1
|
Gao Y, Peng J, Qiao Y, Wang G, Zhan J, Zhang W. Fine mapping and identification of CqMYB62 as the subgynoecy gene in chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:96. [PMID: 40204945 DOI: 10.1007/s00122-025-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
KEY MESSAGE It was hypothesized that Bch08G003160 (CqMYB62), located in the 51.08 Kb region on chromosome 08, might be an important candidate gene for the subgynoecy trait in chieh-qua, based on BSA-seq and linkage mapping approaches. In cucurbit crops, the use of female lines can greatly increase the yield of a single plant and is especially important for the production of hybrid generation seeds, thus being of great interest to breeders. To identify genes regulating sex differentiation in chieh-qua, genetic analysis of the subgynoecy trait was conducted using a chieh-qua F2 population. Initial localization of the locus was done using BSA-seq, followed by fine mapping with a large F2 population (n = 2,741). The locus was ultimately narrowed down to a 51.08 Kb region on Chr08, revealing a single gene Bch08G003160 (CqMYB62) in this region. Further analysis revealed that the presence of two variant loci (SNP_416 and SNP_317) in the coding region resulted in premature termination of the codon and loss of function of the structural domain of the PLN03212 superfamily. Moreover, our research indicated that the subgynoecy trait mediated by CqMYB62 in chieh-qua is potentially regulated by gibberellic acid (GA). Two efficient dCAPS markers were developed to distinguish subgynoecy. In summary, these findings highlight the critical role of CqMYB62 in subgynoecy trait regulation, offering potential implications for chieh-qua breeding programs.
Collapse
Affiliation(s)
- Yin Gao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiazhu Peng
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Yanchun Qiao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianpo Zhan
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Wensheng Zhang
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| |
Collapse
|
2
|
Pechar GS, Sánchez-Pina MA, Coronado-Parra T, Bretó P, García-Almodóvar RC, Liu L, Aranda MA, Donaire L. Developmental stages and episode-specific regulatory genes in andromonoecious melon flower development. ANNALS OF BOTANY 2024; 133:305-320. [PMID: 38041589 PMCID: PMC11005788 DOI: 10.1093/aob/mcad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/01/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND AIMS Given the lack of specific studies on floral development in melon (Cucumis melo L.), we carried out an extensive study involving morphological and transcriptomic analyses to characterize floral development in this species. METHODS Using an andromonoecious line, we analysed the development of floral buds in male and hermaphrodite flowers with both light microscopy and scanning electron microscopy. Based on flower lengths, we established a correlation between the developmental stages and four main episodes of floral development and conducted an extensive RNA sequencing analysis of these episodes. KEY RESULTS We identified 12 stages of floral development, from the appearance of the floral meristems to anthesis. The main structural differences between male and hermaphrodite flowers appeared between stages 6 and 7; later stages of development leading to the formation of organs and structures in both types of flowers were also described. We analysed the gene expression patterns of the four episodes in flower development to find the genes that were specific to each given episode. Among others, we identified genes that defined the passage from one episode to the next according to the ABCDE model of floral development. CONCLUSIONS This work combines a detailed morphological analysis and a comprehensive transcriptomic study to enable characterization of the structural and molecular mechanisms that determine the floral development of an andromonoecious genotype in melon. Taken together, our results provide a first insight into gene regulation networks in melon floral development that are crucial for flowering and pollen formation, highlighting potential targets for genetic manipulation to improve crop yield of melon in the future.
Collapse
Affiliation(s)
- Giuliano S Pechar
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - M Amelia Sánchez-Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Teresa Coronado-Parra
- Microscopy Core Facility, Área Científica y Técnica de Investigación, Universidad de Murcia, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Pau Bretó
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| | - Roque Carlos García-Almodóvar
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, Henan, China
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Livia Donaire
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
3
|
Yin L, Zhang X, Gao A, Cao M, Yang D, An K, Guo S, Yin H. Genome-Wide Identification and Expression Analysis of 1-Aminocyclopropane-1-Carboxylate Synthase ( ACS) Gene Family in Chenopodium quinoa. PLANTS (BASEL, SWITZERLAND) 2023; 12:4021. [PMID: 38068656 PMCID: PMC10707884 DOI: 10.3390/plants12234021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 04/10/2024]
Abstract
Ethylene plays an important role in plant development and stress resistance. The rate-limiting enzyme in ethylene biosynthesis is 1-aminocyclopropane-1-carboxylic acid synthase (ACS). C. quinoa (Chenopodium quinoa) is an important food crop known for its strong tolerance to abiotic stresses. However, knowledge regarding the ACS gene family in C. quinoa remains restricted. In this study, we successfully identified 12 ACS genes (CqACSs) from the C. quinoa genome. Through thorough analysis of their sequences and phylogenetic relationships, it was verified that 8 out of these 12 CqACS isozymes exhibited substantial resemblance to ACS isozymes possessing ACS activity. Furthermore, these eight isozymes could be categorized into three distinct groups. The four remaining CqACS genes grouped under category IV displayed notable similarities with AtACS10 and AtACS12, known as amido transferases lacking ACS activity. The CqACS proteins bore resemblance to the AtACS proteins and had the characteristic structural features typically observed in plant ACS enzymes. Twelve CqACS genes were distributed across 8 out of the 18 chromosomes of C. quinoa. The CqACS genes were expanded from segment duplication. Many cis-regulatory elements related with various abiotic stresses, phytohormones, and light were found. The expression patterns of ACS genes varied across different tissues of C. quinoa. Furthermore, the analysis of gene expression patterns under abiotic stress showed that CqACS genes can be responsive to various stresses, implying their potential functions in adapting to various abiotic stresses. The findings from this research serve as a foundation for delving deeper into the functional roles of CqACS genes.
Collapse
Affiliation(s)
- Lu Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Xia Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Aihong Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Meng Cao
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Dongdong Yang
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Kexin An
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| | - Shanli Guo
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Haibo Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (L.Y.); (X.Z.); (A.G.); (M.C.); (D.Y.); (K.A.)
| |
Collapse
|
4
|
Goldman IL, Wang Y, Alfaro AV, Brainard S, Oravec MW, McGregor CE, van der Knaap E. Form and contour: breeding and genetics of organ shape from wild relatives to modern vegetable crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1257707. [PMID: 37841632 PMCID: PMC10568141 DOI: 10.3389/fpls.2023.1257707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Shape is a primary determinant of consumer preference for many horticultural crops and it is also associated with many aspects of marketing, harvest mechanics, and postharvest handling. Perceptions of quality and preference often map to specific shapes of fruits, tubers, leaves, flowers, roots, and other plant organs. As a result, humans have greatly expanded the palette of shapes available for horticultural crops, in many cases creating a series of market classes where particular shapes predominate. Crop wild relatives possess organs shaped by natural selection, while domesticated species possess organs shaped by human desires. Selection for visually-pleasing shapes in vegetable crops resulted from a number of opportunistic factors, including modification of supernumerary cambia, allelic variation at loci that control fundamental processes such as cell division, cell elongation, transposon-mediated variation, and partitioning of photosynthate. Genes that control cell division patterning may be universal shape regulators in horticultural crops, influencing the form of fruits, tubers, and grains in disparate species. Crop wild relatives are often considered less relevant for modern breeding efforts when it comes to characteristics such as shape, however this view may be unnecessarily limiting. Useful allelic variation in wild species may not have been examined or exploited with respect to shape modifications, and newly emergent information on key genes and proteins may provide additional opportunities to regulate the form and contour of vegetable crops.
Collapse
Affiliation(s)
- Irwin L. Goldman
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanbing Wang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Andrey Vega Alfaro
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Scott Brainard
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Madeline W. Oravec
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Cecilia Elizabeth McGregor
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Wang M, Yang S, Liu W, Cao Z, Chen L, Liu W, Xie D, Yan J, Jiang B, Peng Q. Fine mapping and candidate gene analysis of gynoecy trait in chieh-qua ( Benincasa hispida Cogn. var. chieh-qua How). FRONTIERS IN PLANT SCIENCE 2023; 14:1158735. [PMID: 37152167 PMCID: PMC10157166 DOI: 10.3389/fpls.2023.1158735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023]
Abstract
Gynoecy demonstrates an earlier production of hybrids and a higher yield and improves the efficiency of hybrid seed production. Therefore, the utilization of gynoecy is beneficial for the genetic breeding of chieh-qua. However, little knowledge of gynoecious-related genes in chieh-qua has been reported until now. Here, we used an F2 population from the cross between the gynoecious line 'A36' and the monoecious line 'SX' for genetic mapping and revealed that chieh-qua gynoecy was regulated by a single recessive gene. We fine-mapped it into a 530-kb region flanked by the markers Indel-3 and KASP145 on Chr.8, which harbors eight candidate genes. One of the candidate genes, Bhi08G000345, encoding networked protein 4 (CqNET4), contained a non-synonymous SNP resulting in the amino acid substitution of isoleucine (ATA; I) to methionine (ATG; M). CqNET4 was prominently expressed in the female flower, and only three genes related to ethylene synthesis were significantly expressed between 'A36' and 'SX.' The results presented here provide support for the CqNET4 as the most likely candidate gene for chieh-qua gynoecy, which differed from the reported gynoecious genes.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Qingwu Peng, ; Biao Jiang,
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Qingwu Peng, ; Biao Jiang,
| |
Collapse
|
6
|
Li J, Zou X, Chen G, Meng Y, Ma Q, Chen Q, Wang Z, Li F. Potential Roles of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in the Response of Gossypium Species to Abiotic Stress by Genome-Wide Identification and Expression Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111524. [PMID: 35684296 PMCID: PMC9183111 DOI: 10.3390/plants11111524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a pivotal role in plant stress resistance and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme in ethylene biosynthesis. Upland cotton (Gossypium hirsutum L.) is the most important natural fiber crop, but the function of ACS in response to abiotic stress has rarely been reported in this plant. We identified 18 GaACS, 18 GrACS, and 35 GhACS genes in Gossypiumarboreum, Gossypium raimondii and Gossypiumhirsutum, respectively, that were classified as types I, II, III, or IV. Collinearity analysis showed that the GhACS genes were expanded from diploid cotton by the whole-genome-duplication. Multiple alignments showed that the C-terminals of the GhACS proteins were conserved, whereas the N-terminals of GhACS10 and GhACS12 were different from the N-terminals of AtACS10 and AtACS12, probably diverging during evolution. Most type II ACS genes were hardly expressed, whereas GhACS10/GhACS12 were expressed in many tissues and in response to abiotic stress; for example, they were highly and hardly expressed at the early stages of cold and heat exposure, respectively. The GhACS genes showed different expression profiles in response to cold, heat, drought, and salt stress by quantitative PCR analysis, which indicate the potential roles of them when encountering the various adverse conditions, and provide insights into GhACS functions in cotton’s adaptation to abiotic stress.
Collapse
Affiliation(s)
- Jie Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (Q.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Yongming Meng
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China;
| | - Qi Ma
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832003, China;
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (Q.C.)
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.Z.); (Z.W.)
| |
Collapse
|
7
|
Rapoport HF, Moreno-Alías I, de la Rosa-Peinazo MÁ, Frija A, de la Rosa R, León L. Floral Quality Characterization in Olive Progenies from Reciprocal Crosses. PLANTS 2022; 11:plants11101285. [PMID: 35631710 PMCID: PMC9145368 DOI: 10.3390/plants11101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
Despite the importance of flowering for fruit formation, it has been considered very little in breeding programs involving fruit species, including olives. We evaluated the principal morphological flower-quality components in the olive cultivars, ‘Arbequina’ and ‘Picual’, and in the progenies of their crosses. Wide ranges of variation were obtained for all the inflorescence traits and ovary tissue sizes. An analysis of variance indicated that the residual error was the main contributor to the inflorescence traits, except for the number of perfect flowers, underlining the need to evaluate adequate numbers of inflorescences for accurate measurements of these traits. However, the high repeatability obtained for the inflorescence traits suggests that simple evaluation procedures could be accurate enough for genotype characterization. The average values for ‘Arbequina’ were in the upper range for all the traits; the opposite occurred for ‘Picual’, and the values for most of the progenies were intermediate. No significant differences between the maternal and paternal effect on inheritance were found. Some interesting transgressive segregants showed a higher flower number, greater ovary and mesocarp size, or percentage of ovaries with all four fully developed ovules. The correlations among the parameters may have reflected a relatively consistent distribution of the ovaries’ structural components and a close relationship between the ovaries and their mesocarp growth.
Collapse
Affiliation(s)
- Hava F. Rapoport
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal, Campus Alameda del Obispo, s/n, 14004 Córdoba, Spain; (I.M.-A.); (M.Á.d.l.R.-P.); (A.F.)
- Correspondence: (H.F.R.); (R.d.l.R.)
| | - Inmaculada Moreno-Alías
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal, Campus Alameda del Obispo, s/n, 14004 Córdoba, Spain; (I.M.-A.); (M.Á.d.l.R.-P.); (A.F.)
| | - Miguel Ángel de la Rosa-Peinazo
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal, Campus Alameda del Obispo, s/n, 14004 Córdoba, Spain; (I.M.-A.); (M.Á.d.l.R.-P.); (A.F.)
- Departamento de Agronomía, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Amina Frija
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal, Campus Alameda del Obispo, s/n, 14004 Córdoba, Spain; (I.M.-A.); (M.Á.d.l.R.-P.); (A.F.)
| | - Raúl de la Rosa
- IFAPA Centro Alameda del Obispo, Junta de Andalucía, Avda. Menéndez Pidal, s/n, 14080 Córdoba, Spain;
- Correspondence: (H.F.R.); (R.d.l.R.)
| | - Lorenzo León
- IFAPA Centro Alameda del Obispo, Junta de Andalucía, Avda. Menéndez Pidal, s/n, 14080 Córdoba, Spain;
| |
Collapse
|
8
|
Boualem A, Berthet S, Devani RS, Camps C, Fleurier S, Morin H, Troadec C, Giovinazzo N, Sari N, Dogimont C, Bendahmane A. Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr Biol 2022; 32:2390-2401.e4. [PMID: 35525245 DOI: 10.1016/j.cub.2022.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.
Collapse
Affiliation(s)
- Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Serge Berthet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Celine Camps
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Sebastien Fleurier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Nathalie Giovinazzo
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Nebahat Sari
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Catherine Dogimont
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
9
|
Salinier J, Lefebvre V, Besombes D, Burck H, Causse M, Daunay MC, Dogimont C, Goussopoulos J, Gros C, Maisonneuve B, McLeod L, Tobal F, Stevens R. The INRAE Centre for Vegetable Germplasm: Geographically and Phenotypically Diverse Collections and Their Use in Genetics and Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030347. [PMID: 35161327 PMCID: PMC8838894 DOI: 10.3390/plants11030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 05/14/2023]
Abstract
The French National Research Institute for Agriculture, Food and the Environment (INRAE) conserves and distributes five vegetable collections as seeds: the aubergine* (in this article the word aubergine refers to eggplant), pepper, tomato, melon and lettuce collections, together with their wild or cultivated relatives, are conserved in Avignon, France. Accessions from the collections have geographically diverse origins, are generally well-described and fixed for traits of agronomic or scientific interest and have available passport data. In addition to currently conserving over 10,000 accessions (between 900 and 3000 accessions per crop), the centre maintains scientific collections such as core collections and bi- or multi-parental populations, which have also been genotyped with SNP markers. Each collection has its own merits and highlights, which are discussed in this review: the aubergine collection is a rich source of crop wild relatives of Solanum; the pepper, melon and lettuce collections have been screened for resistance to plant pathogens, including viruses, fungi, oomycetes and insects; and the tomato collection has been at the heart of genome-wide association studies for fruit quality traits and environmental stress tolerance.
Collapse
|
10
|
Cebrián G, Iglesias-Moya J, Romero J, Martínez C, Garrido D, Jamilena M. The Ethylene Biosynthesis Gene CpACO1A: A New Player in the Regulation of Sex Determination and Female Flower Development in Cucurbita pepo. FRONTIERS IN PLANT SCIENCE 2022; 12:817922. [PMID: 35140733 PMCID: PMC8818733 DOI: 10.3389/fpls.2021.817922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/27/2021] [Indexed: 06/03/2023]
Abstract
A methanesulfonate-generated mutant has been identified in Cucurbita pepo that alters sex determination. The mutation converts female into hermaphrodite flowers and disrupts the growth rate and maturation of petals and carpels, delaying female flower opening, and promoting the growth rate of ovaries and the parthenocarpic development of the fruit. Whole-genome resequencing allowed identification of the causal mutation of the phenotypes as a missense mutation in the coding region of CpACO1A, which encodes for a type I ACO enzyme that shares a high identity with Cucumis sativus CsACO3 and Cucumis melo CmACO1. The so-called aco1a reduced ACO1 activity and ethylene production in the different organs where the gene is expressed, and reduced ethylene sensitivity in flowers. Other sex-determining genes, such as CpACO2B, CpACS11A, and CpACS27A, were differentially expressed in the mutant, indicating that ethylene provided by CpACO1A but also the transcriptional regulation of CpACO1A, CpACO2B, CpACS11A, and CpACS27A are responsible for determining the fate of the floral meristem toward a female flower, promoting the development of carpels and arresting the development of stamens. The positive regulation of ethylene on petal maturation and flower opening can be mediated by inducing the biosynthesis of JA, while its negative control on ovary growth and fruit set could be mediated by its repressive effect on IAA biosynthesis.
Collapse
Affiliation(s)
- Gustavo Cebrián
- Department of Biology and Geology, Agrifood Campus of International Excellence and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology, Agrifood Campus of International Excellence and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Jonathan Romero
- Department of Biology and Geology, Agrifood Campus of International Excellence and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology, Agrifood Campus of International Excellence and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence and Research Centre CIAMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
11
|
Ma L, Wang Q, Zheng Y, Guo J, Yuan S, Fu A, Bai C, Zhao X, Zheng S, Wen C, Guo S, Gao L, Grierson D, Zuo J, Xu Y. Cucurbitaceae genome evolution, gene function and molecular breeding. HORTICULTURE RESEARCH 2022; 9:uhab057. [PMID: 35043161 PMCID: PMC8969062 DOI: 10.1093/hr/uhab057] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.
Collapse
Affiliation(s)
- Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanyan Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunmei Bai
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shufang Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaogui Guo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
12
|
Wang Z, Yadav V, Yan X, Cheng D, Wei C, Zhang X. Systematic genome-wide analysis of the ethylene-responsive ACS gene family: Contributions to sex form differentiation and development in melon and watermelon. Gene 2021; 805:145910. [PMID: 34419567 DOI: 10.1016/j.gene.2021.145910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
Ethylene is an important regulatory phytohormone for sex differentiation and flower development. As the rate-limiting enzyme encoding genes in ethylene biosynthesis, ACS gene family has been well studied in cucumber; however, little is known in other cucurbit crops, such as melon and watermelon, which show diverse sex types in the field. Here, we identified and characterized eight ACS genes each in the genomes of melon and watermelon. According to the conserved serine residues at C-terminal, all the ACS genes could be characterized into three groups, which were supported by the exon-intron organizations and conserved motif distributions. ACS genes displayed diverse tissue-specific expression patterns among four melon and three watermelon sex types. Furthermore, a comparative expression analysis in the shoot apex identified orthologous pairs with potential functions in sex determination, e.g., ACS1s and ACS6s. All ACS orthologs in melon and watermelon exhibited similar expression patterns in monoecious and gynoecious genotypes, except for ACS11s and ACS12s. As expected, the majority of ACS genes were responsive to exogenous ethephon; however, some orthologs exhibited opposite expression patterns, such as ACS1s, ACS9s, and ACS10s. Collectively, our findings provide valuable ACS candidates related to flower development in various sex types of melon and watermelon.
Collapse
Affiliation(s)
- Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Xing Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China.
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China.
| |
Collapse
|
13
|
Aamir M, Karmakar P, Singh VK, Kashyap SP, Pandey S, Singh BK, Singh PM, Singh J. A novel insight into transcriptional and epigenetic regulation underlying sex expression and flower development in melon (Cucumis melo L.). PHYSIOLOGIA PLANTARUM 2021; 173:1729-1764. [PMID: 33547804 DOI: 10.1111/ppl.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Melon (Cucumis melo L.) is an important cucurbit and has been considered as a model plant for studying sex determination. The four most common sexual morphotypes in melon are monoecious (A-G-M), gynoecious (--ggM-), andromonoecious (A-G-mm), and hermaphrodite (--ggmm). Sex expression in melons is complex, as the genes and associated networks that govern the sex expression are not fully explored. Recently, RNA-seq transcriptomic profiling, ChIP-qPCR analysis integrated with gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathways predicted the differentially expressed genes including sex-specific ACS and ACO genes, in regulating the sex-expression, phytohormonal cross-talk, signal transduction, and secondary metabolism in melons. Integration of transcriptional control through genetic interaction in between the ACS7, ACS11, and WIP1 in epistatic or hypostatic manner, along with the recruitment of H3K9ac and H3K27me3, epigenetically, overall determine sex expression. Alignment of protein sequences for establishing phylogenetic evolution, motif comparison, and protein-protein interaction supported the structural conservation while presence of the conserved hydrophilic and charged residues across the diverged evolutionary group predicted the functional conservation of the ACS protein. Presence of the putative cis-binding elements or DNA motifs, and its further comparison with DAP-seq-based cistrome and epicistrome of Arabidopsis, unraveled strong ancestry of melons with Arabidopsis. Motif comparison analysis also characterized putative genes and transcription factors involved in ethylene biosynthesis, signal transduction, and hormonal cross-talk related to sex expression. Overall, we have comprehensively reviewed research findings for a deeper insight into transcriptional and epigenetic regulation of sex expression and flower development in melons.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Pradip Karmakar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Sudhakar Pandey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Binod Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Jagdish Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| |
Collapse
|
14
|
Gülüt KY. Nitrogen and boron nutrition in grafted watermelon I: Impact on pomological attributes, yield and fruit quality. PLoS One 2021; 16:e0252396. [PMID: 34048470 PMCID: PMC8162669 DOI: 10.1371/journal.pone.0252396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022] Open
Abstract
Watermelon is extensively consumed fruit across the globe. However, limited is known about interactive effect of nitrogen (N) and boron (B) nutrition on pomological, yield and fruit quality attributes of grafted watermelon. This two-year study tested the influence of different N and B doses on pomological, yield and fruit quality attributes of grafted watermelon under field conditions in Çukurova plains of Turkey. Four different N (0, 90, 180 and 270 kg ha-1) and two B doses (0 and 2 kg ha-1 B) were tested. The individual and interactive effects of N and B significantly altered pomological, yield and fruit quality attributes during both years. Overall, application of 270 kg ha-1 N and 2 kg ha-1 B improved yield, pomological and fruit quality attributes during both years. The highest values for yield, main stem length, stem diameter, fruit weight, fruit width, number nodes and branches per stem were recorded for 270 kg ha-1 N during both years. However, rind thickness was not altered by N application. Similarly, the highest values for quality attributes such as sucrose, glucose, fructose, citric acid, tartaric acid and ascorbic acid were noted for 270 kg ha-1 N during both years. Interestingly, no N application and 90 kg ha-1 N recorded the highest values of maleic acid during both years. The highest values of rind thickness, fruit length, fruit width and fruit weight were noted for 2 kg ha-1 B during both years, while B application had no effect on main stem length, main stem diameter, number of nodes and number of branches. Regarding N by B interactions, 180 and 270 kg ha-1 N with both B doses observed the highest values for yield, pomological and quality attributes during each year. These results indicate that N has significant contribution towards yield, pomological attributes and fruit quality of grafted watermelon. Therefore, N should be applied at the rate of 270 kg ha-1 for better yield, pomological attributes and fruit quality. Nonetheless, where necessary grafted watermelon should be fertilized with 2 kg ha-1 B for better fruit quality and pomological attributes.
Collapse
Affiliation(s)
- Kemal Yalçın Gülüt
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Çukurova University, Adana, Turkey
- * E-mail:
| |
Collapse
|
15
|
Gülüt KY, Duymuş E, Solmaz İ, Torun AA. Nitrogen and boron nutrition in grafted watermelon II: Impact on nutrient accumulation in fruit rind and flesh. PLoS One 2021; 16:e0252437. [PMID: 34043729 PMCID: PMC8158982 DOI: 10.1371/journal.pone.0252437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022] Open
Abstract
Turkey ranks second in watermelon (Citrullus lunatus L.) production globally and the highest production is witnessed for Çukurova plains the country. Although watermelon is extensively cultivated in the Çukurova region, studies on optimum nitrogen (N) and boron (B) doses for watermelon cultivation are quite limited. This study, evaluated the impact of increasing N (0, 90, 180 and 270 kg ha-1) and B (0 and 2 kg ha-1 B) doses on nutrient uptake in rind (exocarp) and flesh (endocarp) of watermelon fruit. Grafted watermelon variety ‘Starburst’, widely cultivated in the region was used as experimental material. The concentrations of different macro and micronutrients were analyzed from fruit rind and flesh. Individual and interactive effect of N and B doses significantly altered macro and micronutrients’ uptake in rind and flesh. Higher amounts of macro and micronutrients were accumulated in rind than flesh. Nutrients’ uptake was increased with increasing N doses, whereas B had limited impact. The accumulated nutrients were within the safe limits for human consumption. The N concentrations of rind and flesh increased with increasing N dose. Similarly, B concentration in rind and flesh and N concentration in rind significantly increased, while N concentration in flesh decreased with B application. It was concluded that 270 kg ha-1 N and 2 kg ha-1 B are optimum for better nutrient uptake in watermelon fruit. Thus, these doses must be used for watermelon cultivation in Çukurova plains of the country.
Collapse
Affiliation(s)
- Kemal Yalçın Gülüt
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey
- * E-mail:
| | - Ebru Duymuş
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey
| | - İlknur Solmaz
- Faculty of Agriculture, Department of Horticulture, Çukurova University, Adana, Turkey
| | - Ayfer Alkan Torun
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey
| |
Collapse
|
16
|
Martínez C, Jamilena M. To be a male or a female flower, a question of ethylene in cucurbits. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101981. [PMID: 33517096 DOI: 10.1016/j.pbi.2020.101981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Within the Cucurbitaceae family, most of its species develop unisexual female and male flowers, either on the same plant (monoecy) or on different plants (dioecy). As in other plant families, these two sex morphotypes have evolved from hermaphrodite species; however, many evolutionary events have occurred in cucurbits allowing easy conversion from dioecy to monoecy and vice versa. The variability in sex morphotypes is higher in the domesticated species of the family, which together with recent advances in genomics, make cucurbits an ideal model to study the genetic and molecular mechanisms that control sex determination in plants. Conventional studies demonstrated that ethylene was the master regulator of sex determination in cucurbits, although some cultivated species may respond differently to ethylene action. In this article, we survey the new advances in hormonal and genetic control of sex determination in cucurbit species, control which establishes the ethylene biosynthesis and signaling genes as being those that determine the floral meristem towards a male, female or hermaphrodite flower. The interactions between these genes are integrated into a model that explains the occurrence and distribution of unisexal and hermaphrodite flowers within the different sex morphotypes. We underline the significance of this scientific progress with regard to breeding programs for agronomically-important sex-associated traits.
Collapse
Affiliation(s)
- Cecilia Martínez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain.
| |
Collapse
|
17
|
Aguado E, García A, Iglesias-Moya J, Romero J, Wehner TC, Gómez-Guillamón ML, Picó B, Garcés-Claver A, Martínez C, Jamilena M. Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches. FRONTIERS IN PLANT SCIENCE 2020; 11:1243. [PMID: 32973825 PMCID: PMC7466658 DOI: 10.3389/fpls.2020.01243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 05/11/2023]
Abstract
The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. A single missense mutation in the ethylene biosynthesis gene CitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotype MM) into partial andromonoecy (genotype Mm) or andromonoecy (genotype mm). We phenotyped and genotyped, for the M/m locus, a panel of 207 C. lanatus accessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) in several locations and different years, despite being MM. A cosegregation analysis between a SNV in CitACS4 and the PA phenotype, demonstrated that the occurrence of bisexual and hermaphrodite flowers in a PA line is not dependent on CitACS4, but conferred by an unlinked recessive gene which we called pa. Two different approaches were performed to map the pa gene in the genome of C. lanatus: bulk segregant analysis sequencing (BSA-seq) and genome wide association analysis studies (GWAS). The BSA-seq study was performed using two contrasting bulks, the monoecious M-bulk and the partially andromonoecious PA-bulk, each one generated by pooling DNA from 20 F2 plants. For GWAS, 122 accessions from USDA gene bank, already re-sequenced by genotyping by sequencing (GBS), were used. The combination of the two approaches indicates that pa maps onto a genomic region expanding across 32.24-36.44 Mb in chromosome 1 of watermelon. Fine mapping narrowed down the pa locus to a 867 Kb genomic region containing 101 genes. A number of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.
Collapse
Affiliation(s)
- Encarnación Aguado
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Alicia García
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Jonathan Romero
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Todd C. Wehner
- Departament of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | | | - Belén Picó
- COMAV—Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Cecilia Martínez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, Almería, Spain
| |
Collapse
|
18
|
Zhang J, Guo S, Ji G, Zhao H, Sun H, Ren Y, Tian S, Li M, Gong G, Zhang H, Xu Y. A unique chromosome translocation disrupting ClWIP1 leads to gynoecy in watermelon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:265-277. [PMID: 31529543 DOI: 10.1111/tpj.14537] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 05/20/2023]
Abstract
To understand sex determination in watermelon (Citrullus lanatus), a spontaneous gynoecious watermelon mutant, XHBGM, was selected from the monoecious wild type XHB. Using map-based cloning, resequencing and fluorescence in situ hybridization analysis, a unique chromosome translocation between chromosome 2 and chromosome 3 was found in XHBGM. Based on the breakpoint location in chromosome 2, a putative C2H2 zinc finger transcription factor gene, ClWIP1 (gene ID Cla008537), an orthologue of the melon gynoecy gene CmWIP1, was disrupted. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system 9 to edit ClWIP1, we obtained gynoecious watermelon lines. Functional studies showed that ClWIP1 is expressed specifically in carpel primordia and is related to the abortion of carpel primordia in early floral development. To identify the cellular and metabolic processes associated with ClWIP1, we compared the shoot apex transcriptomes of two gynoecious mutants and their corresponding wild types. Transcriptome analysis showed that differentially expressed genes related to the ethylene and cytokinin pathways were upregulated in the gynoecious mutants. This study explores the molecular mechanism of sex determination in watermelon and provides a theoretical and technical basis for breeding elite gynoecious watermelon lines.
Collapse
Affiliation(s)
- Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Gaojie Ji
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
- Chinese Academy of Agricultural Engineering Planning and Design, Beijing, 100125, China
| | - Hong Zhao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| |
Collapse
|
19
|
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1-21. [PMID: 31768603 DOI: 10.1007/s00122-019-03481-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 11/11/2019] [Indexed: 05/28/2023]
Abstract
The Cucurbitaceae family hosts many economically important fruit vegetables (cucurbits) such as cucumber, melon, watermelon, pumpkin/squash, and various gourds. The cucurbits are probably best known for the diverse fruit sizes and shapes, but little is known about their genetic basis and molecular regulation. Here, we reviewed the literature on fruit size (FS), shape (FSI), and fruit weight (FW) QTL identified in cucumber, melon, and watermelon, from which 150 consensus QTL for these traits were inferred. Genome-wide survey of the three cucurbit genomes identified 253 homologs of eight classes of fruit or grain size/weight-related genes cloned in Arabidopsis, tomato, and rice that encode proteins containing the characteristic CNR (cell number regulator), CSR (cell size regulator), CYP78A (cytochrome P450), SUN, OVATE, TRM (TONNEAU1 Recruiting Motif), YABBY, and WOX domains. Alignment of the consensus QTL with candidate gene homologs revealed widespread structure and function conservation of fruit size/shape gene homologs in cucurbits, which was exemplified with the fruit size/shape candidate genes CsSUN25-26-27a and CsTRM5 in cucumber, CmOFP1a in melon, and ClSUN25-26-27a in watermelon. In cucurbits, the andromonoecy (for 1-aminocyclopropane-1-carboxylate synthase) and the carpel number (for CLAVATA3) loci are known to have pleiotropic effects on fruit shape, which may complicate identification of fruit size/shape candidate genes in these regions. The present work illustrates the power of comparative analysis in understanding the genetic architecture of fruit size/shape variation, which may facilitate QTL mapping and cloning for fruit size-related traits in cucurbits. The limitations and perspectives of this approach are also discussed.
Collapse
Affiliation(s)
- Yupeng Pan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cecilia McGregor
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Shi Liu
- College of Horticulture and, Landscape Architecture at Northeast Agricultural University, Harbin, 150030, China
| | - Feishi Luan
- College of Horticulture and, Landscape Architecture at Northeast Agricultural University, Harbin, 150030, China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI, 53706, USA.
| |
Collapse
|
20
|
The gynoecious CmWIP1 transcription factor interacts with CmbZIP48 to inhibit carpel development. Sci Rep 2019; 9:15443. [PMID: 31659221 PMCID: PMC6817838 DOI: 10.1038/s41598-019-52004-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022] Open
Abstract
In angiosperms, sex determination leads to development of unisexual flowers. In Cucumis melo, development of unisexual male flowers results from the expression of the sex determination gene, CmWIP1, in carpel primordia. To bring new insight on the molecular mechanisms through which CmWIP1 leads to carpel abortion in male flowers, we used the yeast two-hybrid approach to look for CmWIP1-interacting proteins. We found that CmWIP1 physically interacts with an S2 bZIP transcription factor, CmbZIP48. We further determined the region mediating the interaction and showed that it involves the N-terminal part of CmWIP1. Using laser capture microdissection coupled with quantitative real-time gene expression analysis, we demonstrated that CmWIP1 and CmbZIP48 share a similar spatiotemporal expression pattern, providing the plant organ context for the CmWIP1-CmbZIP48 protein interaction. Using sex transition mutants, we demonstrated that the expression of the male promoting gene CmWIP1 correlates with the expression of CmbZIP48. Altogether, our data support a model in which the coexpression and the physical interaction of CmWIP1 and CmbZIP48 trigger carpel primordia abortion, leading to the development of unisexual male flowers.
Collapse
|
21
|
Devani RS, Chirmade T, Sinha S, Bendahmane A, Dholakia BB, Banerjee AK, Banerjee J. Flower bud proteome reveals modulation of sex-biased proteins potentially associated with sex expression and modification in dioecious Coccinia grandis. BMC PLANT BIOLOGY 2019; 19:330. [PMID: 31337343 PMCID: PMC6651928 DOI: 10.1186/s12870-019-1937-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Tejas Chirmade
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Abdelhafid Bendahmane
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Bhushan B. Dholakia
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| | - Jayeeta Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| |
Collapse
|
22
|
Wang Y, Yan C, Zou B, Wang C, Xu W, Cui C, Qu S. Morphological, Transcriptomic and Hormonal Characterization of Trimonoecious and Subandroecious Pumpkin ( Cucurbita maxima) Suggests Important Roles of Ethylene in Sex Expression. Int J Mol Sci 2019; 20:ijms20133185. [PMID: 31261811 PMCID: PMC6651883 DOI: 10.3390/ijms20133185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Sex expression is a complex process, and in-depth knowledge of its mechanism in pumpkin is important. In this study, young shoot apices at the one-true-leaf stage and 10-leaf stage in Cucurbita maxima trimonoecious line ‘2013–12’ and subandroecious line ‘9–6’ were collected as materials, and transcriptome sequencing was performed using an Illumina HiSeqTM 2000 System. 496 up-regulated genes and 375 down-regulated genes were identified between shoot apices containing mostly male flower buds and only female flower buds. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the differentially expressed genes were mainly enriched in the ethylene and auxin synthesis and signal transduction pathways. In addition, shoot apices at the 4-leaf stage were treated with the ethylene-releasing agent 2-chloroethylphosphonic acid (Ethrel), aminoethoxyvinyl glycine (AVG), AgNO3 and indoleacetic acid (IAA). The number of female flowers up to node 20 on the main stem of ‘2013–12’ increased significantly after Ethrel and IAA treatment and decreased significantly after AVG and AgNO3 treatment. The female flowers in ‘9–6’ showed slight changes after treatment with the exogenous chemicals. The expression of key genes in ethylene synthesis and signal transduction (CmaACS7, CmaACO1, CmaETR1 and CmaEIN3) was determined using quantitative RT-PCR, and the expression of these four genes was positively correlated with the number of female flowers in ‘2013–12’. The variations in gene expression, especially that of CmaACS7, after chemical treatment were small in ‘9–6’. From stage 1 (S1) to stage 7 (S7) of flower development, the expression of CmaACS7 in the stamen was much lower than that in the ovary, stigma and style. These transcriptome data and chemical treatment results indicated that IAA might affect pumpkin sex expression by inducing CmaACS7 expression and indirectly affecting ethylene production, and the ethylene synthesis and signal transduction pathways play crucial roles in pumpkin flower sex expression. A possible reason for the differences in sex expression between pumpkin lines ‘2013–12’ and ‘9–6’ was proposed based on the key gene expression. Overall, these transcriptome data and chemical treatment results suggest important roles for ethylene in pumpkin sex expression.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chundong Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Bingxue Zou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Chongshi Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural University, Harbin 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Pawełkowicz M, Pryszcz L, Skarzyńska A, Wóycicki RK, Posyniak K, Rymuszka J, Przybecki Z, Pląder W. Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. PLANT REPRODUCTION 2019; 32:193-216. [PMID: 30719568 PMCID: PMC6500512 DOI: 10.1007/s00497-019-00362-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Transcriptome data and qPCR analysis revealed new insight into genes regulatory mechanism related to cucumber sex determination. Cucumber (Cucumis sativus L.) is an economically important crop cultivated worldwide. Enhancing the genomic resources for cucumber may enable the regulation of traits relevant to crop productivity and quality. Sequencing technologies and bioinformatics tools provide opportunities for the development of such resources. The aims of this study were to identify and characterize the genes involved in sex determination and flower morphogenesis in cucumber isogenic lines that differed regarding flower sex type. We obtained transcripts for 933 genes related to shoot apex development, among which 310 were differentially expressed genes (DEGs) among the male, female, and hermaphroditic lines. We performed gene ontology and molecular network analyses and explored the DEGs related to already known processes like: hormone synthesis and signaling, lipid and sugar metabolism; and also newly discovered processes related to cell wall, membrane, and cytoskeleton modifications; ion homeostasis which appears to be important for ethylene perception and signaling, and genes expression mediated by transcription factors related to floral organ identities. We proposed a new model of regulatory mechanism network of sex development in cucumber. Our results may be useful for clarifying the molecular genetics and the functional mechanisms underlying the sex determination processes.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Leszek Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał K Wóycicki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
- Philip Morris International R&D, Philip Morris Products S.A., 2000, Neuchâtel, Switzerland
| | - Kacper Posyniak
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jacek Rymuszka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
24
|
Li D, Sheng Y, Niu H, Li Z. Gene Interactions Regulating Sex Determination in Cucurbits. FRONTIERS IN PLANT SCIENCE 2019; 10:1231. [PMID: 31649699 PMCID: PMC6796545 DOI: 10.3389/fpls.2019.01231] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/05/2019] [Indexed: 05/13/2023]
Abstract
The family Cucurbitaceae includes many economically important crops, such as cucumber (Cucumis sativus), melon (Cucumis melo), watermelon (Citrullus lanatus), and zucchini (Cucurbita pepo), which share homologous gene pathways that control similar phenotypes. Sex determination is a research hotspot associated with yield and quality, and the genes involved are highly orthologous and conserved in cucurbits. In the field, six normal sex types have been categorized according to the distribution of female, male, or bisexual flowers in a given plant. To date, five orthologous genes involved in sex determination have been cloned, and their various combinations and expression patterns can explain all the identified sex types. In addition to genetic mechanisms, ethylene controls sex expression in this family. Two ethylene signaling components have been identified recently, which will help us to explore the ethylene signaling-mediated interactions among sex-related genes. This review discusses recent advances relating to the mechanism of sex determination in cucurbits and the prospects for research in this area.
Collapse
Affiliation(s)
- Dandan Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Yunyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Aguado E, García A, Manzano S, Valenzuela JL, Cuevas J, Pinillos V, Jamilena M. The sex-determining gene CitACS4 is a pleiotropic regulator of flower and fruit development in watermelon (Citrullus lanatus). PLANT REPRODUCTION 2018; 31:411-426. [PMID: 30128916 DOI: 10.1007/s00497-018-0346-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/13/2018] [Indexed: 05/13/2023]
Abstract
In the species of the Cucurbitaceae family, the occurrence of separate male and female flowers in the same plant (monoecy) is controlled by an ethylene biosynthesis ACS gene, which specifically suppresses the development of stamen in the female flower. In watermelon, a mutation of loss of function in CitACS4 promotes the conversion of female into hermaphrodite flowers, and of monoecious into andromonoecious plants. We have studied whether the ethylene produced by CitACS4 enzyme could also be involved in other ethylene-regulated traits, including pistillate flowering transition and the number of female flowers per plant, the development of floral organs other than stamens, as well as fruit and seed set, and fruit development. A linkage analysis approach was performed in three independent F2 populations segregating for the two alleles of the gene (M, monoecious; m, andromonoecious), and the different traits under study. The CitACS4m allele not only cosegregated with andromonoecy, but also with earlier pistillate transition, an increased number of pistillate flowers per plant, and a slower growth and maturation of petals and carpels, which delayed anthesis time in hermaphrodite flowers. The m allele was also found to be linked to a reduced fruit set, which was not caused by a deficiency in pollination or fertilization. The gene also affected the longitudinal and transverse growth rates of the ovary and fruit, which means that fruits from andromonoecious plants (mm) were rounder than those from monoecious (MM) ones. Taken together, these data indicate that the locus defined by the ethylene biosynthesis and sex-determining gene CitACS4 acts as a pleiotropic regulator of the complete development of the pistillate flower and the earlier development of the fruit.
Collapse
Affiliation(s)
- Encarnación Aguado
- Department of Biology and Geology, Research Centres CIAIMBITAL and CeiA3, University of Almeria, 04120, Almería, Spain
| | - Alicia García
- Department of Biology and Geology, Research Centres CIAIMBITAL and CeiA3, University of Almeria, 04120, Almería, Spain
| | - Susana Manzano
- Department of Biology and Geology, Research Centres CIAIMBITAL and CeiA3, University of Almeria, 04120, Almería, Spain
| | - Juan Luis Valenzuela
- Department of Biology and Geology, Research Centres CIAIMBITAL and CeiA3, University of Almeria, 04120, Almería, Spain
| | - Julián Cuevas
- Department of Agronomy, Research Centres CIAIMBITAL and CeiA3, University of Almeria, 04120, Almería, Spain
| | - Virginia Pinillos
- Department of Agronomy, Research Centres CIAIMBITAL and CeiA3, University of Almeria, 04120, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centres CIAIMBITAL and CeiA3, University of Almeria, 04120, Almería, Spain.
| |
Collapse
|
26
|
Devani RS, Sinha S, Banerjee J, Sinha RK, Bendahmane A, Banerjee AK. De novo transcriptome assembly from flower buds of dioecious, gynomonoecious and chemically masculinized female Coccinia grandis reveals genes associated with sex expression and modification. BMC PLANT BIOLOGY 2017; 17:241. [PMID: 29233089 PMCID: PMC5727884 DOI: 10.1186/s12870-017-1187-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/30/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Coccinia grandis (ivy gourd), is a dioecious member of Cucurbitaceae having heteromorphic sex chromosomes. Chromosome constitution of male and female plants of C. grandis is 22A + XY and 22A + XX respectively. Earlier we showed that a unique gynomonoecious form of C. grandis (22A + XX) also exists in nature bearing morphologically hermaphrodite flowers (GyM-H). Additionally, application of silver nitrate (AgNO3) on female plants induces stamen development leading to the formation of morphologically hermaphrodite flowers (Ag-H) despite the absence of Y-chromosome. Due to the unavailability of genome sequence and the slow pace at which sex-linked genes are identified, sex expression and modification in C. grandis are not well understood. RESULTS We have carried out a comprehensive RNA-Seq study from early-staged male, female, GyM-H, and Ag-H as well as middle-staged male and GyM-H flower buds. A de novo transcriptome was assembled using Trinity and annotated by BLAST2GO and Trinotate pipelines. The assembled transcriptome consisted of 467,233 'Trinity Transcripts' clustering into 378,860 'Trinity Genes'. Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, and GyM-H_Middle_vs_Male_Middle comparisons exhibited 35,694, 3574, and 14,954 differentially expressed transcripts respectively. Further, qRT-PCR analysis of selected candidate genes validated digital gene expression profiling results. Interestingly, ethylene response-related genes were found to be upregulated in female buds compared to male buds. Also, we observed that AgNO3 treatment suppressed ethylene responses in Ag-H flowers by downregulation of ethylene-responsive transcription factors leading to stamen development. Further, GO terms related to stamen development were enriched in early-staged male, GyM-H, and Ag-H buds compared to female buds supporting the fact that stamen growth gets arrested in female flowers. CONCLUSIONS Suppression of ethylene responses in both male and Ag-H compared to female buds suggests a probable role of ethylene in stamen suppression similar to monoecious cucurbits such as melon and cucumber. Also, pollen fertility associated GO terms were depleted in middle-staged GyM-H buds compared to male buds indicating the necessity of Y-chromosome for pollen fertility. Overall, this study would enable identification of new sex-biased genes for further investigation of stamen arrest, pollen fertility, and AgNO3-mediated sex modification.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Pune, Maharashtra India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, Tripura India
| | - Jayeeta Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Pune, Maharashtra India
| | | | - Abdelhafid Bendahmane
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Pune, Maharashtra India
| |
Collapse
|
27
|
Mohanty JN, Nayak S, Jha S, Joshi RK. Transcriptome profiling of the floral buds and discovery of genes related to sex-differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Gene 2017; 626:395-406. [DOI: 10.1016/j.gene.2017.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
28
|
Lai YS, Zhang X, Zhang W, Shen D, Wang H, Xia Y, Qiu Y, Song J, Wang C, Li X. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2899-2912. [PMID: 28498935 DOI: 10.1093/jxb/erx144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 05/26/2023]
Abstract
Cucumber (Cucumis sativus L.) is characterized by its diverse and flexible sexual types. Here, we evaluated the effect of low temperature (LT) exposure on cucumber femaleness under short-day conditions. Shoot apices were subjected to whole-genome bisulfate sequencing (WGBS), mRNA-seq, and sRNA-seq. The results showed that temperature had a substantial and global impact on transposable element (TE)-related small RNA-directed DNA methylation (RdDM) mechanisms, resulting in large amounts of CHH-type cytosine demethylation. In the cucumber genome, TEs are common in regions near genes that are also subject to DNA demethylation. TE-gene interactions showed very strong reactions to LT treatment, as nearly 80% of the differentially methylated regions (DMRs) were distributed in genic regions. Demethylation near genes led to the co-ordinated expression of genes and TEs. More importantly, genome-wide de novo methylation changes also resulted in small amounts of CG- and CHG-type DMRs. Methylation changes in CG-DMRs located <600 bp from the transcription start and end sites (TSSs/TESs) negatively correlated with transcription changes in differentially expressed genes (DEGs), probably indicating epiregulation. Ethylene is called the 'sex hormone' of cucumbers. We observed the up-regulation of ethylene biosynthesis-related CsACO3 and the down-regulation of an Arabidopsis RAP2.4-like ethylene-responsive (AP2/ERF) transcription factor, demonstrating the inferred epiregulation. Our study characterized the response of the apex methylome to LT and predicted the possible epiregulation of temperature-dependent sex determination (TSD) in cucumber.
Collapse
Affiliation(s)
- Yun-Song Lai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yudong Xia
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenchen Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
29
|
Harkess A, Leebens-Mack J. A Century of Sex Determination in Flowering Plants. J Hered 2016; 108:69-77. [PMID: 27974487 DOI: 10.1093/jhered/esw060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/07/2016] [Indexed: 11/14/2022] Open
Abstract
Plants have evolved a diverse array of strategies for sexual reproduction, particularly through the modification of male and female organs at distinct points in development. The immense variation in sexual systems across the land plants provides a unique opportunity to study the genetic, epigenetic, phylogenetic, and ecological underpinnings of sex determination. Here, we reflect on more than a century of research into flowering plant sex determination, placing a particular focus on the foundational genetic and cytogenetic observations, experiments, and hypotheses. Building on the seminal work on the genetics of plant sex, modern comparative genomic analyses now allow us to address longstanding questions about sex determination and the origins of sex chromosomes.
Collapse
Affiliation(s)
- Alex Harkess
- From the Department of Plant Biology, University of Georgia, Athens, GA 30602 (Harkess and Leebens-Mack), Alex Harkess is now at the Donald Danforth Plant Science Center, St. Louis MO 63132.
| | - Jim Leebens-Mack
- From the Department of Plant Biology, University of Georgia, Athens, GA 30602 (Harkess and Leebens-Mack), Alex Harkess is now at the Donald Danforth Plant Science Center, St. Louis MO 63132
| |
Collapse
|