1
|
Hou FF, Mi JH, Wang Q, Tao YL, Guo SB, Ran GH, Wang JC. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Int Immunopharmacol 2025; 144:113715. [PMID: 39626538 DOI: 10.1016/j.intimp.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
Collapse
Affiliation(s)
- Fei Fei Hou
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Jun Hao Mi
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Qiong Wang
- Burn and Plastic Surgery Department of Hohhot First Hospital, Hohhot 010030, China
| | - Yan Lin Tao
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Shuai Bin Guo
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Guang He Ran
- Chongqing Changshou Traditional Cinese Medicine Hospital, 401200 Chongqing, China.
| | - Jing Chao Wang
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China.
| |
Collapse
|
2
|
Kim JK, Yun HY, Kim JS, Kim W, Lee CS, Kim BG, Jeong HJ. Development of fluorescence-linked immunosorbent assay for rapid detection of Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:2. [PMID: 38153552 DOI: 10.1007/s00253-023-12836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 12/29/2023]
Abstract
Staphylococcus aureus is a major pathogen that causes infections and life-threatening diseases. Although antibiotics, such as methicillin, have been used, methicillin-resistant S. aureus (MRSA) causes high morbidity and mortality rates, and conventional detection methods are difficult to be used because of time-consuming process. To control the spread of S. aureus, a development of a rapid and simple detection method is required. In this study, we generated a fluorescent anti-S. aureus antibody, and established a novel fluorescence-linked immunosorbent assay (FLISA)-based S. aureus detection method. The method showed high sensitivity and low limit of detection toward MRSA detection. The assay time for FLISA was 5 h, which was faster than that of conventional enzyme-linked immunosorbent assay (ELISA) or rapid ELISA. Moreover, the FLISA-based detection method was applied to diagnose clinically isolated MRSA samples that required only 5.3 h of preincubation. The FLISA method developed in this study can be widely applied as a useful tool for convenient S. aureus detection. KEY POINTS: • A fluorescence-linked immunosorbent assay-based S. aureus detection method • Simultaneous quantification of a maximum of 96 samples within 5 h • Application of the novel system to diagnosis clinical isolates.
Collapse
Affiliation(s)
- Joo-Kyung Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Young Yun
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, South Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 05355, South Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, South Korea.
| |
Collapse
|
3
|
Theodorakis N, Feretzakis G, Hitas C, Kreouzi M, Kalantzi S, Spyridaki A, Kollia Z, Verykios VS, Nikolaou M. Immunosenescence: How Aging Increases Susceptibility to Bacterial Infections and Virulence Factors. Microorganisms 2024; 12:2052. [PMID: 39458361 PMCID: PMC11510421 DOI: 10.3390/microorganisms12102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The process of aging leads to a progressive decline in the immune system function, known as immunosenescence, which compromises both innate and adaptive responses. This includes impairments in phagocytosis and decreased production, activation, and function of T- and B-lymphocytes, among other effects. Bacteria exploit immunosenescence by using various virulence factors to evade the host's defenses, leading to severe and often life-threatening infections. This manuscript explores the complex relationship between immunosenescence and bacterial virulence, focusing on the underlying mechanisms that increase vulnerability to bacterial infections in the elderly. Additionally, it discusses how machine learning methods can provide accurate modeling of interactions between the weakened immune system and bacterial virulence mechanisms, guiding the development of personalized interventions. The development of vaccines, novel antibiotics, and antivirulence therapies for multidrug-resistant bacteria, as well as the investigation of potential immune-boosting therapies, are promising strategies in this field. Future research should focus on how machine learning approaches can be integrated with immunological, microbiological, and clinical data to develop personalized interventions that improve outcomes for bacterial infections in the growing elderly population.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Christos Hitas
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Magdalini Kreouzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Sofia Kalantzi
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Aikaterini Spyridaki
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Zoi Kollia
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece;
| | - Maria Nikolaou
- Department of Cardiology, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (N.T.); (C.H.); (M.N.)
- 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece; (M.K.); (S.K.); (A.S.); (Z.K.)
| |
Collapse
|
4
|
Yamazaki Y, Ito T, Tamai M, Nakagawa S, Nakamura Y. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm Regen 2024; 44:9. [PMID: 38429810 PMCID: PMC10905890 DOI: 10.1186/s41232-024-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of human bacterial infections worldwide. It is the most common causative agent of skin and soft tissue infections, and can also cause various other infections, including pneumonia, osteomyelitis, as well as life-threatening infections, such as sepsis and infective endocarditis. The pathogen can also asymptomatically colonize human skin, nasal cavity, and the intestine. S. aureus colonizes approximately 20-30% of human nostrils, being an opportunistic pathogen for subsequent infection. Its strong ability to silently spread via human contact makes it difficult to eradicate S. aureus. A major concern with S. aureus is its capacity to develop antibiotic resistance and adapt to diverse environmental conditions. The variability in the accessory gene regulator (Agr) region of the genome contributes to a spectrum of phenotypes within the bacterial population, enhancing the likelihood of survival in different environments. Agr functions as a central quorum sensing (QS) system in S. aureus, allowing bacteria to adjust gene expression in response to population density. Depending on Agr expression, S. aureus secretes various toxins, contributing to virulence in infectious diseases. Paradoxically, expressing Agr may be disadvantageous in certain situations, such as in hospitals, causing S. aureus to generate Agr mutants responsible for infections in healthcare settings. MAIN BODY This review aims to demonstrate the molecular mechanisms governing the diverse phenotypes of S. aureus, ranging from a harmless colonizer to an organism capable of infecting various human organs. Emphasis will be placed on QS and its role in orchestrating S. aureus behavior across different contexts. SHORT CONCLUSION The pathophysiology of S. aureus infection is substantially influenced by phenotypic changes resulting from factors beyond Agr. Future studies are expected to give the comprehensive understanding of S. aureus overall profile in various settings.
Collapse
Affiliation(s)
- Yuriko Yamazaki
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan.
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Tang C, Jing W, Han K, Yang Z, Zhang S, Liu M, Zhang J, Zhao X, Liu Y, Shi C, Chai Q, Li Z, Han M, Wang Y, Fu Z, Zheng Z, Zhao K, Sun P, Zhu D, Chen C, Zhang D, Li D, Ni S, Li T, Cui J, Jiang X. mRNA-Laden Lipid-Nanoparticle-Enabled in Situ CAR-Macrophage Engineering for the Eradication of Multidrug-Resistant Bacteria in a Sepsis Mouse Model. ACS NANO 2024; 18:2261-2278. [PMID: 38207332 DOI: 10.1021/acsnano.3c10109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.
Collapse
Affiliation(s)
- Chunwei Tang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Kun Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Shengchang Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Miaoyan Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Xiaotian Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chongdeng Shi
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Qihao Chai
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ziyang Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Maosen Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Yan Wang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhipeng Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zuolin Zheng
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Kun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Danqing Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 4572A Academic Building, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chen Chen
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong Province 250012, China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong Province 250101, China
| | - Dawei Li
- Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong Province 250101, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province 250100, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
6
|
Wu P, Rao C, Liu W, Zhang Z, Nan D, Chen J, Wang M, Wen Y, Yan J, Yue J, Mao X, Li Q. Anti-Hcp1 Monoclonal Antibody Is Protective against Burkholderia pseudomallei Infection via Recognizing Amino Acids at Asp95-Leu114. Pathogens 2023; 13:43. [PMID: 38251350 PMCID: PMC10818278 DOI: 10.3390/pathogens13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Melioidosis, a severe tropical illness caused by Burkholderia pseudomallei, poses significant treatment challenges due to limited therapeutic options and the absence of effective vaccines. The pathogen's intrinsic resistance to numerous antibiotics and propensity to induce sepsis during acute infections further complicate management strategies. Thus, exploring alternative methods for prevention and treatment is crucial. Monoclonal antibodies (mAbs) have emerged as a promising strategy for the prevention and treatment of infectious diseases. This study focused on generating three mAbs (13F1, 14G11, and 15D9) targeting hemolysin-coregulated protein 1 (Hcp1), a protein involved in the type VI secretion system cluster 1 (T6SS1) of B. pseudomallei. Notably, pretreatment with 13F1 mAb significantly reduced the intracellular survival of B. pseudomallei and inhibited the formation of macrophage-derived multinucleated giant cells (MNGCs). This protective effect was also observed in vivo. We identified a sequence of amino acids (Asp95-Leu114) within Hcp1 as the likely binding site for 13F1 mAb. In summary, our findings reveal that 13F1 mAb counteracts infection by targeting Hcp1, offering potential new targets and insights for melioidosis prevention.
Collapse
Affiliation(s)
- Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Wenzheng Liu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Ziyuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Jiangao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Minyang Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Yuan Wen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Juanjuan Yue
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400000, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing 400000, China; (P.W.); (W.L.); (J.C.); (M.W.); (Y.W.); (J.Y.)
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400000, China
| |
Collapse
|
7
|
Li Z, Zhang S, Fu Z, Liu Y, Man Z, Shi C, Tang C, Chen C, Chai Q, Yang Z, Zhang J, Zhao X, Xu H, Han M, Wang Y, Liao Z, Yu G, Shi B, Zhao K, Li W, Jiang X. Surficial nano-deposition locoregionally yielding bactericidal super CAR-macrophages expedites periprosthetic osseointegration. SCIENCE ADVANCES 2023; 9:eadg3365. [PMID: 37256944 PMCID: PMC10413653 DOI: 10.1126/sciadv.adg3365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 06/02/2023]
Abstract
Tracking and eradicating Staphylococcus aureus in the periprosthetic microenvironment are critical for preventing periprosthetic joint infection (PJI), yet effective strategies remain elusive. Here, we report an implant nanoparticle coating that locoregionally yields bactericidal super chimeric antigen receptor macrophages (CAR-MΦs) to prevent PJI. We demonstrate that the plasmid-laden nanoparticle from the coating can introduce S. aureus-targeted CAR genes and caspase-11 short hairpin RNA (CASP11 shRNA) into macrophage nuclei to generate super CAR-MΦs in mouse models. CASP11 shRNA allowed mitochondria to be recruited around phagosomes containing phagocytosed bacteria to deliver mitochondria-generated bactericidal reactive oxygen species. These super CAR-MΦs targeted and eradicated S. aureus and conferred robust bactericidal immunologic activity at the bone-implant interface. Furthermore, the coating biodegradability precisely matched the bone regeneration process, achieving satisfactory osteogenesis. Overall, our work establishes a locoregional treatment strategy for priming macrophage-specific bactericidal immunity with broad application in patients suffering from multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Ziyang Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Shengchang Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhipeng Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhentao Man
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Chongdeng Shi
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chunwei Tang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chen Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Qihao Chai
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Xiaotian Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Maosen Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Yan Wang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ziyang Liao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Wei Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
8
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Nong Y, Wei X, Yu D. Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis 2023; 11:e860. [PMID: 37249297 PMCID: PMC10187025 DOI: 10.1002/iid3.860] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
10
|
Maimaiti Z, Li Z, Xu C, Fu J, Hao LB, Chen JY, Chai W. Host Immune Regulation in Implant-Associated Infection (IAI): What Does the Current Evidence Provide Us to Prevent or Treat IAI? Bioengineering (Basel) 2023; 10:356. [PMID: 36978747 PMCID: PMC10044746 DOI: 10.3390/bioengineering10030356] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The number of orthopedic implants for bone fixation and joint arthroplasty has been steadily increasing over the past few years. However, implant-associated infection (IAI), a major complication in orthopedic surgery, impacts the quality of life and causes a substantial economic burden on patients and societies. While research and study on IAI have received increasing attention in recent years, the failure rate of IAI has still not decreased significantly. This is related to microbial biofilms and their inherent antibiotic resistance, as well as the various mechanisms by which bacteria evade host immunity, resulting in difficulties in diagnosing and treating IAIs. Hence, a better understanding of the complex interactions between biofilms, implants, and host immunity is necessary to develop new strategies for preventing and controlling these infections. This review first discusses the challenges in diagnosing and treating IAI, followed by an extensive review of the direct effects of orthopedic implants, host immune function, pathogenic bacteria, and biofilms. Finally, several promising preventive or therapeutic alternatives are presented, with the hope of mitigating or eliminating the threat of antibiotic resistance and refractory biofilms in IAI.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhuo Li
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chi Xu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Fu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Bo Hao
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Ying Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Chai
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Li J, Wen Q, Gu F, An L, Yu T. Non-antibiotic strategies for prevention and treatment of internalized Staphylococcus aureus. Front Microbiol 2022; 13:974984. [PMID: 36118198 PMCID: PMC9471010 DOI: 10.3389/fmicb.2022.974984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are often difficult to cure completely. One of the main reasons for this difficulty is that S. aureus can be internalized into cells after infecting tissue. Because conventional antibiotics and immune cells have difficulty entering cells, the bacteria can survive long enough to cause recurrent infections, which poses a serious burden in healthcare settings because repeated infections drastically increase treatment costs. Therefore, preventing and treating S. aureus internalization is becoming a research hotspot. S. aureus internalization can essentially be divided into three phases: (1) S. aureus binds to the extracellular matrix (ECM), (2) fibronectin (Fn) receptors mediate S. aureus internalization into cells, and (3) intracellular S. aureus and persistence into cells. Different phases require different treatments. Many studies have reported on different treatments at different phases of bacterial infection. In the first and second phases, the latest research results show that the cell wall-anchored protein vaccine and some microbial agents can inhibit the adhesion of S. aureus to host cells. In the third phase, nanoparticles, photochemical internalization (PCI), cell-penetrating peptides (CPPs), antimicrobial peptides (AMPs), and bacteriophage therapy can effectively eliminate bacteria from cells. In this paper, the recent progress in the infection process and the prevention and treatment of S. aureus internalization is summarized by reviewing a large number of studies.
Collapse
Affiliation(s)
- Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Qiangqiang Wen
- Department of Orthopedics, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Lijuan An
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Tiecheng Yu,
| |
Collapse
|
12
|
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol 2022; 106:3957-3972. [PMID: 35648146 DOI: 10.1007/s00253-022-11989-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Prior to the nineteenth century, infectious disease was one of the leading causes of death. Human life expectancy has roughly doubled over the past century as a result of the development of antibiotics and vaccines. However, the emergence of antibiotic-resistant superbugs brings new challenges. The side effects of broad-spectrum antibiotics, such as causing antimicrobial resistance and destroying the normal flora, often limit their applications. Furthermore, the development of new antibiotics has lagged far behind the emergence and spread of antibiotic resistance. On the other hand, the genome complexity of bacteria makes it difficult to create effective vaccines. Therefore, novel therapeutic agents in supplement to antibiotics and vaccines are urgently needed to improve the treatment of infections. In recent years, monoclonal antibodies (mAbs) have achieved remarkable clinical success in a variety of fields. In the treatment of infectious diseases, mAbs can play functions through multiple mechanisms, including toxins neutralization, virulence factors inhibition, complement-mediated killing activity, and opsonic phagocytosis. Toxins and bacterial surface components are good targets to generate antibodies against. The U.S. FDA has approved three monoclonal antibody drugs, and there are numerous candidates in the preclinical or clinical trial stages. This article reviews recent advances in the research and development of anti-bacterial monoclonal antibody drugs in order to provide a valuable reference for future studies in this area. KEY POINTS: • Novel drugs against antibiotic-resistant superbugs are urgently required • Monoclonal antibodies can treat bacterial infections through multiple mechanisms • There are many anti-bacterial monoclonal antibodies developed in recent years and some candidates have entered the preclinical or clinical stages of development.
Collapse
Affiliation(s)
- Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
13
|
Kim JK, Lim GM, Kim EJ, Kim W, Lee CS, Kim BG, Jeong HJ. Generation of Recombinant Antibodies in HEK293F Cells for the Detection of Staphylococcus aureus. ACS OMEGA 2022; 7:9690-9700. [PMID: 35350310 PMCID: PMC8945071 DOI: 10.1021/acsomega.1c07194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Staphylococcus aureus is a major resistant pathogen in clinical practice. Due to the increasing number of infections, rapid and sensitive detection of antibiotic-resistant S. aureus as well as antibiotic-sensitive S. aureus is important for the prevention and control of infectious diseases. In this study, we produced recombinant antibodies against S. aureus from mammalian human embryonic kidney 293 Freestyle cells with high yield and purity. These recombinant antibodies showed high binding affinity and low detection limit in both indirect and sandwich enzyme-linked immunosorbent assays for the detection of methicillin-resistant S. aureus and methicillin-sensitive S. aureus. These results suggest that the recombinant antibodies produced herein can be used for the accurate detection of S. aureus with a wild range of applications in medical diagnosis, food safety, and drug discovery.
Collapse
Affiliation(s)
- Joo-Kyung Kim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Gyu-Min Lim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National
University, Seoul 08826, South
Korea
| | - Wooseong Kim
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South
Korea
| | - Chang-Soo Lee
- Department
of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Byung-Gee Kim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
- Bio-MAX/N-Bio, Seoul National
University, Seoul 08826, South
Korea
| | - Hee-Jin Jeong
- Department
of Biological and Chemical Engineering, Hongik University, Sejong 30016, South Korea
| |
Collapse
|
14
|
Iskandar K, Murugaiyan J, Hammoudi Halat D, Hage SE, Chibabhai V, Adukkadukkam S, Roques C, Molinier L, Salameh P, Van Dongen M. Antibiotic Discovery and Resistance: The Chase and the Race. Antibiotics (Basel) 2022; 11:182. [PMID: 35203785 PMCID: PMC8868473 DOI: 10.3390/antibiotics11020182] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The history of antimicrobial resistance (AMR) evolution and the diversity of the environmental resistome indicate that AMR is an ancient natural phenomenon. Acquired resistance is a public health concern influenced by the anthropogenic use of antibiotics, leading to the selection of resistant genes. Data show that AMR is spreading globally at different rates, outpacing all efforts to mitigate this crisis. The search for new antibiotic classes is one of the key strategies in the fight against AMR. Since the 1980s, newly marketed antibiotics were either modifications or improvements of known molecules. The World Health Organization (WHO) describes the current pipeline as bleak, and warns about the scarcity of new leads. A quantitative and qualitative analysis of the pre-clinical and clinical pipeline indicates that few antibiotics may reach the market in a few years, predominantly not those that fit the innovative requirements to tackle the challenging spread of AMR. Diversity and innovation are the mainstays to cope with the rapid evolution of AMR. The discovery and development of antibiotics must address resistance to old and novel antibiotics. Here, we review the history and challenges of antibiotics discovery and describe different innovative new leads mechanisms expected to replenish the pipeline, while maintaining a promising possibility to shift the chase and the race between the spread of AMR, preserving antibiotic effectiveness, and meeting innovative leads requirements.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | - Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Beirut 1103, Lebanon
| | - Said El Hage
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
| | - Vindana Chibabhai
- Division of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Microbiology Laboratory, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Christine Roques
- Laboratoire de Génie Chimique, Department of Bioprocédés et Systèmes Microbiens, Université Paul Sabtier, Toulouse III, UMR 5503, 31330 Toulouse, France;
| | - Laurent Molinier
- Department of Medical Information, Centre Hospitalier Universitaire, INSERM, UMR 1295, Université Paul Sabatier Toulouse III, 31000 Toulouse, France;
| | - Pascale Salameh
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2408, Cyprus
| | | |
Collapse
|
15
|
Raj GM, Priyadarshini R, Murugesan S, Adhimoolam M. Monoclonal Antibodies Against Infectious Microbes: So Long and Too Little! Infect Disord Drug Targets 2021; 21:4-27. [PMID: 32164518 DOI: 10.2174/1871526520666200312154649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies (mAbs) as alternatives or more often as complementary to the conventional antimicrobials have been developed for the management of infectious conditions for the past two decades. These pharmacotherapeutic strategies are inevitable as the burden of antimicrobial resistance is far-reaching in recent times. MAbs are part of the targeted pharmacotherapy armamentarium with a high degree of specificity - hence, exert comparatively superior efficacy and tolerability than the conventional polyclonal antisera. So far, only five mAbs have been approved for the management of infectious states, since the marketing authorization (1998) given to palivizumab (Synagis®) for the prophylaxis of lower respiratory tract disease caused by a respiratory syncytial virus in pediatric patients. Ibalizumab-uiyk (Trogarzo™) used for the management of multidrug-resistant HIV-1 infection not yielding to at least 10 antiretroviral drugs, was approved recently. Among the three antibacterial mAbs, raxibacumab (ABthrax®/ Anthrin®) and obiltoxaximab (Anthim®) are indicated for the treatment and prophylaxis of inhalation anthrax due to Bacillus anthracis; bezlotoxumab (Zinplava®) is used to reduce the recurrence of Clostridium difficile infection. There are also around 30 and 15 mAbs in different phases of development for viral and bacterial conditions. As alternatives to the traditional antivirals and antibacterials, the antimicrobial mAbs are the need of the hour. These mAbs are more relevant to the management of conditions like emerging viral outbreaks wherein there is a lack of prophylactic vaccines. The current cutting-edge engineering technologies revolutionizing the production of mAbs include phagedisplayed antibody libraries, cloning from single-memory B cells or single-antibody-secreting plasma B cells, proteomics-directed cloning of mAbs from serum clubbed with high-throughput sequencing techniques. Yet, the cost of manufacture continues to be the main limiting factor. In this review, the different therapeutic monoclonal antibodies directed against the microbial pathogens are discussed.
Collapse
Affiliation(s)
- Gerard M Raj
- Department of Pharmacology, Sri Venkateshwaraa Medical College Hospital and Research Centre (SVMCH & RC), Puducherry 605102, India
| | - Rekha Priyadarshini
- Department of Pharmacology, Indira Gandhi Medical College & Research Institute (IGMC & RI), Puducherry 605009, India
| | - Sakthibalan Murugesan
- Department of Pharmacology, Sri Venkateshwaraa Medical College Hospital and Research Centre (SVMCH & RC), Puducherry 605102, India
| | - Mangaiarkkarasi Adhimoolam
- Department of Pharmacology, Sri Venkateshwaraa Medical College Hospital and Research Centre (SVMCH & RC), Puducherry 605102, India
| |
Collapse
|
16
|
Deacy AM, Gan SKE, Derrick JP. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front Immunol 2021; 12:731845. [PMID: 34616400 PMCID: PMC8488440 DOI: 10.3389/fimmu.2021.731845] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Superantigens are unconventional antigens which recognise immune receptors outside their usual recognition sites e.g. complementary determining regions (CDRs), to elicit a response within the target cell. T-cell superantigens crosslink T-cell receptors and MHC Class II molecules on antigen-presenting cells, leading to lymphocyte recruitment, induction of cytokine storms and T-cell anergy or apoptosis among many other effects. B-cell superantigens, on the other hand, bind immunoglobulins on B-cells, affecting opsonisation, IgG-mediated phagocytosis, and driving apoptosis. Here, through a review of the structural basis for recognition of immune receptors by superantigens, we show that their binding interfaces share specific physicochemical characteristics when compared with other protein-protein interaction complexes. Given that antibody-binding superantigens have been exploited extensively in industrial antibody purification, these observations could facilitate further protein engineering to optimize the use of superantigens in this and other areas of biotechnology.
Collapse
Affiliation(s)
- Anthony M. Deacy
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre – Bioinformatics Institute (EDDC-BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore
- James Cook University, Singapore, Singapore
| | - Jeremy P. Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Vaccines (Basel) 2021; 9:vaccines9050459. [PMID: 34064471 PMCID: PMC8147999 DOI: 10.3390/vaccines9050459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Staphylococci (specifically Staphylococcus aureus and Staphylococcus epidermidis) are the causative agents of diseases ranging from superficial skin and soft tissue infections to severe conditions such as fatal pneumonia, bacteremia, sepsis and endocarditis. The widespread and indiscriminate use of antibiotics has led to serious problems of resistance to staphylococcal disease and has generated a renewed interest in alternative therapeutic agents such as vaccines and antibodies. Staphylococci express a large repertoire of surface and secreted virulence factors, which provide mechanisms (adhesion, invasion and biofilm development among others) for both bacterial survival in the host and evasion from innate and adaptive immunity. Consequently, the development of antibodies that target specific antigens would provide an effective protective strategy against staphylococcal infections. In this review, we report an update on efforts to develop anti-staphylococci monoclonal antibodies (and their derivatives: minibodies, antibody–antibiotic conjugates) and the mechanism by which such antibodies can help fight infections. We also provide an overview of mAbs used in clinical trials and highlight their therapeutic potential in various infectious contexts.
Collapse
|
18
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Treatments and Preventative Strategies Against Food-Poisoning Caused by Staphylococcal Species. Pathogens 2021; 10:91. [PMID: 33498299 PMCID: PMC7909252 DOI: 10.3390/pathogens10020091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcal infections are a widespread cause of disease in humans. In particular, S. aureus is a major causative agent of infection in clinical medicine. In addition, these bacteria can produce a high number of staphylococcal enterotoxins (SE) that may cause food intoxications. Apart from S. aureus, many coagulase-negative Staphylococcus spp. could be the source of food contamination. Thus, there is an active research work focused on developing novel preventative interventions based on food supplements to reduce the impact of staphylococcal food poisoning. Interestingly, many plant-derived compounds, such as polyphenols, flavonoids, or terpenoids, show significant antimicrobial activity against staphylococci, and therefore these compounds could be crucial to reduce the incidence of food intoxication in humans. Here, we reviewed the most promising strategies developed to prevent staphylococcal food poisoning.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
19
|
Jägersberg M, Feihl S, Ringel F. Future directions of postoperative spinal implant infections. JOURNAL OF SPINE SURGERY 2020; 6:814-819. [PMID: 33447687 DOI: 10.21037/jss-20-585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article outlines some promising future concepts against postoperative spinal implant infections on the basis of today available literature. The ever-adapting bacteria causing this common complication compel a corresponding continuous research about best effective treatment. The aim is to give a perspective on several future attack-points: surgical infection prevention strategies such as technical optimization of implants and surgical technique; faster diagnostic tools to detect infection, especially in the context of late infections with low-virulent germs and with regard to decision-making in the course of the surgical workflow; and combined surgical and medical treatment options against implant infections. The surgical treatment section will also state open issues concerning implant removal, and the medical treatment section will give an outlook to promising medical alternatives in a post-antibiotic era. To keep up in this field will be important to retain spine surgery in the future as the state-of-the-art treatment option for mandatory spinal interventions in the presence of tumor or trauma and even more so as an attractive option for patients with degenerative spinal disorder for improvement of their life quality.
Collapse
Affiliation(s)
- Max Jägersberg
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Susanne Feihl
- Department of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
20
|
Ma J, Wang B, Yu L, Song B, Yu Y, Wu S, Dong Y, Zhu Z, Cui Y. The novel combinations of CTB, CpG, and aluminum hydroxide significantly enhanced the immunogenicity of clumping factor A 221-550 of Staphylococcus aureus. Biosci Biotechnol Biochem 2020; 84:1846-1855. [PMID: 32501144 DOI: 10.1080/09168451.2020.1771170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Here, we prepared the novel combined adjuvants, CTB as intra-molecular adjuvant, CpG and aluminum hydroxide (Alum) to strengthen the immunogenicity of clumping factor A221-550 of Staphylococcus aureus (S. aureus). The protein-immunoactive results showed CTB-ClfA221-550 elicited the strong immune responses to serum from mice immunized with CTB and ClfA221-550, respectively. The mice immunized with CTB-ClfA221-550 plus CpG and Alum adjuvant exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4, and IL-17 and displayed the higher proliferation response of splenic lymphocytes than the control groups, in addition, these mice generated the strongest humoral immune response against ClfA221-550 among all groups. Our results also showed CTB-ClfA221-550 plus CpG and Alum adjuvant obviously increased the survival percentage of the mice challenged by S. aureus. These data suggested that the novel combined adjuvants, CTB, CpG, and Alum, significantly enhance the immune responses triggered with ClfA221-550, and could provide a new approach against infection of S. aureus. ABBREVIATIONS CTB: Cholera Toxin B; CpG: Cytosine preceding Guanosine; ODN: Oligodeoxynucleotides; Alum: Aluminum hydroxide; TRAP: Target of RNAIII-activating Protein; TLR9: Toll-like Receptor 9; TMB: 3, 3', 5, 5'-tetramethylbenzidine; mAbs: Monoclonal Antibodies; OD: Optical Densities; S. aureus: Staphylococcus aureus; ClfA: Clumping factor A; FnBPA: Fibronection-binding protein A; IsdB: Iron-regulated surface determinant B; SasA: Staphylococcus aureus Surface Protein A; GapC: Glycer-aldehyde-3-phosphate dehydrogenase-C.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Beiyan Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Shuangshuang Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Yazun Dong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| |
Collapse
|
21
|
Cooper R, Kirketerp-Møller K. Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care. J Wound Care 2019; 27:355-377. [PMID: 29883284 DOI: 10.12968/jowc.2018.27.6.355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Control of wound infection today relies largely on antibiotics, but the continual emergence of antibiotic-resistant microorganisms threatens a return to the pre-antibiotic era when physicians used antiseptics to prevent and manage infection. Some of those antiseptics are still used today, and others have become available. A diverse variety of non-antibiotic antimicrobial interventions are found on modern formularies. Unlike the mode of action of antibiotics, which affect specific cellular target sites of pathogens, many non-antibiotic antimicrobials affect multiple cellular target sites in a non-specific way. Although this reduces the likelihood of selecting for resistant strains of microorganisms, some have emerged and cross-resistance between antibiotics and antiseptics has been detected. With the prospect of a post-antibiotic era looming, ways to maintain and extend our antimicrobial armamentarium must be found. In this narrative review, current and emerging non-antibiotic antimicrobial strategies will be considered and the need for antimicrobial stewardship in wound care will be explained.
Collapse
Affiliation(s)
- Rose Cooper
- Professor of Microbiology, Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, UK
| | - Klaus Kirketerp-Møller
- Orthopaedic Surgeon, Copenhagen Wound Healing Center, Department of Dermatology and Wounds, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV
| |
Collapse
|
22
|
Rigi G, Ghaedmohammadi S, Ahmadian G. A comprehensive review on staphylococcal protein A (SpA): Its production and applications. Biotechnol Appl Biochem 2019; 66:454-464. [PMID: 30869160 DOI: 10.1002/bab.1742] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
The Staphylococcus aureus protein A (SpA) can be obtained through the culture of wild-type S. aureus and also as a recombinant protein in safe bacterial hosts. Several methods have been used to purify SpA among which ion-exchange chromatography, affinity chromatography, gel filtration, and per aqueous liquid chromatography (PALC) are common. SpA has a wide range of biochemical, biotechnological, and medical applications and is most commonly used in test methods such as immunoprecipitation, enzyme-linked immunosorbent assay, and Western blotting. SpA has also been widely utilized in pharmaceutical applications to bind to immune complexes and serum immunoglobulins. SpA also directly binds to the B-cells preventing initiation of infectious diseases as well as having a role in the development of various autoimmune diseases. This review considers different applications of SpA in biotechnology and its novel clinical application for effective treatment of autoimmune diseases. It also discusses various strategies for expression and purification of the SpA including types of column chromatography that are commonly used in protein purification and developing SpA surface display technologies. Finally, this review highlights the potential and novel applications of SpA immobilization, SpA typing, protein engineering for further development of immunological and biochemical research, and also application of SpA as a diagnostic biosensor.
Collapse
Affiliation(s)
- Garshasb Rigi
- Department of Genetics, Faculty of Basic Science, Shahrekord University, Shahrekord, 881 863 4141, Iran.,Department of Industrial Biotechnology, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Samira Ghaedmohammadi
- Department of Cellular and Molecular Biology, Estahban Higher Education Center, Estahban, Iran
| | - Gholamreza Ahmadian
- Associate Professor, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
23
|
Taha M, Abdelbary H, Ross FP, Carli AV. New Innovations in the Treatment of PJI and Biofilms-Clinical and Preclinical Topics. Curr Rev Musculoskelet Med 2018; 11:380-388. [PMID: 29926287 PMCID: PMC6105481 DOI: 10.1007/s12178-018-9500-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement. A main source for antibiotic tolerance and treatment failure is bacterial production of biofilm-a resilient barrier against antibiotics, immune system, and mechanical debridement. The purpose of this review is to explore some novel approaches to treat PJI and biofilm-related infections. RECENT FINDINGS Innovative treatment strategies of bacterial and biofilm infections revolve around (a) augmenting current therapies, such as improving the delivery and efficiency of conventional antibiotics and enhancing the efficacy of antiseptics and (b) administrating completely new therapeutic modalities, such as using immunotherapy, nanoparticles, lytic bacteriophages, photodynamic therapy, novel antibiotics, and antimicrobial peptides. Several promising treatment strategies for PJI are available to be tested further. The next requirement for most of the novel treatments is reproducing their effects in clinically representative animal models of PJI against clinical isolates of relevant bacteria.
Collapse
Affiliation(s)
- Mariam Taha
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Orthopedic Surgery Ottawa, The Ottawa Hospital, Ottawa, ON, Canada
| | - Hesham Abdelbary
- Division of Orthopedic Surgery Ottawa, The Ottawa Hospital, Ottawa, ON, Canada
| | - F Patrick Ross
- Hospital for Special Surgery, 535 E 70th St, New York, NY, 10021, USA
| | - Alberto V Carli
- Division of Orthopedic Surgery Ottawa, The Ottawa Hospital, Ottawa, ON, Canada.
- Hospital for Special Surgery, 535 E 70th St, New York, NY, 10021, USA.
| |
Collapse
|
24
|
Zhu X, Liu D, Singh AK, Drolia R, Bai X, Tenguria S, Bhunia AK. Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence. Front Microbiol 2018; 9:1352. [PMID: 30034372 PMCID: PMC6043806 DOI: 10.3389/fmicb.2018.01352] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of bacterial resistance to therapeutic antibiotics limits options for treatment of common microbial diseases. Subinhibitory antibiotics dosing, often aid in the emergence of resistance, but its impact on pathogen's physiology and pathogenesis is not well understood. Here we investigated the effect of tunicamycin, a cell wall teichoic acid (WTA) biosynthesis inhibiting antibiotic at the subinhibitory dosage on Staphylococcus aureus and Listeria monocytogenes physiology, antibiotic cross-resistance, biofilm-formation, and virulence. Minimum inhibitory concentration (MIC) of tunicamycin to S. aureus and L. monocytogenes was 20-40 μg/ml and 2.5-5 μg/ml, respectively, and the subinhibitory concentration was 2.5-5 μg/ml and 0.31-0.62 μg/ml, respectively. Tunicamycin pre-exposure reduced cellular WTA levels by 18-20% and affected bacterial cell wall ultrastructure, cell membrane permeability, morphology, laser-induced colony scatter signature, and bacterial ability to form biofilms. It also induced a moderate level of cross-resistance to tetracycline, ampicillin, erythromycin, and meropenem for S. aureus, and ampicillin, erythromycin, vancomycin, and meropenem for L. monocytogenes. Pre-treatment of bacterial cells with subinhibitory concentrations of tunicamycin also significantly reduced bacterial adhesion to and invasion into an enterocyte-like Caco-2 cell line, which is supported by reduced expression of key virulence factors, Internalin B (InlB) and Listeria adhesion protein (LAP) in L. monocytogenes, and a S. aureus surface protein A (SasA) in S. aureus. Tunicamycin-treated bacteria or the bacterial WTA preparation suppressed NF-κB and inflammatory cytokine production (TNFα, and IL-6) from murine macrophage cell line (RAW 264.7) indicating the reduced WTA level possibly attenuates an inflammatory response. These results suggest that at the subinhibitory dosage, tunicamycin-mediated inhibition of WTA biosynthesis interferes with cell wall structure, pathogens infectivity and inflammatory response, and ability to form biofilms but promotes the development of antibiotic cross-resistance.
Collapse
Affiliation(s)
- Xingyue Zhu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Atul K. Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
25
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
26
|
Juronen D, Kuusk A, Kivirand K, Rinken A, Rinken T. Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk. Talanta 2018; 178:949-954. [DOI: 10.1016/j.talanta.2017.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022]
|
27
|
Varshney AK, Kuzmicheva GA, Lin J, Sunley KM, Bowling RA, Kwan TY, Mays HR, Rambhadran A, Zhang Y, Martin RL, Cavalier MC, Simard J, Shivaswamy S. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One 2018; 13:e0190537. [PMID: 29364906 PMCID: PMC5783355 DOI: 10.1371/journal.pone.0190537] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus can cause devastating and life-threatening infections. With the increase in multidrug resistant strains, novel therapies are needed. Limited success with active and passive immunization strategies have been attributed to S. aureus immune evasion. Here, we report on a monoclonal antibody, 514G3, that circumvents a key S. aureus evasion mechanism by targeting the cell wall moiety Protein A (SpA). SpA tightly binds most subclasses of immunoglobulins via their Fc region, neutralizing effector function. The organism can thus shield itself with a protective coat of serum antibodies and render humoral immunity ineffective. The present antibody reactivity was derived from an individual with natural anti-SpA antibody titers. The monoclonal antibody is of an IgG3 subclass, which differs critically from other immunoglobulin subclasses since its Fc is not bound by SpA. Moreover, it targets a unique epitope on SpA that allows it to bind in the presence of serum antibodies. Consequently, the antibody opsonizes S. aureus and maintains effector function to enable natural immune mediated clearance. The data presented here provide evidence that 514G3 antibody is able to successfully rescue mice from S. aureus mediated bacteremia.
Collapse
Affiliation(s)
| | | | - Jian Lin
- XBiotech USA Inc., Austin, Texas, United States of America
| | | | | | - Tzu-Yu Kwan
- XBiotech USA Inc., Austin, Texas, United States of America
| | | | - Anu Rambhadran
- XBiotech USA Inc., Austin, Texas, United States of America
| | - Yanfeng Zhang
- XBiotech USA Inc., Austin, Texas, United States of America
| | | | | | - John Simard
- XBiotech USA Inc., Austin, Texas, United States of America
| | | |
Collapse
|
28
|
Wang M, Zhai L, Yu W, Wei Y, Wang L, Liu S, Li W, Li X, Yu S, Chen X, Zhang H, Chen J, Feng Z, Yu L, Cui Y. Identification of a protective B-cell epitope of the Staphylococcus aureus GapC protein by screening a phage-displayed random peptide library. PLoS One 2018; 13:e0190452. [PMID: 29304128 PMCID: PMC5755776 DOI: 10.1371/journal.pone.0190452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/14/2017] [Indexed: 01/16/2023] Open
Abstract
The impact of epidemic Staphylococcus aureus (S. aureus) on public health is increasing. Because of the abuse of antibiotics, the antibiotic resistance of S. aureus is increasing. Thus, there is an urgent need to develop new immunotherapies and immunoprophylaxes. Previous studies showed that the GapC protein of S. aureus, which is a surface protein with high glyceraldehyde 3-phosphate dehydrogenase activity, transferrin binding activity, and other biological activities, is highly conserved. GapC induces an effective humoral immune response in vivo. However, the B-cell epitopes of S. aureus GapC have not been well identified. Here we used the bioinformatics tools to analyze the sequence of GapC, and we generated protective anti-GapC monoclonal antibodies (mAbs). A protective mAb (1F4) showed strong specificity to GapC and the ability to induce macrophages to phagocytose S. aureus. We screened the motif 272GYTEDEIVSSD282, which was recognized by mAb 1F4, using a phage display system. Then, we used site-directed mutagenesis to identify key amino acids in the motif. Residues G272 D276 E277 I278 and V279 formed the core of the 272GYTEDEIVSSD282 motif. In addition, we showed that this epitope peptide induced a protective humoral immune response against S. aureus infection in immunized mice. Our results will be useful for the further study of epitope-based vaccines against S. aureus infection.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Lu Zhai
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yuhua Wei
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Shuo Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Wanyu Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Xiaoting Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Simiao Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Xiaoting Chen
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Jing Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- * E-mail:
| |
Collapse
|
29
|
Zhai D, Ye Z, Jiang Y, Xu C, Ruan B, Yang Y, Lei X, Xiang A, Lu H, Zhu Z, Yan Z, Wei D, Li Q, Wang L, Lu Z. MOTS-c peptide increases survival and decreases bacterial load in mice infected with MRSA. Mol Immunol 2017; 92:151-160. [DOI: 10.1016/j.molimm.2017.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/14/2017] [Accepted: 10/20/2017] [Indexed: 12/28/2022]
|
30
|
Affiliation(s)
- Mirella Luciani
- a Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale ," Teramo , Italy
| | - Luigi Iannetti
- a Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale ," Teramo , Italy
| |
Collapse
|
31
|
Jiang X, Wang Y, Qin Y, He W, Benlahrech A, Zhang Q, Jiang X, Lu Z, Ji G, Zheng Y. Micheliolide provides protection of mice against Staphylococcus aureus and MRSA infection by down-regulating inflammatory response. Sci Rep 2017; 7:41964. [PMID: 28165033 PMCID: PMC5292736 DOI: 10.1038/srep41964] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/30/2016] [Indexed: 12/30/2022] Open
Abstract
A major obstacle to therapy in intensive care units is sepsis caused by severe infection. In recent years gram-positive (G+) bacteria, most commonly staphylococci, are thought to be the main pathogens. Micheliolide (MCL) was demonstrated to provide a therapeutic role in rheumatoid arthritis, inflammatory intestinal disease, colitis-associated cancer, and lipopolysaccharide (LPS, the main component of G- bacterial cell wall) induced septic shock. We proved here that MCL played an anti-inflammatory role in Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) induced peritonitis. It inhibited the expression of inflammatory cytokines and chemokines in macrophages and dendritic cells upon stimulation with peptidoglycan (PGN, the main cell wall composition of G+ bacteria). PI3K/Akt and NF-κB pathways account for the anti-inflammatory role of MCL after PGN stimulation. MCL reduced IL-6 secretion through down-regulating NF-κB activation and improved the survival status in mice challenged with a lethal dose of S. aureus. In MRSA infection mouse model, MCL down-regulated the expression of IL-6, TNF-α, MCP-1/CCL2 and IFN-γ in sera, and ameliorated the organ damage of liver and kidney. In conclusion, MCL can help maintain immune equilibrium and decrease PGN, S. aureus and MRSA-triggered inflammatory response. These provide the rationality for the potential usage of MCL in sepsis caused by G+ bacteria (e.g., S. aureus) and antibiotic-resistant bacteria (e.g., MRSA).
Collapse
Affiliation(s)
- Xinru Jiang
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuli Wang
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Qin
- School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xi xian New District, Shaanxi 712046, China
| | - Weigang He
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Adel Benlahrech
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Qingwen Zhang
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Jiang
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenhui Lu
- Department of Respiration, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuejuan Zheng
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|