1
|
Geetha D, Skaria T. Cathepsin S: A key drug target and signalling hub in immune system diseases. Int Immunopharmacol 2025; 155:114622. [PMID: 40220622 DOI: 10.1016/j.intimp.2025.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The lysosomal cysteine protease cathepsin S supports host defence by promoting the maturation of MHC class-II proteins. In contrast, increased cathepsin S activity mediates tissue destructive immune responses in autoimmune and inflammatory diseases. Therefore, cathepsin S is a key target in drug discovery programs. Here, we critically reviewed the specific mechanisms by which cathepsin S mediates autoimmune and hyperinflammatory responses to identify new targets for therapeutic immunomodulation. To this end, we performed literature review utilizing PubMed, drug database of US FDA, European Medicines Agency and the Drug-Gene Interaction Database. Cathepsin S destroys T cell epitopes and reduces endogenous antigen diversity, impairing negative selection of autoreactive T cells that could recognize these epitopes. Moreover, cathepsin S critically regulates inflammatory disease severity by generating proinflammatory molecules (PAR-1, PAR-2, IL-36γ, Fractalkine, Endostatin, Ephrin-B2), inactivating anti-inflammatory mediators (SLPI) and degrading molecules involved in antimicrobial and immunomodulatory responses (surfactant protein-A, LL-37, beta-defensins), inter-endothelial/-epithelial barrier function, gene repair and energy homeostasis. These pathways could be targeted by repositioning of existing drugs. These findings suggest that inhibiting cathepsin S or a specific downstream target of cathepsin S by repositioning of existing drugs could be a promising strategy for treating autoimmune and inflammatory diseases. Current cathepsin S inhibitors in clinical trials face challenges, highlighting the need for innovative inhibitors that function effectively in various cellular compartments with differing pH levels, without targeting the shared catalytic site of cysteine cathepsins.
Collapse
Affiliation(s)
- Durga Geetha
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
2
|
Daud T, Roberts S, Zounemat Kermani N, Richardson M, Heaney LG, Adcock IM, Amrani Y, Bradding P, Siddiqui S. The Role of WNT5a and TGF-β1 in Airway Remodelling and Severe Asthma. Allergy 2025; 80:1025-1037. [PMID: 39749571 DOI: 10.1111/all.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Airway remodelling is a feature of severe asthma with airway epithelial damage observed frequently. We evaluated the role of WNT5a and TGF-β1 in asthmatic airway biopsies and in sputum and bronchial brushings assessed their role in remodelling. METHODS WNT5a and TGF-β1 protein expression were assessed in the lamina propria epithelium of people with asthma (GINA 1-3, n-8 and GINA 4-5, n-14) and healthy subjects (n-9), alongside relevant remodelling markers. The effects of WNT5a and TGF-β1 on BEAS-2B epithelial cell wound healing and differentiation were assessed in vitro. Replication was performed in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) study in sputum (n = 120) and bronchial brushes (n = 147). RESULTS WNT5a and TGF-β1 protein expression were significantly increased in the airway epithelium and lamina propria in asthma patients with concurrent airflow limitation or severe disease. Furthermore, WNT5a protein expression in the lamina propria correlated with tissue eosinophils and vascular remodelling. Airway epithelial WNT5a was co-localised predominantly to airway basal cells and correlated with Th17 gene expression (r = 0.40, p = 0.025) and both the % intact (rs = 0.54, p = 0.001) and % denuded epithelium (rs = -0.39, p = 0.003). Experiments in BEAS-2B cells confirmed that WNT5a at maximal physiological concentrations (1 μg/mL), promoted epithelial wound healing, independently of TGF-β1, as well as induction of EMT-like morphology. WNT5a mRNA was associated with severe asthma, airflow limitation, sputum eosinophilia and Th2, and Th17 and neutrophil activation transcriptomes in sputum in U-BIOPRED. CONCLUSION WNT5a is associated with both airway remodelling and severe asthma. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01982162.
Collapse
Affiliation(s)
- Tariq Daud
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Sheree Roberts
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Nazanin Zounemat Kermani
- Data Science Institute, Imperial College, London, UK
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Matthew Richardson
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Liam G Heaney
- Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Ian M Adcock
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Yassine Amrani
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Peter Bradding
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
| | - Salman Siddiqui
- Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK
- Imperial NIHR Biomedical Research Centre, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| |
Collapse
|
3
|
Guzmán‐Hernández R, Fossati S. Fibrillar tau alters cerebral endothelial cell metabolism, vascular inflammatory activation, and barrier function in vitro and in vivo. Alzheimers Dement 2025; 21:e70077. [PMID: 40110691 PMCID: PMC11923556 DOI: 10.1002/alz.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION The presence of tau aggregates in and around the brain vasculature in Alzheimer's disease (AD) and tauopathies suggests its possible pathogenicity to cerebral endothelial cells (ECs). METHODS We used an in vitro model of the blood-brain barrier (BBB) to understand the mechanisms of fibrillar tau-mediated cerebral EC and BBB pathology, confirming our findings in 3-month-old P301S mice brains and extracted microvessels. RESULTS Protofibrillar and fibrillar tau species induce endothelial barrier permeability through an increase in glycolysis, which activates ECs toward a pro-inflammatory phenotype, inducing loss of junction protein expression and localization. The Warburg-like metabolic shift toward glycolysis and increased vascular pathological phenotypes are also present in young P301S mice. DISCUSSION In sum, our work reveals that fibrillar tau species, by enhancing endothelial glycolytic metabolism, promote vascular inflammatory phenotypes and loss of BBB function, highlighting the importance of addressing and targeting early tau-mediated neurovascular damage in AD and tauopathies. HIGHLIGHTS We improve the understanding of the mechanisms of vascular pathology in tauopathies. Fibrillar tau mediates vascular metabolic changes, inflammation, and blood-brain barrier (BBB) dysfunction. These events are replicated at early stages in a tauopathy mouse model. Inhibiting altered glycolysis reduces BBB permeability and endothelial activation.
Collapse
Affiliation(s)
- Roberto Guzmán‐Hernández
- Alzheimer's Center at TempleDepartment of Neural SciencesTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Silvia Fossati
- Alzheimer's Center at TempleDepartment of Neural SciencesTemple University Lewis Katz School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Li H, Pinette M, Smith G, Goolia M, Handel K, Nebroski M, Lung O, Pickering BS. Distinguishing host responses, extensive viral dissemination and long-term viral RNA persistence in domestic sheep experimentally infected with Crimean-Congo haemorrhagic fever virus Kosovo Hoti. Emerg Microbes Infect 2024; 13:2302103. [PMID: 38189080 PMCID: PMC10810640 DOI: 10.1080/22221751.2024.2302103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a tick-borne, risk group 4 pathogen that often causes a severe haemorrhagic disease in humans (CCHF) with high case fatality rates. The virus is believed to be maintained in a tick-vertebrate-tick ecological cycle involving numerous wild and domestic animal species; however the biology of CCHFV infection in these animals remains poorly understood. Here, we experimentally infect domestic sheep with CCHFV Kosovo Hoti, a clinical isolate representing high pathogenicity to humans and increasingly utilized in current research. In the absence of prominent clinical signs, the infection leads to an acute viremia and coinciding viral shedding, fever and markers for potential impairment in liver and kidney functions. A number of host responses distinguish the subclinical infection in sheep versus fatal infection in humans. These include an early reduction of neutrophil recruitment and its chemoattractant, IL-8, in the blood stream of infected sheep, whereas neutrophil infiltration and elevated IL-8 are features of fatal CCHFV infections reported in immunodeficient mice and humans. Several inflammatory cytokines that correlate with poor disease outcomes in humans and have potential to cause vascular dysfunction, a primary hallmark of severe CCHF, are down-regulated or restricted from increasing in sheep. Of particular interest, the detection of CCHFV RNA (including full-length genome) in a variety of sheep tissues long after the acute phase of infection indicates a widespread viral dissemination in the host and suggests a potentially long-term persisting impact of CCHFV infection. These findings reveal previously unrecognized aspects of CCHFV biology in animals.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Mathieu Pinette
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Katherine Handel
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Michelle Nebroski
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
黄 雨, 孟 琛, 闫 冰, 王 成, 张 罗. [Research progress of type 2 inflammation-related tissue remodeling in nasal polyps]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:872-878;882. [PMID: 39193750 PMCID: PMC11839572 DOI: 10.13201/j.issn.2096-7993.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/12/2023] [Indexed: 08/29/2024]
Abstract
Chronic rhinosinusitis with nasal polyps is a common chronic inflammatory disease with significant tissue remodeling, but the mechanism of remodeling remains unclear. Studies have shown that Type(T) 2 inflammatory network plays a crucial role in tissue remodeling and nasal polyp formation. Clinical trials have been carried out for several biological targets, and a number of potential therapeutic targets have received increasing attention. This paper will summarize the research progress of T2 inflammatory response involved in nasal polyp tissue remodeling to provide ideas for further exploring the mechanism of nasal polyp tissue remodeling.
Collapse
Affiliation(s)
- 雨晴 黄
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科 耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所教育部工程中心鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院慢性鼻病创新单元ResearchUnit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 琛 孟
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科 耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所教育部工程中心鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院慢性鼻病创新单元ResearchUnit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 冰 闫
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科 耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所教育部工程中心鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院慢性鼻病创新单元ResearchUnit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 成硕 王
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科 耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所教育部工程中心鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院慢性鼻病创新单元ResearchUnit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 罗 张
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科 耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所教育部工程中心鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院慢性鼻病创新单元ResearchUnit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
- 首都医科大学附属北京同仁医院变态反应科Department of Allergy, Beijing TongRen Hospital, Capital Medical University
| |
Collapse
|
7
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
8
|
Guo M, Li S, Li C, Mao X, Tian L, Yang X, Xu C, Zeng M. Overexpression of Wnt5a promoted the protective effect of mesenchymal stem cells on Lipopolysaccharide-induced endothelial cell injury via activating PI3K/AKT signaling pathway. BMC Infect Dis 2024; 24:335. [PMID: 38509522 PMCID: PMC10953236 DOI: 10.1186/s12879-024-09204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.
Collapse
Grants
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- the Guangdong Basic and Applied Basic Research Foundation, China (2024)
Collapse
Affiliation(s)
- Manliang Guo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shiqi Li
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chuan Li
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liru Tian
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xintong Yang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
9
|
Hehar NK, Chigbu DI. Vernal Keratoconjunctivitis: Immunopathological Insights and Therapeutic Applications of Immunomodulators. Life (Basel) 2024; 14:361. [PMID: 38541686 PMCID: PMC10971875 DOI: 10.3390/life14030361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 05/28/2025] Open
Abstract
Vernal keratoconjunctivitis (VKC) is a complex and multifactorial disease process that employs Th2 cell-mediated immunologic processes, which involves the overexpression of interleukin 4 (IL-4), IL-5, IL-9, IL-13, and IL-31, and the activation of mast cells that release IL-5 and CCL-11, recruiting eosinophils to the site of inflammation. The disease primarily affects young males and is more common in regions with warm climates. VKC is characterized by persistent and recurrent conjunctival inflammation that can adversely affect the patient's quality of life, and, when inadequately treated, may lead to a host of ocular complications, such as corneal shield ulcers and scarring. The major distinct forms of VKC include limbal or palpebral, which may occur in combination. The clinicopathological features of VKC include the presence of pseudogerontoxon, limbal gelatinous hyperplasia, and perilimbal hyperpigmentation. Topical immunomodulators are effective anti-steroidal options for controlling severe and chronic cases of VKC. This review will provide a brief overview of topical immunomodulators, including cyclosporin and tacrolimus, and will highlight the clinical manifestations, pathological mechanisms, and fibroproliferative changes in the conjunctiva that can result from recurrent disease.
Collapse
Affiliation(s)
- Navpreet K. Hehar
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA;
| | | |
Collapse
|
10
|
Afroz R, Goodwin JE. Wnt Signaling in Atherosclerosis: Mechanisms to Therapeutic Implications. Biomedicines 2024; 12:276. [PMID: 38397878 PMCID: PMC10886882 DOI: 10.3390/biomedicines12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a vascular disease in which inflammation plays a pivotal role. Receptor-mediated signaling pathways regulate vascular inflammation and the pathophysiology of atherosclerosis. Emerging evidence has revealed the role of the Wnt pathway in atherosclerosis progression. The Wnt pathway influences almost all stages of atherosclerosis progression, including endothelial dysfunction, monocyte infiltration, smooth muscle cell proliferation and migration, and plaque formation. Targeting the Wnt pathway to treat atherosclerosis represents a promising therapeutic approach that remains understudied. Blocking Wnt signaling utilizing small molecule inhibitors, recombinant proteins, and/or neutralizing antibodies ameliorates atherosclerosis in preclinical models. The Wnt pathway can be potentially manipulated through targeting Wnt ligands, receptors, co-receptors, and downstream signaling molecules. However, there are challenges associated with developing a real world therapeutic compound that targets the Wnt pathway. This review focuses on the role of Wnt signaling in atherosclerosis development, and the rationale for targeting this pathway for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rizwana Afroz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Akhter MS, Goodwin JE. Endothelial Dysfunction in Cardiorenal Conditions: Implications of Endothelial Glucocorticoid Receptor-Wnt Signaling. Int J Mol Sci 2023; 24:14261. [PMID: 37762564 PMCID: PMC10531724 DOI: 10.3390/ijms241814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium constitutes the innermost lining of the blood vessels and controls blood fluidity, vessel permeability, platelet aggregation, and vascular tone. Endothelial dysfunction plays a key role in initiating a vascular inflammatory cascade and is the pivotal cause of various devastating diseases in multiple organs including the heart, lung, kidney, and brain. Glucocorticoids have traditionally been used to combat vascular inflammation. Endothelial cells express glucocorticoid receptors (GRs), and recent studies have demonstrated that endothelial GR negatively regulates vascular inflammation in different pathological conditions such as sepsis, diabetes, and atherosclerosis. Mechanistically, the anti-inflammatory effects of GR are mediated, in part, through the suppression of Wnt signaling. Moreover, GR modulates the fatty acid oxidation (FAO) pathway in endothelial cells and hence can influence FAO-mediated fibrosis in several organs including the kidneys. This review summarizes the relationship between GR and Wnt signaling in endothelial cells and the effects of the Wnt pathway in different cardiac and renal diseases. Available data suggest that GR plays a significant role in restoring endothelial integrity, and research on endothelial GR-Wnt interactions could facilitate the development of novel therapies for many cardiorenal conditions.
Collapse
Affiliation(s)
- Mohammad Shohel Akhter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Julie Elizabeth Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
12
|
Hu P, Armato U, Freddi G, Chiarini A, Dal Prà I. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Cells 2023; 12:1827. [PMID: 37508492 PMCID: PMC10378127 DOI: 10.3390/cells12141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed-via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays-whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures' exosomes, HaCaT/HDF co-cultures' exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-β/-γ, IL-1β, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell-cell and cell-SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| |
Collapse
|
13
|
Tufail M, Wu C. WNT5A: a double-edged sword in colorectal cancer progression. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108465. [PMID: 37495091 DOI: 10.1016/j.mrrev.2023.108465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The Wnt signaling pathway is known to play a crucial role in cancer, and WNT5A is a member of this pathway that binds to the Frizzled (FZD) and Receptor Tyrosine Kinase-Like Orphan Receptor (ROR) family members to activate non-canonical Wnt signaling pathways. The WNT5A pathway is involved in various cellular processes, such as proliferation, differentiation, migration, adhesion, and polarization. In the case of colorectal cancer (CRC), abnormal activation or inhibition of WNT5A signaling can lead to both oncogenic and antitumor effects. Moreover, WNT5A is associated with inflammation, metastasis, and altered metabolism in cancer cells. This article aims to discuss the molecular mechanisms and dual roles of WNT5A in CRC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
14
|
Yin X, Li Y, Chen Y, Liu P, Feng B, Zhang P, Zeng H. IL-4-loaded alginate/chitosan multilayer films for promoting angiogenesis through both direct and indirect means. Int J Biol Macromol 2023; 232:123486. [PMID: 36731693 DOI: 10.1016/j.ijbiomac.2023.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Vascularization remains a major challenge in tissue engineering. In tissue repair with the involvement of biomaterials, both the material properties and material-induced immune response can affect angiogenesis. However, there is a scarcity of research on biomaterials that modulate angiogenesis simultaneously from both perspectives. Meanwhile, the effects and mechanisms of biomaterial-induced macrophages on angiogenesis remain controversial. In this study, a cytokine-controlled release system from our previous work was employed, and the effects thereof on angiogenesis through both direct and indirect means were investigated. Alginate/chitosan multilayer films were fabricated on interleukin (IL)-4-loaded titania nanotubes to achieve a sustained release of IL-4. The released IL-4 and the multilayers synergistically promoted angiogenic behaviors of endothelial cells (ECs), while up-regulating the expression of early vascular markers. Furthermore, polarized macrophages (both M1 and M2) notably elevated the expression of late vascular markers in ECs via the high expression of pro-maturation factor angiogenin-1. After subcutaneous implantation, the IL-4-loaded implants induced increased neovascularization in a short period, with the surrounding tissue returning to normal at the later stage. Therefore, the proposed IL-4-loaded implants exhibited superior pro-angiogenic capability in vitro and in vivo through both direct stimulation of ECs and the indirect induction of a suitable immune microenvironment.
Collapse
Affiliation(s)
- Xianzhen Yin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiting Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
15
|
Baba T, Koyama A, Uotani R, Miyake H, Inata K, Sasaki SI, Shimizu Y, Inoue Y, Adachi K, Nanba E, Miyazaki D. Association of IL-4 with pachychoroid neovasculopathy. Sci Rep 2023; 13:1152. [PMID: 36670145 PMCID: PMC9860019 DOI: 10.1038/s41598-023-28108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to identify the inflammatory cytokines that were associated with pachychoroid neovasculopathy (PNV). Seventy-five eyes of 75 patients with PNV, 145 eyes of 145 patients with neovascular age-related macular degeneration without pachyvessels, and 150 eyes of 150 normal subjects were examined for the levels of intraocular cytokines. In eyes with PNV, the levels of IL-1α, IL-1β, IL-2, IL-4, IL-10, and VEGF were significantly higher than that of the controls. Logistic regression analysis showed that the highest association with the pachyvessels was found for IL-4, IL-2, and IL-1α. In eyes with PNV, the levels of IL-4, IL-2, IL-5, IL-13, IL-1α, and IL-1β were significantly higher in eyes with both increased choroidal thickness and choroidal vessel diameter. The strongest correlation with the choroidal thickness and vessel diameter was observed for IL-4. In PNV eyes with polypoidal lesions, the levels of IL-4, IL-17, and TNFβ were significantly correlated with the number of polypoidal lesions. Of these cytokines, IL-4 was especially associated with the thickness of the choroidal vessels and the formation of polypoidal lesions. We conclude that IL-4 is most likely involved in establishing the clinical characteristics of PNV and polypoidal vascular remodeling.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan.
| | - Ayumi Koyama
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Ryu Uotani
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Hitomi Miyake
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Kodai Inata
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Shin-Ichi Sasaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Yumiko Shimizu
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Kaori Adachi
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Tottori, Japan
| | - Eiji Nanba
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Tottori, Japan
- Otani Hospital, Tsuyama, Okayama, Japan
| | - Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
16
|
Isthmin-A Multifaceted Protein Family. Cells 2022; 12:cells12010017. [PMID: 36611811 PMCID: PMC9818725 DOI: 10.3390/cells12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isthmin (ISM) is a secreted protein family with two members, namely ISM1 and ISM2, both containing a TSR1 domain followed by an AMOP domain. Its broad expression pattern suggests diverse functions in developmental and physiological processes. Over the past few years, multiple studies have focused on the functional analysis of the ISM protein family in several events, including angiogenesis, metabolism, organ homeostasis, immunity, craniofacial development, and cancer. Even though ISM was identified two decades ago, we are still short of understanding the roles of the ISM protein family in embryonic development and other pathological processes. To address the role of ISM, functional studies have begun but unresolved issues remain. To elucidate the regulatory mechanism of ISM, it is crucial to determine its interactions with other ligands and receptors that lead to the activation of downstream signalling pathways. This review provides a perspective on the gene organization and evolution of the ISM family, their links with developmental and physiological functions, and key questions for the future.
Collapse
|
17
|
Abdi Sarabi M, Shiri A, Aghapour M, Reichardt C, Brandt S, Mertens PR, Medunjanin S, Bruder D, Braun-Dullaeus RC, Weinert S. Normoxic HIF-1α Stabilization Caused by Local Inflammatory Factors and Its Consequences in Human Coronary Artery Endothelial Cells. Cells 2022; 11:cells11233878. [PMID: 36497143 PMCID: PMC9737288 DOI: 10.3390/cells11233878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Knowledge about normoxic hypoxia-inducible factor (HIF)-1α stabilization is limited. We investigated normoxic HIF-1α stabilization and its consequences using live cell imaging, immunoblotting, Bio-Plex multiplex immunoassay, immunofluorescence staining, and barrier integrity assays. We demonstrate for the first time that IL-8 and M-CSF caused HIF-1α stabilization and translocation into the nucleus under normoxic conditions in both human coronary endothelial cells (HCAECs) and HIF-1α-mKate2-expressing HEK-293 cells. In line with the current literature, our data show significant normoxic HIF-1α stabilization caused by TNF-α, INF-γ, IL-1β, and IGF-I in both cell lines, as well. Treatment with a cocktail consisting of TNF-α, INF-γ, and IL-1β caused significantly stronger HIF-1α stabilization in comparison to single treatments. Interestingly, this cumulative effect was not observed during simultaneous treatment with IL-8, M-CSF, and IGF-I. Furthermore, we identified two different kinetics of HIF-1α stabilization under normoxic conditions. Our data demonstrate elevated protein levels of HIF-1α-related genes known to be involved in the development of atherosclerosis. Moreover, we demonstrate an endothelial barrier dysfunction in HCAECs upon our treatments and during normoxic HIF-1α stabilization comparable to that under hypoxia. This study expands the knowledge of normoxic HIF-1α stabilization and activation and its consequences on the endothelial secretome and barrier function. Our data imply an active role of HIF-1α in vivo in the vasculature in the absence of hypoxia.
Collapse
Affiliation(s)
- Mohsen Abdi Sarabi
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Alireza Shiri
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Mahyar Aghapour
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Senad Medunjanin
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ruediger C. Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (R.C.B.-D.); (S.W.)
| | - Sönke Weinert
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (R.C.B.-D.); (S.W.)
| |
Collapse
|
18
|
Krüger BD, Hofer GE, Rudiger A, Spahn GH, Braun J, Bettex D, Schoedon G, Spahn DR. Wingless-related integration site (WNT) signaling is activated during the inflammatory response upon cardiac surgery: A translational study. Front Cardiovasc Med 2022; 9:997350. [DOI: 10.3389/fcvm.2022.997350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveCardiac surgery and the use of cardiopulmonary bypass initiate a systemic inflammatory response. Wingless-related integration site (WNT) signaling is part of the innate immunity and has been attributed a major role in the regulation of inflammation. In preclinical research, WNT-5a may sustain an inflammatory response and cause endothelial dysfunction. Our aim was to investigate WNT signaling after cardiac surgery and its association with postoperative inflammation (Clinicaltrials.gov, NCT04058496).MethodsIn this prospective, single-center, observational study, 64 consecutive patients for coronary artery bypass grafting (CABG) ± valve surgery were assigned into three groups: off-pump CABG (n = 28), on-pump CABG (n = 16) and combined valve-CABG surgery (n = 20). Blood samples were acquired before surgery, at intensive care unit (ICU) admission and 4, 8, and 48 h thereafter. Plasma concentrations of WNT-5a and its antagonists Secreted frizzled-related protein 1 (sFRP-1), Secreted frizzled-related protein 5 (sFRP-5), and WNT inhibitory factor 1 (WIF-1) were determined by enzyme-linked immunosorbent assay. In addition, plasma concentrations of six inflammatory cytokines were measured by multiplex immunoassay. Parameters were analyzed for evolution of plasma concentration over time, interactions, intergroup differences, and association with clinical outcome parameters.ResultsAt baseline, WNT-5a, sFRP-1, and WIF-1 were present in a minimal concentration, while sFRP-5 was elevated. A higher baseline value of WNT-5a, sFRP-5, and WIF-1 resulted in higher subsequent values of the respective parameter. At ICU admission, WNT-5a and sFRP-5 reached their maximum and minimum value, respectively. WIF-1 decreased over time and was lowest 8 h after surgery. sFRP-1 changed minimally over time. While WNT-5a returned to the baseline within 48 h, sFRP-5 and WIF-1 did not reach their baseline value at 48 h. Of the investigated WNT system components, only WIF-1 partially reflected the severity of surgery. WNT-5a and WIF-1 had an impact on postoperative fluid balance and noradrenaline requirement.ConclusionWNT-5a, sFRP-5, and WIF-1 are part of the systemic inflammatory response after cardiac surgery. WNT-5a peaks immediately after cardiac surgery and returns to baseline within 48 h, presumably modulated by its antagonist sFRP-5. Based on this translational study, WNT-5a antagonism may be further investigated to assess potentially beneficial effects in patients with a dysregulated inflammation after cardiac surgery.
Collapse
|
19
|
Asada N, Suzuki K, Sunohara M. Spatiotemporal distribution analyses of Wnt5a ligand and its receptors Ror2, Frizzled2, and Frizzled5 during tongue muscle development in prenatal mice. Ann Anat 2022; 245:152017. [DOI: 10.1016/j.aanat.2022.152017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
20
|
FAM171B as a Novel Biomarker Mediates Tissue Immune Microenvironment in Pulmonary Arterial Hypertension. Mediators Inflamm 2022; 2022:1878766. [PMID: 36248192 PMCID: PMC9553458 DOI: 10.1155/2022/1878766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to uncover potential diagnostic indicators of pulmonary arterial hypertension (PAH), evaluate the function of immune cells in the pathogenesis of the disease, and find innovative treatment targets and medicines with the potential to enhance prognosis. Gene Expression Omnibus was utilized to acquire the PAH datasets. We recognized differentially expressed genes (DEGs) and investigated their functions utilizing R software. Weighted gene coexpression network analysis, least absolute shrinkage and selection operators, and support vector machines were used to identify biomarkers. The extent of immune cell infiltration in the normal and PAH tissues was determined using CIBERSORT. Additionally, the association between diagnostic markers and immune cells was analyzed. In this study, 258DEGs were used to analyze the disease ontology. Most DEGs were linked with atherosclerosis, arteriosclerotic cardiovascular disease, and lung disease, including obstructive lung disease. Gene set enrichment analysis revealed that compared to normal samples, results from PAH patients were mostly associated with ECM-receptor interaction, arrhythmogenic right ventricular cardiomyopathy, the Wnt signaling pathway, and focal adhesion. FAM171B was identified as a biomarker for PAH (area under the curve = 0.873). The mechanism underlying PAH may be mediated by nave CD4 T cells, resting memory CD4 T cells, resting NK cells, monocytes, activated dendritic cells, resting mast cells, and neutrophils, according to an investigation of immune cell infiltration. FAM171B expression was also associated with resting mast cells, monocytes, and CD8 T cells. The results suggest that PAH may be closely related to FAM171B with high diagnostic performance and associated with immune cell infiltration, suggesting that FAM171B may promote the progression of PAH by stimulating immune infiltration and immune response. This study provides valuable insights into the pathogenesis and treatment of PAH.
Collapse
|
21
|
Ogletree ML, Chander Chiang K, Kulshrestha R, Agarwal A, Agarwal A, Gupta A. Treatment of COVID-19 Pneumonia and Acute Respiratory Distress With Ramatroban, a Thromboxane A2 and Prostaglandin D2 Receptor Antagonist: A Four-Patient Case Series Report. Front Pharmacol 2022; 13:904020. [PMID: 35935851 PMCID: PMC9355466 DOI: 10.3389/fphar.2022.904020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxemia in COVID-19 pneumonia is associated with hospitalization, mechanical ventilation, and mortality. COVID-19 patients exhibit marked increases in fatty acid levels and inflammatory lipid mediators, predominantly arachidonic acid metabolites, notably thromboxane B2 >> prostaglandin E2 > prostaglandin D2. Thromboxane A2 increases pulmonary capillary pressure and microvascular permeability, leading to pulmonary edema, and causes bronchoconstriction contributing to ventilation/perfusion mismatch. Prostaglandin D2-stimulated IL-13 production is associated with respiratory failure, possibly due to hyaluronan accumulation in the lungs. Ramatroban is an orally bioavailable, dual thromboxane A2/TP and prostaglandin D2/DP2 receptor antagonist used in Japan for allergic rhinitis. Four consecutive outpatients with COVID-19 pneumonia treated with ramatroban exhibited rapid relief of dyspnea and hypoxemia within 12–36 h and complete resolution over 5 days, thereby avoiding hospitalization. Therefore, ramatroban as an antivasospastic, broncho-relaxant, antithrombotic, and immunomodulatory agent merits study in randomized clinical trials that might offer hope for a cost-effective pandemic treatment.
Collapse
Affiliation(s)
- Martin L. Ogletree
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
- *Correspondence: Martin L. Ogletree, ; Ajay Gupta,
| | | | | | - Aditya Agarwal
- Charak Foundation of India, Indore, India
- EyeSight Eye Hospital and Retina Centre, Indore, India
| | - Ashutosh Agarwal
- Charak Foundation of India, Indore, India
- EyeSight Eye Hospital and Retina Centre, Indore, India
| | - Ajay Gupta
- Charak Foundation, Orange, CA, United States
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California, Irvine, CA, United States
- *Correspondence: Martin L. Ogletree, ; Ajay Gupta,
| |
Collapse
|
22
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
23
|
Chhetri I, Hunt JEA, Mendis JR, Forni LG, Kirk-Bayley J, White I, Cooper J, Somasundaram K, Shah N, Patterson SD, Puthucheary ZA, Montgomery HE, Creagh-Brown BC. Safety and Feasibility Assessment of Repetitive Vascular Occlusion Stimulus (RVOS) Application to Multi-Organ Failure Critically Ill Patients: A Pilot Randomised Controlled Trial. J Clin Med 2022; 11:3938. [PMID: 35887701 PMCID: PMC9316533 DOI: 10.3390/jcm11143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle wasting is implicated in the pathogenesis of intensive care unit acquired weakness (ICU-AW), affecting 40% of patients and causing long-term physical disability. A repetitive vascular occlusion stimulus (RVOS) limits muscle atrophy in healthy and orthopaedic subjects, thus, we explored its application to ICU patients. Adult multi-organ failure patients received standard care +/- twice daily RVOS {4 cycles of 5 min tourniquet inflation to 50 mmHg supra-systolic blood pressure, and 5 min complete deflation} for 10 days. Serious adverse events (SAEs), tolerability, feasibility, acceptability, and exploratory outcomes of the rectus femoris cross-sectional area (RFCSA), echogenicity, clinical outcomes, and blood biomarkers were assessed. Only 12 of the intended 32 participants were recruited. RVOS sessions (76.1%) were delivered to five participants and two could not tolerate it. No SAEs occurred; 75% of participants and 82% of clinical staff strongly agreed or agreed that RVOS is an acceptable treatment. RFCSA fell significantly and echogenicity increased in controls (n = 5) and intervention subjects (n = 4). The intervention group was associated with less frequent acute kidney injury (AKI), a greater decrease in the total sequential organ failure assessment score (SOFA) score, and increased insulin-like growth factor-1 (IGF-1), and reduced syndecan-1, interleukin-4 (IL-4) and Tumor necrosis factor receptor type II (TNF-RII) levels. RVOS application appears safe and acceptable, but protocol modifications are required to improve tolerability and recruitment. There were signals of possible clinical benefit relating to RVOS application.
Collapse
Affiliation(s)
- Ismita Chhetri
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London SW7 2BX, UK
| | - Julie E. A. Hunt
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Jeewaka R. Mendis
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Lui G. Forni
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Justin Kirk-Bayley
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
| | - Ian White
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Jonathan Cooper
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Karthik Somasundaram
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Nikunj Shah
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Stephen D. Patterson
- Faculty of Sport, Allied Health & Performance Sciences, St Mary’s University, London TW1 4SX, UK;
| | - Zudin A. Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, UK;
- Institute for Sport, Exercise and Health, University College London, London W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Hugh E. Montgomery
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
| | - Benedict C. Creagh-Brown
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| |
Collapse
|
24
|
Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3311228. [PMID: 35469164 PMCID: PMC9034927 DOI: 10.1155/2022/3311228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Vascular endothelial dysfunction is characterized by an imbalance of vasodilation and vasoconstriction, deficiency of nitric oxide (NO) bioavailability and elevated reactive oxygen species (ROS), and proinflammatory factors. This dysfunction is a key to the early pathological development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. Therefore, modulation of the vascular endothelium is considered an important therapeutic strategy to maintain the health of the cardiovascular system. Epidemiological studies have shown that regular consumption of medicinal plants, fruits, and vegetables promotes vascular health, lowering the risk of cardiovascular diseases. This is mainly attributed to the phytochemical compounds contained in these resources. Various databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched to identify studies demonstrating the vascular protective effects of phytochemical compounds. The literature had revealed abundant data on phytochemical compounds protecting and improving the vascular system. Of the numerous compounds reported, curcumin, resveratrol, cyanidin-3-glucoside, berberine, epigallocatechin-3-gallate, and quercetin are discussed in this review to provide recent information on their vascular protective mechanisms in vivo and in vitro. Phytochemical compounds are promising therapeutic agents for vascular dysfunction due to their antioxidative mechanisms. However, future human studies will be necessary to confirm the clinical effects of these vascular protective mechanisms.
Collapse
|
25
|
Hu P, Chiarini A, Wu J, Wei Z, Armato U, Dal Prà I. Adult Human Vascular Smooth Muscle Cells on 3D Silk Fibroin Nonwovens Release Exosomes Enriched in Angiogenic and Growth-Promoting Factors. Polymers (Basel) 2022; 14:697. [PMID: 35215609 PMCID: PMC8875541 DOI: 10.3390/polym14040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our earlier works showed the quick vascularization of mouse skin grafted Bombyx mori 3D silk fibroin nonwoven scaffolds (3D-SFnws) and the release of exosomes enriched in angiogenic/growth factors (AGFs) from in vitro 3D-SFnws-stuck human dermal fibroblasts (HDFs). Here, we explored whether coronary artery adult human smooth muscle cells (AHSMCs) also release AGFs-enriched exosomes when cultured on 3D-SFnws in vitro. METHODS Media with exosome-depleted FBS served for AHSMCs and human endothelial cells (HECs) cultures on 3D-SFnws or polystyrene. Biochemical methods and double-antibody arrays assessed cell growth, metabolism, and intracellular TGF-β and NF-κB signalling pathways activation. AGFs conveyed by CD9+/CD81+ exosomes released from AHSMCs were double-antibody array analysed and their angiogenic power evaluated on HECs in vitro. RESULTS AHSMCs grew and consumed D-glucose more intensely and showed a stronger phosphorylation/activation of TAK-1, SMAD-1/-2/-4/-5, ATF-2, c-JUN, ATM, CREB, and an IκBα phosphorylation/inactivation on SFnws vs. polystyrene, consistent overall with a proliferative/secretory phenotype. SFnws-stuck AHSMCs also released exosomes richer in IL-1α/-2/-4/-6/-8; bFGF; GM-CSF; and GRO-α/-β/-γ, which strongly stimulated HECs' growth, migration, and tubes/nodes assembly in vitro. CONCLUSIONS Altogether, the intensified AGFs exosomal release from 3D-SFnws-attached AHSMCs and HDFs could advance grafts' colonization, vascularization, and take in vivo-noteworthy assets for prospective clinical applications.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
| | - Jun Wu
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| | - Zairong Wei
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134 Verona, Italy; (P.H.); (U.A.)
- Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China;
| |
Collapse
|
26
|
Waśkiel-Burnat A, Osińska M, Salińska A, Blicharz L, Goldust M, Olszewska M, Rudnicka L. The Role of Serum Th1, Th2, and Th17 Cytokines in Patients with Alopecia Areata: Clinical Implications. Cells 2021; 10:3397. [PMID: 34943905 PMCID: PMC8699846 DOI: 10.3390/cells10123397] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Alopecia areata is a type of non-scarring hair loss. The dysregulation of numerous systemic Th1 (IL-2, IFN-γ, TNF, IL-12, and IL-18), Th2 (IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17E, IL-31 and IL-33) and Th17 (IL-17, IL-17F, IL-21, IL-22, IL-23 and TGF-β) cytokines was observed in patients with alopecia areata. Positive correlations between the severity of alopecia areata and an increased serum level of various cytokines including IL-2, TNF, IL-12, IL-17, and IL-17E were reported in the literature. An increased serum level of numerous cytokines, such as IL-2, IL-6, TNF, IL-12, IL-17E, and IL-22, was described as positively correlated with the duration of the disease. Moreover, it was shown that increased pre-treatment serum level of IL-12 was a positive, while increased serum levels of IL-4 and IL-13 were negative prognostic markers for the efficacy of diphenylcyclopropenone. In conclusion, alopecia areata is associated with the dysregulation of systemic Th1, Th2 and Th17 cytokines with their role in the pathogenesis, clinical manifestations and prognosis of the disease. Available data indicate the most significant role of serum IL-2, TNF, IL-12, IL-17, and IL-17E as markers of disease activity. The serum levels IL-4, IL-12 and IL-13 may be useful as potential predictors of diphenylcyclopropenone efficacy.
Collapse
Affiliation(s)
- Anna Waśkiel-Burnat
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.W.-B.); (M.O.); (A.S.); (L.B.); (M.O.)
| | - Marta Osińska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.W.-B.); (M.O.); (A.S.); (L.B.); (M.O.)
| | - Anna Salińska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.W.-B.); (M.O.); (A.S.); (L.B.); (M.O.)
| | - Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.W.-B.); (M.O.); (A.S.); (L.B.); (M.O.)
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55122 Mainz, Germany;
| | - Małgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.W.-B.); (M.O.); (A.S.); (L.B.); (M.O.)
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.W.-B.); (M.O.); (A.S.); (L.B.); (M.O.)
| |
Collapse
|
27
|
Murdaca G, Di Gioacchino M, Greco M, Borro M, Paladin F, Petrarca C, Gangemi S. Basophils and Mast Cells in COVID-19 Pathogenesis. Cells 2021; 10:2754. [PMID: 34685733 PMCID: PMC8534912 DOI: 10.3390/cells10102754] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Basophils and mast cells are among the principal inducers of Th2 responses and have a crucial role in allergic and anti-parasitic protective immunity. Basophils can function as antigen-presenting cells that bind antigens on their surface and boost humoral immune responses, inducing Th2 cell differentiation. Their depletion results in lower humoral memory activation and greater infection susceptibility. Basophils seem to have an active role upon immune response to SARS-CoV-2. In fact, a coordinate adaptive immune response to SARS-CoV-2 is magnified by basophils. It has been observed that basophil amount is lower during acute disease with respect to the recovery phase and that the grade of this depletion is an important determinant of the antibody response to the virus. Moreover, mast cells, present in a great quantity in the nasal epithelial and lung cells, participate in the first immune response to SARS-CoV-2. Their activation results in a hyperinflammatory syndrome through the release of inflammatory molecules, participating to the "cytokine storm" and, in a longer period, inducing pulmonary fibrosis. The literature data suggest that basophil counts may be a useful prognostic tool for COVID-19, since their reduction is associated with a worse prognosis. Mast cells, on the other hand, represent a possible therapeutic target for reducing the airway inflammation characteristic of the hyperacute phase of the disease.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G’ d’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.G.); (M.B.)
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.G.); (M.B.)
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, Ospedale Policlinico San Martino IRCCS, 16132 Genoa, Italy;
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G’ d’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Aging Sciences, G. d’Annunzio University, 66100 Chieti, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
28
|
New mechanism-based approaches to treating and evaluating the vasculopathy of scleroderma. Curr Opin Rheumatol 2021; 33:471-479. [PMID: 34402454 DOI: 10.1097/bor.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Utilizing recent insight into the vasculopathy of scleroderma (SSc), the review will highlight new opportunities for evaluating and treating the disease by promoting stabilization and protection of the microvasculature. RECENT FINDINGS Endothelial junctional signaling initiated by vascular endothelial-cadherin (VE-cadherin) and Tie2 receptors, which are fundamental to promoting vascular health and stability, are disrupted in SSc. This would be expected to not only diminish their protective activity, but also increase pathological processes that are normally restrained by these signaling mediators, resulting in pathological changes in vascular function and structure. Indeed, key features of SSc vasculopathy, from the earliest signs of edema and puffy fingers to pathological disruption of hemodynamics, nutritional blood flow, capillary structure and angiogenesis are all consistent with this altered endothelial signaling. It also likely contributes to further progression of the disease including tissue fibrosis, and organ and tissue injury. SUMMARY Restoring protective endothelial junctional signaling should combat the vasculopathy of SSc and prevent further deterioration in vascular and organ function. Indeed, this type of targeted approach has achieved remarkable results in preclinical models for other diseases. Furthermore, tracking this endothelial junctional signaling, for example by assessing vascular permeability, should facilitate insight into disease progression and its response to therapy.
Collapse
|
29
|
Yuan Q, Basit A, Liang W, Qu R, Luan Y, Ren C, Li A, Xu X, Liu X, Yang C, Kuo A, Pierce R, Zhang L, Turk B, Hu X, Li F, Cui W, Li R, Huang D, Mo L, Sessa WC, Lee PJ, Kluger Y, Su B, Tang W, He J, Wu D. Pazopanib ameliorates acute lung injuries via inhibition of MAP3K2 and MAP3K3. Sci Transl Med 2021; 13:13/591/eabc2499. [PMID: 33910977 DOI: 10.1126/scitranslmed.abc2499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 11/02/2022]
Abstract
Acute lung injury (ALI) causes high mortality and lacks any pharmacological intervention. Here, we found that pazopanib ameliorated ALI manifestations and reduced mortality in mouse ALI models and reduced edema in human lung transplantation recipients. Pazopanib inhibits mitogen-activated protein kinase kinase kinase 2 (MAP3K2)- and MAP3K3-mediated phosphorylation of NADPH oxidase 2 subunit p47phox at Ser208 to increase reactive oxygen species (ROS) formation in myeloid cells. Genetic inactivation of MAP3K2 and MAP3K3 in myeloid cells or hematopoietic mutation of p47phox Ser208 to alanine attenuated ALI manifestations and abrogates anti-ALI effects of pazopanib. This myeloid MAP3K2/MAP3K3-p47phox pathway acted via paracrine H2O2 to enhance pulmonary vasculature integrity and promote lung epithelial cell survival and proliferation, leading to increased pulmonary barrier function and resistance to ALI. Thus, pazopanib has the potential to be effective for treating ALI.
Collapse
Affiliation(s)
- Qianying Yuan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abdul Basit
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenhua Liang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ao Li
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Xu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaoqing Liu
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Chun Yang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Andrew Kuo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fangyong Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Weixue Cui
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Run Li
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Danxia Huang
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Lili Mo
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patty J Lee
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai 200025, China.
| | - Wenwen Tang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jianxing He
- Department of Thoracic Surgery/Oncology, First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.
| | - Dianqing Wu
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
30
|
Vallejo D, Lindsay CB, González-Billault C, Inestrosa NC. Wnt5a modulates dendritic spine dynamics through the regulation of Cofilin via small Rho GTPase activity in hippocampal neurons. J Neurochem 2021; 158:673-693. [PMID: 34107066 DOI: 10.1111/jnc.15448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
Dendritic spines are small, actin-rich protrusions that act as the receiving sites of most excitatory inputs in the central nervous system. The remodeling of the synapse architecture is mediated by actin cytoskeleton dynamics, a process precisely regulated by the small Rho GTPase family. Wnt ligands exert their presynaptic and postsynaptic effects during formation and consolidation of the synaptic structure. Specifically, Wnt5a has been identified as an indispensable synaptogenic factor for the regulation and organization of the postsynaptic side; however, the molecular mechanisms through which Wnt5a induces morphological changes resulting from actin cytoskeleton dynamics within dendritic spines remain unclear. In this work, we employ primary rat hippocampal cultures and HT22 murine hippocampal neuronal cell models, molecular and pharmacological tools, and fluorescence microscopy (laser confocal and epifluorescence) to define the Wnt5a-induced molecular signaling involved in postsynaptic remodeling mediated via the regulation of the small Rho GTPase family. We report that Wnt5a differentially regulates the phosphorylation of Cofilin in neurons through both Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42 depending on the subcellular compartment and the extracellular calcium levels. Additionally, we demonstrate that Wnt5a increases the density of dendritic spines and promotes their maturation via Ras-related C3 botulinum toxin substrate 1. Accordingly, we find that Wnt5a requires the combined activation of small Rho GTPases to increase the levels of filamentous actin, thus promoting the stability of actin filaments. Altogether, these results provide evidence for a new mechanism by which Wnt5a may target actin dynamics, thereby regulating the subsequent morphological changes in dendritic spine architecture.
Collapse
Affiliation(s)
- Daniela Vallejo
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina B Lindsay
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian González-Billault
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, USA
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
31
|
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Biol Open 2021; 10:bio057950. [PMID: 34184731 PMCID: PMC8181899 DOI: 10.1242/bio.057950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel V. Guebel
- Program Agustín de Betancourt, Universidad de La Laguna, Tenerife 38200, Spain
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Néstor V. Torres
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
32
|
Freire MS, Oliveira NG, Lima SMF, Porto WF, Martins DCM, Silva ON, Chaves SB, Sousa MV, Ricart CAO, Castro MS, Fontes W, Franco OL, Rezende TMB. IL-4 absence triggers distinct pathways in apical periodontitis development. J Proteomics 2020; 233:104080. [PMID: 33338687 DOI: 10.1016/j.jprot.2020.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
Dental pulp is a specialized tissue able to respond to infectious processes. Nevertheless, infection progress and root canal colonization trigger an immune-inflammatory response in tooth-surrounding tissues, leading to apical periodontitis and bone tissue destruction, further contributing to tooth loss. In order to shed some light on the effects of IL-4 on periradicular pathology development modulation, microtomographic, histological and proteomic analyses were performed using 60 mice, 30 wild type and 30 IL-4-/-. For that, 5 animals were used for microtomographic and histological analysis, and another 5 for proteomic analysis for 0, 7 and 21 days with/without pulp exposure. The periapical lesions were established in WT and IL-4-/- mice without statistical differences in their volume, and the value of p < 0.05 was adopted as significant in microtomographic and histological analyses. Regarding histological analysis, IL-4-/- mice show aggravation of pulp inflammation compared to WT. By using proteomic analysis, we have identified 32 proteins with increased abundance and 218 proteins with decreased abundance in WT animals after 21 days of pulp exposure, compared to IL-4-/- animals. However, IL-4-/- mice demonstrated faster development of apical periodontitis. These animals developed a compensatory mechanism to overcome IL-4 absence, putatively based on the identification of upregulated proteins related to immune system signaling pathways. Significance: IL-4 might play a protective role in diseases involving bone destruction and its activity may contribute to host protection, mainly due to its antiosteoclastogenic action.
Collapse
Affiliation(s)
- Mirna S Freire
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Centro Universitário do Planalto Central Apparecido dos Santos, UNICEPLAC, Brasília, DF, Brazil
| | - Nelson G Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Stella M F Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, UCB, Brasília, DF, Brazil
| | - William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Porto Reports, Brasília, DF, Brazil
| | - Danilo C M Martins
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Osmar N Silva
- Programa de Pós-graduacao em Ciências Farmacêuticas. Centro Universitário de Anápolis - UniEVANGELICA, Anápolis, GO, Brazil
| | - Sacha B Chaves
- Departamento de nanotecnologia, Universidade de Brasília, Brazil
| | - Marcelo V Sousa
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Carlos A O Ricart
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Mariana S Castro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| | - Taia M B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, UCB, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil.
| |
Collapse
|
33
|
Sun Y, Huang J, Zhao Y, Xue L, Li H, Liu Q, Cao H, Peng W, Guo C, Xie Y, Liu X, Li B, Liu K, Wu S, Zhang L. Inflammatory cytokines and DNA methylation in healthy young adults exposure to fine particulate matter: A randomized, double-blind crossover trial of air filtration. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122817. [PMID: 32516725 DOI: 10.1016/j.jhazmat.2020.122817] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/04/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Benefits of indoor air filtration in heavily polluted areas are not fully understood. This study aims to examine whether short-term air filtration intervention could attenuate the hazards from acute exposure to fine particulate matter (PM2.5), and investigate the potential impact on inflammatory cytokines and DNA methylation. A randomized, double-blind crossover trial of true or sham indoor air filtration was conducted among 29 healthy young adults in Beijing, China. Each episode covered a typical air pollution wave, and 38 cytokines and DNAm of 20 genes were measured at 3 time points: pre-smog, during smog, and post-smog. Linear mixed-effect models were used to evaluate the associations. The indoor PM2.5 concentration with true filtration was 67.8 % lower than sham filtration (13.8 μg/m3vs. 42.8 μg/m3). Air filtration was significantly associated with the decreases in 9 cytokines, from 6.61 % to 21.24 %. PM2.5 exposure was significantly associated with elevated levels of 9 cytokines and changed methylation at 7 CpG sites. Notably, PM2.5 was significantly associated with GM-CSF, sCD40L, MCP-1, and FGF-2, as well as methylation in corresponding genes, but no mediation effect was observed. This trial suggested that indoor air filtration might attenuate the adverse effects of PM2.5 exposure through changing cytokines and DNAm.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, PR China.
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, PR China.
| |
Collapse
|
34
|
Anchan A, Martin O, Hucklesby JJW, Finlay G, Johnson RH, Robilliard LD, O’Carroll SJ, Angel CE, Graham ES. Analysis of Melanoma Secretome for Factors That Directly Disrupt the Barrier Integrity of Brain Endothelial Cells. Int J Mol Sci 2020; 21:ijms21218193. [PMID: 33139674 PMCID: PMC7663570 DOI: 10.3390/ijms21218193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected from three New Zealand melanoma lines. ECIS technology was used to assess if the conditioned media disrupted the endothelial barrier independent of the melanoma cells. The melanoma cell secretome was assessed using cytometric bead array (CBA), Luminex immunoassay and multiplex Proteome Profilers, to detect the expression of secretory proteins, which may facilitate metastasis. Finally, ECIS technology was used to assess the direct effects of secreted proteins identified as candidates from the proteome screens. We show that melanoma-conditioned media significantly disrupted the brain endothelial barrier, however, to a much lesser extent than the cells from which they were collected. Cytokine and proteome profiling of the conditioned media showed evidence of high concentrations of approximately 15 secreted proteins (including osteopontin, IL-8, GDF-15, MIF and VEGF). These 15 secreted proteins were expressed variably across the melanoma lines. Surprisingly, the addition of these individually to the brain endothelial cells did not substantially affect the barrier integrity. ANGPTL-4 and TGFβ were also produced by the melanoma cells. Whilst TGFβ-1 had a pronounced effect on the barrier integrity, surprisingly ANGPTL-4 did not. However, its C-terminal fragment did and within a very similar period to the conditioned media, albeit not to the same extent. Herein we show that melanoma cells produce a wide-range of soluble factors at high concentrations, which most likely favour support or survival of the cancer cells. Most of these, except for TGFβ-1 and the C-terminal fragment of ANGPTL-4, did not have an impact on the integrity of the brain endothelial cells.
Collapse
Affiliation(s)
- Akshata Anchan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
| | - Olivia Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
| | - James J. W. Hucklesby
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand;
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Rebecca H. Johnson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- Department of Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Laverne D. Robilliard
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
| | - Simon J. O’Carroll
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand;
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.A.); (O.M.); (J.J.W.H.); (G.F.); (L.D.R.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.H.J.); (S.J.O.)
- Correspondence:
| |
Collapse
|
35
|
Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol 2020; 10:200128. [PMID: 33081636 PMCID: PMC7653355 DOI: 10.1098/rsob.200128] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
The Wnt signalling pathways are composed of a highly conserved cascade of events that govern cell differentiation, apoptosis and cell orientation. Three major and distinct Wnt signalling pathways have been characterized: the canonical Wnt pathway (or Wnt/β-catenin pathway), the non-canonical planar cell polarity pathway and the non-canonical Wnt/Ca2+ pathway. Altered Wnt signalling pathway has been associated with diverse diseases such as disorders of bone density, different malignancies, cardiac malformations and heart failure. Coronary artery disease is the most common type of heart disease in the United States. Atherosclerosis is a multi-step pathological process, which starts with lipid deposition and endothelial cell dysfunction, triggering inflammatory reactions, followed by recruitment and aggregation of monocytes. Subsequently, monocytes differentiate into tissue-resident macrophages and transform into foam cells by the uptake of modified low-density lipoprotein. Meanwhile, further accumulations of lipids, infiltration and proliferation of vascular smooth muscle cells, and deposition of the extracellular matrix occur under the intima. An atheromatous plaque or hyperplasia of the intima and media is eventually formed, resulting in luminal narrowing and reduced blood flow to the myocardium, leading to chest pain, angina and even myocardial infarction. The Wnt pathway participates in all different stages of this process, from endothelial dysfunction to lipid deposit, and from initial inflammation to plaque formation. Here, we focus on the role of Wnt cascade in pathophysiological mechanisms that take part in coronary artery disease from both clinical and experimental perspectives.
Collapse
Affiliation(s)
- Ya Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Arpita Neogi
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale University, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
36
|
Motta Junior JDS, Miggiolaro AFRDS, Nagashima S, de Paula CBV, Baena CP, Scharfstein J, de Noronha L. Mast Cells in Alveolar Septa of COVID-19 Patients: A Pathogenic Pathway That May Link Interstitial Edema to Immunothrombosis. Front Immunol 2020; 11:574862. [PMID: 33042157 PMCID: PMC7530169 DOI: 10.3389/fimmu.2020.574862] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
It is currently believed that innate immunity is unable to prevent the spread of SARS-CoV-2 from the upper airways to the alveoli of high-risk groups of patients. SARS-CoV-2 replication in ACE-2-expressing pneumocytes can drive the diffuse alveolar injury through the cytokine storm and immunothrombosis by upregulating the transcription of chemokine/cytokines, unlike several other respiratory viruses. Here we report histopathology data obtained in post-mortem lung biopsies of COVID-19, showing the increased density of perivascular and septal mast cells (MCs) and IL-4-expressing cells (n = 6), in contrast to the numbers found in pandemic H1N1-induced pneumonia (n = 10) or Control specimens (n = 10). Noteworthy, COVID-19 lung biopsies showed a higher density of CD117+ cells, suggesting that c-kit positive MCs progenitors were recruited earlier to the alveolar septa. These findings suggest that MC proliferation/differentiation in the alveolar septa might be harnessed by the shift toward IL-4 expression in the inflamed alveolar septa. Future studies may clarify whether the fibrin-dependent generation of the hyaline membrane, processes that require the diffusion of procoagulative plasma factors into the alveolar lumen and the endothelial dysfunction, are preceded by MC-driven formation of interstitial edema in the alveolar septa.
Collapse
Affiliation(s)
- Jarbas da Silva Motta Junior
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
- Hospital Marcelino Champagnat, Curitiba, Brazil
| | | | - Seigo Nagashima
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
| | | | - Cristina Pellegrino Baena
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
- Hospital Marcelino Champagnat, Curitiba, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia de Noronha
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
| |
Collapse
|
37
|
Lymphatic Valves and Lymph Flow in Cancer-Related Lymphedema. Cancers (Basel) 2020; 12:cancers12082297. [PMID: 32824219 PMCID: PMC7464955 DOI: 10.3390/cancers12082297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphedema is a complex disease caused by the accumulation of fluid in the tissues resulting from a dysfunctional or damaged lymphatic vasculature. In developed countries, lymphedema most commonly occurs as a result of cancer treatment. Initially, impaired lymph flow causes edema, but over time this results in inflammation, fibrotic and fatty tissue deposition, limited mobility, and bacterial infections that can lead to sepsis. While chronically impaired lymph flow is generally believed to be the instigating factor, little is known about what pathophysiological changes occur in the lymphatic vessels to inhibit lymph flow. Lymphatic vessels not only regulate lymph flow through a variety of physiologic mechanisms, but also respond to lymph flow itself. One of the fascinating ways that lymphatic vessels respond to flow is by growing bicuspid valves that close to prevent the backward movement of lymph. However, lymphatic valves have not been investigated in cancer-related lymphedema patients, even though the mutations that cause congenital lymphedema regulate genes involved in valve development. Here, we review current knowledge of the regulation of lymphatic function and development by lymph flow, including newly identified genetic regulators of lymphatic valves, and provide evidence for lymphatic valve involvement in cancer-related lymphedema.
Collapse
|
38
|
Baba T, Miyazaki D, Inata K, Uotani R, Miyake H, Sasaki SI, Shimizu Y, Inoue Y, Nakamura K. Role of IL-4 in bone marrow driven dysregulated angiogenesis and age-related macular degeneration. eLife 2020; 9:54257. [PMID: 32366355 PMCID: PMC7200155 DOI: 10.7554/elife.54257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Age-associated sterile inflammation can cause dysregulated choroidal neovascularization (CNV) as age-related macular degeneration (AMD). Intraocular fluid screening of 234 AMD patients identified high levels of IL-4. The purpose of this study was to determine the functional role of IL-4 in CNV formation using murine CNV model. Our results indicate that the IL-4/IL-4 receptors (IL4Rs) controlled tube formation and global proangiogenic responses of bone marrow cells. CCR2+ bone marrow cells were recruited to form very early CNV lesions. IL-4 rapidly induces CCL2, which enhances recruitment of CCR2+ bone marrow cells. This in vivo communication, like quorum-sensing, was followed by the induction of IL-4 by the bone marrow cells during the formation of mature CNVs. For CNV development, IL-4 in bone marrow cells are critically required, and IL-4 directly promotes CNV formation mainly by IL-4R. The IL-4/IL-4Rα axis contributes to pathological angiogenesis through communications with bone marrow cells leading to retinal degeneration.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Dai Miyazaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kodai Inata
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryu Uotani
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hitomi Miyake
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Shin-Ichi Sasaki
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yumiko Shimizu
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshitsugu Inoue
- Division of Ophthalmology and Visual Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kazuomi Nakamura
- Division of Pathological Biochemistry, Department of Biomedical Sciences, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
39
|
Gurgone D, McShane L, McSharry C, Guzik TJ, Maffia P. Cytokines at the Interplay Between Asthma and Atherosclerosis? Front Pharmacol 2020; 11:166. [PMID: 32194407 PMCID: PMC7064545 DOI: 10.3389/fphar.2020.00166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is an important comorbidity in a number of chronic inflammatory diseases. However, evidence in highly prevalent respiratory disease such as asthma are still limited. Epidemiological and clinical data are not univocal in supporting the hypothesis that asthma and CVD are linked and the mechanisms of this relationship remain poorly defined. In this review, we explore the relationship between asthma and cardiovascular disease, with a specific focus on cytokine contribution to vascular dysfunction and atherosclerosis. This is important in the context of recent evidence linking broad inflammatory signaling to cardiovascular events. However inflammatory regulation in asthma is different to the one typically observed in atherosclerosis. We focus on the contribution of cytokine networks encompassing IL-4, IL-6, IL-9, IL-17A, IL-33 but also IFN-γ and TNF-α to vascular dysfunction in atherosclerosis. In doing so we highlight areas of unmet need and possible therapeutic implications.
Collapse
Affiliation(s)
- Danila Gurgone
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Lucy McShane
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charles McSharry
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Internal and Agricultural Medicine, Jagiellonian University College of Medicine, Kraków, Poland
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Gorenjak V, Vance DR, Petrelis AM, Stathopoulou MG, Dadé S, Shamieh SE, Murray H, Masson C, Lamont J, Fitzgerald P, Visvikis-Siest S. Peripheral blood mononuclear cells extracts VEGF protein levels and VEGF mRNA: Associations with inflammatory molecules in a healthy population. PLoS One 2019; 14:e0220902. [PMID: 31419243 PMCID: PMC6697334 DOI: 10.1371/journal.pone.0220902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a signal protein, implicated in various physiological and pathophysiological processes together with other common inflammatory biomarkers. However, their associations have not yet been fully elucidated. In the present study, we investigated associations between VEGF and four specific VEGF mRNA isoforms with levels of 11 inflammation molecules, derived from peripheral blood mononuclear cells (PBMCs) extracts. Methods Healthy participants from the STANISLAS Family Study (n = 285) were included. Levels of VEGF (four mRNA isoforms and protein levels) and inflammatory molecules (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, INF-γ, TNF-α, MCP-1, EGF) were measured in PBMCs extracts. Multiple regression analyses were performed, adjusted for age and gender. Results The analyses revealed significant associations between VEGF protein levels and levels of IL-4 (β = 0.028, P = 0.013), MCP-1 (β = 0.015, P<0.0001) and EGF (β = 0.017, P<0.0001). Furthermore, mRNA isoform VEGF165 was associated with MCP-1 and IL-1α (P = 0.002 and P = 0.008, respectively); and mRNA isoform VEGF189 was associated with IL-4 and IL-6 (P = 0.019 and P = 0.034, respectively). Conclusions To our knowledge, the present study represents the first investigation that successfully demonstrates links between VEGF protein levels and inflammatory molecules levels derived from PBMCs extracts and identifies associations between specific VEGF mRNA isoforms and inflammatory molecules. Impact These findings provide novel insights that may assist in the development of new tissue and mRNA isoform specific measurements of VEGF levels, which may positively contribute to predicting the risk of common complex diseases and response of currently used anti-VEGF agents, and developing of novel targeted therapies for VEGF-related pathophysiology.
Collapse
Affiliation(s)
| | - Dwaine R. Vance
- Randox Laboratories Limited, Crumlin, Co. Antrim, Northern Ireland, United Kingdom
| | | | | | | | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Helena Murray
- Randox Laboratories Limited, Crumlin, Co. Antrim, Northern Ireland, United Kingdom
| | | | - John Lamont
- Randox Laboratories Limited, Crumlin, Co. Antrim, Northern Ireland, United Kingdom
| | - Peter Fitzgerald
- Randox Laboratories Limited, Crumlin, Co. Antrim, Northern Ireland, United Kingdom
| | - Sophie Visvikis-Siest
- Université de Lorraine, Inserm, IGE-PCV, Nancy, France
- Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Rue du Morvan, Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
41
|
Tian F, Mauro TM, Li Z. The pathological role of Wnt5a in psoriasis and psoriatic arthritis. J Cell Mol Med 2019; 23:5876-5883. [PMID: 31313518 PMCID: PMC6714168 DOI: 10.1111/jcmm.14531] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Psoriasis (PsO) is a chronic inflammatory skin disease with both local and systemic components. PsO‐associated arthritis, known as psoriatic arthritis (PsA), develops in approximately 13%‐25% of PsO patients. Various factors associated with both PsO and PsA indicate that these conditions are part of a single disease. Identification of novel targets for the development of drugs to treat both PsO and PsA is desirable to provide more patient‐friendly treatment regimens. Such targets will likely represent ‘common checkpoints’ of inflammation, for example key components or transduction cascades of the signalling pathways involved. Emerging evidence supports involvement of the non‐canonical Wnt signalling pathways in the development of both PsO and PsA, especially the Wnt5a‐activated signalling cascades. These, together with interlinked factors, are crucial in the interactions among keratinocytes, immune cells and inflammatory factors in PsO, as well as among chondrocytes, osteoblasts and osteoclasts that trigger both subchondral bone remodelling and cartilage catabolism in PsA. This review focuses on the pathological role of Wnt5a signalling and its interaction with other interlinked pathways in both PsO and PsA, and also on the main challenges for future research, particularly with respect to molecules targeting Wnt signalling pathways for the treatment of PsO and PsA.
Collapse
Affiliation(s)
- Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Theodora M Mauro
- Dermatology Services, Veterans Affair Medical Center and University of California-San Francisco, San Francisco, CA, USA
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Amano Y, Akazawa Y, Yasuda J, Yoshino K, Kojima K, Kobayashi N, Matsuzaki S, Nagasaki M, Kawai Y, Minegishi N, Ishida N, Motoki N, Hachiya A, Nakazawa Y, Yamamoto M, Koike K, Takeshita T. A low-frequency IL4R locus variant in Japanese patients with intravenous immunoglobulin therapy-unresponsive Kawasaki disease. Pediatr Rheumatol Online J 2019; 17:34. [PMID: 31269967 PMCID: PMC6610867 DOI: 10.1186/s12969-019-0337-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a systemic vasculitis which may be associated with coronary artery aneurysms. A notable risk factor for the development of coronary artery aneurysms is resistance to intravenous immunoglobulin (IVIG) therapy, which comprises standard treatment for the acute phase of KD. The cause of IVIG resistance in KD is largely unknown; however, the contribution of genetic factors, especially variants in immune-related genes, has been suspected. METHODS To explore genetic variants related to IVIG-unresponsiveness, we designated KD patients who did not respond to both first and second courses of IVIG therapy as IVIG-unresponsive patients. Using genomic DNA from 30 IVIG-unresponsive KD patients, we performed pooled genome sequencing targeting 39 immune-related cytokine receptor genes. RESULTS The single nucleotide variant (SNV), rs563535954 (located in the IL4R locus), was concentrated in IVIG-unresponsive KD patients. Individual genotyping showed that the minor allele of rs563535954 was present in 4/33 patients with IVIG-unresponsive KD, compared with 20/1063 individuals in the Japanese genome variation database (odds ratio = 7.19, 95% confidence interval 2.43-21.47). Furthermore, the minor allele of rs563535954 was absent in 42 KD patients who responded to IVIG treatment (P = 0.0337), indicating that a low-frequency variant, rs563535954, is associated with IVIG-unresponsiveness in KD patients. Although rs563535954 is located in the 3'-untranslated region of IL4R, there was no alternation in IL4R expression associated with the mior allele of rs563535954. However, IVIG-unresponsive patients that exhibited the minor allele of rs563535954 tended to be classified into the low-risk group (based on previously reported risk scores) for prediction of IVIG-resistance. Therefore, IVIG-unresponsiveness associated with the minor allele of rs563535954 might differ from IVIG-unresponsiveness associated with previous risk factors used to evaluate IVIG-unresponsiveness in KD. CONCLUSION These findings suggest that the SNV rs563535954 could serve as a predictive indicator of IVIG-unresponsiveness, thereby improving the sensitivity of risk scoring systems, and may aid in prevention of coronary artery lesions in KD patients.
Collapse
Affiliation(s)
- Yuji Amano
- 0000 0001 1507 4692grid.263518.bDepartment of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Yohei Akazawa
- 0000 0001 1507 4692grid.263518.bDepartment of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Jun Yasuda
- 0000 0001 2248 6943grid.69566.3aTohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,0000 0001 2248 6943grid.69566.3aGraduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Kazuhisa Yoshino
- 0000 0001 1507 4692grid.263518.bDepartment of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Katsuhiko Kojima
- 0000 0001 1507 4692grid.263518.bDepartment of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Norimoto Kobayashi
- 0000 0001 1507 4692grid.263518.bDepartment of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Satoshi Matsuzaki
- 0000 0001 1507 4692grid.263518.bDepartment of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Masao Nagasaki
- 0000 0001 2248 6943grid.69566.3aTohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,0000 0001 2248 6943grid.69566.3aGraduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,0000 0001 2248 6943grid.69566.3aGraduate School of Information Science, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579 Japan
| | - Yosuke Kawai
- 0000 0001 2248 6943grid.69566.3aTohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,0000 0001 2248 6943grid.69566.3aGraduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Naoko Minegishi
- 0000 0001 2248 6943grid.69566.3aTohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,0000 0001 2248 6943grid.69566.3aGraduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Noriko Ishida
- 0000 0001 2248 6943grid.69566.3aTohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,0000 0001 2248 6943grid.69566.3aGraduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Noriko Motoki
- 0000 0001 1507 4692grid.263518.bDepartment of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Akira Hachiya
- 0000 0001 1507 4692grid.263518.bDepartment of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Yozo Nakazawa
- 0000 0001 1507 4692grid.263518.bDepartment of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Masayuki Yamamoto
- 0000 0001 2248 6943grid.69566.3aTohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan ,0000 0001 2248 6943grid.69566.3aGraduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Kenichi Koike
- 0000 0001 1507 4692grid.263518.bDepartment of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan ,Shinonoi General Hospital, Minami Nagano Center, 666-1 Shinonoi, Nagano City, Nagano 388-8004 Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
43
|
Skaria T, Bachli E, Schoedon G. Gene Ontology Analysis for Drug Targets of the Whole Genome Transcriptome of Human Vascular Endothelial Cells in Response to Proinflammatory IL-1. Front Pharmacol 2019; 10:414. [PMID: 31068815 PMCID: PMC6491677 DOI: 10.3389/fphar.2019.00414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tom Skaria
- Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich, Zurich, Switzerland
| | - Esther Bachli
- Department of Medicine, Uster Hospital, Uster, Switzerland
| | - Gabriele Schoedon
- Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich, Zurich, Switzerland
| |
Collapse
|
44
|
Meyer IS, Leuschner F. The role of Wnt signaling in the healing myocardium: a focus on cell specificity. Basic Res Cardiol 2018; 113:44. [PMID: 30327885 DOI: 10.1007/s00395-018-0705-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Various cell types are involved in the healing process after myocardial infarction (MI). Besides cardiac resident cells (such as cardiomyocytes, fibroblasts and endothelial cells) already present at the lesion site, a massive influx of leukocytes (mainly monocytes and neutrophils) is observed within hours after the ischemic event. So far, little is known about modes of interaction of these cells. Wnt signaling is an evolutionary conserved signaling cassette known to play an important role in cell-cell communication. While the overall reactivation of Wnt signaling upon ischemic injury is well described, the precise expression pattern of Wnt proteins, however, is far from understood. We here describe known Wnt components that partake in MI healing and differentiate cell-specific aspects. The secretion of Wnt proteins and their antagonists in the context of cardiac inflammation after MI appear to be tightly regulated in a spatial-temporal manner. Overall, we aim to stress the importance of elucidating not only Wnt component-specific aspects, but also their sometimes contradicting effects in different target cells. A better understanding of Wnt signaling in MI healing may eventually lead to the development of successful therapeutic approaches in an often considered "un-druggable" pathway.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
45
|
Skaria T, Bachli E, Schoedon G. RSPO3 impairs barrier function of human vascular endothelial monolayers and synergizes with pro-inflammatory IL-1. Mol Med 2018; 24:45. [PMID: 30157748 PMCID: PMC6116367 DOI: 10.1186/s10020-018-0048-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Endothelial barrier dysfunction characterized by hyperpermeability of the vascular endothelium is a key factor in the pathogenesis of chronic inflammatory diseases and affects clinical outcomes. In states of chronic inflammation, mediators secreted by activated immune cells or vascular endothelium may affect the barrier function and permeability of the vascular endothelium. The matricellular R-spondin family member RSPO3 is produced by inflammatory-activated human monocytes and vascular endothelial cells, but its effects in the regulation of vascular endothelial barrier function remains elusive. METHODS The present study investigates the effects of RSPO3 on the barrier function of adult human primary macro- and micro- vascular endothelial monolayers. Tight monolayers of primary endothelial cells from human coronary and pulmonary arteries, and cardiac, brain, and dermal microvascular beds were treated with RSPO3 either alone or in combination with pro-inflammatory mediator IL-1β. Endothelial barrier function was assessed non-invasively in real-time using Electric Cell-substrate Impedance Sensing. RESULTS RSPO3 treatment critically affected barrier function by enhancing the permeability of all vascular endothelial monolayers investigated. To confer hyperpermeable phenotype in vascular endothelial monolayers, RSPO3 induced inter-endothelial gap formation by disrupting the β-catenin and VE-cadherin alignment at adherens junctions. RSPO3 synergistically enhanced the barrier impairing properties of the pro-inflammatory mediator IL-1β. CONCLUSION Here, we show that the matricellular protein RSPO3 is a mediator of endothelial hyperpermeability that can act in synergy with the inflammatory mediator IL-1β. This finding stimulates further studies to delineate the endothelial barrier impairing properties of RSPO3 and its synergistic interaction with IL-1β in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tom Skaria
- Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Esther Bachli
- Department of Medicine, Uster Hospital, Brunnenstrasse 42, CH-8610, Uster, Switzerland
| | - Gabriele Schoedon
- Inflammation Research Unit, Division of Internal Medicine, University Hospital Zürich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
46
|
Cardiovascular and inflammatory mechanisms in healthy humans exposed to air pollution in the vicinity of a steel mill. Part Fibre Toxicol 2018; 15:34. [PMID: 30097052 PMCID: PMC6086065 DOI: 10.1186/s12989-018-0270-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background There is a paucity of mechanistic information that is central to the understanding of the adverse health effects of source emission exposures. To identify source emission-related effects, blood and saliva samples from healthy volunteers who spent five days near a steel plant (Bayview site, with and without a mask that filtered many criteria pollutants) and at a well-removed College site were tested for oxidative stress, inflammation and endothelial dysfunction markers. Methods Biomarker analyses were done using multiplexed protein-array, HPLC-Fluorescence, EIA and ELISA methods. Mixed effects models were used to test for associations between exposure, biological markers and physiological outcomes. Heat map with hierarchical clustering and Ingenuity Pathway Analysis (IPA) were used for mechanistic analyses. Results Mean CO, SO2 and ultrafine particles (UFP) levels on the day of biological sampling were higher at the Bayview site compared to College site. Bayview site exposures “without” mask were associated with increased (p < 0.05) pro-inflammatory cytokines (e.g IL-4, IL-6) and endothelins (ETs) compared to College site. Plasma IL-1β, IL-2 were increased (p < 0.05) after Bayview site “without” compared to “with” mask exposures. Interquartile range (IQR) increases in CO, UFP and SO2 were associated with increased (p < 0.05) plasma pro-inflammatory cytokines (e.g. IL-6, IL-8) and ET-1(1–21) levels. Plasma/saliva BET-1 levels were positively associated (p < 0.05) with increased systolic BP. C-reactive protein (CRP) was positively associated (p < 0.05) with increased heart rate. Protein network analyses exhibited activation of distinct inflammatory mechanisms after “with” and “without” mask exposures at the Bayview site relative to College site exposures. Conclusions These findings suggest that air pollutants in the proximity of steel mill site can influence inflammatory and vascular mechanisms. Use of mask and multiple biomarker data can be valuable in gaining insight into source emission-related health impacts. Electronic supplementary material The online version of this article (10.1186/s12989-018-0270-4) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Houschyar KS, Chelliah MP, Rein S, Maan ZN, Weissenberg K, Duscher D, Branski LK, Siemers F. Role of Wnt signaling during inflammation and sepsis: A review of the literature. Int J Artif Organs 2018; 41:247-253. [PMID: 29562813 DOI: 10.1177/0391398818762357] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the development of modern intensive care and new antimicrobial agents, the mortality of patients with severe sepsis and septic shock remains high. Systemic inflammation is a consequence of activation of the innate immune system. It is characterized by the intravascular release of proinflammatory cytokines and other vasoactive mediators, with concurrent activation of innate immune cells. The Wnt signaling pathway plays a critical role in the development of multicellular organisms. Abnormal Wnt signaling has been associated with many human diseases, ranging from inflammation and degenerative diseases to cancer. This article reviews the accumulating evidence that the Wnt signaling pathway plays a distinct role in inflammation and sepsis.
Collapse
Affiliation(s)
- Khosrow Siamak Houschyar
- 1 Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Malcolm P Chelliah
- 2 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Susanne Rein
- 1 Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Zeshaan N Maan
- 2 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Kristian Weissenberg
- 1 Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Dominik Duscher
- 3 Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Ludwik K Branski
- 4 Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, USA
| | - Frank Siemers
- 1 Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| |
Collapse
|
48
|
Rol del receptor de adenosina A 2A , óxido nítrico y factor de crecimiento de endotelio vascular en la sepsis: una revisión no sistemática. ANGIOLOGIA 2018. [DOI: 10.1016/j.angio.2017.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
50
|
Li C, Liu P, Song R, Zhang Y, Lei S, Wu S. Immune cells and autoantibodies in pulmonary arterial hypertension. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1047-1057. [PMID: 29036539 DOI: 10.1093/abbs/gmx095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Analyses of immunity in pulmonary arterial hypertension (PAH) support the notion that maladaptation of the immune response exists. Altered immunity is an increasingly recognized feature of PAH. Indeed, a delicate balance between immunity and tolerance exists and any disturbance may result in chronic inflammation or autoimmunity. This is suggested by infiltration of various immune cells (e.g. macrophages, T and B lymphocytes) in remodeled pulmonary vessels. In addition, several types of autoantibodies directed against antinuclear antigens, endothelial cells (ECs) and fibroblasts have been found in idiopathic and systemic sclerosis-associated PAH. These autoantibodies may play an important role in EC apoptosis and in the expression of cell adhesion molecules. This review article provides an overview of immunity pathways highlighting their potential roles in pulmonary vascular remodeling in PAH and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pingping Liu
- Department of Emergency, Hunan Children's Hospital, Changsha, China
| | - Rong Song
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqing Zhang
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|