1
|
Alhawarri MB. Exploring the Anticancer Potential of Furanpydone A: A Computational Study on its Inhibition of MTHFD2 Across Diverse Cancer Cell Lines. Cell Biochem Biophys 2025; 83:437-454. [PMID: 39110299 DOI: 10.1007/s12013-024-01474-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 03/03/2025]
Abstract
Cancer poses a significant global health challenge due to its high mortality rate and complex treatment strategies. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), which is notably overexpressed in various malignancies, represents a promising target for anticancer drug development. Furanpydone A, a new 4-hydroxy-2-pyridone alkaloid isolated from the endophytic fungus Arthrinium sp. GZWMJZ-606, has shown potent inhibitory activity against several cancer cell lines. This study provides the first computational evaluation of furanpydone A, focusing on its potential inhibition of MTHFD2 through molecular docking and 200 ns molecular dynamics (MD) simulations. Molecular docking revealed a binding free energy of -8.08 kcal/mol for furanpydone A, comparable to the control compound DS44960156 (-8.13 kcal/mol), indicating stable interactions with the MTHFD2 active site. MD simulations confirmed the structural stability of the furanpydone A-MTHFD2 complex, with RMSD values ranging from 1.5 to 2.9 Å, RMSF values below 4 Å, and a radius of gyration (Rg) of 26.7 Å. Furanpydone A maintained approximately four consistent hydrogen bonds throughout the simulation. Analysis of furanpydone A binding pose orientations and interactions with the MTHFD2 enzyme at 0 ns, 40 ns, 80 ns, 120 ns, 160 ns, and 200 ns revealed consistent and stable binding. MM-PBSA analysis showed a binding free energy (ΔGbind) of -23.57 ± 0.13 kcal/mol, with electrostatic and van der Waals interactions contributing significantly, suggesting competitive binding affinity to the control compound (-25.32 ± 0.11 kcal/mol). The contribution of individual amino acid residues, including key residues such as ARG43, TYR84, ASN87, LYS88, GLN132, and PRO314, indicated strong interactions that support the stability of the furanpydone A-MTHFD2 complex. ADMET predictions indicated that furanpydone A met key drug-likeness criteria and demonstrated good oral bioavailability, suitable distribution profile, minimal risk of drug-drug interactions, efficient elimination, and low toxicity potential. These findings suggest that furanpydone A is a promising candidate for cancer treatment, warranting further in vitro and in vivo validation, and highlighting its potential impact on the development of new anticancer therapies.
Collapse
Affiliation(s)
- Maram B Alhawarri
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan.
| |
Collapse
|
2
|
Kızılyıldırım S, Sucu B, Muhammed MT, Akkoç S, Esatbeyoglu T, Ozogul F. Experimental and theoretical studies on antituberculosis activity of different benzimidazole derivatives. Heliyon 2025; 11:e42674. [PMID: 40051852 PMCID: PMC11883371 DOI: 10.1016/j.heliyon.2025.e42674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Tuberculosis (TB) continues to be one of the deadliest infectious diseases with a rapid increase in multidrug-resistant cases. The discovery of new agents against tuberculosis is urgently needed. Thus, the research article focuses on the antituberculosis activity of a series of benzimidazolium compounds. The antituberculosis activities of compounds including benzimidazole core (7a-h) against Mycobacterium tuberculosis H37Rv strain were tested in vitro using the BACTEC MGIT 960 system. The concentrations of benzimidazole compounds were adjusted to range from 0.25 to 4 μg/ml. The antituberculosis interactions of the compounds were investigated by molecular docking and molecular dynamics simulation. The results revealed that only benzimidazolium salt 7h showed antituberculosis activity at MIC value of 2 μg/ml although the other compounds showed no antituberculosis activity. The docking data revealed that 7h could bind to InhA thus indicating its inhibition potential on the enzyme. Molecular dynamics simulation exhibited that 7h formed a stable complex with the enzyme and was able to remain inside the binding region of the enzyme. Besides, the pharmacokinetic and drug-likeness properties of the compounds were assessed through computational approaches. The compounds exhibited drug-like properties. Consequently, 7h could be a good candidate for the development of new TB drugs.
Collapse
Affiliation(s)
- Suna Kızılyıldırım
- Cukurova University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Adana, Türkiye
| | - Berfin Sucu
- Cukurova University, Institute of Science and Technology, Department of Biotechnology, Adana, Türkiye
| | - Muhammed Tilahun Muhammed
- Süleyman Demirel University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 32260, Isparta, Türkiye
| | - Senem Akkoç
- Süleyman Demirel University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 32260, Isparta, Türkiye
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, Istanbul, 34353, Türkiye
| | - Tuba Esatbeyoglu
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food and One Health, Department of Molecular Food Chemistry and Food Development, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Fatih Ozogul
- Cukurova University, Faculty of Fisheries, Department of Seafood Processing Technology, Adana, Türkiye
- Cukurova University, Biotechnology Research and Application Center, Adana, Türkiye
| |
Collapse
|
3
|
Alhawarri MB, Al-Thiabat MG, Dubey A, Tufail A, Banisalman K, Al Jabal GA, Alkasasbeh E, Al-Trad EI, Alrimawi BH. Targeting necroptosis in MCF-7 breast cancer cells: In Silico insights into 8,12-dimethoxysanguinarine from Eomecon Chionantha through molecular docking, dynamics, DFT, and MEP studies. PLoS One 2025; 20:e0313094. [PMID: 39775383 PMCID: PMC11706375 DOI: 10.1371/journal.pone.0313094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/05/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses. Molecular docking revealed that SG-A exhibited a stronger affinity for MLKL (-9.40 kcal/mol) compared to the co-crystallized ligand (-6.29 kcal/mol), while its affinity for RIPK1 (-6.37 kcal/mol) and RIPK3 (-7.01 kcal/mol) was lower. MD simulations further demonstrated the stability of SG-A within the MLKL site, with RMSD values stabilizing between 1.4 and 3.3 Å over 300 ns, indicating a consistent interaction pattern. RMSF analysis indicated the preservation of protein backbone flexibility, with average fluctuations under 1.7 Å. The radius of gyration (Rg) results indicated a consistent value of ~15.3 Å across systems, confirming the role of SG-A in maintaining protein integrity. Notably, SG-A maintains two critical H-bonds within the active site of MLKL, reinforcing the stability of the interaction. Principal component analysis (PCA) indicated a significant reduction in MLKL's conformational space upon SG-A binding, implying enhanced stabilization. Dynamic cross-correlation map (DCCM) analysis further revealed that SG-A induced highly correlated motions, reducing internal fluctuations within MLKL compared to the co-crystallized ligand. MM-PBSA revealed the enhanced binding efficacy of SG-A, with a significant binding free energy of -31.03 ± 0.16 kcal/mol against MLKL, surpassing that of the control (23.96 ± 0.11 kcal/mol). In addition, the individual residue contribution analysis highlighted key interactions, with ARG149 showing a significant contribution (-176.24 kcal/mol) in the MLKL-SG-A complex. DFT and MEP studies corroborated these findings, revealing that the electronic structure of SG-A is conducive to stable binding interactions, characterized by a narrow band gap (~0.16 units) and distinct electrostatic potential favourable for necroptosis induction. In conclusion, SG-A has emerged as a compelling inducer of necroptosis for breast cancer therapy, warranting further experimental validation to fully realize its therapeutic potential.
Collapse
Affiliation(s)
- Maram B. Alhawarri
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | | | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Katreen Banisalman
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | - Ghazi A. Al Jabal
- Faculty of Pharmacy and Biomedical Sciences, Department of Medicinal Chemistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Eman Alkasasbeh
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | - Esra’a Ibrahim Al-Trad
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Al al-bayt University, Mafraq, Jordan
| | | |
Collapse
|
4
|
Abdul Ghafoor N, Rasuli S, Tanriverdi Ö, Yildiz A. Investigating the P53-dependent anti-cancer effect of ibutamoren in human cancer cell lines. Basic Clin Pharmacol Toxicol 2025; 136:e14111. [PMID: 39668330 DOI: 10.1111/bcpt.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
The MDM2-p53 pathway plays a pivotal role in regulating cell cycle and apoptosis, with its dysfunction contributing to approximately 50% of human malignancies. MDM2, an E3 ubiquitin ligase, targets the tumour suppressor p53 for degradation, thereby promoting uncontrolled cell growth in cancers. Inhibiting the MDM2-p53 interaction represents a promising therapeutic strategy for reactivating p53's tumour-suppressive functions. This study explored the potential of ibutamoren (IBU) as a novel inhibitor of MDM2. In silico analyses utilizing molecular modelling revealed that IBU has a low IC50 for MDM2 inhibition and favourably binds to the p53-binding pocket of MDM2. In vitro experiments demonstrated that IBU treatment reduced the viability of immortalized cancer cell lines with a functional MDM2-p53 pathway but not in cell lines where this pathway harboured damaging mutations. This trend was further supported by RT-qPCR analysis, which showed differential expression of two p53 target genes upon IBU treatment in cell lines with wild MDM2-p53 pathways but not in those harbouring damaging mutations. These findings provide preliminary evidence supporting IBU's anticancer activity, plausibly through the MDM2-p53 pathway, and suggest that further studies are warranted to explore its mechanism of action and potential development as a lead compound in oncology research.
Collapse
Affiliation(s)
- Naeem Abdul Ghafoor
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Sabina Rasuli
- UFR Biosciences, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Özgür Tanriverdi
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ayşegül Yildiz
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
5
|
Liao XL, Zhou JM, Wang Y, Chen ZF, Cai Z. Network pharmacology and transcriptomics reveal androgen receptor as a potential protein target for 6PPD-quinone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177678. [PMID: 39581451 DOI: 10.1016/j.scitotenv.2024.177678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone, or 6PPD-Q) has received increasing attention as an emerging hotspot contaminant. The occurrence of 6PPD-Q in dust and fine atmospheric particles indicates substantial human exposure to this toxicant but the hazards of 6PPD-Q to human health is unknown. We used in silico approaches to identify potential human protein targets of 6PPD-Q and conducted preliminary validation through an in vitro cell proliferation assay and an in vivo transcriptomic analysis of prostate tissues from 6PPD-Q-treated mice. Receptor-based reverse screening and network pharmacology identified four hub targets of 6PPD-Q that were closely related to prostate carcinogenesis. Among these four targets, 6PPD-Q exhibited a strong binding tendency to androgen receptor (AR) with a binding free energy of -23.04 kcal/mol. A support vector machine (SVM) model for predicting chemicals with AR agonism or AR-inactivity was established with good prediction performance (mean prediction accuracy: 0.92). SVM prediction and AR-mediated cell-based assays, with a known AR agonist and a proposed AR inactive agent as positive and negative controls, confirmed that 6PPD-Q displayed AR agonism. Upregulation of Ar mRNA expression (FC = 1.29, p = 0.0404) and its related prostate cancer pathway was observed in the prostate of mice exposed to environmentally realistic concentrations of 6PPD-Q, suggesting a potential role in promoting prostate carcinogenesis. These findings provide evidence that 6PPD-Q agonized AR to exert downstream gene transactivation and imply its prostate cancer risks to humans.
Collapse
Affiliation(s)
- Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia-Ming Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
6
|
Binmujlli MA. Exploring Radioiodinated Anastrozole and Epirubicin as AKT1-Targeted Radiopharmaceuticals in Breast Cancer: In Silico Analysis and Potential Therapeutic Effect with Functional Nuclear Imagining Implications. Molecules 2024; 29:4203. [PMID: 39275052 PMCID: PMC11397058 DOI: 10.3390/molecules29174203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study evaluates radio-iodinated anastrozole ([125I]anastrozole) and epirubicin ([125I]epirubicin) for AKT1-targeted breast cancer therapy, utilizing radiopharmaceutical therapy (RPT) for personalized treatment. Through molecular docking and dynamics simulations (200 ns), it investigates these compounds' binding affinities and mechanisms to the AKT1 enzyme, compared to the co-crystallized ligand, a known AKT1 inhibitor. Molecular docking results show that [125I]epirubicin has the highest ΔGbind (-11.84 kcal/mol), indicating a superior binding affinity compared to [125I] anastrozole (-10.68 kcal/mol) and the co-crystallized ligand (-9.53 kcal/mol). Molecular dynamics (MD) simulations confirmed a stable interaction with the AKT1 enzyme, with [125I]anastrozole and [125I]epirubicin reaching stability after approximately 68 ns with an average RMSD of around 2.2 Å, while the co-crystallized ligand stabilized at approximately 2.69 Å after 87 ns. RMSF analysis showed no significant shifts in residues or segments, with consistent patterns and differences of less than 2 Å, maintaining enzyme stability. The [125I]epirubicin complex maintained an average of four H-bonds, indicating strong and stable interactions, while [125I]anastrozole consistently formed three H-bonds. The average Rg values for both complexes were ~16.8 ± 0.1 Å, indicating no significant changes in the enzyme's compactness, thus preserving structural integrity. These analyses reveal stable binding and minimal structural perturbations, suggesting the high potential for AKT1 inhibition. MM-PBSA calculations confirm the potential of these radio-iodinated compounds as AKT1 inhibitors, with [125I]epirubicin exhibiting the most favorable binding energy (-23.57 ± 0.14 kcal/mol) compared to [125I]anastrozole (-20.03 ± 0.15 kcal/mol) and the co-crystallized ligand (-16.38 ± 0.14 kcal/mol), highlighting the significant role of electrostatic interactions in stabilizing the complex. The computational analysis shows [125I]anastrozole and [125I]epirubicin may play promising roles as AKT1 inhibitors, especially [125I]epirubicin for its high binding affinity and dynamic receptor interactions. These findings, supported by molecular docking scores and MM-PBSA binding energies, advocate for their potential superior inhibitory capability against the AKT1 enzyme. Nevertheless, it is crucial to validate these computational predictions through in vitro and in vivo studies to thoroughly evaluate the therapeutic potential and viability of these compounds for AKT1-targeted breast cancer treatment.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
7
|
Ilyas A, Poddar NK, Borkotoky S. Insights into the dynamic interactions of RNase a and osmolytes through computational approaches. J Biomol Struct Dyn 2024; 42:5903-5911. [PMID: 38870351 DOI: 10.1080/07391102.2023.2229445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2023] [Indexed: 06/15/2024]
Abstract
Osmolytes are small organic molecules that are known to stabilize proteins and other biological macromolecules under various stressful conditions. They belong to various categories such as amino acids, methylamines, and polyols. These substances are commonly known as 'compatible solutes' because they do not disrupt cellular processes and help regulate the osmotic balance within cells. In the case of ribonuclease A (RNase A), which is prone to aggregation, the presence of osmolytes can help to maintain its structural stability and prevent unwanted interactions leading to protein aggregation. In this study, we investigated the interaction between RNase A and several osmolytes using molecular docking and molecular dynamics (MD) simulations. We performed molecular docking to predict the binding mode and binding affinity of each osmolyte with RNase A. MD simulations were then carried out to investigate the dynamics and stability of the RNase A-osmolyte complexes. Our results show that two osmolytes, glucosylglycerol and sucrose have favorable binding affinities with RNase A. The possible role of these osmolytes in stabilizing the RNase A and prevention of aggregation is also explored. By providing computational insights into the interaction between RNase A and osmolytes, the study offers valuable information that could aid in comprehending the mechanisms by which osmolytes protect proteins and help in designing therapeutics for protein-related disorders based on osmolytes. These findings may have significant implications for the development of novel strategies aimed at preventing protein misfolding and aggregation in diverse disease conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | | |
Collapse
|
8
|
Binmujlli MA. Radiological and Molecular Analysis of Radioiodinated Anastrozole and Epirubicin as Innovative Radiopharmaceuticals Targeting Methylenetetrahydrofolate Dehydrogenase 2 in Solid Tumors. Pharmaceutics 2024; 16:616. [PMID: 38794278 PMCID: PMC11126143 DOI: 10.3390/pharmaceutics16050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic field of radiopharmaceuticals, innovating targeted agents for cancer diagnosis and therapy is crucial. Our study enriches this evolving landscape by evaluating the potential of radioiodinated anastrozole ([125I]anastrozole) and radioiodinated epirubicin ([125I]epirubicin) as targeting agents against MTHFD2-driven tumors. MTHFD2, which is pivotal in one-carbon metabolism, is notably upregulated in various cancers, presenting a novel target for radiopharmaceutical application. Through molecular docking and 200 ns molecular dynamics (MD) simulations, we assess the binding efficiency and stability of [125I]anastrozole and [125I]epirubicin with MTHFD2. Molecular docking illustrates that [125I]epirubicin has a superior binding free energy (∆Gbind) of -41.25 kJ/mol compared to -39.07 kJ/mol for [125I]anastrozole and -38.53 kJ/mol for the control ligand, suggesting that it has a higher affinity for MTHFD2. MD simulations reinforce this, showing stable binding, as evidenced by root mean square deviation (RMSD) values within a narrow range, underscoring the structural integrity of the enzyme-ligand complexes. The root mean square fluctuation (RMSF) analysis indicates consistent dynamic behavior of the MTHFD2 complex upon binding with [125I]anastrozole and [125I]epirubicin akin to the control. The radius of gyration (RG) measurements of 16.90 Å for MTHFD2-[125I]anastrozole and 16.84 Å for MTHFD2-[125I]epirubicin confirm minimal structural disruption upon binding. The hydrogen bond analysis reveals averages of two and three stable hydrogen bonds for [125I]anastrozole and [125I]epirubicin complexes, respectively, highlighting crucial stabilizing interactions. The MM-PBSA calculations further endorse the thermodynamic favorability of these interactions, with binding free energies of -48.49 ± 0.11 kJ/mol for [125I]anastrozole and -43.8 kJ/mol for MTHFD2-. The significant contribution of Van der Waals and electrostatic interactions to the binding affinities of [125I]anastrozole and [125I]epirubicin, respectively, underscores their potential efficacy for targeted tumor imaging and therapy. These computational findings lay the groundwork for the future experimental validation of [125I]anastrozole and [125I]epirubicin as MTHFD2 inhibitors, heralding a notable advancement in precision oncology tools. The data necessitate subsequent in vitro and in vivo assays to corroborate these results.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
9
|
Zhang W, Zhuang S, Guan H, Li F, Zou H, Li D. New insights into the anti-apoptotic mechanism of natural polyphenols in complex with Bax protein. J Biomol Struct Dyn 2024; 42:3081-3093. [PMID: 37184126 DOI: 10.1080/07391102.2023.2212066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Excessive apoptosis can kill normal cells and lead to liver damage, heart failure and neurodegenerative diseases. Polyphenols are secondary metabolites of plants that can interact with proteins to inhibit toxins and disease-related apoptosis. Bax is the major pro-apoptotic protein that disrupts the outer mitochondrial membrane to induce apoptosis, but limited studies have focused on the interaction between polyphenols and Bax and the associated anti-apoptotic mechanisms, especially at the atomic level. In this article, we collected 69 common polyphenols for active ingredient screening targeting Bax. Polyphenols with better and worse molecular docking scores were selected, and their anti-apoptosis effects were compared using the H2O2-induced HepG2 cell model. The interactions between the selected polyphenols and Bax protein were analyzed using molecular dynamics simulation to explore the molecular mechanism underlying the anti-apoptosis effect. Secoisolariciresinol diglucoside (SDG) and Epigallocatechin-3-gallate (EGCG) with the best affinity for Bax (-6.76 and -6.52 kcal/mol) reduced the expression of cytochrome c and caspase 3, decreasing the apoptosis rate from 52 to 11% and 12%. Molecular dynamics simulation results showed that Bim unfolded the α1-α2 loop of Bax, and disrupted the non-bond interactions between the loop (Pro-43, Glu-44 and Leu-45) and surface (Ile-133, Arg-134 and Met-137) residues, with binding free energy changed from -15.0 to 0 kJ/mol. The hydrogen bonds and van der Waals interactions formed between polyphenols and Bax prevented the unfolding of the loop. Taken together, our results proved that polyphenols can inhibit apoptosis by maintaining the unactivated conformation of Bax to reduce outer mitochondrial membrane damage.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenyuan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | | | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Hui Zou
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Dapeng Li
- Qingdao Institute for Food and Drug Control, Qingdao, China
| |
Collapse
|
10
|
Ji J, Carpentier B, Chakraborty A, Nangia S. An Affordable Topography-Based Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) Scale. J Chem Theory Comput 2024; 20:1656-1672. [PMID: 37018141 PMCID: PMC10902853 DOI: 10.1021/acs.jctc.3c00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 04/06/2023]
Abstract
The hydropathy of proteins or quantitative assessment of protein-water interactions has been a topic of interest for decades. Most hydropathy scales use a residue-based or atom-based approach to assign fixed numerical values to the 20 amino acids and categorize them as hydrophilic, hydroneutral, or hydrophobic. These scales overlook the protein's nanoscale topography, such as bumps, crevices, cavities, clefts, pockets, and channels, in calculating the hydropathy of the residues. Some recent studies have included protein topography in determining hydrophobic patches on protein surfaces, but these methods do not provide a hydropathy scale. To overcome the limitations in the existing methods, we have developed a Protocol for Assigning a Residue's Character on the Hydropathy (PARCH) scale that adopts a holistic approach to assigning the hydropathy of a residue. The parch scale evaluates the collective response of the water molecules in the protein's first hydration shell to increasing temperatures. We performed the parch analysis of a set of well-studied proteins that include the following─enzymes, immune proteins, and integral membrane proteins, as well as fungal and virus capsid proteins. Since the parch scale evaluates every residue based on its location, a residue may have very different parch values inside a crevice versus a surface bump. Thus, a residue can have a range of parch values (or hydropathies) dictated by the local geometry. The parch scale calculations are computationally inexpensive and can compare hydropathies of different proteins. The parch analysis can affordably and reliably aid in designing nanostructured surfaces, identifying hydrophilic and hydrophobic patches, and drug discovery.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Arindam Chakraborty
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
11
|
Ballini A, Zhurakivska K, Troiano G, Lo Muzio L, Caponio VCA, Spirito F, Porro R, Rella M, Cantore S, Arrigoni R, Dioguardi M. Dietary Polyphenols against Oxidative Stress in Head and Neck Cancer: What's New, What's Next. J Cancer 2024; 15:293-308. [PMID: 38169656 PMCID: PMC10758035 DOI: 10.7150/jca.90545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024] Open
Abstract
Head and neck cancers (HNC) are a worldwide health problem, accounting for over 5% of all types of cancers. Their varied nature makes it sometimes difficult to find clear explanations for the molecular mechanisms that underline their onset and development. While chemio- and radiotherapy are clearly not to be dismissed, we cannot undervalue the effect that polyphenols - especially dietary polyphenols - can have in helping us to cope with this medical emergency. By influencing several different proteins involved in numerous different metabolic pathways, polyphenols can have a broad spectrum of biological action and can hopefully act synergistically to tackle down head and neck cancer. Moreover, being natural molecules, polyphenols does not present any side effects and can even enhance drugs efficacy, making our clinical therapy against head and neck cancer more and more effective. Certainly, oxidative stress plays an important role, altering several molecular pathways, lowering the body's defenses, and ultimately helping to create a microenvironment conducive to the appearance and development of the tumor. In this regard, the regular and constant intake of foods rich in polyphenols can help counteract the onset of oxidative stress, improving the health of the general population. In this review, we highlight the role of polyphenols in managing oxidative stress, with such positive effects that they can be considered new tools to use in our anti-head and neck cancer strategy.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosa Porro
- Department of Informatics, University of Bari “Aldo Moro”, Bari, Italy
| | - Martina Rella
- AULSS4 - Veneto Orientale - Portogruaro, Venice, Italy
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
Mahendran R, Selvaraj SP, Dhanapal AR, Sarasa SB, Mathias BM, Thankappan B, Femil Selta DR, Naveen P, Poorani R, Sundhar N, Pillai MM, Selvakumar R, Huang CY, Eswaran R, Angayarkanni J. Tetrahydrobiopterin from cyanide-degrading bacterium Bacillus pumilus strain SVD06 induces apoptosis in human lung adenocarcinoma cell (A549). Biotechnol Appl Biochem 2023; 70:2052-2068. [PMID: 37731306 DOI: 10.1002/bab.2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.
Collapse
Affiliation(s)
- Ramasamy Mahendran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Anand Raj Dhanapal
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Coimbatore, Tamil Nadu, India
| | - Sabna Bhaskaran Sarasa
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Beutline Malgija Mathias
- Computational Science Laboratory, MCC-MRF Innovation Park, Madras Christian College, Chennai, Tamil Nadu, India
| | - Bency Thankappan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Daniel Raja Femil Selta
- Department of Biochemistry and Cancer Research Center, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Palanivel Naveen
- Department of Chemistry, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Rhenghachar Poorani
- Gayatri Vidya parishad Institute of Health Care and Medical Technology, Visakhapatnam, India
| | - Navaneethan Sundhar
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Rajendran Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Raju Eswaran
- Department of Zoology, The Madura College, Madurai, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
13
|
Maity D, Singh D, Bandhu A. Mce1R of Mycobacterium tuberculosis prefers long-chain fatty acids as specific ligands: a computational study. Mol Divers 2023; 27:2523-2543. [PMID: 36385433 DOI: 10.1007/s11030-022-10566-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
The mce1 operon of Mycobacterium tuberculosis, which codes the Mce1 transporter, facilitates the transport of fatty acids. Fatty acids are one of the major sources for carbon and energy for the pathogen during its intracellular survival and pathogenicity. The mce1 operon is transcriptionally regulated by Mce1R, a VanR-type regulator, which could bind specific ligands and control the expression of the mce1 operon accordingly. This work reports computational identification of Mce1R-specific ligands. Initially by employing cavity similarity search algorithm by the ProBis server, the cavities of the proteins similar to that of Mce1R and the bound ligands were identified from which fatty acids were selected as the potential ligands. From the earlier-generated monomeric structure, the dimeric structure of Mce1R was then modeled by the GalaxyHomomer server and validated computationally to use in molecular docking and molecular dynamics simulation analysis. The fatty acid ligands were found to dock within the cavity of Mce1R and the docked complexes were subjected to molecular dynamics simulation to explore their stabilities and other dynamic properties. The data suggest that Mce1R preferably binds to long-chain fatty acids and undergoes distinct structural changes upon binding.
Collapse
Affiliation(s)
- Dipanwita Maity
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Dheeraj Singh
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Amitava Bandhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
14
|
Rafiq H, Hu J, Hakami MA, Hazazi A, Alamri MA, Alkhatabi HA, Mahmood A, Alotaibi BS, Wadood A, Huang X. Identification of novel STAT3 inhibitors for liver fibrosis, using pharmacophore-based virtual screening, molecular docking, and biomolecular dynamics simulations. Sci Rep 2023; 13:20147. [PMID: 37978263 PMCID: PMC10656421 DOI: 10.1038/s41598-023-46193-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) plays a fundamental role in the growth and regulation of cellular life. Activation and over-expression of STAT3 have been implicated in many cancers including solid blood tumors and other diseases such as liver fibrosis and rheumatoid arthritis. Therefore, STAT3 inhibitors are be coming a growing and interesting area of pharmacological research. Consequently, the aim of this study is to design novel inhibitors of STAT3-SH3 computationally for the reduction of liver fibrosis. Herein, we performed Pharmacophore-based virtual screening of databases including more than 19,481 commercially available compounds and in-house compounds. The hits obtained from virtual screening were further docked with the STAT3 receptor. The hits were further ranked on the basis of docking score and binding interaction with the active site of STAT3. ADMET properties of the screened compounds were calculated and filtered based on drug-likeness criteria. Finally, the top five drug-like hit compounds were selected and subjected to molecular dynamic simulation. The stability of each drug-like hit in complex with STAT3 was determined by computing their RMSD, RMSF, Rg, and DCCM analyses. Among all the compounds Sa32 revealed a good docking score, interactions, and stability during the entire simulation procedure. As compared to the Reference compound, the drug-like hit compound Sa32 showed good docking scores, interaction, stability, and binding energy. Therefore, we identified Sa32 as the best small molecule potent inhibitor for STAT3 that will be helpful in the future for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huma Rafiq
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Junjian Hu
- Department of Central Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan, China
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Hind A Alkhatabi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arif Mahmood
- Center for Medical Genetics and Human Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan.
| | - Xiaoyun Huang
- Department of Neurology, Dongguan Songshan Lake Central Hospital, Dongguan, China.
| |
Collapse
|
15
|
Ghafoor N, Yildiz A. Targeting MDM2-p53 Axis through Drug Repurposing for Cancer Therapy: A Multidisciplinary Approach. ACS OMEGA 2023; 8:34583-34596. [PMID: 37779953 PMCID: PMC10536845 DOI: 10.1021/acsomega.3c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Cancer remains a major cause of morbidity and mortality worldwide, and while current therapies, such as chemotherapy, immunotherapy, and cell therapy, have been effective in many patients, the development of novel therapeutic options remains an urgent priority. Mouse double minute 2 (MDM2) is a key regulator of the tumor suppressor protein p53, which plays a critical role in regulating cellular growth, apoptosis, and DNA repair. Consequently, MDM2 has been the subject of extensive research aimed at developing novel cancer therapies. In this study, we employed a machine learning-based approach to establish a quantitative structure-activity relationship model capable of predicting the potential in vitro efficacy of small molecules as MDM2 inhibitors. Our model was used to screen 5883 FDA-approved drugs, resulting in the identification of promising hits that were subsequently evaluated using molecular docking and molecular dynamics simulations. Two antihistamine drugs, cetirizine (CZ) and rupatadine (RP), exhibited particularly favorable results in the initial in silico analyses. To further assess their potential use as the activators of the p53 pathway, we investigated the antiproliferative capability of the abovementioned drugs on human glioblastoma and neuroblastoma cell lines. Both the compounds exhibited significant antiproliferative effects on the abovementioned cell lines in a dose-dependent manner. The half-maximal inhibitory concentration (IC50) of CZ was found to be 697.87 and 941.37 μM on U87 and SH-SY5Y cell lines, respectively, while the IC50 of RP was found to be 524.28 and 617.07 μM on the same cell lines, respectively. Further investigation by quantitative reverse transcriptase polymerase chain reaction analysis revealed that the CZ-treated cell lines upregulate the expression of the p53-regulated genes involved in cell cycle arrest, apoptosis, and DNA damage response compared to their respective vehicle controls. These findings suggest that CZ activates the p53 pathway by inhibiting MDM2. Our results provide compelling preclinical evidence supporting the potential use of CZ as a modulator of the MDM2-p53 axis and its plausible repurposing for cancer treatment.
Collapse
Affiliation(s)
- Naeem
Abdul Ghafoor
- Department
of Molecular Biology and Genetics, Graduate School of Natural and
Applied Sciences, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Aysegul Yildiz
- Department
of Molecular Biology and Genetics, Graduate School of Natural and
Applied Sciences, Mugla Sitki Kocman University, 48000 Mugla, Turkey
- Department
of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| |
Collapse
|
16
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
17
|
Shalayel MHF, Al-Mazaideh GM, Alanezi AA, Almuqati AF, Alotaibi M. Diosgenin and Monohydroxy Spirostanol from Prunus amygdalus var amara Seeds as Potential Suppressors of EGFR and HER2 Tyrosine Kinases: A Computational Approach. Pharmaceuticals (Basel) 2023; 16:704. [PMID: 37242487 PMCID: PMC10223344 DOI: 10.3390/ph16050704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer continues to be leading cause of death globally, with nearly 7 million deaths per year. Despite significant progress in cancer research and treatment, there remain several challenges to overcome, including drug resistance, the presence of cancer stem cells, and high interstitial fluid pressure in tumors. To tackle these challenges, targeted therapy, specifically targeting HER2 (Human Epidermal Growth Factor Receptor 2) as well as EGFR (Epidermal Growth Factor Receptor), is considered a promising approach in cancer treatment. In recent years, phytocompounds have gained recognition as a potential source of chemopreventive and chemotherapeutic agents in tumor cancer treatment. Phytocompounds are compounds derived from medicinal plants that have the potential to treat and prevent cancer. This study aimed to investigate phytocompounds from Prunus amygdalus var amara seeds as inhibitors against EGFR and HER2 enzymes using in silico methods. In this study, fourteen phytocompounds were isolated from Prunus amygdalus var amara seeds and subjected to molecular docking studies to determine their ability to bind to EGFR and HER2 enzymes. The results showed that diosgenin and monohydroxy spirostanol exhibited binding energies comparable to those of the reference drugs, tak-285, and lapatinib. Furthermore, the drug-likeness and ADMET predictions, performed using the admetSAR 2.0 web-server tool, suggested that diosgenin and monohydroxy spirostanol have similar safety and ADMET properties as the reference drugs. To get deeper insight into the structural steadiness and flexibility of the complexes formed between these compounds and theEGFR and HER2 proteins, molecular dynamics simulations were performed for 100 ns. The results showed that the hit phytocompounds did not significantly affect the stability of the EGFR and HER2 proteins and were able to form stable interactions with the catalytic binding sites of the proteins. Additionally, the MM-PBSA analysis revealed that the binding free energy estimates for diosgenin and monohydroxy spirostanol is comparable to the reference drug, lapatinib. This study provides evidence that diosgenin and monohydroxy spirostanol may have the potential to act as dual suppressors of EGFR and HER2. Additional in vivo and in vitro research are needed to certify these results and assess their efficacy and safety as cancer therapy agents. The experimental data reported and these results are in agreement.
Collapse
Affiliation(s)
- Mohammed Helmy Faris Shalayel
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Ghassab M. Al-Mazaideh
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Meshal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| |
Collapse
|
18
|
MUHAMMED MT, ER M, AKKOC S. Molecular Modeling and In Vitro Antiproliferative Activity Studies of Some Imidazole and Isoxazole Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Shariatifar H, Farasat A. Affinity enhancement of CR3022 binding to RBD; in silico site directed mutagenesis using molecular dynamics simulation approaches. J Biomol Struct Dyn 2023; 41:81-90. [PMID: 34796779 DOI: 10.1080/07391102.2021.2004230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a disease which caused by a novel beta coronavirus. Structural and non-structural proteins are expressed by the virus gene fragments. The RBD of the S1 protein of the virus has the ability to interact with potent antibodies including CR3022, which was characterized to target the S protein of the virus which can efficiently neutralize the SARS-CoV in vitro and in vivo. In current study, we aimed to design CR3022 based antibody with high affinity compared with wild-type CR3022 using MD simulation method. Two variants were designed based on the amino acid binding conformation and the free binding energy of the critical amino acids which involved in CR3022-RBD interactions were evaluated. In this study three complexes were evaluated; CR3022-RBD, V1-RBD and V2-RBD using molecular dynamics simulations carried out for 100 ns in each case. Then, all the complexes were simulated for 100 ns. In the next step, to calculate the free binding affinity of the wild CR3022 and mutant antibody (V1 and V2) with RBD, the PMF method was performed. The RMSD profile demonstrated that all three complexes were equilibrated after 85 ns. Furthermore, the free binding energy results indicated that the V2-RBD complex has the higher binding affinity than V1-RBD and CR3022-RBD complexes. It should be noted that in above variants, the electrostatic energy and the number of H-bonds between the antibody and RBD increased. Thus, it is suggested that both designed antibodies could be considered as appropriate candidates for covid-19 disease treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
20
|
Liang F, Shi Y, Shi J, Cao W. Exploring the binding mechanism of pumpkin seed protein and apigenin: Spectroscopic analysis, molecular docking and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Park CG, Singh N, Ryu CS, Yoon JY, Esterhuizen M, Kim YJ. Species Differences in Response to Binding Interactions of Bisphenol A and its Analogs with the Modeled Estrogen Receptor 1 and In Vitro Reporter Gene Assay in Human and Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2431-2443. [PMID: 35876442 DOI: 10.1002/etc.5433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Adverse impacts associated with the interactions of numerous endocrine-disruptor chemicals (EDCs) with estrogen receptor 1 play a pivotal role in reproductive dysfunction. The predictive studies on these interactions thus are crucial in the risk assessment of EDCs but rely heavily on the accuracy of specific protein structure in three dimensions. As the three-dimensional (3D) structure of zebrafish estrogen receptor 1 (zEsr1) is not available, the 3D structure of zEsr1 ligand-binding domain (zEsr1-LBD) was generated using MODELLER and its quality was assessed by the PROCHECK, ERRAT, ProSA, and Verify-3D tools. After the generated model was verified as reliable, bisphenol A and its analogs were docked on the zEsr1-LBD and human estrogen receptor 1 ligand-binding domain (hESR1-LBD) using the Discovery Studio and Autodock Vina programs. The molecular dynamics followed by molecular docking were simulated using the Nanoscale Molecular Dynamics program and compared to those of the in vitro reporter gene assays. Some chemicals were bound with an orientation similar to that of 17β-estradiol in both models and in silico binding energies showed moderate or high correlations with in vitro results (0.33 ≤ r2 ≤ 0.71). Notably, hydrogen bond occupancy during molecular dynamics simulations exhibited a high correlation with in vitro results (r2 ≥ 0.81) in both complexes. These results show that the combined in silico and in vitro approaches is a valuable tool for identifying EDCs in different species, facilitating the assessment of EDC-induced reproductive toxicity. Environ Toxicol Chem 2022;41:2431-2443. © 2022 SETAC.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Nancy Singh
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Ju Yong Yoon
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
- Helsinki Institute of Sustainability Science, Fabianinkatu, Helsinki, Finland
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| |
Collapse
|
22
|
Taldaev A, Terekhov R, Nikitin I, Zhevlakova A, Selivanova I. Insights into the Pharmacological Effects of Flavonoids: The Systematic Review of Computer Modeling. Int J Mol Sci 2022; 23:6023. [PMID: 35682702 PMCID: PMC9181432 DOI: 10.3390/ijms23116023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Computer modeling is a method that is widely used in scientific investigations to predict the biological activity, toxicity, pharmacokinetics, and synthesis strategy of compounds based on the structure of the molecule. This work is a systematic review of articles performed in accordance with the recommendations of PRISMA and contains information on computer modeling of the interaction of classical flavonoids with different biological targets. The review of used computational approaches is presented. Furthermore, the affinities of flavonoids to different targets that are associated with the infection, cardiovascular, and oncological diseases are discussed. Additionally, the methodology of bias risks in molecular docking research based on principles of evidentiary medicine was suggested and discussed. Based on this data, the most active groups of flavonoids and lead compounds for different targets were determined. It was concluded that flavonoids are a promising object for drug development and further research of pharmacology by in vitro, ex vivo, and in vivo models is required.
Collapse
Affiliation(s)
- Amir Taldaev
- Laboratoty of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Roman Terekhov
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Ilya Nikitin
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Anastasiya Zhevlakova
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Irina Selivanova
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| |
Collapse
|
23
|
Rani S, Malik FP, Anwar J, Zafar Paracha R. Investigating effect of mutation on structure and function of G6PD enzyme: a comparative molecular dynamics simulation study. PeerJ 2022; 10:e12984. [PMID: 35368337 PMCID: PMC8973466 DOI: 10.7717/peerj.12984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Several natural mutants of the human G6PD enzyme exist and have been reported. Because the enzymatic activities of many mutants are different from that of the wildtype, the genetic polymorphism of G6PD plays an important role in the synthesis of nucleic acids via ribulose-5-phosphate and formation of reduced NADP in response to oxidative stress. G6PD mutations leading to its deficiency result in the neonatal jaundice and acute hemolytic anemia in human. Herein, we demonstrate the molecular dynamics simulations of the wildtype G6PD and its three mutants to monitor the effect of mutations on dynamics and stability of the protein. These mutants are Chatham (A335T), Nashville (R393H), Alhambra (V394L), among which R393H and V394L lie closer to binding site of structural NADP+. MD analysis including RMSD, RMSF and protein secondary structure revealed that decrease in the stability of mutants is key factor for loss of their activity. The results demonstrated that mutations in the G6PD sequence resulted in altered structural stability and hence functional changes in enzymes. Also, the binding site, of structural NADP+, which is far away from the catalytic site plays an important role in protein stability and folding. Mutation at this site causes changes in structural stability and hence functional deviations in enzyme structure reflecting the importance of structural NADP+ binding site. The calculation of binding free energy by post processing end state method of Molecular Mechanics Poisson Boltzmann SurfaceArea (MM-PBSA) has inferred that ligand binding in wildtype is favorable as compared to mutants which represent destabilised protein structure due to mutation that in turn may hinder the normal physiological function. Exploring individual components of free energy revealed that the van der Waals energy component representing non-polar/hydrophobic energy contribution act as a dominant factor in case of ligand binding. Our study also provides an insight in identifying the key inhibitory site in G6PD and its mutants which can be exploited to use them as a target for developing new inhibitors in rational drug design.
Collapse
Affiliation(s)
- Sadaf Rani
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology, Islamabad, Federal, Pakistan
| | - Fouzia Perveen Malik
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology, Islamabad, Federal, Pakistan
| | - Jamshed Anwar
- Department of Chemistry, Lancaster University, UK, Lancaster, United Kingdom, UK
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology, Islamabad, Federal, Pakistan
| |
Collapse
|
24
|
Silva BM, Santos LH, de Almeida JPP, de Magalhães MTQ. Rad5 HIRAN domain: Structural insights into its interaction with ssDNA through molecular modeling approaches. J Biomol Struct Dyn 2022; 41:3062-3075. [PMID: 35249470 DOI: 10.1080/07391102.2022.2045222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Rad5 protein is an SWI/SNF family ubiquitin ligase that contains an N-terminal HIRAN domain and a RING C3HC4 motif. The HIRAN domain is critical for recognition of the stalled replication fork during the replication process and acts as a sensor to initiate the damaged DNA checkpoint. It is a conserved domain widely distributed in eukaryotic organisms and is present in several DNA-binding proteins from all kingdoms. Here we showed that distant species have important differences in key residues that affect affinity for ssDNA. Based on these findings, we hypothesized that different HIRAN domains might affect fork reversal and translesion synthesis through different metabolic processes. To address this question, we predicted the tertiary structure of both yeast and human HIRAN domains using molecular modeling. Structural dynamics experiments showed that the yeast HIRAN domain exhibited higher structural denaturation than its human homolog, although both domains became stable in the presence of ssDNA. Analysis of atomic contacts revealed that a greater number of interactions between the ssDNA nucleotides and the Rad5 domain are electrostatic. Taken together, these results provide new insights into the molecular mechanism of the HIRAN domain of Rad5 and may guide us to further elucidate differences in the ancient eukaryotes HIRAN sequences and their DNA affinity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bruno M Silva
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Macromolecular Biophysics Laboratory (LBM), Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Lucianna H Santos
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Molecular Modeling and Drug Planning Laboratory, Department of Biochemistry and Immunology, Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - João Paulo P de Almeida
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Mariana T Q de Magalhães
- Inter-unit postgraduate studies program in Bioinformatics, Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil.,Macromolecular Biophysics Laboratory (LBM), Biological Sciences Institute (ICB), Federal University of Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| |
Collapse
|
25
|
S. A, V. S, R. S, V. S. Structural exploration of interactions of (+) catechin and (−) epicatechin with bovine serum albumin: Insights from molecular dynamics and spectroscopic methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Das P, Majumder R, Mandal M, Basak P. In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (M pro) from flavonoid based phytochemical constituents of Calendula officinalis. J Biomol Struct Dyn 2021; 39:6265-6280. [PMID: 32705952 PMCID: PMC7441784 DOI: 10.1080/07391102.2020.1796799] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The recent outbreak of the coronavirus disease COVID-19 is putting the world towards a great threat. A recent study revealed COVID-19 main protease (Mpro) is responsible for the proteolytic mutation of this virus and is essential for its life cycle. Thus inhibition of this protease will eventually lead to the destruction of this virus. In-Silico Molecular docking was performed with the Native ligand and the 15 flavonoid based phytochemicals of Calendula officinals to check their binding affinity towards the COVID-19 main protease. Finally, the top 3 compounds with the highest affinity have been chosen for molecular dynamics simulation to analyses their dynamic properties and conformational flexibility or stability. In-Silico Docking showed that major phytochemicals of Calendula officinals i.e. rutin, isorhamnetin-3-O-β-D, calendoflaside, narcissin, calendulaglycoside B, calenduloside, calendoflavoside have better binding energy than the native ligand (inhibitor N3). MD simulation of 100 ns revealed that all the protease-ligand docked complexes are overall stable as compare to Mpro-native ligand (inhibitor N3) complex. Overall, rutin and caledoflaside showed better stability, compactness, and flexibility. Our in silico (Virtual molecular docking and Molecular dynamics simulation) studies pointed out that flavonoid based phytochemicals of calendula (rutin, isorhamnetin-3-O-β-D, calendoflaside) may be highly effective for inhibiting Mpro which is the main protease for SARS-CoV-2 causing the deadly disease COVID-19. Rutin is already used as a drug and the other two compounds can be made available for future use. Thus the study points a way to combat COVID-19 by the use of major flavonoid based phytochemicals of Calendula officinals. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | - Ranabir Majumder
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
27
|
Attri P, Kurita H, Koga K, Shiratani M. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Int J Mol Sci 2021; 22:ijms22179585. [PMID: 34502494 PMCID: PMC8431430 DOI: 10.3390/ijms22179585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
28
|
Arrigoni R, Ballini A, Santacroce L, Cantore S, Inchingolo A, Inchingolo F, Di Domenico M, Quagliuolo L, Boccellino M. Another look at dietary polyphenols: challenges in cancer prevention and treatment. Curr Med Chem 2021; 29:1061-1082. [PMID: 34375181 DOI: 10.2174/0929867328666210810154732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a pathology that impacts in a profound manner people all over the world. The election strategy against cancer often uses chemotherapy and radiotherapy, which more often than not can present many side effects and not always reliable efficacy. By contrast, it is widely known that a diet rich in fruit and vegetables has a protective effect against cancer insurgence and development. Polyphenols are generally believed to be responsible for those beneficial actions, at least partially. In this review, we highlight the metabolic interaction between polyphenols and our metabolism and discuss their potential for anticancer prevention and therapy.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario "Ernesto Quagliariello", University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Stefania Cantore
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angelo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
29
|
Lata S, Akif M. Structure-based identification of natural compound inhibitor against M. tuberculosis thioredoxin reductase: insight from molecular docking and dynamics simulation. J Biomol Struct Dyn 2021; 39:4480-4489. [PMID: 32567497 DOI: 10.1080/07391102.2020.1778530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
Antioxidant systems of M. tuberculosis (Mtb) play an important role in providing resistance in the hostile environment of mononuclear phagocytes. Thioredoxin system is a known antioxidant system that consists of three copies of thioredoxins (Trxs) and a single copy of thioredoxin reductase (TrxR). TrxR has been validated as an essential gene known to be involved in the reduction of peroxides, dinitrobenzenes and hydroperoxides, and is crucial in maintaining the survival of Mtb in macrophages. Recently, it has been demonstrated to be a druggable target. In this study, molecular docking was applied to screen more than 20,000 natural compounds from the Traditional Chinese Medicine database. Theoretical calculation of ΔGbinding by the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) methods indicated two top-hit compounds that bind with a high affinity to the allosteric site, consisting of a hinge region, of TrxR. Further, stability and binding analysis of both compounds were carried out with molecular dynamics simulation. An analysis of conformational variation by principal component analysis (PCA) and protein contact network (PCN) uncovered the conformational changes in the compound-bound forms of protein. The NADPH domain formed many new interactions with the FAD domain in the compound-bound form, signifying that the binding may render an effect on the protein structure and function. Our results suggest that these two compounds could potentially be used for structure-based lead inhibitors against TrxR. The inhibitor selected as lead compound will be used further as a scaffold to optimize as novel anti-tuberculosis therapeutic.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Surabhi Lata
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| |
Collapse
|
30
|
Rashidieh B, Molakarimi M, Mohseni A, Tria SM, Truong H, Srihari S, Adams RC, Jones M, Duijf PHG, Kalimutho M, Khanna KK. Targeting BRF2 in Cancer Using Repurposed Drugs. Cancers (Basel) 2021; 13:cancers13153778. [PMID: 34359683 PMCID: PMC8345145 DOI: 10.3390/cancers13153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary BRF2, a subunit of the RNA polymerase III transcription complex, is upregulated in a wide variety of cancers and is a potential therapeutic target; however, no effective drugs are available to target BRF2. The upregulation of BRF2 in cancer cells confers survival via the prevention of oxidative stress-induced apoptosis. In this manuscript, we report the identification of potential BRF2 inhibitors through in silico drug repurposing screening. We further characterized bexarotene as a hit compound for the development of selective BRF2 inhibitors and provide experimental validation to support the repurposing of this FDA-approved drug as an agent to reduce the cellular levels of ROS and consequent BRF2 expression in cancers with elevated levels of oxidative stress. Abstract The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.
Collapse
Affiliation(s)
- Behnam Rashidieh
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- Correspondence: (B.R.); (K.K.K.)
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Nasr Bridge, Tehran 14115-154, Iran; (M.M.); (A.M.)
| | - Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Nasr Bridge, Tehran 14115-154, Iran; (M.M.); (A.M.)
| | - Simon Manuel Tria
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Hein Truong
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Sriganesh Srihari
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Rachael C. Adams
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Mathew Jones
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Pascal H. G. Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Data Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.M.T.); (H.T.); (S.S.); (R.C.A.); (M.K.)
- Correspondence: (B.R.); (K.K.K.)
| |
Collapse
|
31
|
Elmezayen AD, Al-Obaidi A, Yelekçi K. Discovery of novel isoform-selective histone deacetylases 5 and 9 inhibitors through combined ligand-based pharmacophore modeling, molecular mocking, and molecular dynamics simulations for cancer treatment. J Mol Graph Model 2021; 106:107937. [PMID: 34049193 DOI: 10.1016/j.jmgm.2021.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Class IIa histone deacetylases (HDACs) 5 and 9 play crucial roles in several human disorders such as cancer, making them important targets for drug design. Continuous research is pursed to overcome the cytotoxicity side effect that comes with the currently available broad-spectrum HDACs inhibitors. Herein, common features of active HDACs inhibitors in clinical trials and use have been calculated to generate the best pharmacophore hypothesis. Guner-Henry scoring system was used to validate the generated hypotheses. Hypo1 of HDAC5 and Hypo2 of HDAC9 exhibited the most statistically significance hypotheses. Compounds with fit value of 3 and more were examined by QuickVina 2 docking tool to calculate their binding affinity toward all class IIa HDACs. A total of 6 potential selective compounds were subjected to 100 molecular dynamics (MD) simulation to examine their binding modes. The free binding energy calculations were computed according to the MM-PBSA method. Proposed selective compounds displayed good stability with their targets and thus they may offer potent leads for the designing of HDAC5 and HDAC9 isoform selective inhibitors.
Collapse
Affiliation(s)
- Ammar D Elmezayen
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| | - Anas Al-Obaidi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Istanbul, Turkey.
| |
Collapse
|
32
|
Alves KMA, Cardoso FJB, Honorio KM, de Molfetta FA. Design of Inhibitors for Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Enzyme of <i>Leishmania mexicana</i>. Med Chem 2021; 16:784-795. [PMID: 31309897 DOI: 10.2174/1573406415666190712111139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease. OBJECTIVE The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana). METHODS A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations. RESULTS Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity. CONCLUSION The use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.
Collapse
Affiliation(s)
- Krisnna M A Alves
- Laboratorio de Modelagem Molecular, Instituto de Ciencias Exatas e Naturais, Universidade Federal do Para, CP 11101, 60075-110, Belem, PA, Brazil
| | - Fábio José Bonfim Cardoso
- Laboratorio de Modelagem Molecular, Instituto de Ciencias Exatas e Naturais, Universidade Federal do Para, CP 11101, 60075-110, Belem, PA, Brazil
| | - Kathia M Honorio
- Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo (USP), 03828-000, Sao Paulo, SP, Brazil.,Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Fábio A de Molfetta
- Laboratorio de Modelagem Molecular, Instituto de Ciencias Exatas e Naturais, Universidade Federal do Para, CP 11101, 60075-110, Belem, PA, Brazil
| |
Collapse
|
33
|
Ajdžanović V, Miler M, Šošić-Jurjević B, Filipović B, Milenkovic D, Jakovljević V, Milošević V. Soy isoflavone-caused shunting of the corticosteroidogenesis pathways in andropausal subjects: Top-down impulse for the optimal supplementation design. Med Hypotheses 2021; 148:110516. [PMID: 33548764 DOI: 10.1016/j.mehy.2021.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/20/2022]
Abstract
In a series of our previous works, we revealed the beneficial effects of applied soy isoflavones (genistein or daidzein) on the wide context of corticosteroidogenesis in vivo, in a rat model of the andropause. Soy isoflavones decreased the circulating levels of pituitary adrenocorticotropic hormone, inhibited aldosterone secretion, as well as corticosterone production and secretion, but stimulated dehydroepiandrosterone secretion, all in andropausal rats. In vitro studies indicate that the mechanism underlying these hormonal changes relies on inhibition of the pituitary tyrosine kinase and adrenocortical 3β-hydroxysteroid dehydrogenase enzymes by soy isoflavones. Although the clinical studies are in their infancy, the opinion is that genistein and daidzein have therapeutic potential for the safe treatment of ageing-caused androgen deprivation and glucocorticoid excess with related metabolic/hemodynamic issues in males. Our accumulated experience and knowledge in the field of biomedical effects of plant polyphenols have provided a platform for potential recommending the agenda to organize and accelerate experimental research aimed at producing the optimal supplementation. We hypothesize that an in vivo approach should first be exploited in the sequence of investigative steps, followed by in vitro studies and synchronously conducted molecular docking analyses. In vivo research, besides establishing the margin of exposure safety or adjustment of the correct polyphenol dose, enables identification and quantification of the metabolites of applied polyphenols in the blood. Subsequent in vitro exploitation of the metabolites and related docking analyses provide clarification of the molecular mechanisms of action of applied polyphenols. Chemical modification of the polyphenol structure or coupling it with nanoparticles might be the next step in optimizing the design of supplementation. Selected, intact or chemically-modified polyphenol molecules should be included in preclinical studies on a more closely-related species, while clinical studies would finally assess the safety and effectiveness of a polyphenol-based remedial strategy. The final supplement represents a product of an appropriate technological process, conducted in accordance with the recommendations derived from the preceding research.
Collapse
Affiliation(s)
- Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow, Russian Federation
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Wang X, Li W. Comparative Study of Interactions between Human cGAS and Inhibitors: Insights from Molecular Dynamics and MM/PBSA Studies. Int J Mol Sci 2021; 22:ijms22031164. [PMID: 33503880 PMCID: PMC7865699 DOI: 10.3390/ijms22031164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies have identified cyclic GMP-AMP synthase (cGAS) as an important target for treating autoimmune diseases, and several inhibitors of human cGAS (hcGAS) and their structures in complexation with hcGAS have been reported. However, the mechanisms via which these inhibitors interact with hcGAS are not completely understood. Here, we aimed to assess the performance of molecular mechanics/Poisson–Boltzmann solvent-accessible surface area (MM/PBSA) in evaluating the binding affinity of various hcGAS inhibitors and to elucidate their detailed interactions with hcGAS from an energetic viewpoint. Using molecular dynamics (MD) simulation and MM/PBSA approaches, the estimated free energies were in good agreement with the experimental ones, with a Pearson’s correlation coefficient and Spearman’s rank coefficient of 0.67 and 0.46, respectively. In per-residue energy decomposition analysis, four residues, K362, R376, Y436, and K439 in hcGAS were found to contribute significantly to the binding with inhibitors via hydrogen bonding, salt bridges, and various π interactions, such as π· · ·π stacking, cation· · ·π, hydroxyl· · ·π, and alkyl· · ·π interactions. In addition, we discussed other key interactions between specific residues and ligands, in particular, between H363 and JUJ, F379 and 9BY, and H437 and 8ZM. The sandwiched structures of the inhibitor bound to the guanidinium group of R376 and the phenyl ring of Y436 were also consistent with the experimental data. The results indicated that MM/PBSA in combination with other virtual screening methods, could be a reliable approach to discover new hcGAS inhibitors and thus is valuable for potential treatments of cGAS-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Xiaowen Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
- Correspondence: ; Tel.: +86-755-2694-2336
| |
Collapse
|
35
|
Ahmadi K, Farasat A, Rostamian M, Johari B, Madanchi H. Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: an in silico drug repurposing study. J Biomol Struct Dyn 2021; 40:5566-5576. [PMID: 33438525 PMCID: PMC7814568 DOI: 10.1080/07391102.2021.1871958] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regarding the urgency of therapeutic measures for coronavirus disease 2019 (COVID-19) pandemic, the use of available drugs with FDA approval is preferred because of the less time and cost required for their development. In silico drug repurposing is an accurate way to speed up the screening of the existing FDA-approved drugs to find a therapeutic option for COVID-19. The similarity in SARS-CoV-2 and HIV-1 fusion mechanism to host cells can be a key point for Inhibit SARS-CoV-2 entry into host cells by HIV fusion inhibitors. Accordingly, in this study, an HIV-1 fusion inhibitor called Enfuvirtide (Enf) was selected. The affinity and essential residues involving in the Enf binding to the S2 protein of SARS-CoV-2, HIV-1 gp41 protein and angiotensin-converting enzyme 2 (ACE-2) as a negative control, was evaluated using molecular docking. Eventually, Enf-S2 and Enf-gp41 protein complexes were simulated by molecular dynamics (MD) in terms of binding affinity and stability. Based on the most important criteria such as docking score, cluster size, energy and dissociation constant, the strongest interaction was observed between Enf with the S2 protein. In addition, MD results confirmed that Enf-S2 protein interaction was remarkably stable and caused the S2 protein residues to undergo the fewest fluctuations. In conclusion, it can be stated that Enf can act as a strong SARS-CoV-2 fusion inhibitor and demonstrates the potential to enter the clinical trial phase of COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
36
|
Cui H, Stadtmüller THJ, Jiang Q, Jaeger K, Schwaneberg U, Davari MD. How to Engineer Organic Solvent Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000422] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haiyang Cui
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Tom H. J. Stadtmüller
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Qianjia Jiang
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf and Research Center Jülich Wilhelm Johnen Strasse 52426 Jülich Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52074 Aachen Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
37
|
Gheibi N, Ghorbani M, Shariatifar H, Farasat A. Effects of unsaturated fatty acids (Arachidonic/Oleic Acids) on stability and structural properties of Calprotectin using molecular docking and molecular dynamics simulation approach. PLoS One 2020; 15:e0230780. [PMID: 32214349 PMCID: PMC7098580 DOI: 10.1371/journal.pone.0230780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Calprotectin is a heterodimeric protein complex with two subunits called S100A8/A9. The protein has an essential role in inflammation process and various human diseases. It has the ability to bind to unsaturated fatty acids including Arachidonic acid, Oleic acid and etc., which could be considered as a major carrier for fatty acids. In this study we aimed to appraise the thermodynamics and structural changes of Calprotectin in presence of Arachidonic acid/Oleic acid) using docking and molecular dynami simulation method. To create the best conformation of Calprotectin-Oleic acid/Arachidonic acid complexes, the docking process was performed. The complexes with the best binding energy were selected as the models for molecular dynamics simulation process. Furthermore, the structural and thermodynamics properties of the complexes were evaluated too. The Root Mean Square Deviation and Root Mean Square Fluctuation results showed that the binding of Arachidonic acid/Oleic acid to Calprotectin can cause the protein structural changes which was confirmed by Define Secondary Structure of Proteins results. Accordingly, the binding free energy results verified that binding of Oleic acid to Calprotectin leads to instability of S100A8/A9 subunits in the protein. Moreover, the electrostatic energy contribution of the complexes (Calprotectin-Oleic acid/Arachidonic acid) was remarkably higher than van der Waals energy. Thus, the outcome of this study confirm that Oleic acid has a stronger interaction with Calprotectin in comparison with Arachidonic acid. Our findings indicated that binding of unsaturated fatty acids to Calprotectin leads to structural changes of the S100A8/A9 subunits which could be beneficial to play a biological role in inflammation process.
Collapse
Affiliation(s)
- Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohamad Ghorbani
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hanifeh Shariatifar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
38
|
Liu F, Zhao F, Wang W, Sang J, Jia L, Li L, Lu F. Cyanidin-3-O-glucoside inhibits Aβ40 fibrillogenesis, disintegrates preformed fibrils, and reduces amyloid cytotoxicity. Food Funct 2020; 11:2573-2587. [PMID: 32154523 DOI: 10.1039/c9fo00316a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is mainly caused by the fibrillogenesis of amyloid-β protein (Aβ). Therefore, the development of effective inhibitors against Aβ fibrillogenesis offers great hope for the treatment of AD. Cyanidin-3-O-glucoside (Cy-3G) is a commonly found anthocyanin that is mainly present in fruits, with established neuroprotective effects in situ. However, it remains unknown if Cy-3G can prevent Aβ fibrillogenesis and alleviate the corresponding cytotoxicity. In this study, extensive biochemical, biophysical, biological and computational experiments were combined to address this issue. It was found that Cy-3G significantly inhibits Aβ40 fibrillogenesis and disintegrates mature Aβ fibrils, and its inhibitory capacity is dependent on the Cy-3G concentration. The circular dichroism results showed that Cy-3G and Aβ40 at a molar ratio of 3 : 1 slightly prevents the structural transformation of Aβ40 from its initial random coil to the β-sheet-rich structure. Co-incubation of Aβ40 with Cy-3G significantly reduced the production of intracellular reactive oxygen species induced by Aβ40 fibrillogenesis and thus reduced Aβ40-induced cytotoxicity. Molecular dynamics simulations revealed that Cy-3G disrupted the β-sheet structure of the Aβ40 trimer. Cy-3G was found to mainly interact with the N-terminal region, the central hydrophobic cluster and the β-sheet region II via hydrophobic and electrostatic interactions. The ten hot spot residues D7, Y10, E11, F19, F20, E22, I31, I32, M35 and V40 were also identified. These findings not only enable a comprehensive understanding of the inhibitory effect of Cy-3G on Aβ40 fibrillogenesis, but also allow the identification of a valuable dietary ingredient that possesses great potential to be developed into functional foods to alleviate AD.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, 300457, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
39
|
The effect of chitosan and PEG polymers on stabilization of GF-17 structure: A molecular dynamics study. Carbohydr Polym 2020; 237:116124. [PMID: 32241401 DOI: 10.1016/j.carbpol.2020.116124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/18/2023]
Abstract
We examine the interactions of chitosan and polyethylene glycol (PEG) with antimicrobial peptide GF-17 to identify a suitable carrier to improve the peptide drug delivery systems. To this end, the molecular dynamics simulations are used to determine the interactions of a typical antimicrobial peptide GF-17 with the chitosan and PEG polymers. The findings indicate the great potential of the peptide to maintain its secondary structure in the adjacent to chitosan polymers. During the interaction with chitosan polymers, the structure of the peptide has smaller fluctuations compared to the PEG polymers. Also, in the presence of both the polymers, the PEG polymers are situated closer to the peptide than chitosan polymers. Moreover, the analysis indicates that the acidic residues and phenylalanine play a crucial role in peptide-polymer interactions. This research provides a valuable insight into the design of polymer surfaces for drug delivery applications such as controlled-release peptide delivery systems.
Collapse
|
40
|
Muhammad I, Rahman N, Nayab GE, Niaz S, Shah M, Afridi SG, Khan H, Daglia M, Capanoglu E. The Molecular Docking of Flavonoids Isolated from Daucus carota as a Dual Inhibitor of MDM2 and MDMX. Recent Pat Anticancer Drug Discov 2020; 15:154-164. [PMID: 32101134 DOI: 10.2174/1574892815666200226112506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer is characterized by overexpression of p53 associated proteins, which down-regulate P53 signaling pathway. In cancer therapy, p53 activity can be restored by inhibiting the interaction of MDMX (2N0W) and MDM2 (4JGR) proteins with P53 protein. OBJECTIVE In the current, study in silico approaches were adapted to use a natural product as a source of cancer therapy. METHODS In the current study in silico approaches were adapted to use a natural product as a source of cancer therapy. For in silico studies, Chemdraw and Molecular Operating Environment were used for structure drawing and molecular docking, respectively. Flavonoids isolated from D. carota were docked with cancerous proteins. RESULT Based on the docking score analysis, we found that compound 7 was the potent inhibitor of both cancerous proteins and can be used as a potent molecule for inhibition of 2N0W and 4JGR interaction with p53. CONCLUSION Thus the compound 7 can be used for the revival of p53 signaling pathway function however, intensive in vitro and in vivo experiments are required to prove the in silico analysis.
Collapse
Affiliation(s)
- Ijaz Muhammad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Gul E Nayab
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Sahib G Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
41
|
Rezaei N, Mehrnejad F, Vaezi Z, Sedghi M, Asghari SM, Naderi-Manesh H. Encapsulation of an endostatin peptide in liposomes: Stability, release, and cytotoxicity study. Colloids Surf B Biointerfaces 2019; 185:110552. [PMID: 31648117 DOI: 10.1016/j.colsurfb.2019.110552] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/21/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
The endostatin protein is a potent inhibitor of angiogenesis and tumor growth. The anti-angiogenic and antitumor properties of full-length endostatin can be mimicked by its N-terminal segment, including residues 1-27. Therefore, our previous studies have shown that a mutant N-terminal peptide which the Zn-binding loop was replaced by a disulfide loop (referred to as the ES-SS peptide) has preserved antiangiogenic and antitumor properties compared to the native peptide. To increase stability and plasma half-life of the ES-SS peptide, the nano-sized liposomal formulations of the peptide with different ratio of phosphocholine (PC) were synthesized. The liposomal peptide formulations possessed an average size of around 100 nm with (-4 to -36 mv) in zeta potential. The encapsulation efficiency of the ES-SS peptide was in the range of 24-54% with different lipid: peptide molar ratios. In vitro release of the peptide from liposomes indicated a complete peptide release after 7 days. Cytotoxicity assay was evaluated using the human umbilical vein endothelial cells (HUVECs) for various concentrations of the liposomal peptide. The results depicted the gradual release of the peptide through liposomes. By comparing with the free peptide, the liposomal peptide formulations have indicated higher cell viability with IC50 value about 0.1 μM. The peptide-liposome interactions, as well as the peptide effect on the liposome structure, were also investigated through coarse-grained molecular dynamics (CG-MD) simulation. The results revealed that the peptides were assembled in the hydrophilic core of the liposome. The peptide behavior in liposome can stabilize the liposome structure and be a response to the observed low peptide release rate. The investigation is promising for designing a liposome-based anti-angiogenesis peptide delivery system.
Collapse
Affiliation(s)
- Nastaran Rezaei
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, 14395-1561 Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, 14395-1561 Tehran, Iran.
| | - Zahra Vaezi
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Mosslim Sedghi
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, 41335-19141 Rasht, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
| |
Collapse
|
42
|
Du S, Yang B, Wang X, Li WY, Lu XH, Zheng ZH, Ma Y, Wang RL. Identification of potential leukocyte antigen-related protein (PTP-LAR) inhibitors through 3D QSAR pharmacophore-based virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:4232-4245. [PMID: 31588870 DOI: 10.1080/07391102.2019.1676825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Owing to its negative regulatory role in insulin signaling, protein tyrosine phosphatase of leukocyte antigen-related protein (PTP-LAR) was widely thought as a potential drug target for diabetes. Now, it was urgent to search for potential LAR inhibitors targeting diabetes. Initially, the pharmacophore models of LAR inhibitors were established with the application of the HypoGen module. The cost analysis, test set validation, as well as Fischer's test was used to verify the efficiency of pharmacophore model. Then, the best pharmacophore model (Hypo-1-LAR) was applied for the virtual screening of the ZINC database. And 30 compounds met the Lipinski's rule of five. Among them, 10 compounds with better binding affinity than the known LAR inhibitor (BDBM50296375) were discovered by docking studies. Finally, molecular dynamics simulations and post-analysis experiments (RMSD, RMSF, PCA, DCCM and RIN) were conducted to explore the effect of ligands (ZINC97018474 and Compound 1) on LAR and preliminary understand why ZINC97018474 had better inhibitory activity than Compound 1 (BDBM50296375). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shan Du
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bing Yang
- Department of Cell Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xin Wang
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin-Hua Lu
- Key Laboratory for New Drug Screening Technology of Shijiazhuang City, New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei, China
| | - Zhi-Hui Zheng
- Key Laboratory for New Drug Screening Technology of Shijiazhuang City, New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
43
|
Rampogu S, Baek A, Bavi R, Son M, Cao GP, Kumar R, Park C, Zeb A, Rana RM, Park SJ, Lee KW. Identification of Novel Scaffolds with Dual Role as Antiepileptic and Anti-Breast Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1663-1674. [PMID: 30334765 DOI: 10.1109/tcbb.2018.2855138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aromatase inhibitors with an $\mathrm{IC}_{50}$ IC 50 value ranging from 1.4 to 49.7 µM are known to act as antiepileptic drugs besides being potential breast cancer inhibitors. The aim of the present study is to identify novel antiepileptic aromatase inhibitors with higher activity exploiting the ligand-based pharmacophore approach utilizing the experimentally known inhibitors. The resultant Hypo1 consists of four features and was further validated by using three different strategies. Hypo1 was allowed to screen different databases to identify lead molecules and were further subjected to Lipinski's Rule of Five and ADMET to establish their drug-like properties. Consequently, the obtained 68-screened molecules were subjected to molecular docking by GOLD v5.2.2. Furthermore, the compounds with the highest dock scores were assessed for molecular interactions. Later, the MD simulation was applied to evaluate the protein backbone stabilities and binding energies adapting GROMACS v5.0.6 and MM/PBSA which was followed by the density functional theory (DFT), to analyze their orbital energies, and further the energy gap between them. Eventually, the number of Hit molecules was culled to three projecting Hit1, Hit2, and Hit3 as the potential lead compounds based on their highest dock scores, hydrogen bond interaction, lowest energy gap, and the least binding energies and stable MD results.
Collapse
|
44
|
Rabha A, Singh A, Grover S, Kumari A, Pandey B, Grover A. Structural basis for isoniazid resistance in KatG double mutants of Mycobacterium tuberculosis. Microb Pathog 2019; 129:152-160. [PMID: 30731190 DOI: 10.1016/j.micpath.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/02/2023]
Abstract
The failure of drugs for effective treatment against infectious diseases can be attributed to resistant forms of causative agents. The evasive nature of Mycobacterium tuberculosis is partly associated to its physical features, such as having a thick cell wall and incorporation of beneficial mutations leading to drug resistance. The pro drug Isoniazid (INH) interacts with an enzyme catalase peroxidase to get converted into its active form and upon activation stops the cell wall synthesis thus killing the Mycobacterium. The most common mutation i.e. S315T leads to high degree of drug resistance by virtue of its position in the active site. Here, we have characterized the prominent attributes of two double mutant isolates S315 T/D194G and S315T/M624V which are multi drug resistant and extremely drug resistant, respectively. Protein models were generated using the crystal structure which were then subjected to energy minimization and long term molecular dynamics simulations. Further, computational analysis showed decreasing ability of INH binding to the mutants in order of: Native > S315T/D194G > S315T/M624V. Also, a trend was observed that as the docking score and binding area decreased, there was a significant increase in the distortion of the 3D geometry of the mutants as observed by PCA analysis.
Collapse
Affiliation(s)
- Aneesh Rabha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
45
|
Li M, Cong Y, Li Y, Zhong S, Wang R, Li H, Duan L. Insight Into the Binding Mechanism of p53/pDIQ-MDMX/MDM2 With the Interaction Entropy Method. Front Chem 2019; 7:33. [PMID: 30761293 PMCID: PMC6361799 DOI: 10.3389/fchem.2019.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/14/2019] [Indexed: 01/29/2023] Open
Abstract
The study of the p53-MDMX/MDM2 binding sites is a research hotspot for tumor drug design. The inhibition of p53-targeted MDMX/MDM2 has become an effective approach in anti-tumor drug development. In this paper, a theoretically rigorous and computationally accurate method, namely, the interaction entropy (IE) method, combined with the polarized protein-specific charge (PPC) force field, is used to explore the difference in the binding mechanism between p53-MDMX and p53-MDM2. The interaction of a 12mer peptide inhibitor (pDIQ), which is similar to p53 in structure, with MDMX/MDM2 is also studied. The results demonstrate that p53/pDIQ with MDM2 generates a stronger interaction than with MDMX. Compared to p53, pDIQ has larger binding free energies with MDMX and MDM2. According to the calculated binding free energies, the differences in the binding free energy among the four complexes that are obtained from the combination of PPC and IE are more consistent with the experimental values than with the results from the combination of the non-polarizable AMBER force field and IE. In addition, according to the decomposition of the binding free energy, the van der Waals (vdW) interactions are the main driving force for the binding of the four complexes. They are also the main source of the weaker binding affinity of p53/pDIQ-MDMX relative to p53/pDIQ-MDM2. Compared with p53-MDMX/MDM2, according to the analysis of the residue decomposition, the predicated total residue contributions are higher in pDIQ-MDMX/MDM2 than in p53-MDMX/MDM2, which explains why pDIQ has higher binding affinity than p53 with MDMX/MDM2. The current study provides theoretical guidance for understanding the binding mechanisms and designing a potent dual inhibitor that is targeted to MDMX/MDM2.
Collapse
Affiliation(s)
- Mengxin Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yalong Cong
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yuchen Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Susu Zhong
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Ran Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Hao Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China.,Department of Science and Technology, Shandong Normal University, Jinan, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
46
|
Pandey B, Grover S, Goyal S, Jamal S, Singh A, Kaur J, Grover A. Novel missense mutations in gidB gene associated with streptomycin resistance in Mycobacterium tuberculosis: insights from molecular dynamics. J Biomol Struct Dyn 2019; 37:20-35. [PMID: 29241413 DOI: 10.1080/07391102.2017.1417913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Streptomycin was the first antibiotic used for the treatment of tuberculosis by inhibiting translational proof reading. Point mutation in gidB gene encoding S-adenosyl methionine (SAM)-dependent 7-methylguanosine (m7G) methyltransferase required for methylation of 16S rRNA confers streptomycin resistance. As there was no structural substantiation experimentally, gidB protein model was built by threading algorithm. In this work, molecular dynamics (MD) simulations coupled with binding free energy calculations were performed to outline the mechanism underlying high-level streptomycin resistance associated with three novel missense mutants including S70R, T146M, and R187M. Results from dynamics analyses suggested that the structure distortion in the binding pocket of gidB mutants modulate SAM binding affinity. At the structural level, these conformational changes bring substantial decrease in the number of residues involved in hydrogen bonding and dramatically reduce thermodynamic stability of mutant gidB-SAM complexes. The outcome of comparative analysis of the MD simulation trajectories revealed lower conformational stability associated with higher flexibility in mutants relative to the wild-type, turns to be major factor driving the emergence of drug resistance toward antibiotic. This study will pave way toward design and development of resistant defiant gidB inhibitors as potent anti-TB agents.
Collapse
Affiliation(s)
- Bharati Pandey
- a Department of Biotechnology , Panjab University , Chandigarh 160014 , India
| | - Sonam Grover
- b Kusuma School of Biological Sciences , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - Sukriti Goyal
- c Department of Bioscience and Biotechnology , Banasthali University , Tonk 304022 , Rajasthan , India
| | - Salma Jamal
- c Department of Bioscience and Biotechnology , Banasthali University , Tonk 304022 , Rajasthan , India
| | - Aditi Singh
- d Department of Biotechnology , TERI University , Vasant Kunj, New Delhi 110070 , India
| | - Jagdeep Kaur
- a Department of Biotechnology , Panjab University , Chandigarh 160014 , India
| | - Abhinav Grover
- e School of Biotechnology , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
47
|
Kumar N, Singh A, Grover S, Kumari A, Kumar Dhar P, Chandra R, Grover A. HHV-5 epitope: A potential vaccine candidate with high antigenicity and large coverage. J Biomol Struct Dyn 2018; 37:2098-2109. [PMID: 30044169 DOI: 10.1080/07391102.2018.1477620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope's interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope 'LVAIAVVII' with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope 'ILVAIAVVIITYLI'. Resulting epitope was found to have consistent interaction with TLR2 during long term (100 ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Drug Discovery and Development Laboratory, Department of Chemistry , University of Delhi , New Delhi , India
| | - Aditi Singh
- b Department of Biotechnology , TERI School of Advanced Studies , New Delhi , India.,c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Sonam Grover
- d Kusuma School of Biological Sciences , IIT Delhi , New Delhi , India
| | - Anchala Kumari
- b Department of Biotechnology , TERI School of Advanced Studies , New Delhi , India.,c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Pawan Kumar Dhar
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Ramesh Chandra
- a Drug Discovery and Development Laboratory, Department of Chemistry , University of Delhi , New Delhi , India
| | - Abhinav Grover
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
48
|
Zia SR, Ul-Haq Z. Molecular dynamics simulation of interleukin-2 and its complex and determination of the binding free energy. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1513651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Syeda Rehana Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
49
|
Eisold A, Labudde D. Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules 2018; 23:molecules23071690. [PMID: 29997341 PMCID: PMC6100600 DOI: 10.3390/molecules23071690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Micro-pollutants such as 17β-Estradiol (E2) have been detected in different water resources and their negative effects on the environment and organisms have been observed. Aptamers are established as a possible detection tool, but the underlying ligand binding is largely unexplored. In this study, a previously described 35-mer E2-specific aptamer was used to analyse the binding characteristics between E2 and the aptamer with a MD simulation in an aqueous medium. Because there is no 3D structure information available for this aptamer, it was modeled using coarse-grained modeling method. The E2 ligand was positioned inside a potential binding area of the predicted aptamer structure, the complex was used for an 25 ns MD simulation, and the interactions were examined for each time step. We identified E2-specific bases within the interior loop of the aptamer and also demonstrated the influence of frequently underestimated water-mediated hydrogen bonds. The study contributes to the understanding of the behavior of ligands binding with aptamer structure in an aqueous solution. The developed workflow allows generating and examining further appealing ligand-aptamer complexes.
Collapse
Affiliation(s)
- Alexander Eisold
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
- Institute for Organic Chemistry, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| | - Dirk Labudde
- Faculty of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany.
| |
Collapse
|
50
|
Verma S, Singh A, Kumari A, Pandey B, Jamal S, Goyal S, Sinha S, Grover A. Insight into the inhibitor discrimination by FLT3 F691L. Chem Biol Drug Des 2018; 91:1056-1064. [PMID: 29336115 DOI: 10.1111/cbdd.13169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/01/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) belongs to the receptor tyrosine kinase family and expressed in hematopoietic progenitor cells. FLT3 gene mutations are reported in ~30% of acute myeloid leukemia cases. FLT3 kinase domain mutation F691L is one of the common causes of acquired resistance to the FLT3 inhibitors including quizartinib. MZH29 and crenolanib were previously reported to inhibit FLT3 F691L. However, crenolanib was reported for the moderate inhibition. We found that Glu661and Asp829 were the most significant residues to target the FLT3 F691L which contribute most significantly to the binding energy with MZH29 and crenolanib. These interactions were found absent with quizartinib. Further free energy landscape analysis revealed that FLT3 F691L bound to MZH29 and crenolanib was more stable as compared to quizartinib.
Collapse
Affiliation(s)
- Sharad Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
| | - Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Salma Jamal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Sukriti Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, India
| | - Siddharth Sinha
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|