1
|
Mirshahi S, Vahedi B, Yazdani SO, Golab M, Sazgarnia A. Calculating transmembrane voltage on the electric pulse-affected cancerous cell membrane: using molecular dynamics and finite element simulations. J Mol Model 2024; 30:221. [PMID: 38904863 DOI: 10.1007/s00894-024-06012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
CONTEXT Electroporation is a technique that creates electrically generated pores in the cell membrane by modifying transmembrane potential. In this work, the finite element method (FEM) was used to examine the induced transmembrane voltage (ITV) of a spherical-shaped MCF-7 cell, allowing researchers to determine the stationary ITV. A greater ITV than the critical value causes permeabilization of the membrane. Furthermore, the present study shows how a specific surface conductivity can act as a stand-in for the thin layer that constitutes a cell membrane as the barrier between extracellular and intracellular environments. Additionally, the distribution of ITV on the cell membrane and its maximum value were experimentally evaluated for a range of applied electric fields. Consequently, the entire cell surface area was electroporated 66% and 68% for molecular dynamics (MD) simulations and FEM, respectively, when the external electric field of 1500 V/cm was applied to the cell suspension using the previously indicated numerical methods. Furthermore, the lipid bilayers' molecular structure was changed, which led to the development of hydrophilic holes with a radius of 1.33 nm. Applying MD and FEM yielded threshold values for transmembrane voltage of 700 and 739 mV, respectively. METHOD Using MD simulations of palmitoyloleoyl-phosphatidylcholine (POPC), pores in cell membranes exposed to external electric fields were numerically investigated. The dependence on the electric field was estimated and developed, and the amount of the electroporated cell surface area matches the applied external electric field. To investigate more, a mathematical model based on an adaptive neuro-fuzzy inference system (ANFIS) is employed to predict the percent cell viability of cancerous cells after applying four pulses during electroporation. For MD simulations, ArgusLab, VMD, and GROMACS software packages were used. Moreover, for FEM analysis, COMSOL software package was used. Also, it is worth mentioning that for mathematical model, MATLAB software is used.
Collapse
Affiliation(s)
- Salim Mirshahi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, University of Connecticut, Storrs, United States of America.
| | - Behzad Vahedi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Post Office Box: 1983969411, Tehran, Iran.
| | - Saeed Oraee Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Post Office Box: 1983969411, Tehran, Iran.
| | - Mahdi Golab
- Department of Computer Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Hosseini S, Parsaei H, Moosavifar M, Tavakoli N, Ahadi R, Roshanbinfar K. Static magnetic field enhances the bone remodelling capacity of human demineralized bone matrix in a rat animal model of cranial bone defects. J Mater Chem B 2024; 12:3774-3785. [PMID: 38535706 DOI: 10.1039/d3tb02299d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.
Collapse
Affiliation(s)
- SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, 3513138111, Semnan, Iran
| | - MirJavad Moosavifar
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
- Institut für experimentelle molekulare Bildgebung, RWTH Aachen University, Aachen 52074, Germany
| | - Narjes Tavakoli
- School of Industrial Design, College of Fine Arts, University of Tehran, 1415564583, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany.
| |
Collapse
|
3
|
Repp ML, Chinyere IR. Opportunities and Challenges in Catheter-Based Irreversible Electroporation for Ventricular Tachycardia. PATHOPHYSIOLOGY 2024; 31:32-43. [PMID: 38251047 PMCID: PMC10801500 DOI: 10.3390/pathophysiology31010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The use of catheter-based irreversible electroporation in clinical cardiac laboratories, termed pulsed-field ablation (PFA), is gaining international momentum among cardiac electrophysiology proceduralists for the non-thermal management of both atrial and ventricular tachyrhythmogenic substrates. One area of potential application for PFA is in the mitigation of ventricular tachycardia (VT) risk in the setting of ischemia-mediated myocardial fibrosis, as evidenced by recently published clinical case reports. The efficacy of tissue electroporation has been documented in other branches of science and medicine; however, ventricular PFA's potential advantages and pitfalls are less understood. This comprehensive review will briefly summarize the pathophysiological mechanisms underlying VT and then summarize the pre-clinical and adult clinical data published to date on PFA's effectiveness in treating monomorphic VT. These data will be contrasted with the effectiveness ascribed to thermal cardiac ablation modalities to treat VT, namely radiofrequency energy and liquid nitrogen-based cryoablation.
Collapse
Affiliation(s)
| | - Ikeotunye Royal Chinyere
- Department of Medecine, Banner University Medicine, Tucson, AZ 85724, USA
- Sarver Heart Center, University of Arizona, 1501 North Campbell Avenue, Room 6154, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Kos B, Mattison L, Ramirez D, Cindrič H, Sigg DC, Iaizzo PA, Stewart MT, Miklavčič D. Determination of lethal electric field threshold for pulsed field ablation in ex vivo perfused porcine and human hearts. Front Cardiovasc Med 2023; 10:1160231. [PMID: 37424913 PMCID: PMC10326317 DOI: 10.3389/fcvm.2023.1160231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Pulsed field ablation is an emerging modality for catheter-based cardiac ablation. The main mechanism of action is irreversible electroporation (IRE), a threshold-based phenomenon in which cells die after exposure to intense pulsed electric fields. Lethal electric field threshold for IRE is a tissue property that determines treatment feasibility and enables the development of new devices and therapeutic applications, but it is greatly dependent on the number of pulses and their duration. Methods In the study, lesions were generated by applying IRE in porcine and human left ventricles using a pair of parallel needle electrodes at different voltages (500-1500 V) and two different pulse waveforms: a proprietary biphasic waveform (Medtronic) and monophasic 48 × 100 μs pulses. The lethal electric field threshold, anisotropy ratio, and conductivity increase by electroporation were determined by numerical modeling, comparing the model outputs with segmented lesion images. Results The median threshold was 535 V/cm in porcine ((N = 51 lesions in n = 6 hearts) and 416 V/cm in the human donor hearts ((N = 21 lesions in n = 3 hearts) for the biphasic waveform. The median threshold value was 368 V/cm in porcine hearts ((N = 35 lesions in n = 9 hearts) cm for 48 × 100 μs pulses. Discussion The values obtained are compared with an extensive literature review of published lethal electric field thresholds in other tissues and were found to be lower than most other tissues, except for skeletal muscle. These findings, albeit preliminary, from a limited number of hearts suggest that treatments in humans with parameters optimized in pigs should result in equal or greater lesions.
Collapse
Affiliation(s)
- Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lars Mattison
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - David Ramirez
- Department of Surgery, Visible Heart® Laboratories, University of Minnesota, Minneapolis, MN, United States
| | - Helena Cindrič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel C. Sigg
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - Paul A. Iaizzo
- Department of Surgery, Visible Heart® Laboratories, University of Minnesota, Minneapolis, MN, United States
| | - Mark T. Stewart
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Varghese F, Philpott JM, Neuber JU, Hargrave B, Zemlin CW. Surgical Ablation of Cardiac Tissue with Nanosecond Pulsed Electric Fields in Swine. Cardiovasc Eng Technol 2023; 14:52-59. [PMID: 35705890 DOI: 10.1007/s13239-022-00634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Myocardial tissue can be ablated by the application nanosecond pulsed fields (nsPEFs). The applied electric fields irreversibly permeabilize cell membranes and thereby kill myocytes while leaving the extracellular matrix intact. METHODS In domestic pigs (n = 10), hearts were exposed via sternotomy and either ablated in vivo ([Formula: see text] = 5) or in excised, Langendorff-perfused hearts ([Formula: see text] = 5). The nsPEFs consisted of 6-36 pulses of 300 ns each, delivered at 3-6 Hz; the voltage applied varied from 10 to 12 kV. Atrial lesions were either created after inserting the bottom jaw of the bipolar clamp into the atrium via a purse string incision (2-3 lesions per atrium) or by clamping a double layer of tissue at the appendages (one lesion per atrium). Ventricular lesions were created after an incision at the apex. The transmurality of each lesion was determined at three points along the lesion using a triphenyl tetrazolium chloride (TTC) stain. RESULTS All 27 atrial lesions were transmural. This includes 13/13 purse string lesions (39/39 sections, tissue thickness 2.5-4.5 mm) and 14/14 appendage lesions (42/42 sections, tissue thickness 8-12 mm). All 3 right ventricular lesions were transmural (9/9 sections, 18 pulses per lesion). Left ventricular lesions were always transmural for 36 pulses (3/3 lesions, 9/9 sections). All lesions have highly consistent width across the wall. There were no pulse-induced arrhythmias or other complications during the procedure. CONCLUSIONS nsPEF ablation reliably created acute lesions in porcine atrial and ventricular myocardium. It has far better penetration and is faster than both radiofrequency ablation and cryoablation and it is free from thermal side effects.
Collapse
Affiliation(s)
- Frency Varghese
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
- Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan M Philpott
- Department of Surgery, Eastern Virginia Medical School, Norfolk, VA, USA
- Mid-Atlantic Thoracic Surgeons, Sentara Heart Hospital, Norfolk, VA, USA
| | - Johanna U Neuber
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
- Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Barbara Hargrave
- Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Christian W Zemlin
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.
- Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
- Division of Cardiothoracic Surgery, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Zang L, Gu K, Ji X, Zhang H, Yan S, Wu X. Comparative Analysis of Temperature Rise between Convective Heat Transfer Method and Computational Fluid Dynamics Method in an Anatomy-Based Left Atrium Model during Pulsed Field Ablation: A Computational Study. J Cardiovasc Dev Dis 2023; 10:56. [PMID: 36826552 PMCID: PMC9968112 DOI: 10.3390/jcdd10020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The non-thermal effects are considered one of the prominent advantages of pulsed field ablation (PFA). However, at higher PFA doses, the temperature rise in the tissue during PFA may exceed the thermal damage threshold, at which time intracardiac pulsatile blood flow plays a crucial role in suppressing this temperature rise. This study aims to compare the effect of heat dissipation of the different methods in simulating the pulsatile blood flow during PFA. This study first constructed an anatomy-based left atrium (LA) model and then applied the convective heat transfer (CHT) method and the computational fluid dynamics (CFD) method to the model, respectively, and the thermal convective coefficients used in the CHT method are 984 (W/m2*K) (blood-myocardium interface) and 4372 (W/m2*K) (blood-catheter interface), respectively. Then, it compared the effect of the above two methods on the maximum temperature of myocardium and blood, as well as the myocardial ablation volumes caused by irreversible electroporation (IRE) and hyperthermia under different PFA parameters. Compared with the CFD method, the CHT method underestimates the maximum temperature of myocardium and blood; the differences in the maximum temperature of myocardium and blood between the two methods at the end of the last pulse are significant (>1 °C), and the differences in the maximum temperature of blood at the end of the last pulse interval are significant (>1 °C) only at a pulse amplitude greater than 1000 V or pulse number greater than 10. Under the same pulse amplitude and different heat dissipation methods, the IRE ablation volumes are the same. Compared with the CFD method, the CHT method underestimates the hyperthermia ablation volume; the differences in the hyperthermia ablation volume are significant (>1 mm3) only at a pulse amplitude greater than 1000 V, a pulse interval of 250 ms, or a pulse number greater than 10. Additionally, the hyperthermia ablation isosurfaces are completely wrapped by the IRE ablation isosurfaces in the myocardium. Thus, during PFA, compared with the CFD method, the CHT method cannot accurately simulate the maximum myocardial temperature; however, except at the above PFA parameters, the CHT method can accurately simulate the maximum blood temperature and the myocardial ablation volume caused by IRE and hyperthermia. Additionally, within the range of the PFA parameters used in this study, the temperature rise during PFA may not lead to the appearance of additional hyperthermia ablation areas beyond the IRE ablation area in the myocardium.
Collapse
Affiliation(s)
- Lianru Zang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Kaihao Gu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xingkai Ji
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Hao Zhang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Shengjie Yan
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai 200093, China
- Yiwu Research Institute, Fudan University, Yiwu 322000, China
| |
Collapse
|
7
|
Casciola M, Feaster TK, Caiola MJ, Keck D, Blinova K. Human in vitro assay for irreversible electroporation cardiac ablation. Front Physiol 2023; 13:1064168. [PMID: 36699682 PMCID: PMC9869257 DOI: 10.3389/fphys.2022.1064168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Pulsed electric field (PEF) cardiac ablation has been recently proposed as a technique to treat drug resistant atrial fibrillation by inducing cell death through irreversible electroporation (IRE). Improper PEF dosing can result in thermal damage or reversible electroporation. The lack of comprehensive and systematic studies to select PEF parameters for safe and effective IRE cardiac treatments hinders device development and regulatory decision-making. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been proposed as an alternative to animal models in the evaluation of cardiac electrophysiology safety. Methods: We developed a novel high-throughput in vitro assay to quantify the electric field threshold (EFT) for electroporation (acute effect) and cell death (long-term effect) in hiPSC-CMs. Monolayers of hiPSC-CMs were cultured in high-throughput format and exposed to clinically relevant biphasic PEF treatments. Electroporation and cell death areas were identified using fluorescent probes and confocal microscopy; electroporation and cell death EFTs were quantified by comparison of fluorescent images with electric field numerical simulations. Results: Study results confirmed that PEF induces electroporation and cell death in hiPSC-CMs, dependent on the number of pulses and the amplitude, duration, and repetition frequency. In addition, PEF-induced temperature increase, absorbed dose, and total treatment time for each PEF parameter combination are reported. Discussion: Upon verification of the translatability of the in vitro results presented here to in vivo models, this novel hiPSC-CM-based assay could be used as an alternative to animal or human studies and can assist in early nonclinical device development, as well as inform regulatory decision-making for cardiac ablation medical devices.
Collapse
|
8
|
Zang L, Gu K, Ji X, Zhang H, Yan S, Wu X. Effect of Anisotropic Electrical Conductivity Induced by Fiber Orientation on Ablation Characteristics of Pulsed Field Ablation in Atrial Fibrillation Treatment: A Computational Study. J Cardiovasc Dev Dis 2022; 9:319. [PMID: 36286271 PMCID: PMC9604654 DOI: 10.3390/jcdd9100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 09/07/2024] Open
Abstract
Pulsed field ablation (PFA) is a promising new ablation modality for the treatment of atrial fibrillation (AF); however, the effect of fiber orientation on the ablation characteristics of PFA in AF treatment is still unclear, which is likely an essential factor in influencing the ablation characteristics. This study constructed an anatomy-based left atrium (LA) model incorporating fiber orientation and selected various electrical conductivity and ablation targets to investigate the effect of anisotropic electrical conductivity (AC), compared with isotropic electrical conductivity (IC), on the ablation characteristics of PFA in AF treatment. The results show that the percentage differences in the size of the surface ablation area between AC and IC are greater than 73.71%; the maximum difference in the size of the ablation isosurface between AC and IC at different locations in the atrial wall is 3.65 mm (X-axis), 3.65 mm (Z-axis), and 4.03 mm (X-axis), respectively; and the percentage differences in the size of the ablation volume are greater than 6.9%. Under the condition of the pulse, the amplitude is 1000 V, the total PFA duration is 1 s, and the pulse train interval is 198.4 ms; the differences in the temperature increase between AC and IC in LA are less than 2.46 °C. Hence, this study suggests that in further exploration of the computational study of PFA in AF treatment using the same or similar conditions as those used here (myocardial electrical conductivity, pulse parameters, and electric field intensity damage threshold), to obtain more accurate computational results, it is necessary to adopt AC rather than IC to investigate the size of the surface ablation area, the size of the ablation isosurface, or the size of the ablation volume generated by PFA in LA. Moreover, if only investigating the temperature increase generated by PFA in LA, adopting IC instead of AC for simplifying the model construction process is reasonable.
Collapse
Affiliation(s)
- Lianru Zang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Kaihao Gu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xingkai Ji
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Hao Zhang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Shengjie Yan
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai 200093, China
- Yiwu Research Institute, Fudan University, Yiwu 322000, China
| |
Collapse
|
9
|
Mehta NK, Haines DE. Are We Ready for the Next Frontier: PFA in the Ventricle? JACC Clin Electrophysiol 2022; 8:732-734. [PMID: 35738849 DOI: 10.1016/j.jacep.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Nishaki K Mehta
- Department of Cardiovascular Medicine, William Beaumont Hospital, Royal Oak, Michigan, USA.
| | - David E Haines
- Department of Cardiovascular Medicine, William Beaumont Hospital, Royal Oak, Michigan, USA
| |
Collapse
|
10
|
Molinari L, Zaltieri M, Massaroni C, Filippi S, Gizzi A, Schena E. Multiscale and Multiphysics Modeling of Anisotropic Cardiac RFCA: Experimental-Based Model Calibration via Multi-Point Temperature Measurements. Front Physiol 2022; 13:845896. [PMID: 35514332 PMCID: PMC9062295 DOI: 10.3389/fphys.2022.845896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Radiofrequency catheter ablation (RFCA) is the mainstream treatment for drug-refractory cardiac fibrillation. Multiple studies demonstrated that incorrect dosage of radiofrequency energy to the myocardium could lead to uncontrolled tissue damage or treatment failure, with the consequent need for unplanned reoperations. Monitoring tissue temperature during thermal therapy and predicting the extent of lesions may improve treatment efficacy. Cardiac computational modeling represents a viable tool for identifying optimal RFCA settings, though predictability issues still limit a widespread usage of such a technology in clinical scenarios. We aim to fill this gap by assessing the influence of the intrinsic myocardial microstructure on the thermo-electric behavior at the tissue level. By performing multi-point temperature measurements on ex-vivo swine cardiac tissue samples, the experimental characterization of myocardial thermal anisotropy allowed us to assemble a fine-tuned thermo-electric material model of the cardiac tissue. We implemented a multiphysics and multiscale computational framework, encompassing thermo-electric anisotropic conduction, phase-lagging for heat transfer, and a three-state dynamical system for cellular death and lesion estimation. Our analysis resulted in a remarkable agreement between ex-vivo measurements and numerical results. Accordingly, we identified myocardium anisotropy as the driving effect on the outcomes of hyperthermic treatments. Furthermore, we characterized the complex nonlinear couplings regulating tissue behavior during RFCA, discussing model calibration, limitations, and perspectives.
Collapse
Affiliation(s)
- Leonardo Molinari
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, United States
| | - Martina Zaltieri
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Carlo Massaroni
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Lab, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Lab, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, University of Rome Campus Bio-Medico, Rome, Italy
| |
Collapse
|
11
|
Zemlin CW. Safety factor for electrostimulation with nanosecond pulses. Bioelectrochemistry 2021; 141:107882. [PMID: 34274877 DOI: 10.1016/j.bioelechem.2021.107882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
While electrical stimulation with pulses of milli- or microsecond duration is possible without electroporation, stimulation with nanosecond pulses typically entails electroporation, and nanosecond pulses can even cause electroporation without stimulation. A recently proposed explanation for this intriguing finding is that stimulation requires not only that a threshold membrane potential is reached, but also that it is sustained for a certain time tmin, while electroporation occurs almost immediately after a higher threshold potential is reached. Here we analytically derive stimulation and electroporation thresholds for membranes that satisfy these assumptions. We analyze the safety factor, i.e. the ratio between electroporation and stimulation threshold and its dependence on pulse duration, membrane charging time constant, and tmin. We find that the safety factor is sharply reduced if both the pulse duration and the membrane charging time constant are below tmin. We discuss different approaches to get models with varying tmin that could be used to experimentally test this theory and cardiac applications.
Collapse
Affiliation(s)
- Christian W Zemlin
- Division of Cardiothoracic Surgery, Washington University School of Medicine, Campus Box 8234, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
McBride S, Avazzadeh S, Wheatley AM, O’Brien B, Coffey K, Elahi A, O’Halloran M, Quinlan LR. Ablation Modalities for Therapeutic Intervention in Arrhythmia-Related Cardiovascular Disease: Focus on Electroporation. J Clin Med 2021; 10:jcm10122657. [PMID: 34208708 PMCID: PMC8235263 DOI: 10.3390/jcm10122657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Targeted cellular ablation is being increasingly used in the treatment of arrhythmias and structural heart disease. Catheter-based ablation for atrial fibrillation (AF) is considered a safe and effective approach for patients who are medication refractory. Electroporation (EPo) employs electrical energy to disrupt cell membranes which has a minimally thermal effect. The nanopores that arise from EPo can be temporary or permanent. Reversible electroporation is transitory in nature and cell viability is maintained, whereas irreversible electroporation causes permanent pore formation, leading to loss of cellular homeostasis and cell death. Several studies report that EPo displays a degree of specificity in terms of the lethal threshold required to induce cell death in different tissues. However, significantly more research is required to scope the profile of EPo thresholds for specific cell types within complex tissues. Irreversible electroporation (IRE) as an ablative approach appears to overcome the significant negative effects associated with thermal based techniques, particularly collateral damage to surrounding structures. With further fine-tuning of parameters and longer and larger clinical trials, EPo may lead the way of adapting a safer and efficient ablation modality for the treatment of persistent AF.
Collapse
Affiliation(s)
- Shauna McBride
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Antony M. Wheatley
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Barry O’Brien
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 R6W6 Galway, Ireland; (B.O.); (K.C.)
| | - Ken Coffey
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 R6W6 Galway, Ireland; (B.O.); (K.C.)
| | - Adnan Elahi
- Translational Medical Device Lab (TMDL), Lamb Translational Research Facility, University College Hospital Galway, H91 V4AY Galway, Ireland; (A.E.); (M.O.)
- Electrical & Electronic Engineering, School of Engineering, National University of Ireland Galway, H91 HX31 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDL), Lamb Translational Research Facility, University College Hospital Galway, H91 V4AY Galway, Ireland; (A.E.); (M.O.)
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H92 W2TY Galway, Ireland
- Correspondence:
| |
Collapse
|
13
|
Sözer EB, Pakhomov AG, Semenov I, Casciola M, Kim V, Vernier PT, Zemlin CW. Analysis of electrostimulation and electroporation by high repetition rate bursts of nanosecond stimuli. Bioelectrochemistry 2021; 140:107811. [PMID: 33862549 DOI: 10.1016/j.bioelechem.2021.107811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
Exposures to short-duration, strong electric field pulses have been utilized for stimulation, ablation, and the delivery of molecules into cells. Ultrashort, nanosecond duration pulses have shown unique benefits, but they require higher field strengths. One way to overcome this requirement is to use trains of nanosecond pulses with high repetition rates, up to the MHz range. Here we present a theoretical model to describe the effects of pulse trains on the plasma membrane and intracellular membranes modeled as resistively charged capacitors. We derive the induced membrane potential and the stimulation threshold as functions of pulse number, pulse duration, and repetition rate. This derivation provides a straightforward method to calculate the membrane charging time constant from experimental data. The derived excitation threshold agrees with nerve stimulation experiments, indicating that nanosecond pulses are not more effective than longer pulses in charging nerve fibers. The derived excitation threshold does not, however, correctly predict the nanosecond stimulation of cardiomyocytes. We show that a better agreement is possible if multiple charging time constants are considered. Finally, we expand the model to intracellular membranes and show that pulse trains do not lead to charge buildup, but can create significant oscillations of the intracellular membrane potential.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Vitalii Kim
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
14
|
Neuber JU, Varghese F, Pakhomov AG, Zemlin CW. Using Nanosecond Shocks for Cardiac Defibrillation. Bioelectricity 2019; 1:240-246. [PMID: 32685917 DOI: 10.1089/bioe.2019.0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this review article is to summarize our current understanding of the efficacy and safety of cardiac defibrillation with nanosecond shocks. Experiments in isolated hearts, using optical mapping of the electrical activity, have demonstrated that nanosecond shocks can defibrillate with lower energies than conventional millisecond shocks. Single defibrillation strength nanosecond shocks do not cause obvious damage, but repeated stimulation leads to deterioration of the hearts. In isolated myocytes, nanosecond pulses can also stimulate at lower energies than at longer pulses and cause less electroporation (propidium uptake). The mechanism is likely electroporation of the plasma membrane. Repeated stimulation leads to distorted calcium gradients.
Collapse
Affiliation(s)
- Johanna U Neuber
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
| | - Frency Varghese
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
15
|
Petras A, Leoni M, Guerra JM, Jansson J, Gerardo-Giorda L. A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3232. [PMID: 31256443 DOI: 10.1002/cnm.3232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Radiofrequency catheter ablation (RFCA) is an effective treatment for cardiac arrhythmias. Although generally safe, it is not completely exempt from the risk of complications. The great flexibility of computational models can be a major asset in optimizing interventional strategies if they can produce sufficiently precise estimations of the generated lesion for a given ablation protocol. This requires an accurate description of the catheter tip and the cardiac tissue. In particular, the deformation of the tissue under the catheter pressure during the ablation is an important aspect that is overlooked in the existing literature, which resorts to a sharp insertion of the catheter into an undeformed geometry. As the lesion size depends on the power dissipated in the tissue and the latter depends on the percentage of the electrode surface in contact with the tissue itself, the sharp insertion geometry has the tendency to overestimate the lesion obtained, which is a consequence of the tissue temperature rise overestimation. In this paper, we introduce a full 3D computational model that takes into account the tissue elasticity and is able to capture tissue deformation and realistic power dissipation in the tissue. Numerical results in FEniCS-HPC are provided to validate the model against experimental data and to compare the lesions obtained with the new model and with the classical ones featuring a sharp electrode insertion in the tissue.
Collapse
Affiliation(s)
| | - Massimiliano Leoni
- Basque Center for Applied Mathematics, Bilbao, Spain
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jose M Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Johan Jansson
- Basque Center for Applied Mathematics, Bilbao, Spain
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
16
|
Zhao L, Rasko A, Drescher C, Maleki S, Cejnar M, McEwan A. Preliminary Validation of Electroporation-Electrolysis (E2) for Cardiac Ablation Using a Parameterisable In-Vivo Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:289-293. [PMID: 31945898 DOI: 10.1109/embc.2019.8857828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atrial fibrillation is the most common arrhythmia, increasing the risk of stroke, heart failure and death, and a growing epidemic. Electroporation ablation is emerging in cardiac ablation for atrial fibrillation as a fast, tissue-specific and non-thermal alternative to existing technologies tied by their thermal action to shortcomings in efficacy, speed and risk. Studies so far have aimed to translate the success of irreversible electroporation from tumour treatment, with its kilovolt pulses, to cardiac ablation. However, these high voltages may be less appealing for cardiac ablation from clinical, technical and regulatory standpoints. A novel ablation technique combining electroporation and electrolysis in a single pulse E2 uses lower voltages. A custom E2 ablation system was developed and tested on an in vivo tissue model. Histopathological analysis showed lesions of clinically relevant depth, achieved without any acute complications or severe muscle contractions. Lesions were mapped onto a numerical model developed to refine further prototyping. This study provides preliminary prototype validation and the methodological foundation for dose optimisation towards endocardial application.
Collapse
|
17
|
Qiu H, Wang X, Choi A, Zhao W. Comparative Study of Pore Formation Energy by High Intensity, Nanosecond Electrical Pulse. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5721-5724. [PMID: 30441635 DOI: 10.1109/embc.2018.8513655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanosecond, high intensity electric pulses create nanopores in the cell membrane. Pore formation energy is probed by taking account of the strain energy based on the continuum model. Maxwell stress acting on the cell membrane is included in the 3D model calculation as well as the effect of membrane curvature. In addition, comparison between cylindrical and toroidal pores were made to explore the difference of strain energy and force over the pores at a range of radii. Through the analyses the transmembrane potential were kept constant in order to obtain a transient response in that the electric pulse has a ultrashort duration and pore-evolving process is rapid as well. Our results demonstrate that under the same circumstances toroidal pores have higher strain energy than cylindrical pores due to the surface area and volume of the pore shape.
Collapse
|
18
|
Green HD, Thomas G, Terry JR. Signal Reconstruction of Pulmonary Vein Recordings Using a Phenomenological Mathematical Model: Application to Pulmonary Vein Isolation Therapy. Front Physiol 2017; 8:496. [PMID: 28769816 PMCID: PMC5511835 DOI: 10.3389/fphys.2017.00496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, is commonly initiated by ectopic beats originating from a small myocardial sleeve extending over the pulmonary veins. Pulmonary vein isolation therapy attempts to isolate the pulmonary veins from the left atrium by ablating tissue, commonly by using radiofrequency ablation. During this procedure, the cardiologist records electrical activity using a lasso catheter, and the activation pattern recorded is used as a guide toward which regions to ablate. However, poor contact between electrode and tissue can lead to important regions of electrical activity not being recorded in clinic. We reproduce these signals through the use of a phenomenological model of the cardiac action potential on a cylinder, which we fit to post-AF atrial cells, and model the bipolar electrodes of the lasso catheter by an approximation of the surface potential. The resulting activation pattern is validated by direct comparison with those of clinical recordings. A potential application of the model is to reconstruct the missing electrical activity, minimizing the impact of the information loss on the clinical procedure, and we present results to demonstrate this.
Collapse
Affiliation(s)
- Harry D Green
- College of Engineering, Mathematics and Physical Sciences, University of ExeterExeter, United Kingdom.,Wellcome Trust Centre for Biomedical Modelling and Analysis, University of ExeterExeter, United Kingdom.,Living Systems Institute, University of ExeterExeter, United Kingdom
| | - Glyn Thomas
- Bristol Heart InstituteBristol, United Kingdom
| | - John R Terry
- College of Engineering, Mathematics and Physical Sciences, University of ExeterExeter, United Kingdom.,Wellcome Trust Centre for Biomedical Modelling and Analysis, University of ExeterExeter, United Kingdom.,Living Systems Institute, University of ExeterExeter, United Kingdom.,EPSRC Centre for Predictive Modelling in Healthcare, University of ExeterExeter, United Kingdom
| |
Collapse
|
19
|
Labarbera N. Uncertainty Quantification in Irreversible Electroporation Simulations. Bioengineering (Basel) 2017; 4:bioengineering4020041. [PMID: 28952520 PMCID: PMC5590475 DOI: 10.3390/bioengineering4020041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022] Open
Abstract
One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to investigate how uncertainty in tissue and tumor conductivity propagate into final ablation predictions used for treatment planning. Two dimensional simulations were performed for a circular tumor surrounded by healthy tissue, and electroporated from two monopolar electrodes. The conductivity values were treated as random variables whose distributions were taken from published literature on the average and standard deviation of liver tissue and liver tumors. Three different Monte Carlo setups were simulated each at three different voltages. Average and standard deviation data was reported for a multitude of electrical field properties experienced by the tumor. Plots showing the variability in the electrical field distribution throughout the tumor are also presented.
Collapse
Affiliation(s)
- Nicholas Labarbera
- Engineering Science & Mechanics, The Pennsylvania State University, State College, PA 16801, USA.
| |
Collapse
|