRNAs, and a regulatory network of DElncRNAs and DEmRNAs was then constructed. According to the network, many genes involved in apoptosis, autophagy, and antiviral response, such as ATG3, PDCD6, IBP2, and MFB1, could be targeted by different DElncRNAs, implying the essential roles of these genes and lncRNAs in BmCPV infection. In all, our studies revealed for the first time the alteration of lncRNA expression in BmCPV-infected larvae and its potential influence on BmCPV replication, providing a new perspective for host-cypovirus interaction studies.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Weiming Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Youfu Dong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
44
|
Bo D, Jiang X, Liu G, Hu R, Chong Y. RNA-Seq Implies Divergent Regulation Patterns of LincRNA on Spermatogenesis and Testis Growth in Goats. Animals (Basel) 2021; 11:ani11030625. [PMID: 33653002 PMCID: PMC7996862 DOI: 10.3390/ani11030625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Long intergenic non-coding RNAs (lincRNAs) can regulate testicular development by acting on protein-coding genes. Therefore, it is important to explore the expression patterns and roles of lincRNAs during the postnatal development of the goat testis. In this study, the testes of Yiling goats with average ages of 0, 30, 60, 90, 120, 150, and 180 days postnatal were used for RNA-seq. In total, 20,269 lincRNAs were identified, including 16,931 novel lincRNAs. Using weighted gene co-expression network analysis, seven time-specifically diverse lincRNA modules and six mRNA modules were identified. Dramatically, the down-regulation of growth-related lincRNAs was nearly one month earlier than the up-regulation of spermatogenesis-related lincRNAs, while the down-regulation of growth-related protein-coding genes and the correspondent up-regulation of spermatogenesis-related protein-coding genes occurred at the same age. Moreover, potential lincRNA target genes were predicted. Moreover, key lincRNAs in the process of testis development were predicted, such as ENSCHIT00000000777, ENSCHIT00000002069, and ENSCHIT00000005076. In the present study, the divergent regulation patterns of lincRNA on spermatogenesis and testis growth were discovered. This study can improve our understanding of the functions of lincRNAs in the regulation of testis development. Abstract Long intergenic non-coding RNAs (lincRNAs) regulate testicular development by acting on protein-coding genes. However, little is known about whether lincRNAs and protein-coding genes exhibit the same expression pattern in the same phase of postnatal testicular development in goats. Therefore, this study aimed to demonstrate the expression patterns and roles of lincRNAs during the postnatal development of the goat testis. Herein, the testes of Yiling goats with average ages of 0, 30, 60, 90, 120, 150, and 180 days postnatal (DP) were used for RNA-seq. In total, 20,269 lincRNAs were identified, including 16,931 novel lincRNAs. We identified seven time-specifically diverse lincRNA modules and six mRNA modules by weighted gene co-expression network analysis (WGCNA). Interestingly, the down-regulation of growth-related lincRNAs was nearly one month earlier than the up-regulation of spermatogenesis-related lincRNAs, while the down-regulation of growth-related protein-coding genes and the correspondent up-regulation of spermatogenesis-related protein-coding genes occurred at the same age. Then, potential lincRNA target genes were predicted. Moreover, the co-expression network of lincRNAs demonstrated that ENSCHIT00000000777, ENSCHIT00000002069, and ENSCHIT00000005076 were the key lincRNAs in the process of testis development. Our study discovered the divergent regulation patterns of lincRNA on spermatogenesis and testis growth, providing a fresh insight into age-biased changes in lincRNA expression in the goat testis.
Collapse
Affiliation(s)
- Dongdong Bo
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87585120
| | - Ruixue Hu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
| | - Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
| |
Collapse
|
45
|
Systematic and computational identification of Androctonus crassicauda long non-coding RNAs. Sci Rep 2021; 11:4720. [PMID: 33633149 PMCID: PMC7907363 DOI: 10.1038/s41598-021-83815-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
The potential function of long non-coding RNAs in regulating neighbor protein-coding genes has attracted scientists' attention. Despite the important role of lncRNAs in biological processes, a limited number of studies focus on non-model animal lncRNAs. In this study, we used a stringent step-by-step filtering pipeline and machine learning-based tools to identify the specific Androctonus crassicauda lncRNAs and analyze the features of predicted scorpion lncRNAs. 13,401 lncRNAs were detected using pipeline in A. crassicauda transcriptome. The blast results indicated that the majority of these lncRNAs sequences (12,642) have no identifiable orthologs even in closely related species and those considered as novel lncRNAs. Compared to lncRNA prediction tools indicated that our pipeline is a helpful approach to distinguish protein-coding and non-coding transcripts from RNA sequencing data of species without reference genomes. Moreover, analyzing lncRNA characteristics in A. crassicauda uncovered that lower protein-coding potential, lower GC content, shorter transcript length, and less number of isoform per gene are outstanding features of A. crassicauda lncRNAs transcripts.
Collapse
|
46
|
Farley EJ, Eggleston H, Riehle MM. Filtering the Junk: Assigning Function to the Mosquito Non-Coding Genome. INSECTS 2021; 12:186. [PMID: 33671692 PMCID: PMC7926655 DOI: 10.3390/insects12020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
The portion of the mosquito genome that does not code for proteins contains regulatory elements that likely underlie variation for important phenotypes including resistance and susceptibility to infection with arboviruses and Apicomplexan parasites. Filtering the non-coding genome to uncover these functional elements is an expanding area of research, though identification of non-coding regulatory elements is challenging due to the lack of an amino acid-like code for the non-coding genome and a lack of sequence conservation across species. This review focuses on three types of non-coding regulatory elements: (1) microRNAs (miRNAs), (2) long non-coding RNAs (lncRNAs), and (3) enhancers, and summarizes current advances in technical and analytical approaches for measurement of each of these elements on a genome-wide scale. The review also summarizes and highlights novel findings following application of these techniques in mosquito-borne disease research. Looking beyond the protein-coding genome is essential for understanding the complexities that underlie differential gene expression in response to arboviral or parasite infection in mosquito disease vectors. A comprehensive understanding of the regulation of gene and protein expression will inform transgenic and other vector control methods rooted in naturally segregating genetic variation.
Collapse
Affiliation(s)
| | | | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (E.J.F.); (H.E.)
| |
Collapse
|
47
|
Azlan A, Obeidat SM, Theva Das K, Yunus MA, Azzam G. Genome-wide identification of Aedes albopictus long noncoding RNAs and their association with dengue and Zika virus infection. PLoS Negl Trop Dis 2021; 15:e0008351. [PMID: 33481791 PMCID: PMC7872224 DOI: 10.1371/journal.pntd.0008351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/09/2021] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). Long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutations in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus. Ae. albopictus is an important vector of arboviruses such as dengue and Zika viruses. Studies on virus-host interaction at gene expression and molecular level are crucial especially in devising methods to inhibit virus replication in Aedes mosquitoes. Previous reports have shown that, besides protein-coding genes, noncoding RNAs such as lncRNAs are also involved in virus-host interaction. In this study, we report a comprehensive catalog of novel lncRNA transcripts in the genome of Ae. albopictus. We also show that the expression of lncRNAs was altered upon infection with dengue and Zika. Additionally, depletion of certain lncRNAs resulted in increased replication of dengue and Zika; hence, suggesting potential association of lncRNAs in virus infection. Results of this study provide a new avenue to the investigation of mosquito-virus interactions, especially in the aspect of noncoding genes.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sattam M. Obeidat
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- * E-mail:
| |
Collapse
|
48
|
Ruan J, Wu M, Ye X, Zhao S, Liang J, Ye L, You Z, Zhong B. Comparative mRNA and LncRNA Analysis of the Molecular Mechanisms Associated With Low Silk Production in Bombyx mori. Front Genet 2021; 11:592128. [PMID: 33552120 PMCID: PMC7859555 DOI: 10.3389/fgene.2020.592128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Naked pupa sericin and Naked pupa are two mutant strains of Bombyx mori with extremely low or no fibroin production compared to the Qiufeng and Baiyu strains, both of which exhibit very high silk fibroin production. However, the molecular mechanisms by which long non-coding RNAs regulate fibroin synthesis need further study. In this study, we performed high-throughput RNA-seq to investigate lncRNA and mRNA expression profiles in the posterior silk gland of Qiufeng, Baiyu, Nd-sD, and Nd silkworms at the third day of the 5th instar. Our efforts yielded 26,767 novel lncRNAs and 6,009 novel mRNAs, the expression levels of silk protein genes and silk gland transcription factors were decreased in Qiufeng vs. Nd-sD and Qiufeng vs. Nd, while those of many genes related to autophagy, apoptosis, RNA degradation, ubiquitin-mediated proteolysis and heat shock proteins were increased. Moreover, the expression of a large number of genes responsible for protein synthesis and secretion was significantly decreased in Nd. GO and KEGG analysis results showed that nucleotide excision repair, mRNA surveillance pathways, amino acid degradation, protein digestion and absorption, ER-associated degradation and proteasome pathways were significantly enriched for the Qiufeng vs. Nd-sD and Qiufeng vs. Nd comparisons. In conclusion, our findings contribute to the lncRNA and mRNA database of Bombyx mori, and the identified differentially expressed mRNAs and lncRNAs help to reveal the molecular mechanisms of low silk production in Nd-sD and Nd, providing new insights for improvement of silk yield and elucidation of silk mechanical properties.
Collapse
Affiliation(s)
- Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianshe Liang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lupeng Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhengying You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Xing L, Xi Y, Qiao X, Huang C, Wu Q, Yang N, Guo J, Liu W, Fan W, Wan F, Qian W. The landscape of lncRNAs in Cydia pomonella provides insights into their signatures and potential roles in transcriptional regulation. BMC Genomics 2021; 22:4. [PMID: 33402093 PMCID: PMC7786964 DOI: 10.1186/s12864-020-07313-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as an important class of transcriptional regulators in cellular processes. The past decades have witnessed great progress in lncRNA studies in a variety of organisms. The codling moth (Cydia pomonella L.) is an important invasive insect in China. However, the functional impact of lncRNAs in this insect remains unclear. In this study, an atlas of codling moth lncRNAs was constructed based on publicly available RNA-seq datasets. Results In total, 9875 lncRNA transcripts encoded by 9161 loci were identified in the codling moth. As expected, the lncRNAs exhibited shorter transcript lengths, lower GC contents, and lower expression levels than protein-coding genes (PCGs). Additionally, the lncRNAs were more likely to show tissue-specific expression patterns than PCGs. Interestingly, a substantial fraction of the lncRNAs showed a testis-biased expression pattern. Additionally, conservation analysis indicated that lncRNA sequences were weakly conserved across insect species, though additional lncRNAs with homologous relationships could be identified based on synteny, suggesting that synteny could be a more reliable approach for the cross-species comparison of lncRNAs. Furthermore, the correlation analysis of lncRNAs with neighbouring PCGs indicated a stronger correlation between them, suggesting potential cis-acting roles of these lncRNAs in the regulation of gene expression. Conclusions Taken together, our work provides a valuable resource for the comparative and functional study of lncRNAs, which will facilitate the understanding of their mechanistic roles in transcriptional regulation.
Collapse
Affiliation(s)
- Longsheng Xing
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yu Xi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
50
|
Zhang X, Zhou T, Chen B, Bai H, Bai Y, Zhao J, Pu F, Wu Y, Chen L, Shi Y, Ke Q, Zheng W, Chen J, Xu P. Identification and Expression Analysis of Long Non-coding RNA in Large Yellow Croaker ( Larimichthys crocea) in Response to Cryptocaryon irritans Infection. Front Genet 2020; 11:590475. [PMID: 33281881 PMCID: PMC7689269 DOI: 10.3389/fgene.2020.590475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Large-scale transcription studies have revealed numerous lncRNAs (long non-coding RNAs). lncRNAs have been proposed to participate in the regulation of a diverse range of biological processes, including transcriptional regulation. Although lncRNAs have attracted increasing attention, the studies in large yellow croaker (Larimichthys crocea) are still rare, and they lack systematic analysis. In this study, 101 RNA-seq datasets varied in ages, sexes, and tissues were retrieved from the NCBI database to generate a comprehensive catalog of large yellow croaker transcriptome database. A set of 14,599 high-confidence lncRNAs from 13,673 loci were identified and characterized. Furthermore, RNA-seq datasets obtained from the infection of C. irritans were employed to investigate the differential expression pattern of lncRNAs and analyze potential biological functions. A total of 77 differentially expressed lncRNAs targeting to 567 protein-coding genes were identified by using expression analysis. Several immune genes, including TLR5, CD2AP, and MMP9, were highlighted. With GO enrichment and KEGG pathway analysis, the immune-related terms or pathways were enriched. This study created a comprehensive dataset of lncRNAs for large yellow croaker, which would be helpful for the researches of functional roles of lncRNAs in large yellow croaker.
Collapse
Affiliation(s)
- Xinyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, China
| |
Collapse
|