1
|
Klishko AN, Harnie J, Hanson CE, Rahmati SM, Rybak IA, Frigon A, Prilutsky BI. Effects of spinal transection and locomotor speed on muscle synergies of the cat hindlimb. J Physiol 2025; 603:3061-3088. [PMID: 40321018 DOI: 10.1113/jp288089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
It has been suggested that during locomotion, the nervous system controls movement by activating groups of muscles, or muscle synergies. Analysis of muscle synergies can reveal the organization of spinal locomotor networks and how it depends on the state of the nervous system, such as before and after spinal cord injury, and on different locomotor conditions, including a change in speed. The goal of this study was to investigate the effects of spinal transection and locomotor speed on hindlimb muscle synergies and their time-dependent activity patterns in adult cats. EMG activities of 15 hindlimb muscles were recorded in nine adult cats of either sex during tied-belt treadmill locomotion at speeds of 0.4, 0.7 and 1.0 m/s before and after recovery from a low thoracic spinal transection. We determined EMG burst groups using cluster analysis of EMG burst onset and offset times and muscle synergies using non-negative matrix factorization (NNMF). We found five major EMG burst groups and five muscle synergies in each of six experimental conditions (2 states × 3 speeds). In each case, the synergies accounted for at least 90% of muscle EMG variance. Both spinal transection and locomotion speed modified subgroups of EMG burst groups and the composition and activation patterns of selected synergies. However, these changes did not modify the general organization of muscle synergies. Based on the obtained results, we propose an organization for a pattern formation network of a two-level central pattern generator that can be tested in neuromechanical simulations of spinal circuits controlling cat locomotion. KEY POINTS: Analysis of muscle synergies during locomotion can reveal the organization of spinal locomotor networks. We recorded EMG activity of 15 hindlimb muscles in cats locomoting on a treadmill at speeds 0.4, 0.7 and 1.0 m/s before and after recovery from spinal cord transection at low thoracic level. We found five muscle synergies in all six experimental conditions (2 spinal states x 3 speeds) that include two flexor synergies operating in the swing phase and three extensor synergies operating in the stance phase. Major features of found synergies (the number, muscle composition and activation patterns) were not substantially affected by spinal transection and locomotion speed, suggesting that spinal control mechanism operates muscle synergies. Based on the obtained results, we proposed an organization of a pattern formation network of a two-level central pattern generator controlling locomotor activity of hindlimb muscles.
Collapse
Affiliation(s)
- Alexander N Klishko
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire E Hanson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Hu X, McCrady AN, Bukovec KE, Yuan C, Miller EY, Bour RK, Bruce AC, Crump KB, Peirce SM, Grange RW, Blemker SS. A novel ex vivo protocol that mimics length and excitation changes of human muscles during walking induces force losses in EDL but not in soleus of mdx mice. PLoS One 2025; 20:e0320901. [PMID: 40193354 PMCID: PMC11975108 DOI: 10.1371/journal.pone.0320901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Although eccentric contraction protocols are widely used to study the pathophysiology and potential treatments for Duchenne muscular dystrophy (DMD), they do not reflect the stresses, strains, strain rates, and excitation profiles that DMD muscles experience during human daily functional tasks, like walking. This limitation of eccentric contractions may impede our understanding of disease progression in DMD and proper assessment of treatment efficacy. The goals of this study were to examine the extent of force loss induced by a gait cycling protocol we developed, and compare to that from a typical eccentric contraction protocol in soleus and extensor digitorum longus (EDL) muscles of mdx mice. To achieve this goal, mdx soleus and EDL muscles were subjected to eccentric contractions at three levels of strain (10%, 20% and 30% optimal length Lo) and up to 200 cycles of our gait cycling protocol that mimicked the length changes and excitation patterns of the corresponding muscles during human walking gait. Our results showed that EDL but not soleus muscles had significant losses in isometric tetanic forces after the cycling protocols. Compared to the eccentric contraction protocol, the decrements in contractile performance from the cycling protocol were similar to those from the eccentric contractions at 10% in soleus and 20% Lo in EDL. Together, these results indicated the gait cycling protocol is a valuable experimental approach to better understand disease progression and to screen and evaluate efficacy of novel therapeutics for DMD.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Allison N. McCrady
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katherine E. Bukovec
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Claire Yuan
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Emily Y. Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rachel K. Bour
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katherine B. Crump
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robert W. Grange
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Silvia S. Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Orthopedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
3
|
Hooper SL, Guschlbauer C, Wieters F, Aswendt M, Büschges A. Passive responses in mouse hind leg locomotion. Curr Biol 2025; 35:1459-1469.e4. [PMID: 40118063 DOI: 10.1016/j.cub.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 03/23/2025]
Abstract
Mice are of a size at which passive joint and muscle forces should be important in leg movements. To investigate this issue, we measured, in anesthetized mice, hind leg passive movements in response to changes in animal orientation relative to gravity and to manual deflections of the leg. Changing gravity orientation did not rotate leg joints to their physiological extremes, indicating that passive responses limit joint rotation range. The manual leg deflections were sufficient to achieve joint angles overlapping those present in published descriptions of mouse locomotion. Upon release from these deflections, the legs returned to intermediate postures. These results show that passive responses are (1) present at locomotory joint angles and (2) sufficiently large, at these angles, to move the leg. Return amplitude depended linearly on deflection amplitude. The slope of this dependence was the same across leg joints, suggesting it is evolutionarily or developmentally selected for. Combining the extremes of our passive response data and published descriptions of joint angles during mouse locomotion (e.g., most-flexed passive response mouse with most-extended published locomotion pattern) allowed determining when in a locomotory cycle passive responses could be definitely extending or flexing. In three of these four combinations, only extending passive responses could be definitely present in the locomotory patterns. In the fourth, alternatively, both extending and flexing passive responses could be definitely present. Passive responses thus likely act during mouse hind leg locomotion, but their amplitude and even sign may vary across individual mice.
Collapse
Affiliation(s)
- Scott L Hooper
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | - Christoph Guschlbauer
- Department of Animal Physiology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Frederique Wieters
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Markus Aswendt
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
4
|
Gilmer JI, Coltman SK, Cuenu G, Hutchinson JR, Huber D, Person AL, Al Borno M. A novel biomechanical model of the proximal mouse forelimb predicts muscle activity in optimal control simulations of reaching movements. J Neurophysiol 2025; 133:1266-1278. [PMID: 40098414 DOI: 10.1152/jn.00499.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Mice are key model organisms in neuroscience and motor systems physiology. Fine motor control tasks performed by mice have become widely used in assaying neural and biophysical motor system mechanisms. Although fine motor tasks provide useful insights into behaviors that require complex multi-joint motor control, there is no previously developed physiological biomechanical model of the adult mouse forelimb available for estimating kinematics, muscle activity, or kinetics during behaviors. Here, we developed a musculoskeletal model based on high-resolution imaging of the mouse forelimb that includes muscles spanning the neck, trunk, shoulder, and limbs. Physics-based optimal control simulations of the forelimb model were used to estimate in vivo muscle activity present when constrained to the tracked kinematics during reaching movements. The activity of a subset of muscles was recorded and used to assess the accuracy of the muscle patterning in simulation. We found that the synthesized muscle patterning in the forelimb model had a strong resemblance to empirical muscle patterning, suggesting that our model has utility in providing a realistic set of estimated muscle excitations over time when given a kinematic template. The strength of the similarity between empirical muscle activity and optimal control predictions increases as mice performance improves throughout learning of the reaching task. Our computational tools are available as open-source in the OpenSim physics and modeling platform. Our model can enhance research into limb control across broad research topics and can inform analyses of motor learning, muscle synergies, neural patterning, and behavioral research that would otherwise be inaccessible.NEW & NOTEWORTHY Investigations into motor planning and execution lack an accurate and complete model of the forelimb, which could bolster or expand on findings. We sought to construct such a model using high-detail scans of murine anatomy and prior research into muscle physiology. We then used the model to predict muscle excitations in a set of reaching movements and found that it provided accurate estimations and provided insight into an optimal-control framework of motor learning.
Collapse
Affiliation(s)
- Jesse I Gilmer
- Department of Computer Science and Engineering, Computational Bioscience Program, University of Colorado Denver | Anschutz Medical Campus, Denver, Colorado, United States
| | - Susan K Coltman
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Geraldine Cuenu
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Daniel Huber
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado Denver | Anschutz Medical Campus, Denver, Colorado, United States
| | - Mazen Al Borno
- Department of Computer Science and Engineering, Computational Bioscience Program, University of Colorado Denver | Anschutz Medical Campus, Denver, Colorado, United States
| |
Collapse
|
5
|
Cahill R, Blaber EA, Juran CM, Cheng-Campbell M, Alwood JS, Shirazi-Fard Y, Almeida EAC. 37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sites. PLoS One 2025; 20:e0317307. [PMID: 40138271 PMCID: PMC11940681 DOI: 10.1371/journal.pone.0317307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/24/2024] [Indexed: 03/29/2025] Open
Abstract
Exposure to weightlessness in microgravity and elevated space radiation are associated with rapid bone loss in mammals, but questions remain about their mechanisms of action and relative importance. In this study, we tested the hypothesis that bone loss during spaceflight in Low Earth Orbit is primarily associated with site-specific microgravity unloading of weight-bearing sites in the skeleton. Microcomputed tomography and histological analyses of bones from mice space flown on ISS for 37 days in the NASA Rodent Research-1 experiment show significant site-specific cancellous and cortical bone loss occurring in the femur, but not in L2 vertebrae. The lack of bone degenerative effects in the spine in combination with same-animal paired losses in the femur suggests that space radiation levels in Low Earth Orbit or other systemic stresses are not likely to significantly contribute to the observed bone loss. Remarkably, spaceflight is also associated with accelerated progression of femoral head endochondral ossification. This suggests the microgravity environment promotes premature progression of secondary ossification during late stages of skeletal maturation at 21 weeks. Furthermore, mice housed in the NASA ISS Rodent Habitat during 1g ground controls maintained or gained bone relative to mice housed in standard vivarium cages that showed significant bone mass declines. These findings suggest that housing in the Rodent Habitat with greater topological enrichment from 3D wire-mesh surfaces may promote increased mechanical loading of weight-bearing bones and maintenance of bone mass. In summary, our results indicate that in female mice approaching skeletal maturity, mechanical unloading of weight-bearing sites is the major cause of bone loss in microgravity, while sites loaded predominantly by muscle activity, such as the spine, appear unaffected. Additionally, we identified early-onset of femoral head epiphyseal plate secondary ossification as a novel spaceflight skeletal unloading effect that may lead to premature long bone growth arrest in microgravity.
Collapse
Affiliation(s)
- Rukmani Cahill
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| | - Elizabeth A. Blaber
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Cassandra M. Juran
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States of America
| | | | - Joshua S. Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Eduardo A. C. Almeida
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| |
Collapse
|
6
|
Mun JH, Jang MJ, Kim WS, Kim SS, Lee B, Moon H, Oh SJ, Ryu CH, Park KS, Cho IH, Hong GS, Choi CW, Lee C, Kim MS. Enhanced Cognitive and Memory Functions via Gold Nanoparticle-Mediated Delivery of Afzelin through Synaptic Modulation Pathways in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2025; 16:826-843. [PMID: 39976589 DOI: 10.1021/acschemneuro.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Gold nanoparticles (AuNPs) are valuable tools in pharmacological and biological research, offering unique properties for drug delivery in the treatment of neurodegenerative diseases. This study investigates the potential of gold nanoparticles loaded with afzelin, a natural chemical extracted from Ribes fasciculatum, to enhance its therapeutic effects and overcome the limitations of using natural compounds regarding low productivity. We hypothesized that the combined treatment of AuNPs with afzelin (AuNP-afzelin) would remarkably enforce neuroprotective effects compared with the single treatment of afzelin. Central administration of AuNP-afzelin (10 ng of afzelin) indicated improvements in cognition and memory-involved assessments of behavioral tests, comparing single treatments of afzelin (10 or 100 ng of afzelin) in scopolamine-induced AD mice. AuNP-afzelin also performed superior neuroprotective effects of rescuing mature neuronal cells and recovered cholinergic dysfunction compared to afzelin alone, according to further investigations of BDNF-pCREB-pAkt signaling, long-term potentiation, and doublecortin (DCX) expression in the hippocampus. This study highlights the potential of afzelin with gold nanoparticles as a promising therapeutic approach for mitigating cognitive impairments associated with neurodegenerative diseases and offers a new avenue for future research and drug development.
Collapse
Affiliation(s)
- Ju Hee Mun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Jang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won Seok Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Seop Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - HyunSeon Moon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Cheol-Hui Ryu
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Su Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Changhyuk Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Arreguit J, Tata Ramalingasetty S, Ijspeert A. FARMS: Framework for Animal and Robot Modeling and Simulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.25.559130. [PMID: 38293071 PMCID: PMC10827226 DOI: 10.1101/2023.09.25.559130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The study of animal locomotion and neuromechanical control offers valuable insights for advancing research in neuroscience, biomechanics, and robotics. We have developed FARMS (Framework for Animal and Robot Modeling and Simulation), an open-source, interdisciplinary framework, designed to facilitate access to modeling, simulation, and analysis of animal locomotion and bio-inspired robotic systems. By providing an accessible and user-friendly platform, FARMS aims to lower the barriers for researchers to explore the complex interactions between the nervous system, musculoskeletal structures, and their environment. Integrating the MuJoCo physics engine in a modular manner, FARMS enables realistic simulations and fosters collaboration among neuroscientists, biologists, and roboticists. FARMS has already been extensively used to study locomotion in animals such as mice, drosophila, fish, salamanders, and centipedes, serving as a platform to investigate the role of central pattern generators and sensory feedback. This article provides an overview of the FARMS framework, discusses its interdisciplinary approach, showcases its versatility through specific case studies, and highlights its effectiveness in advancing our understanding of locomotion. Overall, the goal of FARMS is to contribute to a deeper understanding of animal locomotion, the development of innovative bio-inspired robotic systems, and promote accessibility in neuromechanical research.
Collapse
Affiliation(s)
- Jonathan Arreguit
- BioRob, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Innobridge Services Sàrl, Lausanne Switzerland
| | - Shravan Tata Ramalingasetty
- BioRob, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, USA
| | - Auke Ijspeert
- BioRob, School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Vendredy L, De Winter V, Van Lent J, Orije J, Authier TDS, Katona I, Asselbergh B, Adriaenssens E, Weis J, Verhoye M, Timmerman V. RNA Interference Targeting Small Heat Shock Protein B8 Failed to Improve Distal Hereditary Motor Neuropathy in the Mouse Model. J Gene Med 2025; 27:e70013. [PMID: 39972648 DOI: 10.1002/jgm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Missense mutations in the HSPB8 gene, encoding the small heat shock protein B8, cause distal hereditary motor neuropathy (dHMN) or an axonal form of Charcot-Marie-Tooth disease (CMT subtype 2L). Mice expressing mutant Hspb8 (Lys141Asn) mimic the human disease, whereas mice lacking Hspb8 show no overt phenotype. We aimed to design an RNA interference treatment strategy that rescues the mutant HSPB8 neuronal and muscle phenotype in patient-derived motor neurons and in a knock-in mouse model of CMT2L/dHMN. METHODS We optimized RNA interference sequences targeting both human HSPB8 and mouse HspB8 transcripts with the aim to alleviate disease symptoms. We used human induced pluripotent stem cells and the Hspb8 knock-in mouse model. We designed lenti- and adeno-associated viral vectors that contained the short-hairpin RNA constructs. We performed expression and microscopy studies, magnetic resonance imaging, behaviour analysis and electrophysiology. RESULTS In CMT2L patient-derived induced pluripotent stem cells differentiated towards motor neurons, reducing the HSPB8 expression with a short-hairpin RNA (shRNA), directed towards the 3' untranslated region (3'UTR), ameliorated the morphology and fragmentation of mitochondria. The AAV9-mediated treatment of the 3'UTR shRNA construct, under neuron-specific regulation, in Hspb8 knock-in mice showed inconclusive results towards functional improvement upon expression studies, magnetic resonance imaging and neuropathological findings. CONCLUSIONS Given the limited beneficial effect of the treatment, the RNA interference-mediated reduction of HSPB8/Hspb8 expression might not be the best therapeutic strategy to treat dHMN/CMT2L, unless a higher viral load and earlier treatment can be applied to the mouse model.
Collapse
Affiliation(s)
- Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jasmien Orije
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Bio-Imaging, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tatiana Da Silva Authier
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Neurology, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marleen Verhoye
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Bio-Imaging, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Seo D, Ito R, Ishikawa K, Miura T, Yamamoto Y, Onodera Y, Nishioka S, Ito YM, Fuyama K, Maeda T. 3D scanner's potential as a novel tool for lymphedema measurement in mouse hindlimb models. Sci Rep 2025; 15:3747. [PMID: 39885185 PMCID: PMC11782579 DOI: 10.1038/s41598-025-85637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
Lymphedema is characterized by persistent swelling due to impaired lymphatic function and presents significant challenges in both research and clinical settings. Traditional contact-based measurement techniques such as paw thickness and circumferential measurements using calipers or silk thread are useful but limited by observer variability and measurement accuracy. Non-contact methods, including various imaging techniques, offer improvements but often at higher cost and complexity. In this study, we address the need for a more reliable, cost-effective, and non-invasive method for assessing lymphedema in mouse models. Here we show that 3D scanning technology can enhance the measurement of lymphedema in a mouse hindlimb model. Our results indicate that 3D scanners provide more consistent measurements with lower variability compared with conventional methods and without the need for direct contact, which could potentially alter the measurement outcomes. The findings of this study suggest that 3D scanning could replace traditional methods, offering a more standardized and less subjective tool for lymphedema research in the near future. This technology would not only improve upon conventional methods but also extend the capabilities for detailed anatomical analyses in small animal models, which could have implications for other areas of biomedical research.
Collapse
Affiliation(s)
- Dongkyung Seo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Riri Ito
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Soichiro Nishioka
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Kanako Fuyama
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Matek D, Matek I, Staresinic E, Japjec M, Bojanic I, Boban Blagaic A, Beketic Oreskovic L, Oreskovic I, Ziger T, Novinscak T, Krezic I, Strbe S, Drinkovic M, Brkic F, Popic J, Skrtic A, Seiwerth S, Staresinic M, Sikiric P, Brizic I. Stable Gastric Pentadecapeptide BPC 157 as Therapy After Surgical Detachment of the Quadriceps Muscle from Its Attachments for Muscle-to-Bone Reattachment in Rats. Pharmaceutics 2025; 17:119. [PMID: 39861766 PMCID: PMC11768438 DOI: 10.3390/pharmaceutics17010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration. METHODS Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e., myotendinous junction), per-oral in particular (BPC 157/kg/day 10 µg, 10 ng), provides muscle-to-bone reattachment after quadriceps muscle detachment, both complete (rectus muscle) and partial (vastus muscles). RESULTS Immediately post-injury, and at 1, 2, 3, 5, 7, 14, 21, 28, 60, and 90 days post-injury, quadriceps muscle-to-bone detachment showed definitive healing failure (impaired walking and permanent knee flexure). Contrarily, macro/microscopic, ultrasonic, magnetic resonance, biomechanical, and functional assessments revealed that BPC 157 therapy recovering effects for all time points were consistent. All parameters of the walking pattern fully improved, and soon after detachment and therapy application, muscle approached the bone, leaving a minimal gap (on ultrasonic assessment), and leg contracture was annihilated. The healing process occurs immediately after detachment from both sides: the muscle and the bone. The reattachment fibers from the ends of the muscle could be traced into the new bone formed at the surface (note, at day 3 post-detachment, increased mesenchymal cells occurred with periosteum reactivation). Consequently, at 3 months, the form was stable, and the balance between the muscle and bone was the following: well-organized bone, newly formed as more cortical bone providing a narrower bone marrow space, and the muscle and mature fibers were oriented parallel to the bone axis and were in close contact with bone. CONCLUSIONS Therefore, to achieve quadriceps muscle-to-bone reattachment, the BPC 157 therapy reversing course acts from the beginning, resolving an otherwise insurmountable deleterious course.
Collapse
Affiliation(s)
- Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
- Department of Pharmacology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Irena Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Eva Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Mladen Japjec
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Bojanic
- Department of Orthopedic Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Tihomil Ziger
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Tomislav Novinscak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Martin Drinkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Filip Brkic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Jelena Popic
- Department of Radiology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (P.S.)
| | - Ivica Brizic
- Department of Pharmacology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
11
|
Rahmati SM, Klishko AN, Martin RS, Bunderson NE, Meslie JA, Nichols TR, Rybak IA, Frigon A, Burkholder TJ, Prilutsky BI. Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat. J Physiol 2025; 603:447-487. [PMID: 39705066 PMCID: PMC11737544 DOI: 10.1113/jp287448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA) and fascicle length. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in seven and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibres (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii length afferents matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion. KEY POINTS: Little is known about the role of forelimb muscle morphology in producing motor outputs and generating somatosensory signals. This information is needed to understand the contributions of forelimbs in locomotor control. We measured morphological characteristics of 46 muscles from cat forelimbs, recorded cat walking mechanics and electromyographic activity, and computed patterns of moment arms, length, velocity, activation, and force of forelimb muscles, as well as length- and force-dependent afferent activity during walking. We demonstrated that moment arms, physiological cross-sectional area and fascicle length of forelimb muscles contribute substantially to muscle force production and proprioceptive activity, to the regulation of locomotor cycle phase transitions and to control of lateral stability. The obtained information can guide the development of biologically accurate neuromechanical models of quadrupedal locomotion for exploring and testing novel methods of treatments of central nervous system pathologies by modulating activities in neural pathways controlling forelimbs/arms.
Collapse
Affiliation(s)
| | | | | | | | - Jeswin A. Meslie
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - T. Richard Nichols
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ilya A. Rybak
- Department of Neurobiology and AnatomyDrexel UniversityPhiladelphiaPAUSA
| | - Alain Frigon
- Department of Pharmacology‐PhysiologyUniversité de SherbrookeSherbrookeQuebecCanada
| | | | - Boris I. Prilutsky
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
12
|
Li D, Liu S, Lu X, Gong Z, Wang H, Xia X, Lu F, Jiang J, Zhang Y, Xu G, Zou F, Ma X. The Circadian Clock Gene Bmal1 Regulates Microglial Pyroptosis After Spinal Cord Injury via NF-κB/MMP9. CNS Neurosci Ther 2024; 30:e70130. [PMID: 39648661 PMCID: PMC11625957 DOI: 10.1111/cns.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The treatment of spinal cord injury (SCI) is usually ineffective, because neuroinflammatory secondary injury is an important cause of the continuous development of spinal cord injury, and microglial pyroptosis is an important step of neuroinflammation. Recently, Bmal1, a core component of circadian clock genes (CCGs), has been shown to play a regulatory role in various tissues and cells. However, it is still unclear whether Bmal1 regulates microglial pyroptosis after SCI. METHODS In this study, we established an in vivo mouse model of SCI using Bmal1 knockout (KO) mice and wild-type (WT) mice, and lipopolysaccharide (LPS)-induced pyroptosis in BV2 cells as an in vitro model. A series of molecular and histological methods were used to detect the level of pyroptosis and explore the regulatory mechanism in vivo and in vitro respectively. RESULTS Both in vitro and in vivo results showed that Bmal1 inhibited NLRP3 inflammasome activation and microglial pyroptosis after SCI. Further analysis showed that Bmal1 inhibited pyroptosis-related proteins (NLRP3, Caspase-1, ASC, GSDMD-N) and reduced the release of IL-18 and IL-1β by inhibiting the NF-κB /MMP9 pathway. It was important that NF-κB was identified as a transcription factor that promotes the expression of MMP9, which in turn regulates microglial pyroptosis after SCI. CONCLUSIONS Our study initially identified that Bmal1 regulates the NF-κB /MMP9 pathway to reduce microglial pyroptosis and thereby reduce secondary spinal cord injury, providing a new promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Siyang Liu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongli Wang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Fei Zou
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
14
|
Bemis C, Konow N, Daley MA, Nishikawa K. Investigating in vivo force and work production of rat medial gastrocnemius at varying locomotor speeds using a muscle avatar. J Exp Biol 2024; 227:jeb248177. [PMID: 39445492 PMCID: PMC11586523 DOI: 10.1242/jeb.248177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Traditional work loop studies, that use sinusoidal length trajectories with constant frequencies, lack the complexities of in vivo muscle mechanics observed in modern studies. This study refines methodology of the 'avatar' method (a modified work loop) to infer in vivo muscle mechanics using ex vivo experiments with mouse extensor digitorum longus (EDL) muscles. The 'avatar' method involves using EDL muscles to replicate in vivo time-varying force, as demonstrated by previous studies focusing on guinea fowl lateral gastrocnemius (LG). The present study extends this method by using in vivo length trajectories and electromyographic activity from rat medial gastrocnemius (MG) during various gaits on a treadmill. Methodological enhancements from previous work, including adjusted stimulation protocols and systematic variation of starting length, improved predictions of in vivo time-varying force production (R2=0.80-0.96). The study confirms there is a significant influence of length, stimulation and their interaction on work loop variables (peak force, length at peak force, highest and average shortening velocity, and maximum and minimum active velocity), highlighting the importance of these interactions when muscles produce in vivo forces. We also investigated the limitations of traditional work loops in capturing muscle dynamics in legged locomotion (R2=0.01-0.71). While in vivo length trajectories enhanced force prediction, accurately predicting work per cycle remained challenging. Overall, the study emphasizes the utility of the 'avatar' method in elucidating dynamic muscle mechanics and highlights areas for further investigation to refine its application in understanding in vivo muscle function.
Collapse
Affiliation(s)
- Caitlin Bemis
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicolai Konow
- Department of Biology Studies, University of Massachusetts at Lowell, Lowell, MA 01854, USA
| | - Monica A. Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
15
|
Young LA, Munro E, Somanchi P, Bemis A, Smith SM, Shefelbine SJ. Analysis of bone structure in PEROMYSCUS: Effects of burrowing behavior. Anat Rec (Hoboken) 2024; 307:3506-3518. [PMID: 38850161 DOI: 10.1002/ar.25508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 06/10/2024]
Abstract
We compare the effects of burrowing behavior on appendicular bone structure in two Peromyscus (deer mouse) species. P. polionotus creates complex burrows in their territories, while P. eremicus is a non-burrowing nesting mouse. We examined museum specimens' bones of wild-caught mice of the two species and lab-reared P. polionotus not given the opportunity to burrow. Bones were scanned using micro-computed tomography, and cortical and trabecular bone structural properties were quantified. Wild P. polionotus mice had a larger moment of area in the ulnar and tibial cortical bone compared with their lab-reared counterparts, suggesting developmental adaptation to bending resistance. Wild P. polionotus had a larger normalized second moment of area and cross-sectional area in the tibia compared with P. eremicus. Tibial trabecular analysis showed lower trabecular thickness and spacing in wild P. polionotus than in P. eremicus and femoral analysis showed wild P. polionotus had lower thickness than P. eremicus and lower spacing than lab-reared P. polionotus, suggesting adaptation to high loads from digging. Results lay the groundwork for future exploration of the ontogenetic and evolutionary basis of mechanoadaptation in Peromyscus.
Collapse
Affiliation(s)
- Lindsey A Young
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Emma Munro
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Priya Somanchi
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Abigail Bemis
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| | | | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Gilmer JI, Coltman SK, Cuenu G, Hutchinson JR, Huber D, Person AL, Al Borno M. A novel biomechanical model of the mouse forelimb predicts muscle activity in optimal control simulations of reaching movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611289. [PMID: 39314302 PMCID: PMC11418950 DOI: 10.1101/2024.09.05.611289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mice are key model organisms in neuroscience and motor systems physiology. Fine motor control tasks performed by mice have become widely used in assaying neural and biophysical motor system mechanisms. Although fine motor tasks provide useful insights into behaviors which require complex multi-joint motor control, there is no previously developed physiological biomechanical model of the adult mouse forelimb available for estimating kinematics nor muscle activity or kinetics during behaviors. Here, we developed a musculoskeletal model based on high-resolution imaging of the mouse forelimb that includes muscles spanning the neck, trunk, shoulder, and limbs. Physics-based optimal control simulations of the forelimb model were used to estimate in vivo muscle activity present when constrained to the tracked kinematics during reaching movements. The activity of a subset of muscles was recorded and used to assess the accuracy of the muscle patterning in simulation. We found that the synthesized muscle patterning in the forelimb model had a strong resemblance to empirical muscle patterning, suggesting that our model has utility in providing a realistic set of estimated muscle excitations over time when given a kinematic template. The strength of the similarity between empirical muscle activity and optimal control predictions increases as mice performance improves throughout learning of the reaching task. Our computational tools are available as open-source in the OpenSim physics and modeling platform. Our model can enhance research into limb control across broad research topics and can inform analyses of motor learning, muscle synergies, neural patterning, and behavioral research that would otherwise be inaccessible.
Collapse
Affiliation(s)
- Jesse I Gilmer
- University of Colorado Denver ∣ Anschutz Medical Campus, Department of Computer Science and Engineering, Computational Bioscience Program
| | - Susan K Coltman
- The Pennsylvania State University, Department of Kinesiology
| | | | - John R Hutchinson
- Royal Veterinary College, Department of Comparative Biomedical Sciences
| | - Daniel Huber
- University of Geneva, Department of Basic Neuroscience
| | - Abigail L Person
- University of Colorado Denver ∣ Anschutz Medical Campus, Department of Physiology and Biophysics
| | - Mazen Al Borno
- University of Colorado Denver ∣ Anschutz Medical Campus, Department of Computer Science and Engineering, Computational Bioscience Program
| |
Collapse
|
17
|
Klishko AN, Harnie J, Hanson CE, Rahmati SM, Rybak IA, Frigon A, Prilutsky BI. EFFECTS OF SPINAL TRANSECTION AND LOCOMOTOR SPEED ON MUSCLE SYNERGIES OF THE CAT HINDLIMB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613891. [PMID: 39345603 PMCID: PMC11429932 DOI: 10.1101/2024.09.19.613891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
It was suggested that during locomotion, the nervous system controls movement by activating groups of muscles, or muscle synergies. Analysis of muscle synergies can reveal the organization of spinal locomotor networks and how it depends on the state of the nervous system, such as before and after spinal cord injury, and on different locomotor conditions, including a change in speed. The goal of this study was to investigate the effects of spinal transection and locomotor speed on hindlimb muscle synergies and their time-dependent activity patterns in adult cats. EMG activities of 15 hindlimb muscles were recorded in 9 adult cats of either sex during tied-belt treadmill locomotion at speeds of 0.4, 0.7, and 1.0 m/s before and after recovery from a low thoracic spinal transection. We determined EMG burst groups using cluster analysis of EMG burst onset and offset times and muscle synergies using non-negative matrix factorization. We found five major EMG burst groups and five muscle synergies in each of six experimental conditions (2 states × 3 speeds). In each case, the synergies accounted for at least 90% of muscle EMG variance. Both spinal transection and locomotion speed modified subgroups of EMG burst groups and the composition and activation patterns of selected synergies. However, these changes did not modify the general organization of muscle synergies. Based on the obtained results, we propose an organization for a pattern formation network of a two-level central pattern generator that can be tested in neuromechanical simulations of spinal circuits controlling cat locomotion.
Collapse
Affiliation(s)
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire E Hanson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Ilya A Rybak
- Department of Neurobiology and Anatomy; Drexel University, Philadelphia, PA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
18
|
Kuroda Y, Yoda M, Kawaai K, Tatenuma M, Mizoguchi T, Ito S, Kasahara M, Wu Y, Takano H, Momose A, Matsuo K. Developing long bones respond to surrounding tissues by trans-pairing of periosteal osteoclasts and endocortical osteoblasts. Development 2024; 151:dev202194. [PMID: 39119717 PMCID: PMC11423808 DOI: 10.1242/dev.202194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Motoharu Tatenuma
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | - Shinichirou Ito
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba, Sendai Miyagi 980-8577, Japan
- JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Rahmati SM, Klishko AN, Martin RS, Bunderson NE, Meslie JA, Nichols TR, Rybak IA, Frigon A, Burkholder TJ, Prilutsky BI. ROLE OF FORELIMB MORPHOLOGY IN MUSCLE SENSORIMOTOR FUNCTIONS DURING LOCOMOTION IN THE CAT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603106. [PMID: 39071389 PMCID: PMC11275737 DOI: 10.1101/2024.07.11.603106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from 6 cats. These characteristics included muscle attachments, physiological cross-sectional area (PCSA), fascicle length, etc. We also recorded full-body mechanics and EMG activity of forelimb muscles during level overground and treadmill locomotion in 7 and 16 adult cats of either sex, respectively. We computed forelimb muscle forces along with force- and length-dependent sensory signals mapped onto corresponding cervical spinal segments. We found that patterns of computed muscle forces and afferent activities were strongly affected by the muscle's moment arm, PCSA, and fascicle length. Morphology of the shoulder muscles suggests distinct roles of the forelimbs in lateral force production and movements. Patterns of length-dependent sensory activity of muscles with long fibers (brachioradialis, extensor carpi radialis) closely matched patterns of overall forelimb length, whereas the activity pattern of biceps brachii matched forelimb orientation. We conclude that cat forelimb muscle morphology contributes substantially to locomotor function, particularly to control lateral stability and turning, rather than propulsion.
Collapse
Affiliation(s)
| | | | | | | | - Jeswin A Meslie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy; Drexel University, Philadelphia, PA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
20
|
Castro AA, Nguyen A, Ahmed S, Garland T, Holt NC. Muscle-Tendon Unit Properties in Mice Bred for High Levels of Voluntary Running: Novel Physiologies, Coadaptation, Trade-Offs, and Multiple Solutions in the Evolution of Endurance Running. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:191-208. [PMID: 39270325 DOI: 10.1086/731307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
AbstractMuscle-tendon unit (MTU) morphology and physiology are likely major determinants of locomotor performance and therefore Darwinian fitness. However, the relationships between underlying traits, performance, and fitness are complicated by phenomena such as coadaptation, multiple solutions, and trade-offs. Here, we leverage a long-running artificial selection experiment in which mice have been bred for high levels of voluntary running to explore MTU adaptation, as well as the role of coadaptation, multiple solutions, and trade-offs, in the evolution of endurance running. We compared the morphological and contractile properties of the triceps surae complex, a major locomotor MTU, in four replicate selected lines to those of the triceps surae complex in four replicate control lines. All selected lines have lighter and shorter muscles, longer tendons, and faster muscle twitch times than all control lines. Absolute and normalized maximum shortening velocities and contractile endurance vary across selected lines. Selected lines have similar or lower absolute velocities and higher endurance than control lines. However, normalized shortening velocities are both higher and lower in selected lines than in control lines. These findings potentially show an interesting coadaptation between muscle and tendon morphology and muscle physiology, highlight multiple solutions for increasing endurance running performance, demonstrate that a trade-off between muscle speed and endurance can arise in response to selection, and suggest that a novel physiology may sometimes allow this trade-off to be circumvented.
Collapse
|
21
|
Foessl I, Ackert-Bicknell CL, Kague E, Laskou F, Jakob F, Karasik D, Obermayer-Pietsch B, Alonso N, Bjørnerem Å, Brandi ML, Busse B, Calado Â, Cebi AH, Christou M, Curran KM, Hald JD, Semeraro MD, Douni E, Duncan EL, Duran I, Formosa MM, Gabet Y, Ghatan S, Gkitakou A, Hassler EM, Högler W, Heino TJ, Hendrickx G, Khashayar P, Kiel DP, Koromani F, Langdahl B, Lopes P, Mäkitie O, Maurizi A, Medina-Gomez C, Ntzani E, Ohlsson C, Prijatelj V, Rabionet R, Reppe S, Rivadeneira F, Roshchupkin G, Sharma N, Søe K, Styrkarsdottir U, Szulc P, Teti A, Tobias J, Valjevac A, van de Peppel J, van der Eerden B, van Rietbergen B, Zekic T, Zillikens MC. A perspective on muscle phenotyping in musculoskeletal research. Trends Endocrinol Metab 2024; 35:478-489. [PMID: 38553405 DOI: 10.1016/j.tem.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 05/12/2024]
Abstract
Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.
Collapse
Affiliation(s)
- Ines Foessl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Erika Kague
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Franz Jakob
- Bernhard-Heine-Centrum für Bewegungsforschung und Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Würzburg, Germany
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bishop PJ, Pierce SE. The fossil record of appendicular muscle evolution in Synapsida on the line to mammals: Part II-Hindlimb. Anat Rec (Hoboken) 2024; 307:1826-1896. [PMID: 37727023 DOI: 10.1002/ar.25310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
This paper is the second in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character-state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically "mammalian" have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies.
Collapse
Affiliation(s)
- Peter J Bishop
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Bradley-Cronkwright M, Moore S, Hou L, Cote S, Rolian C. Impact of hindlimb length variation on jumping dynamics in the Longshanks mouse. J Exp Biol 2024; 227:jeb246808. [PMID: 38634230 DOI: 10.1242/jeb.246808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Distantly related mammals (e.g. jerboa, tarsiers, kangaroos) have convergently evolved elongated hindlimbs relative to body size. Limb elongation is hypothesized to make these species more effective jumpers by increasing their kinetic energy output (through greater forces or acceleration distances), thereby increasing take-off velocity and jump distance. This hypothesis, however, has rarely been tested at the population level, where natural selection operates. We examined the relationship between limb length, muscular traits and dynamics using Longshanks mice, which were selectively bred over 22 generations for longer tibiae. Longshanks mice have approximately 15% longer tibiae and 10% longer femora compared with random-bred Control mice from the same genetic background. We collected in vivo measures of locomotor kinematics and force production, in combination with behavioral data and muscle morphology, to examine how changes in bone and muscle structure observed in Longshanks mice affect their hindlimb dynamics during jumping and clambering. Longshanks mice achieved higher mean and maximum lunge-jump heights than Control mice. When jumping to a standardized height (14 cm), Longshanks mice had lower maximum ground reaction forces, prolonged contact times and greater impulses, without significant differences in average force, power or whole-body velocity. While Longshanks mice have longer plantarflexor muscle bodies and tendons than Control mice, there were no consistent differences in muscular cross-sectional area or overall muscle volume; improved lunge-jumping performance in Longshanks mice is not accomplished by simply possessing larger muscles. Independent of other morphological or behavioral changes, our results point to the benefit of longer hindlimbs for performing dynamic locomotion.
Collapse
Affiliation(s)
| | - Sarah Moore
- Cumming School of Medicine, University of Calgary, AB, Canada, T2N 4N1
| | - Lily Hou
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Susanne Cote
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Campbell Rolian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, AB, Canada, T2N 4N1
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada, T2N 4N1
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada, H3A 0C7
| |
Collapse
|
24
|
Shelley SP, James RS, Tallis J. The effects of muscle starting length on work loop power output of isolated mouse soleus and extensor digitorum longus muscle. J Exp Biol 2024; 227:jeb247158. [PMID: 38584504 DOI: 10.1242/jeb.247158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Force-length relationships derived from isometric activations may not directly apply to muscle force production during dynamic contractions. As such, different muscle starting lengths between isometric and dynamic conditions could be required to achieve maximal force and power. Therefore, this study examined the effects of starting length [±5-10% of length corresponding to maximal twitch force (L0)] on work loop (WL) power output (PO), across a range of cycle frequencies, of the soleus (SOL) and extensor digitorum longus muscle (EDL; N=8-10) isolated from ∼8 week old C57 mice. Furthermore, passive work was examined at a fixed cycle frequency to determine the association of passive work and active net work. Starting length affected maximal WL PO of the SOL and EDL across evaluated cycle frequencies (P<0.030, ηp2>0.494). For the SOL, PO produced at -5% L0 was greater than that at most starting lengths (P<0.015, Cohen's d>0.6), except -10% L0 (P=0.135, d<0.4). However, PO produced at -10% L0 versus L0 did not differ (P=0.138, d=0.35-0.49), indicating -5% L0 is optimal for maximal SOL WL PO. For the EDL, WL PO produced at -10% L0 was lower than that at most starting lengths (P<0.032, d>1.08), except versus -5% L0 (P=0.124, d<0.97). PO produced at other starting lengths did not differ (P>0.163, d<1.04). For the SOL, higher passive work was associated with reduced PO (Spearman's r=0.709, P<0.001), but no relationship was observed between passive work and PO of the EDL (Pearson's r=0.191, r2=0.04, P=0.184). This study suggests that starting length should be optimised for both static and dynamic contractions and confirms that the force-length curve during dynamic contractions is muscle specific.
Collapse
Affiliation(s)
- Sharn P Shelley
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| | - Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|
25
|
Pajski ML, Byrd C, Nandigama N, Seguin E, Seguin A, Fennell A, Graber TG. Endurance exercise preserves physical function in adult and older male C57BL/6 mice: high intensity interval training (HIIT) versus voluntary wheel running (VWR). FRONTIERS IN AGING 2024; 5:1356954. [PMID: 38523671 PMCID: PMC10958787 DOI: 10.3389/fragi.2024.1356954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Exercise has been shown to improve physical function, mitigate aspects of chronic disease and to potentially alter the trajectory of age-related onset of frailty and sarcopenia. Reliable and valid preclinical models are necessary to elucidate the underlying mechanisms at the intersection of age, exercise, and functional decline. The purpose of this study was to compare, head to head, the effects of two common pre-clinical models of endurance exercise: high intensity interval training (HIIT) and voluntary wheel running (VWR). The hypothesis was that a prescribed and regimented exercise program, HIIT, would prove to be a superior training method to unregulated voluntary exercise, VWR. To investigate this hypothesis, we evaluated adult (n = 24, designated 10 m, aged 6 months at the beginning of the study, 10 months at its completion) and older adult (n = 18, designated 26 m, aging from 22 months to 26 months over the course of the study) C57BL/6 male mice. These mice were randomly assigned (with selection criteria) to a 13-week program of voluntary wheel running (VWR), high intensity interval training (HIIT), or sedentary control (SED). The functional aptitude of each mouse was determined pre- and post-training using our composite CFAB (comprehensive functional assessment battery) scoring system consisting of voluntary wheel running (volitional exercise and activity rate), treadmill (endurance), rotarod (overall motor function), grip meter (forelimb strength), and inverted cling (whole body strength/endurance). To measure sarcopenia, we tracked body mass, body composition (with EchoMRI), plantar flexor torque (in 10 m), and measured muscle wet mass post-training. Overall, adult CFAB scores decreased while body mass and percent body fat increased as they matured; however, exercise significantly mitigated the changes (p < 0.05) compared to SED. Older adults demonstrated preservation of function (CFAB) and reduced body fat (p < 0.05) compared to SED. To conclude, both types of exercise maintained physical function equally in older mice.
Collapse
Affiliation(s)
- Megan L. Pajski
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
| | - Chris Byrd
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
| | - Nainika Nandigama
- Department of Public Health, East Carolina University, Greenville, NC, United States
| | - Emily Seguin
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Anna Seguin
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Alyssa Fennell
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
| | - Ted G. Graber
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
- Department of Kinesiology, East Carolina University, Greenville, NC, United States
- Department of Physiology, East Carolina University, Greenville, NC, United States
- East Carolina Obesity and Diabetes Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
26
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Zec K, Schonfeldova B, Ai Z, Van Grinsven E, Pirgova G, Eames HL, Berthold DL, Attar M, Compeer EB, Arnon TI, Udalova IA. Macrophages in the synovial lining niche initiate neutrophil recruitment and articular inflammation. J Exp Med 2023; 220:e20220595. [PMID: 37115585 PMCID: PMC10148166 DOI: 10.1084/jem.20220595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The first immune-activating changes within joint resident cells that lead to pathogenic leukocyte recruitment during articular inflammation remain largely unknown. In this study, we employ state-of-the-art confocal microscopy and image analysis in a systemic, whole-organ, and quantitative way to present evidence that synovial inflammation begins with the activation of lining macrophages. We show that lining, but not sublining macrophages phagocytose immune complexes containing the model antigen. Using the antigen-induced arthritis (AIA) model, we demonstrate that on recognition of antigen-antibody complexes, lining macrophages undergo significant activation, which is dependent on interferon regulatory factor 5 (IRF5), and produce chemokines, most notably CXCL1. Consequently, at the onset of inflammation, neutrophils are preferentially recruited in the vicinity of antigen-laden macrophages in the synovial lining niche. As inflammation progresses, neutrophils disperse across the whole synovium and form swarms in synovial sublining during resolution. Our study alters the paradigm of lining macrophages as immunosuppressive cells to important instigators of synovial inflammation.
Collapse
Affiliation(s)
- Kristina Zec
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Zhichao Ai
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Gabriela Pirgova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hayley L. Eames
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Moustafa Attar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ewoud B. Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tal I. Arnon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Irina A. Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Zhu M, Metzen F, Hopkinson M, Betz J, Heilig J, Sodhi J, Imhof T, Niehoff A, Birk DE, Izu Y, Krüger M, Pitsillides AA, Altmüller J, van Osch GJ, Straub V, Schreiber G, Paulsson M, Koch M, Brachvogel B. Ablation of collagen XII disturbs joint extracellular matrix organization and causes patellar subluxation. iScience 2023; 26:107225. [PMID: 37485359 PMCID: PMC10362267 DOI: 10.1016/j.isci.2023.107225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Collagen XII, belonging to the fibril-associated collagens, is a homotrimeric secreted extracellular matrix (ECM) protein encoded by the COL12A1 gene. Mutations in the human COL12A1 gene cause an Ehlers-Danlos/myopathy overlap syndrome leading to skeletal abnormalities and muscle weakness. Here, we studied the role of collagen XII in joint pathophysiology by analyzing collagen XII deficient mice and human patients. We found that collagen XII is widely expressed across multiple connective tissue of the developing joint. Lack of collagen XII in mice destabilizes tendons and the femoral trochlear groove to induce patellar subluxation in the patellofemoral joint. These changes are associated with an ECM damage response in tendon and secondary quadriceps muscle degeneration. Moreover, patellar subluxation was also identified as a clinical feature of human patients with collagen XII deficiency. The results provide an explanation for joint hyperlaxity in mice and human patients with collagen XII deficiency.
Collapse
Affiliation(s)
- Mengjie Zhu
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fabian Metzen
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Janina Betz
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne, Germany
- Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jassi Sodhi
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne, Germany
- Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David E. Birk
- College of Medicine, University of South Florida, Morsani, Tampa, FL, USA
| | - Yayoi Izu
- Department of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | | | - Mats Paulsson
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Song J, Chowdhury IH, Choudhuri S, Ayadi AEI, Rios LE, Wolf SE, Wenke JC, Garg NJ. Acute muscle mass loss was alleviated with HMGB1 neutralizing antibody treatment in severe burned rats. Sci Rep 2023; 13:10250. [PMID: 37355693 PMCID: PMC10290662 DOI: 10.1038/s41598-023-37476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Burn injury is associated with muscle wasting, though the involved signaling mechanisms are not well understood. In this study, we aimed to examine the role of high mobility group box 1 (HMGB1) in signaling hyper-inflammation and consequent skeletal muscle impairment after burn. Sprague Dawley rats were randomly assigned into three groups: (1) sham burn, (2) burn, (3) burn/treatment. Animals in group 2 and group 3 received scald burn on 30% of total body surface area (TBSA) and immediately treated with chicken IgY and anti-HMGB1 antibody, respectively. Muscle tissues and other samples were collected at 3-days after burn. Body mass and wet/dry weights of the hind limb muscles (total and individually) were substantially decreased in burn rats. Acute burn provoked the mitochondrial stress and cell death and enhanced the protein ubiquitination and LC3A/B levels that are involved in protein degradation in muscle tissues. Further, an increase in muscle inflammatory infiltrate associated with increased differentiation, maturation and proinflammatory activation of bone marrow myeloid cells and αβ CD4+ T and γδ T lymphocytes was noted in in circulation and spleen of burn rats. Treatment with one dose of HMGB1 neutralizing antibody reduced the burn wound size and preserved the wet/dry weights of the hind limb muscles associated with a control in the markers of cell death and autophagy pathways in burn rats. Further, anti-HMGB1 antibody inhibited the myeloid and T cells inflammatory activation and subsequent dysregulated inflammatory infiltrate in the muscle tissues of burn rats. We conclude that neutralization of HMGB1-dependent proteolytic and inflammatory responses has potential beneficial effects in preventing the muscle loss after severe burn injury.
Collapse
Affiliation(s)
- Juquan Song
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Imran H Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amina E I Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette E Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph C Wenke
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
30
|
Maurer L, Brown M, Saggi T, Cardiges A, Kolarcik CL. Hindlimb muscle representations in mouse motor cortex defined by viral tracing. Front Neuroanat 2023; 17:965318. [PMID: 37303816 PMCID: PMC10248224 DOI: 10.3389/fnana.2023.965318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Descending pathways from the cortex to the spinal cord are involved in the control of natural movement. Although mice are widely used to study the neurobiology of movement and as models of neurodegenerative disease, an understanding of motor cortical organization is lacking, particularly for hindlimb muscles. Methods In this study, we used the retrograde transneuronal transport of rabies virus to compare the organization of descending cortical projections to fast- and slow-twitch hindlimb muscles surrounding the ankle joint in mice. Results Although the initial stage of virus transport from the soleus muscle (predominantly slow-twitch) appeared to be more rapid than that associated with the tibialis anterior muscle (predominantly fast-twitch), the rate of further transport of virus to cortical projection neurons in layer V was equivalent for the two injected muscles. After appropriate survival times, dense concentrations of layer V projection neurons were identified in three cortical areas: the primary motor cortex (M1), secondary motor cortex (M2), and primary somatosensory cortex (S1). Discussion The origin of the cortical projections to each of the two injected muscles overlapped almost entirely within these cortical areas. This organization suggests that cortical projection neurons maintain a high degree of specificity; that is, even when cortical projection neurons are closely located, each neuron could have a distinct functional role (controlling fast- versus slow-twitch and/or extensor versus flexor muscles). Our results represent an important addition to the understanding of the mouse motor system and lay the foundation for future studies investigating the mechanisms underlying motor system dysfunction and degeneration in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy.
Collapse
Affiliation(s)
- Lauren Maurer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maia Brown
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tamandeep Saggi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexia Cardiges
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christi L. Kolarcik
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Li D, Lu X, Xu G, Liu S, Gong Z, Lu F, Xia X, Jiang J, Wang H, Zou F, Ma X. Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53-ALOX15 signaling pathway. CNS Neurosci Ther 2023. [PMID: 36942513 DOI: 10.1111/cns.14150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly disabling condition in spinal surgery that leads to neuronal damage and secondary inflammation. Ferroptosis is a non-apoptotic type of cell death that has only recently been identified, which is marked primarily by iron-dependent and lipid-derived reactive oxygen species accumulation, and accompanied by morphological modifications such as mitochondrial atrophy and increase in membrane density. Dihydroorotate dehydrogenase (DHODH) is a powerful inhibitor of ferroptosis and has been demonstrated to inhibit cellular ferroptosis in tumor cells, but whether it can inhibit neuronal injury following spinal cord injury remains ambiguous. METHODS In this study, the effect of DHODH on neuronal ferroptosis was observed in vivo and in vitro using a rat spinal cord injury model and erastin-induced PC12 cells, respectively. A combination of molecular and histological approaches was performed to assess ferroptosis and explore the possible mechanisms in vivo and in vitro. RESULTS First, we confirmed the existence of neuronal ferroptosis after spinal cord injury and that DHODH attenuates neuronal damage after spinal cord injury. Second, we showed molecular evidence that DHODH inhibits the activation of ferroptosis-related molecules and reduces lipid peroxide production and mitochondrial damage, thereby reducing neuronal ferroptosis. Further analysis suggests that P53/ALOX15 may be one of the mechanisms regulated by DHODH. Importantly, we determined that DHODH inhibits ALOX15 expression by inhibiting P53. CONCLUSIONS Our findings reveal a novel function for DHODH in neuronal ferroptosis after spinal cord injury, suggesting a unique therapeutic target to alleviate the disease process of spinal cord injury.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Sahd L, Doubell N, Bennett NC, Kotzé SH. Muscle architecture and muscle fibre type composition in the forelimb of two African mole-rat species, Bathyergus suillus and Heterocephalus glaber. J Morphol 2023; 284:e21557. [PMID: 36630620 DOI: 10.1002/jmor.21557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The scratch-digging Cape dune mole-rat (Bathyergus suillus), and the chisel-toothed digging naked mole-rat (Heterocephalus glaber) are African mole-rats that differ in their digging strategy. The aim of this study was to determine if these behavioural differences are reflected in the muscle architecture and fibre-type composition of the forelimb muscles. Muscle architecture parameters of 39 forelimb muscles in both species were compared. Furthermore, muscle fibre type composition of 21 forelimb muscles were analysed using multiple staining protocols. In B. suillus, muscles involved with the power stroke of digging (limb retractors and scapula elevators), showed higher muscle mass percentage, force output and shortening capacity compared to those in H. glaber. Additionally, significantly higher percentages of glycolytic fibres were observed in the scapular elevators and digital flexors of B. suillus compared to H. glaber, suggesting that the forelimb muscles involved in digging in B. suillus provide fast, powerful motions for effective burrowing. In contrast, the m. sternohyoideus a head and neck flexor, had significantly more oxidative fibres in H. glaber compared to B. suillus. In addition, significantly greater physiological cross-sectional area and fascicle length values were seen in the neck flexor, m. sternocleidomastoideus, in H. glaber compared to B. suillus, which indicates a possible adaptation for chisel-tooth digging. While functional demands may play a significant role in muscle morphology, the phylogenetic differences between the two species may play an additional role which needs further study.
Collapse
Affiliation(s)
- Lauren Sahd
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Evolutionary Developmental Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Narusa Doubell
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sanet H Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Division of Anatomy, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
33
|
Zuntini ACS, Damico MV, Gil CD, Godinho RO, Pacini ESA, Fortes-Dias CL, Moreira V. The early inhibition of the COX-2 pathway in viperid phospholipase A 2-induced skeletal muscle myotoxicity accelerates the tissue regeneration. Toxicol Appl Pharmacol 2023; 461:116384. [PMID: 36702313 DOI: 10.1016/j.taap.2023.116384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
The administration of non-steroidal anti-inflammatory drugs in the treatment of injury and muscle regeneration is still contradictory in effectiveness, especially regarding the timing of their administration. This can interfere with the production of prostaglandins originating from inflammatory isoform cyclooxygenase-2 (COX-2), which is essential to modulate tissue regeneration. The phospholipases A2 (PLA2) from viperid venoms cause myotoxicity, therefore constituting a tool for the study of supportive therapies to improve skeletal muscle regeneration. This study investigated the effect of early administration of lumiracoxib (selective inhibitor of COX-2) on the degeneration and regeneration stages of skeletal muscle after injury induced by a myotoxic PLA2. After 30 min and 48 h of intramuscular injection of PLA2, mice received lumiracoxib orally and histological, functional, and transcriptional parameters of muscle were evaluated from 6 h to 21 days. Inhibition of COX-2 in the early periods of PLA2-induced muscle degeneration reduced leukocyte influx, edema, and tissue damage. After the second administration of lumiracoxib, in regenerative stage, muscle showed increase in number of basophilic fibers, reduction in fibrosis content and advanced recovery of functionality characterized by the presence of fast type II fibers. The expression of Pax7 and myogenin were increased, indicating a great capacity for storing satellite cells and advanced mature state of tissue. Our data reveals a distinct role of COX-2-derived products during muscle degeneration and regeneration, in which early administration of lumiracoxib was a therapeutic strategy to modulate the effects of prostaglandins, providing a breakthrough in muscle tissue regeneration induced by a myotoxic PLA2.
Collapse
Affiliation(s)
- Ana Carolina Siqueira Zuntini
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Marcio Vinícius Damico
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil
| | - Rosely Oliveira Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Enio Setsuo Arakaki Pacini
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | | | - Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
34
|
Pappalardo A, Alvarez Cespedes D, Fang S, Herschman AR, Jeon EY, Myers KM, Kysar JW, Abaci HE. Engineering edgeless human skin with enhanced biomechanical properties. SCIENCE ADVANCES 2023; 9:eade2514. [PMID: 36706190 PMCID: PMC9882972 DOI: 10.1126/sciadv.ade2514] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
Despite the advancements in skin bioengineering, 3D skin constructs are still produced as flat tissues with open edges, disregarding the fully enclosed geometry of human skin. Therefore, they do not effectively cover anatomically complex body sites, e.g., hands. Here, we challenge the prevailing paradigm by engineering the skin as a fully enclosed 3D tissue that can be shaped after a body part and seamlessly transplanted as a biological clothing. Our wearable edgeless skin constructs (WESCs) show enhanced dermal extracellular matrix (ECM) deposition and mechanical properties compared to conventional constructs. WESCs display region-specific cell/ECM alignment, as well as physiologic anisotropic mechanical properties. WESCs replace the skin in full-thickness wounds of challenging body sites (e.g., mouse hindlimbs) with minimal suturing and shorter surgery time. This study provides a compelling technology that may substantially improve wound care and suggests that the recapitulation of the tissue macroanatomy can lead to enhanced biological function.
Collapse
Affiliation(s)
- Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Alvarez Cespedes
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Abigail R. Herschman
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Eun Young Jeon
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kristin M. Myers
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Jeffrey W. Kysar
- Department of Mechanical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
- Department of Otolaryngology - Head & Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
35
|
Wang X, Wei Z, Gu M, Zhu L, Hai C, Di A, Wu D, Bai C, Su G, Liu X, Yang L, Li G. Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232415707. [PMID: 36555347 PMCID: PMC9779574 DOI: 10.3390/ijms232415707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (Mstn-/-) mouse has a hypermuscular phenotype. The muscle metabolism of the Mstn-/- mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the Mstn-/- mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the Mstn-/- mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.
Collapse
Affiliation(s)
- Xueqiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| |
Collapse
|
36
|
Dietrich S, Company C, Song K, Lowenstein ED, Riedel L, Birchmeier C, Gargiulo G, Zampieri N. Molecular identity of proprioceptor subtypes innervating different muscle groups in mice. Nat Commun 2022; 13:6867. [PMID: 36369193 PMCID: PMC9652284 DOI: 10.1038/s41467-022-34589-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The precise execution of coordinated movements depends on proprioception, the sense of body position in space. However, the molecular underpinnings of proprioceptive neuron subtype identities are not fully understood. Here we used a single-cell transcriptomic approach to define mouse proprioceptor subtypes according to the identity of the muscle they innervate. We identified and validated molecular signatures associated with proprioceptors innervating back (Tox, Epha3), abdominal (C1ql2), and hindlimb (Gabrg1, Efna5) muscles. We also found that proprioceptor muscle identity precedes acquisition of receptor character and comprise programs controlling wiring specificity. These findings indicate that muscle-type identity is a fundamental aspect of proprioceptor subtype differentiation that is acquired during early development and includes molecular programs involved in the control of muscle target specificity.
Collapse
Affiliation(s)
- Stephan Dietrich
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carlos Company
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kun Song
- grid.263817.90000 0004 1773 1790Brain Research Center and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Elijah David Lowenstein
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Levin Riedel
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carmen Birchmeier
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Gaetano Gargiulo
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Niccolò Zampieri
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
37
|
Nakamichi R, Asahara H. Motion-capture Analysis of Mice Using a Video Recorded on an iPhone Camera. Bio Protoc 2022; 12:e4539. [PMID: 36505026 PMCID: PMC9711934 DOI: 10.21769/bioprotoc.4539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
When focusing on quick movements in the analysis of animal behavior, a high-speed camera can be used as a powerful tool. There are many options for high-speed cameras to record movement. In recent years, the quality and sophistication of videos captured on cell phones have evolved so much that the iPhone's slow-motion video system can function as a tool for behavior analysis. Here, we describe a method to analyze the movement of the ankle joint and jump speed during the jumping action of mice, using an iPhone.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
- Department of Orthopaedic Surgery, Okayama University Graduate School, 2-5-1 Shikata-cho, Okayama, Japan
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
38
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Hwang Y, Choi YS, Grounds MD, Kennedy BF. Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5879-5899. [PMID: 36733728 PMCID: PMC9872891 DOI: 10.1364/boe.471062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Skeletal muscle function is governed by both the mechanical and structural properties of its constituent tissues, which are both modified by disease. Characterizing the mechanical properties of skeletal muscle tissue at an intermediate scale, i.e., between that of cells and organs, can provide insight into diseases such as muscular dystrophies. In this study, we use quantitative micro-elastography (QME) to characterize the micro-scale elasticity of ex vivo murine skeletal muscle in three-dimensions in whole muscles. To address the challenge of achieving high QME image quality with samples featuring uneven surfaces and geometry, we encapsulate the muscles in transparent hydrogels with flat surfaces. Using this method, we study aging and disease in quadriceps tissue by comparing normal wild-type (C57BL/6J) mice with dysferlin-deficient BLAJ mice, a model for the muscular dystrophy dysferlinopathy, at 3, 10, and 24 months of age (sample size of three per group). We observe a 77% decrease in elasticity at 24 months in dysferlin-deficient quadriceps compared to wild-type quadriceps.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
39
|
Charles J, Kissane R, Hoehfurtner T, Bates KT. From fibre to function: are we accurately representing muscle architecture and performance? Biol Rev Camb Philos Soc 2022; 97:1640-1676. [PMID: 35388613 PMCID: PMC9540431 DOI: 10.1111/brv.12856] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
The size and arrangement of fibres play a determinate role in the kinetic and energetic performance of muscles. Extrapolations between fibre architecture and performance underpin our understanding of how muscles function and how they are adapted to power specific motions within and across species. Here we provide a synopsis of how this 'fibre to function' paradigm has been applied to understand muscle design, performance and adaptation in animals. Our review highlights the widespread application of the fibre to function paradigm across a diverse breadth of biological disciplines but also reveals a potential and highly prevalent limitation running through past studies. Specifically, we find that quantification of muscle architectural properties is almost universally based on an extremely small number of fibre measurements. Despite the volume of research into muscle properties, across a diverse breadth of research disciplines, the fundamental assumption that a small proportion of fibre measurements can accurately represent the architectural properties of a muscle has never been quantitatively tested. Subsequently, we use a combination of medical imaging, statistical analysis, and physics-based computer simulation to address this issue for the first time. By combining diffusion tensor imaging (DTI) and deterministic fibre tractography we generated a large number of fibre measurements (>3000) rapidly for individual human lower limb muscles. Through statistical subsampling simulations of these measurements, we demonstrate that analysing a small number of fibres (n < 25) typically used in previous studies may lead to extremely large errors in the characterisation of overall muscle architectural properties such as mean fibre length and physiological cross-sectional area. Through dynamic musculoskeletal simulations of human walking and jumping, we demonstrate that recovered errors in fibre architecture characterisation have significant implications for quantitative predictions of in-vivo dynamics and muscle fibre function within a species. Furthermore, by applying data-subsampling simulations to comparisons of muscle function in humans and chimpanzees, we demonstrate that error magnitudes significantly impact both qualitative and quantitative assessment of muscle specialisation, potentially generating highly erroneous conclusions about the absolute and relative adaption of muscles across species and evolutionary transitions. Our findings have profound implications for how a broad diversity of research fields quantify muscle architecture and interpret muscle function.
Collapse
Affiliation(s)
- James Charles
- Structure and Motion Lab, Comparative Biomedical SciencesRoyal Veterinary CollegeHawkshead LaneHatfieldHertfordshireAL9 7TAU.K.
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Roger Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Tatjana Hoehfurtner
- School of Life SciencesUniversity of Lincoln, Joseph Banks LaboratoriesGreen LaneLincolnLN6 7DLU.K.
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| |
Collapse
|
40
|
Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight. Skelet Muscle 2022; 12:11. [PMID: 35642060 PMCID: PMC9153194 DOI: 10.1186/s13395-022-00294-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the interest in manned spaceflight increases, so does the requirement to understand the transcriptomic mechanisms that underlay the detrimental physiological adaptations of skeletal muscle to microgravity. While microgravity-induced differential gene expression (DGE) has been extensively investigated, the contribution of differential alternative splicing (DAS) to the plasticity and functional status of the skeletal muscle transcriptome has not been studied in an animal model. Therefore, by evaluating both DGE and DAS across spaceflight, we set out to provide the first comprehensive characterization of the transcriptomic landscape of skeletal muscle during exposure to microgravity. METHODS RNA-sequencing, immunohistochemistry, and morphological analyses were conducted utilizing total RNA and tissue sections isolated from the gastrocnemius and quadriceps muscles of 30-week-old female BALB/c mice exposed to microgravity or ground control conditions for 9 weeks. RESULTS In response to microgravity, the skeletal muscle transcriptome was remodeled via both DGE and DAS. Importantly, while DGE showed variable gene network enrichment, DAS was enriched in structural and functional gene networks of skeletal muscle, resulting in the expression of alternatively spliced transcript isoforms that have been associated with the physiological changes to skeletal muscle in microgravity, including muscle atrophy and altered fiber type function. Finally, RNA-binding proteins, which are required for regulation of pre-mRNA splicing, were themselves differentially spliced but not differentially expressed, an upstream event that is speculated to account for the downstream splicing changes identified in target skeletal muscle genes. CONCLUSIONS Our work serves as the first investigation of coordinate changes in DGE and DAS in large limb muscles across spaceflight. It opens up a new opportunity to understand (i) the molecular mechanisms by which splice variants of skeletal muscle genes regulate the physiological adaptations of skeletal muscle to microgravity and (ii) how small molecule splicing regulator therapies might thwart muscle atrophy and alterations to fiber type function during prolonged spaceflight.
Collapse
|
41
|
Wright MA, Sears KE, Pierce SE. Comparison of Hindlimb Muscle Architecture Properties in Small-Bodied, Generalist Mammals Suggests Similarity in Soft Tissue Anatomy. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Sundar S, Rimkus B, Meemaduma PS, deLap S, LaFave N, Racca AW, Hettige P, Moore J, Gage M, Shehaj A, Konow N. Bridging the muscle genome to phenome across multiple biological scales. J Exp Biol 2022; 225:jeb243630. [PMID: 35288729 PMCID: PMC9080751 DOI: 10.1242/jeb.243630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Muscle is highly hierarchically organized, with functions shaped by genetically controlled expression of protein ensembles with different isoform profiles at the sarcomere scale. However, it remains unclear how isoform profiles shape whole-muscle performance. We compared two mouse hindlimb muscles, the slow, relatively parallel-fibered soleus and the faster, more pennate-fibered tibialis anterior (TA), across scales: from gene regulation, isoform expression and translation speed, to force-length-velocity-power for intact muscles. Expression of myosin heavy-chain (MHC) isoforms directly corresponded with contraction velocity. The fast-twitch TA with fast MHC isoforms had faster unloaded velocities (actin sliding velocity, Vactin; peak fiber velocity, Vmax) than the slow-twitch soleus. For the soleus, Vactin was biased towards Vactin for purely slow MHC I, despite this muscle's even fast and slow MHC isoform composition. Our multi-scale results clearly identified a consistent and significant dampening in fiber shortening velocities for both muscles, underscoring an indirect correlation between Vactin and fiber Vmax that may be influenced by differences in fiber architecture, along with internal loading due to both passive and active effects. These influences correlate with the increased peak force and power in the slightly more pennate TA, leading to a broader length range of near-optimal force production. Conversely, a greater force-velocity curvature in the near-parallel fibered soleus highlights the fine-tuning by molecular-scale influences including myosin heavy and light chain expression along with whole-muscle characteristics. Our results demonstrate that the individual gene, protein and whole-fiber characteristics do not directly reflect overall muscle performance but that intricate fine-tuning across scales shapes specialized muscle function.
Collapse
Affiliation(s)
- SaiLavanyaa Sundar
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| | - Barbora Rimkus
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| | - Prabath S. Meemaduma
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Samuel deLap
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| | - Nicholas LaFave
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| | - Alice W. Racca
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| | - Pabodha Hettige
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Jeffrey Moore
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| | - Matthew Gage
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Andrea Shehaj
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
43
|
Cisterna B, Bontempi P, Sobolev AP, Costanzo M, Malatesta M, Zancanaro C. Quantitative magnetic resonance characterization of the effect of physical training on skeletal muscle of the Ts65Dn mice, a model of Down syndrome. Quant Imaging Med Surg 2022; 12:2066-2074. [PMID: 35284271 PMCID: PMC8899935 DOI: 10.21037/qims-21-729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/12/2021] [Indexed: 11/11/2024]
Abstract
Down syndrome (DS) is characterized by muscle hypotonia and low muscle strength associated with motor dysfunction. Elucidation of the determinants of muscle weakness in DS would be relevant for therapeutic approaches aimed at treating/mitigating a physical disability with a strong impact on the quality of life in persons with DS. The Ts65Dn mice is a recognized mouse model of DS, with trisomic mice presenting gross motor and muscle phenotypes. The aim of this work was to assess the effect of physical exercise, a well-known tool to improve skeletal muscle condition, in the hindlimbs of trisomic and euploid male mice using quantitative magnetic resonance imaging (MRI). Magnetic resonance spectroscopy (MRS) metabolomics and histological fiber typing were used to further characterize the post-exercise muscle. Quantitative MRI showed not significantly different amounts of skeletal muscle in proximal hindlimbs in trisomic and euploid mice both at baseline and after physical exercise (P>0.05). Similar results were obtained for hindlimbs subfascia adipose tissue, and subcutaneous adipose tissue (P>0.05). MRS showed lower amounts of exercise-related metabolites (valine, isoleucine, leucine) in euploid vs. trisomic mice after exercise (P≤0.05). The percentage of slow-twitch fibers was similar in the two genotypes (P>0.05). We conclude that in DS adapted physical exercise (one month of training) does not induce quantitative changes in skeletal muscle or fiber type composition therein; however, the metabolic response of skeletal muscle to exercise may be affected by trisomy. These findings prompt further research investigating the role of physical exercise as a cue to clarify the mechanisms of the muscular deficit found in DS.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pietro Bontempi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
44
|
Dolci S, Mannino L, Bottani E, Campanelli A, Di Chio M, Zorzin S, D'Arrigo G, Amenta A, Segala A, Paglia G, Denti V, Fumagalli G, Nisoli E, Valerio A, Verderio C, Martano G, Bifari F, Decimo I. Therapeutic Induction of Energy Metabolism Reduces Neural Tissue Damage and Increases Microglia Activation in Severe Spinal Cord Injury. Pharmacol Res 2022; 178:106149. [PMID: 35240272 DOI: 10.1016/j.phrs.2022.106149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 01/11/2023]
Abstract
Neural tissue has high metabolic requirements. Following spinal cord injury (SCI), the damaged, tissue suffers from a severe metabolic impairment, which aggravates axonal degeneration and, neuronal loss. Impaired cellular energetic, tricarboxylic acid (TCA) cycle and oxidative, phosphorylation metabolism in neuronal cells has been demonstrated to be a major cause of neural tissue death and regeneration failure following SCI. Therefore, rewiring the spinal cord cell metabolism may be an innovative therapeutic strategy for the treatment of SCI. In this study, we evaluated the therapeutic effect of the recovery of oxidative metabolism in a mouse model of severe contusive SCI. Oral administration of TCA cycle intermediates, co-factors, essential amino acids, and branched-chain amino acids was started 3 days post-injury and continued until the end of the experimental procedures. Metabolomic, immunohistological, and biochemical analyses were performed on the injured spinal cord sections. Administration of metabolic precursors enhanced spinal cord oxidative metabolism. In line with this metabolic shift, we observed the activation of the mTORC1 anabolic pathway, the increase in mitochondrial mass, and ROS defense which effectively prevented the injury-induced neural cell apoptosis in treated animals. Consistently, we found more choline acetyltransferase (ChAT)-expressing motor neurons and increased neurofilament positive corticospinal axons in the spinal cord parenchyma of the treated mice. Interestingly, oral administration of the metabolic precursors increased the number of activated microglia expressing the CD206 marker suggestive of a, pro-resolutive, M2-like phenotype. These molecular and histological modifications observed in treated animals ultimately led to a significant, although partial, improvement of the motor functions. Our data demonstrate that rewiring the cellular metabolism can represent an effective strategy to treat SCI.
Collapse
Affiliation(s)
- Sissi Dolci
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy
| | - Loris Mannino
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy
| | - Emanuela Bottani
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy
| | - Alessandra Campanelli
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy
| | - Marzia Di Chio
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy
| | - Stefania Zorzin
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy
| | | | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, University of Brescia, 25121, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, 20126, Italy
| | - Vanna Denti
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, 20126, Italy
| | - Guido Fumagalli
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25121, Italy
| | | | | | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133, Italy.
| | - Ilaria Decimo
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134, Italy.
| |
Collapse
|
45
|
A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes. Nat Commun 2022; 13:1039. [PMID: 35210422 PMCID: PMC8873246 DOI: 10.1038/s41467-022-28666-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here, we identify by snATAC-seq a 42 kb super-enhancer at the locus regrouping the fast Myosin genes. By 4C-seq we show that active fast Myosin promoters interact with this super-enhancer by DNA looping, leading to the activation of a single promoter per nucleus. A rainbow mouse transgenic model of the locus including the super-enhancer recapitulates the endogenous spatio-temporal expression of adult fast Myosin genes. In situ deletion of the super-enhancer by CRISPR/Cas9 editing demonstrates its major role in the control of associated fast Myosin genes, and deletion of two fast Myosin genes at the locus reveals an active competition of the promoters for the shared super-enhancer. Last, by disrupting the organization of fast Myosin, we uncover positional heterogeneity within limb skeletal muscles that may underlie selective muscle susceptibility to damage in certain myopathies. The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here the authors show that a super enhancer controls the spatiotemporal expression of the genes at the fast myosin heavy chain locus by DNA looping and that this expression profile is recapitulated in a rainbow transgenic mouse model of the locus.
Collapse
|
46
|
Baan GC, Maas H. Three-dimensional interactive graphical model of the hindlimb muscles of the rat. Cells Tissues Organs 2022:000523708. [PMID: 35203082 DOI: 10.1159/000523708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
Many questions in human movement sciences are addressed by exploiting the advantages of animal models. However, a 3D model of the musculoskeletal system of the frequently used rat model that includes a sufficient level of detail does not exist. Therefore, the aim of the present work was to develop an freely accessible 3D model of the rat hindlimb. Using the anatomical data of the Wistar rat (Mus norveqicus albinus) published by Green [Greene, 1935], a 3D representation of 34 muscles of the hindlimb was drawn. Two models were created, one using muscle like appearances and one using different colors. Each muscle can be viewed separately or within the context of its synergistic and antagonistic muscles. This model can serve to train new students before starting their experiments, but also for producing illustrations of experimental conditions or results. Further development of the model will be needed to equip it with the same advanced functionalities of some of the human anatomy atlases.
Collapse
|
47
|
Bannow LI, Bonaterra GA, Bertoune M, Maus S, Schulz R, Weissmann N, Kraut S, Kinscherf R, Hildebrandt W. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice—the role of iNOS. Skelet Muscle 2022; 12:6. [PMID: 35151349 PMCID: PMC8841105 DOI: 10.1186/s13395-022-00288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Obstructive sleep apnea (OSA) imposes vascular and metabolic risks through chronic intermittent hypoxia (CIH) and impairs skeletal muscle performance. As studies addressing limb muscles are rare, the reasons for the lower exercise capacity are unknown. We hypothesize that CIH-related morphological alterations in neuromuscular junctions (NMJ) and mitochondrial integrity might be the cause of functional disorders in skeletal muscles. Methods Mice were kept under 6 weeks of CIH (alternating 7% and 21% O2 fractions every 30 s, 8 h/day, 5 days/week) compared to normoxia (NOX). Analyses included neuromuscular junctions (NMJ) postsynaptic morphology and integrity, fiber cross-sectional area (CSA) and composition (ATPase), mitochondrial ultrastructure (transmission-electron-microscopy), and relevant transcripts (RT-qPCR). Besides wildtype (WT), we included inducible nitric oxide synthase knockout mice (iNOS−/−) to evaluate whether iNOS is protective or risk-mediating. Results In WT soleus muscle, CIH vs. NOX reduced NMJ size (− 37.0%, p < 0.001) and length (− 25.0%, p < 0.05) together with fiber CSA of type IIa fibers (− 14%, p < 0.05) and increased centronucleated fiber fraction (p < 0.001). Moreover, CIH vs. NOX increased the fraction of damaged mitochondria (1.8-fold, p < 0.001). Compared to WT, iNOS−/− similarly decreased NMJ area and length with NOX (− 55%, p < 0.001 and − 33%, p < 0.05, respectively) or with CIH (− 37%, p < 0.05 and − 29%, p < 0.05), however, prompted no fiber atrophy. Moreover, increased fractions of damaged (2.1-fold, p < 0.001) or swollen (> 6-fold, p < 0.001) mitochondria were observed with iNOS−/− vs. WT under NOX and similarly under CIH. Both, CIH- and iNOS−/− massively upregulated suppressor-of-cytokine-signaling-3 (SOCS3) > 10-fold without changes in IL6 mRNA expression. Furthermore, inflammatory markers like CD68 (macrophages) and IL1β were significantly lower in CIH vs. NOX. None of these morphological alterations with CIH- or iNOS−/− were detected in the gastrocnemius muscle. Notably, iNOS expression was undetectable in WT muscle, unlike the liver, where it was massively decreased with CIH. Conclusion CIH leads to NMJ and mitochondrial damage associated with fiber atrophy/centronucleation selectively in slow-twitch muscle of WT. This effect is largely mimicked by iNOS−/− at NOX (except for atrophy). Both conditions involve massive SOCS3 upregulation likely through denervation without Il6 upregulation but accompanied by a decrease of macrophage density especially next to denervated endplates. In the absence of muscular iNOS expression in WT, this damage may arise from extramuscular, e.g., motoneuronal iNOS deficiency (through CIH or knockout) awaiting functional evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00288-7.
Collapse
|
48
|
Bhargava A, Monteagudo B, Kushwaha P, Senarathna J, Ren Y, Riddle RC, Aggarwal M, Pathak AP. VascuViz: a multimodality and multiscale imaging and visualization pipeline for vascular systems biology. Nat Methods 2022; 19:242-254. [PMID: 35145319 PMCID: PMC8842955 DOI: 10.1038/s41592-021-01363-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Despite advances in imaging, image-based vascular systems biology has remained challenging because blood vessel data are often available only from a single modality or at a given spatial scale, and cross-modality data are difficult to integrate. Therefore, there is an exigent need for a multimodality pipeline that enables ex vivo vascular imaging with magnetic resonance imaging, computed tomography and optical microscopy of the same sample, while permitting imaging with complementary contrast mechanisms from the whole-organ to endothelial cell spatial scales. To achieve this, we developed 'VascuViz'-an easy-to-use method for simultaneous three-dimensional imaging and visualization of the vascular microenvironment using magnetic resonance imaging, computed tomography and optical microscopy in the same intact, unsectioned tissue. The VascuViz workflow permits multimodal imaging with a single labeling step using commercial reagents and is compatible with diverse tissue types and protocols. VascuViz's interdisciplinary utility in conjunction with new data visualization approaches opens up new vistas in image-based vascular systems biology.
Collapse
Affiliation(s)
- Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Monteagudo
- Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priyanka Kushwaha
- Departments of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yunke Ren
- Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Riddle
- Departments of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Electrical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Pickering E, Trichilo S, Delisser P, Pivonka P. Beam theory for rapid strain estimation in the mouse tibia compression model. Biomech Model Mechanobiol 2022; 21:513-525. [PMID: 34982274 DOI: 10.1007/s10237-021-01546-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
The mouse tibia compression model is a leading model for studying bone's mechanoadaptive response to load. In studying this mechanoadaptive response, (FE) modelling is often used to determine the stress/strain within the tibia. The development of such models can be challenging and computationally expensive. An alternate approach is to use continuum mechanics based analytical theories, such as beam theory (BT). However, applying BT to the mouse tibia requires the fibula be neglected, introducing error in the stress/strain distribution. While several studies have applied BT to the mouse tibia, no study has explored the accuracy of this approach. To address these questions, this work investigates the use of BT in determining stress/strain within the mouse tibia. By comparing BT against FE modelling, it was found that BT can accurately predict tibial stress/strain if correction factors are applied to account for the effect of the fibula. The 25, 37, 50 and 75% cross sections are studied. Focusing on the 37% cross section, without correction, BT can have errors of approximately 21.6%. With correction, this is reduced to 6.6%. Such correction factors are presented. The developed BT model is applicable in the diaphysis and distal metaphysis, where the assumptions of BT are valid. This work verifies BT for determining localised strains in a mouse tibia compression model. This is anticipated to provide efficiency dividends, allowing for high throughput modelling of the mouse tibia, advancing study of bone's mechanoadaptive response.
Collapse
Affiliation(s)
- Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
- Centre for Biomedical Technologies , Queensland University of Technology (QUT), QLD, Brisbane , Australia.
| | - Silvia Trichilo
- Vincent's Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Delisser
- Veterinary Specialist Services, Brisbane, QLD, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies , Queensland University of Technology (QUT), QLD, Brisbane , Australia
| |
Collapse
|
50
|
Jasek S, Verasztó C, Brodrick E, Shahidi R, Kazimiers T, Kerbl A, Jékely G. Desmosomal connectomics of all somatic muscles in an annelid larva. eLife 2022; 11:71231. [PMID: 36537659 PMCID: PMC9876572 DOI: 10.7554/elife.71231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Cells form networks in animal tissues through synaptic, chemical, and adhesive links. Invertebrate muscle cells often connect to other cells through desmosomes, adhesive junctions anchored by intermediate filaments. To study desmosomal networks, we skeletonised 853 muscle cells and their desmosomal partners in volume electron microscopy data covering an entire larva of the annelid Platynereis. Muscle cells adhere to each other, to epithelial, glial, ciliated, and bristle-producing cells and to the basal lamina, forming a desmosomal connectome of over 2000 cells. The aciculae - chitin rods that form an endoskeleton in the segmental appendages - are highly connected hubs in this network. This agrees with the many degrees of freedom of their movement, as revealed by video microscopy. Mapping motoneuron synapses to the desmosomal connectome allowed us to infer the extent of tissue influenced by motoneurons. Our work shows how cellular-level maps of synaptic and adherent force networks can elucidate body mechanics.
Collapse
Affiliation(s)
- Sanja Jasek
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Csaba Verasztó
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Emelie Brodrick
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Réza Shahidi
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Tom Kazimiers
- Janelia Research CampusAshburnUnited States,kazmos GmbHDresdenGermany
| | - Alexandra Kerbl
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | - Gáspár Jékely
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| |
Collapse
|