1
|
Hu CY, McManus J, Aghlmand F, Mei T, Larsson E, Emami A, Murray RM. A Portable Arsenic Sensor Integrating Bacillus megaterium with CMOS Technology. ACS Synth Biol 2025; 14:1615-1624. [PMID: 40211918 DOI: 10.1021/acssynbio.4c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Bacteria innately monitor their environment by dynamically regulating gene expression to respond to fluctuating conditions. Through synthetic biology, we can harness this natural capability to design cell-based sensors. Bacillus megaterium, a soil bacterium, stands out due to its remarkable heavy metal tolerance and sporulation ability, making it an ideal candidate for heavy metal detection with low transportation costs. However, challenges persist: the synthetic biology toolkit for this strain is underdeveloped, and conventional whole-cell sensors necessitate specialized laboratory equipment to read the output. In our study, we have genetically modified B. megaterium for arsenic detection and established a detection threshold below the EPA's recommendation of 10 ppb for drinking water in both vegetative and spore forms. Additionally, we have integrated both engineered B. megaterium living cells and spores with a complementary metal-oxide-semiconductor (CMOS) chip, providing a proof-of-concept for field-deployable arsenic detection. We show that the limit of detection (LOD) of our integrated sensor is within the range to test arsenic levels in soil and food. As a proof of concept, this work paves the way for the deployment of our sensor in resource-limited settings, ensuring real-time arsenic detection in challenging environments.
Collapse
Affiliation(s)
- Chelsea Y Hu
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - John McManus
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Fatemeh Aghlmand
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tracy Mei
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Elin Larsson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Azita Emami
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Richard M Murray
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Zhang P, Du Q, Wang Y, Wei L, Wang X. Systematic representation and optimization enable the inverse design of cross-species regulatory sequences in bacteria. Nat Commun 2025; 16:1763. [PMID: 39971994 PMCID: PMC11840067 DOI: 10.1038/s41467-025-57031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Regulatory sequences encode crucial gene expression signals, yet the sequence characteristics that determine their functionality across species remain obscure. Deep generative models have demonstrated considerable potential in various inverse design applications, especially in engineering genetic elements. Here, we introduce DeepCROSS, a generative artificial intelligence framework for the inverse design of cross-species and species-preferred 5' regulatory sequences in bacteria. DeepCROSS constructs a meta-representation using 1.8 million regulatory sequences from thousands of bacterial genomes to depict the general constraints of regulatory sequences, employs artificial intelligence-guided massively parallel reporter assay experiments in E. coli and P. aeruginosa to explore the potential sequence space, and performs multi-task optimization to obtain de novo regulatory sequences. The optimized regulatory sequences achieve similar or better performance to functional natural regulatory sequences, with high success rates and low sequence similarities with the natural genome. Collectively, DeepCROSS efficiently navigates the sequence-function landscape and enables the inverse design of cross-species and species-preferred 5' regulatory sequences.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Qixiu Du
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Ye Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bio-informatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Senger J, Schulz A, Seitl I, Heider M, Fischer L. Importance of the 5' untranslated region for recombinant enzyme production in isolated Bacillus subtilis 007. AMB Express 2025; 15:24. [PMID: 39918718 PMCID: PMC11805744 DOI: 10.1186/s13568-025-01832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
The production of industrial enzymes requires an efficient expression system with a suitable host. This study investigated the isolated Bacillus subtilis 007 as a host for expressing three enzymes with potential application in the food industry. Firstly, testing the PaprE and P43 promoters and the corresponding 5' untranslated regions revealed great differences in the production of the recently discovered β-galactosidase from Paenibacillus wnnyii. Expression controlled by the PaprE promoter yielded a significantly higher activity of 2515 µkat/L, compared to 56 µkat/L with the P43 promoter. Modifications on the PaprE core promoter region or the spacer, the sequence between the Shine-Dalgarno sequence and the start codon, did not improve β-galactosidase production. Since the aprE 5' untranslated region contributes to a high mRNA stability, it was incorporated into the P43 construct to determine whether mRNA stability is responsible for the differences observed in β-galactosidase production. Interestingly, mRNA stability was significantly improved and led to a nearly 50-fold higher β-galactosidase production of 2756 µkat/L. This strategy was successfully validated by the expression of two other enzymes: the cellobiose-2-epimerase from Caldicellulosiruptor saccharolyticus and the β-glucosidase from Pyrococcus furiosus. These findings underscored the crucial role of post-transcriptional regulation and emphasized mRNA stability as a key role in recombinant enzyme production in B. subtilis 007.
Collapse
Affiliation(s)
- Jana Senger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Martin Heider
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
4
|
Zhao R, Li J, Li Y, Pei X, Di J, Xie Z, Liu H, Gao W. Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus. Microb Cell Fact 2025; 24:24. [PMID: 39825423 PMCID: PMC11748608 DOI: 10.1186/s12934-024-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW. Currently, few effective approaches exist for the direct and precise regulation of HA MW through a one-step fermentation process, and S. zooepidemicus lacks metabolic regulatory elements with varying intensities. The ratio of HA's precursors, UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA), is critical for the extension and release of HA. An imbalance in the precursor proportions for HA synthesis leads to a significant decrease in HA MW, indicating that controlling the precursor ratio may serve as a potential method for regulating HA MW. RESULTS In this study, the type and concentration of carbon sources were manipulated to disrupt the balance of precursor supply. Based on the results, it was speculated that the transcription level of hasE, which may connect the two HA synthesis precursors, is positively correlated with HA MW. Consequently, an endogenous expression component library for S. zooepidemicus was constructed, comprising 32 constitutive and 4 inducible expression elements. The expression of hasE was subsequently regulated in strain SE0 (S12 ΔhasE) using two constitutive promoters of differing strengths. The recombinant strain SE1, in which hasE was controlled by the stronger promoter PR31, produced HA with a MW of 1.96 MDa. In contrast, SE2, utilizing the weaker promoter PR22, synthesized shorter HA with a MW of 1.63 MDa, thereby verifying the hypothesis. Finally, to precisely regulate HA MW according to specific demands, an efficient sucrose-induced expression system was screened and employed to control the transcription level of hasE, obtaining recombinant strain SE3. When induced with sucrose concentrations of 3, 5-10 g/L, the HA MW of SE3 reached 0.78 to 1.77 MDa, respectively. CONCLUSIONS Studies on regulating the balance of the HA precursor substances indicate that an oversupply of either UDP-GlcNAc or UDP-GlcUA can reduce HA MW. The hasE gene serves as a crucial regulator for maintaining this balance. Precise regulation of hasE transcription was achieved through an efficient inducible expression system, enabling the customized production of HA with specific MW. The HA MW of strain SE3 can be accurately manipulated by adjusting sucrose concentration, establishing a novel strategy for customized HA fermentation.
Collapse
Affiliation(s)
- Rui Zhao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jun Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yingtian Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xujuan Pei
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jingyi Di
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
5
|
Wang J, Wang W, Chen Y, Liu Z, Ji X, Pan G, Li Z, Fan K. Development of a xylose-inducible and glucose-insensitive expression system for Parageobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2024; 108:493. [PMID: 39441395 PMCID: PMC11499391 DOI: 10.1007/s00253-024-13333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Inducible expression systems are pivotal for governing gene expression in strain engineering and synthetic biotechnological applications. Therefore, a critical need persists for the development of versatile and efficient inducible expression mechanisms. In this study, the xylose-responsive promoter xylA5p and its transcriptional regulator XylR were identified in Parageobacillus thermoglucosidasius DSM 2542. By combining promoter xylA5p with its regulator XylR, fine-tuning the expression strength of XylR, and reducing the glucose catabolite repression on xylose uptake, we successfully devised a xylose-inducible and glucose-insensitive expression system, denoted as IExyl*. This system exhibited diverse promoter strengths upon induction with xylose at varying concentrations and remained unhindered in the presence of glucose. Moreover, we showed the applicability of IExyl* in P. thermoglucosidasius by redirecting metabolic flux towards riboflavin biosynthesis, culminating in a 2.8-fold increase in riboflavin production compared to that of the starting strain. This glucose-insensitive and xylose-responsive expression system provides valuable tools for designing optimized biosynthetic pathways for high-value products and facilitates future synthetic biology investigations in Parageobacillus. KEY POINTS: • A xylose-inducible and glucose-insensitive expression system IExyl* was developed. • IExyl* was applied to enhance the riboflavin production in P. thermoglucosidasius • A tool for metabolic engineering and synthetic biology research in Parageobacillus strains.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Senger J, Seitl I, Pross E, Fischer L. Secretion of the cytoplasmic and high molecular weight β-galactosidase of Paenibacillus wynnii with Bacillus subtilis. Microb Cell Fact 2024; 23:170. [PMID: 38867249 PMCID: PMC11167759 DOI: 10.1186/s12934-024-02445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS In this study, the cytoplasmic and 120 kDa β-galactosidase of Paenibacillus wynnii (β-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the β-gal-Pw gene led to an increase in extracellular β-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular β-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular β-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION For the first time, the β-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.
Collapse
Affiliation(s)
- Jana Senger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Eva Pross
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
7
|
Dierksheide KJ, Li GW. A historical sequence deletion in a commonly used Bacillus subtilis chromosome integration vector generates undetected loss-of-function mutations. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001455. [PMID: 38602388 PMCID: PMC11084560 DOI: 10.1099/mic.0.001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Since the 1980s, chromosome-integration vectors have been used as a core method of engineering Bacillus subtilis. One of the most frequently used vector backbones contains chromosomally derived regions that direct homologous recombination into the amyE locus. Here, we report a gap in the homology region inherited from the original amyE integration vector, leading to erroneous recombination in a subset of transformants and a loss-of-function mutation in the downstream gene. Internal to the homology arm that spans the 3' portion of amyE and the downstream gene ldh, an unintentional 227 bp deletion generates two crossover events. The major event yields the intended genotype, but the minor event, occurring in ~10 % of colonies, results in a truncation of ldh, which encodes lactate dehydrogenase. Although both types of colonies test positive for amyE disruption by starch plating, the potential defect in fermentative metabolism may be left undetected and confound the results of subsequent experiments.
Collapse
Affiliation(s)
- K. Julia Dierksheide
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Rondthaler S, Sarker B, Howitz N, Shah I, Andrews LB. Toolbox of Characterized Genetic Parts for Staphylococcus aureus. ACS Synth Biol 2024; 13:103-118. [PMID: 38064657 PMCID: PMC10805105 DOI: 10.1021/acssynbio.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
Staphylococcus aureus is an important clinical bacterium prevalent in human-associated microbiomes and the cause of many diseases. However, S. aureus has been intractable to synthetic biology approaches due to limited characterized genetic parts for this nonmodel Gram-positive bacterium. Moreover, genetic manipulation of S. aureus has relied on cumbersome and inefficient cloning strategies. Here, we report the first standardized genetic parts toolbox for S. aureus, which includes characterized promoters, ribosome binding sites, terminators, and plasmid replicons from a variety of bacteria for precise control of gene expression. We established a standard relative expression unit (REU) for S. aureus using a plasmid reference and characterized genetic parts in standardized REUs using S. aureus ATCC 12600. We constructed promoter and terminator part plasmids that are compatible with an efficient Type IIS DNA assembly strategy to effectively build multipart DNA constructs. A library of 24 constitutive promoters was built and characterized in S. aureus, which showed a 380-fold activity range. This promoter library was also assayed in Bacillus subtilis (122-fold activity range) to demonstrate the transferability of the constitutive promoters between these Gram-positive bacteria. By applying an iterative design-build-test-learn cycle, we demonstrated the use of our toolbox for the rational design and engineering of a tetracycline sensor in S. aureus using the PXyl-TetO aTc-inducible promoter that achieved 25.8-fold induction. This toolbox greatly expands the growing number of genetic parts for Gram-positive bacteria and will allow researchers to leverage synthetic biology approaches to study and engineer cellular processes in S. aureus.
Collapse
Affiliation(s)
- Stephen
N. Rondthaler
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Dierksheide KJ, Li GW. A historical sequence deletion in a commonly used Bacillus subtilis chromosome integration vector generates undetected loss-of-function mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574214. [PMID: 38260694 PMCID: PMC10802373 DOI: 10.1101/2024.01.04.574214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Since the 1980s, chromosome-integration vectors have been used as a core method of engineering Bacillus subtilis. One of the most frequently used vector backbones contains chromosomally derived regions that direct homologous recombination into the amyE locus. Here, we report a gap in the homology region inherited from the original amyE integration vector, leading to erroneous recombination in a subset of transformants and a loss-of-function mutation in the downstream gene. Internal to the homology arm that spans the 3' portion of amyE and the downstream gene ldh, an unintentional 227-bp deletion generates two crossover events. The major event yields the intended genotype, but the minor event, occurring in ~10% of colonies, results in a truncation of ldh, which encodes lactate dehydrogenase. Although both types of colonies test positive for amyE disruption by starch plating, the potential defect in fermentative metabolism may be left undetected and confound the results of subsequent experiments.
Collapse
Affiliation(s)
- K. Julia Dierksheide
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
11
|
Okay S. Fine-Tuning Gene Expression in Bacteria by Synthetic Promoters. Methods Mol Biol 2024; 2844:179-195. [PMID: 39068340 DOI: 10.1007/978-1-0716-4063-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are key genetic elements in the initiation and regulation of gene expression. A limited number of natural promoters has been described for the control of gene expression in synthetic biology applications. Therefore, synthetic promoters have been developed to fine-tune the transcription for the desired amount of gene product. Mostly, synthetic promoters are characterized using promoter libraries that are constructed via mutagenesis of promoter sequences. The strength of promoters in the library is determined according to the expression of a reporter gene such as gfp encoding green fluorescent protein. Gene expression can be controlled using inducers. The majority of the studies on gram-negative bacteria are conducted using the expression system of the model organism Escherichia coli while that of the model organism Bacillus subtilis is mostly used in the studies on gram-positive bacteria. Additionally, synthetic promoters for the cyanobacteria, which are phototrophic microorganisms, are evaluated, especially using the model cyanobacterium Synechocystis sp. PCC 6803. Moreover, a variety of algorithms based on machine learning methods were developed to characterize the features of promoter elements. Some of these in silico models were verified using in vitro or in vivo experiments. Identification of novel synthetic promoters with improved features compared to natural ones contributes much to the synthetic biology approaches in terms of fine-tuning gene expression.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
12
|
Zhang R, Huang Y, Li M, Wang L, Li B, Xia A, Li Y, Yang S, Jin F. High-throughput, microscopy-based screening and quantification of genetic elements. MLIFE 2023; 2:450-461. [PMID: 38818273 PMCID: PMC10989126 DOI: 10.1002/mlf2.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 06/01/2024]
Abstract
Synthetic biology relies on the screening and quantification of genetic components to assemble sophisticated gene circuits with specific functions. Microscopy is a powerful tool for characterizing complex cellular phenotypes with increasing spatial and temporal resolution to library screening of genetic elements. Microscopy-based assays are powerful tools for characterizing cellular phenotypes with spatial and temporal resolution and can be applied to large-scale samples for library screening of genetic elements. However, strategies for high-throughput microscopy experiments remain limited. Here, we present a high-throughput, microscopy-based platform that can simultaneously complete the preparation of an 8 × 12-well agarose pad plate, allowing for the screening of 96 independent strains or experimental conditions in a single experiment. Using this platform, we screened a library of natural intrinsic promoters from Pseudomonas aeruginosa and identified a small subset of robust promoters that drives stable levels of gene expression under varying growth conditions. Additionally, the platform allowed for single-cell measurement of genetic elements over time, enabling the identification of complex and dynamic phenotypes to map genotype in high throughput. We expected that the platform could be employed to accelerate the identification and characterization of genetic elements in various biological systems, as well as to understand the relationship between cellular phenotypes and internal states, including genotypes and gene expression programs.
Collapse
Affiliation(s)
- Rongrong Zhang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Mei Li
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Lei Wang
- Shenzhen Synthetic Biology InfrastructureShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Bing Li
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Aiguo Xia
- Shenzhen Synthetic Biology InfrastructureShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Ye Li
- Shenzhen Synthetic Biology InfrastructureShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Shuai Yang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Chengdu Documentation and Information CenterChinese Academy of SciencesChengduChina
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Shenzhen Synthetic Biology InfrastructureShenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
13
|
Ji A, Bao P, Ma A, Wei X. An Efficient Prephenate Dehydrogenase Gene for the Biosynthesis of L-tyrosine: Gene Mining, Sequence Analysis, and Expression Optimization. Foods 2023; 12:3084. [PMID: 37628083 PMCID: PMC10453860 DOI: 10.3390/foods12163084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
L-tyrosine is a key precursor for synthesis of various functional substances, but the microbial production of L-tyrosine faces huge challenges. The development of new microbial chassis cell and gene resource is especially important for the biosynthesis of L-tyrosine. In this study, the optimal host strain Bacillus amyloliquefaciens HZ-12 was firstly selected by detecting the production capacity of L-tyrosine. Subsequently, the recombinant expression of 15 prephenate dehydrogenase genes led to the discovery of the best gene, Bao-tyrA from B. amyloliquefaciens HZ-12. After the overexpression of Bao-tyrA, the L-tyrosine yield of the recombinant strain HZ/P43-Bao-tyrA reach 411 mg/L, increased by 42% compared with the control strain (HZ/pHY300PLK). Moreover, the nucleic acid sequence and deduced amino acid sequence of the gene Bao-tyrA were analyzed, and their conservative sites and catalytic mechanisms were proposed. Finally, the expression of Bao-tyrA was regulated through a promoter and 5'-UTR sequence to obtain the optimal expression elements. Thereby, the maximum L-tyrosine yield of 475 mg/L was obtained from HZ/P43-UTR3-Bao-tyrA. B. amyloliquefaciens was applied for the first time to produce L-tyrosine, and the optimal prephenate dehydrogenase gene Bao-tyrA and corresponding expression elements were obtained. This study provides new microbial host and gene resource for the construction of efficient L-tyrosine chassis cells, and also lays a solid foundation for the production of various functional tyrosine derivatives.
Collapse
Affiliation(s)
- Anying Ji
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Pengfei Bao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Aimin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
14
|
Filluelo O, Ferrando J, Picart P. Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C 30-carotenoids. AMB Express 2023; 13:38. [PMID: 37119332 PMCID: PMC10148934 DOI: 10.1186/s13568-023-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023] Open
Abstract
Commercial carotenoid production is dominated by chemical synthesis and plant extraction, both of which are unsustainable and can be detrimental to the environment. A promising alternative for the mass production of carotenoids from both an ecological and commercial perspective is microbial synthesis. To date, C30 carotenoid production in Bacillus subtilis has been achieved using plasmid systems for the overexpression of biosynthetic enzymes. In the present study, we employed a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system to develop an efficient, safe, and stable C30 carotenoid-producing B. subtilis strain, devoid of plasmids and antibiotic selection markers. To this end, the expression levels of crtM (dehydrosqualene synthase) and crtN (dehydrosqualene desaturase) genes from Staphylococcus aureus were upregulated by the insertion of three gene copies into the chromosome of B. subtilis. Subsequently, the supply of the C30 carotenoid precursor farnesyl diphosphate (FPP), which is the substrate for CrtMN enzymes, was enhanced by expressing chromosomally integrated Bacillus megaterium-derived farnesyl diphosphate synthase (FPPS), a key enzyme in the FPP pathway, and abolishing the expression of farnesyl diphosphate phosphatase (YisP), an enzyme responsible for the undesired conversion of FPP to farnesol. The consecutive combination of these features resulted in a stepwise increased production of C30 carotenoids. For the first time, a B. subtilis strain that can endogenously produce C30 carotenoids has been constructed, which we anticipate will serve as a chassis for further metabolic engineering and fermentation optimization aimed at developing a commercial scale bioproduction process.
Collapse
Affiliation(s)
- Oriana Filluelo
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jordi Ferrando
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Pere Picart
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain.
| |
Collapse
|
15
|
Ferrando J, Filluelo O, Zeigler DR, Picart P. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system. Microb Cell Fact 2023; 22:21. [PMID: 36721198 PMCID: PMC9890709 DOI: 10.1186/s12934-023-02032-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite recent advances in genetic engineering tools for effectively regulating and manipulating genes, efficient simultaneous multigene insertion methods have not been established in Bacillus subtilis. To date, multilocus integration systems in B. subtilis, which is one of the main industrial enzyme producers and a GRAS (generally regarded as safe) microbial host, rely on iterative rounds of plasmid construction for sequential insertions of genes into the B. subtilis chromosome, which is tedious and time consuming. RESULTS In this study, we present development and proof-of-concept of a novel CRISPR-Cas9-based genome-editing strategy for the colorimetric detection of one-step multiple gene insertion in B. subtilis. First, up to three copies of the crtMN operon from Staphylococcus aureus, encoding a yellow pigment, were incorporated at three ectopic sites within the B. subtilis chromosome, rendering engineered strains able to form yellow colonies. Second, a single CRISPR-Cas9-based plasmid carrying a highly specific single guide RNA (sgRNA) targeting crtMN operon and a changeable editing template was constructed to facilitate simultaneous insertion of multiple gene-copies through homology-directed repair (HDR). Upon transformation of engineered strains with engineered plasmids, strains harboring up to three gene copies integrated into the chromosome formed white colonies because of the removal of the crtMN operon, clearly distinguishable from yellow colonies harboring undesired genetic modifications. As a result, construction of a plasmid-less, marker-free, high-expression stable producer B. subtilis strain can be completed in only seven days, demonstrating the potential that the implementation of this technology may bring for biotechnology purposes. CONCLUSIONS The novel technology expands the genome-editing toolset for B. subtilis and means a substantial improvement over current methodology, offering new application possibilities that we envision should significantly boost the development of B. subtilis as a chassis in the field of synthetic biology.
Collapse
Affiliation(s)
- Jordi Ferrando
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Oriana Filluelo
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | | | - Pere Picart
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| |
Collapse
|
16
|
Pan X, Tang M, You J, Hao Y, Zhang X, Yang T, Rao Z. A Novel Method to Screen Strong Constitutive Promoters in Escherichia coli and Serratia marcescens for Industrial Applications. BIOLOGY 2022; 12:biology12010071. [PMID: 36671763 PMCID: PMC9855843 DOI: 10.3390/biology12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Promoters serve as the switch of gene transcription, playing an important role in regulating gene expression and metabolites production. However, the approach to screening strong constitutive promoters in microorganisms is still limited. In this study, a novel method was designed to identify strong constitutive promoters in E. coli and S. marcescens based on random genomic interruption and fluorescence-activated cell sorting (FACS) technology. First, genomes of E. coli, Bacillus subtilis, and Corynebacterium glutamicum were randomly interrupted and inserted into the upstream of reporter gene gfp to construct three promoter libraries, and a potential strong constitutive promoter (PBS) suitable for E. coli was screened via FACS technology. Second, the core promoter sequence (PBS76) of the screened promoter was identified by sequence truncation. Third, a promoter library of PBS76 was constructed by installing degenerate bases via chemical synthesis for further improving its strength, and the intensity of the produced promoter PBS76-100 was 59.56 times higher than that of the promoter PBBa_J23118. Subsequently, promoters PBBa_J23118, PBS76, PBS76-50, PBS76-75, PBS76-85, and PBS76-100 with different strengths were applied to enhance the metabolic flux of L-valine synthesis, and the L-valine yield was significantly improved. Finally, a strong constitutive promoter suitable for S. marcescens was screened by a similar method and applied to enhance prodigiosin production by 34.81%. Taken together, the construction of a promoter library based on random genomic interruption was effective to screen the strong constitutive promoters for fine-tuning gene expression and reprogramming metabolic flux in various microorganisms.
Collapse
Affiliation(s)
- Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85916881
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Liu Z, Wang Y, Liu S, Guo X, Zhao T, Wu J, Chen S. Boosting the Heterologous Expression of d-Allulose 3-Epimerase in Bacillus subtilis through Protein Engineering and Catabolite-Responsive Element Box Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12128-12134. [PMID: 36099523 DOI: 10.1021/acs.jafc.2c04800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a natural sweetener with low calories and various physiological activities, d-allulose has drawn worldwide attention. Currently, d-allulose 3-epimerase (DAEase) is mainly used to catalyze the epimerization of d-fructose to d-allulose. Therefore, it is quite necessary to enhance the food-grade expression of DAEase to meet the surging market demand for d-allulose. In this study, initially, the promising variant H207L/D281G/C289R of Clostridium cellulolyticum H10 DAEase (CcDAEase) was generated by protein engineering, the specific activity and the T1/2 of which were 2.24-fold and 13.45-fold those of the CcDAEase wild type at 60 °C, respectively. After that, PamyE was determined as the optimal promoter for the recombinant expression of CcDAEase in Bacillus subtilis, and catabolite-responsive element (CRE) box engineering was further performed to eliminate the carbon catabolite repression (CCR) effect. Lastly, high-density fermentation was carried out and the final activity peaked at 4971.5 U mL-1, which is the highest expression level and could effectively promote the industrial production of DAEase. This research provides a theoretical basis and technical support for the molecular modification of DAEase and its efficient fermentation preparation.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yifan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Shuhan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Xuehong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Tianlong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
18
|
Jiang C, Ye C, Liu Y, Huang K, Jiang X, Zou D, Li L, Han W, Wei X. Genetic engineering for enhanced production of a novel alkaline protease BSP-1 in Bacillus amyloliquefaciens. Front Bioeng Biotechnol 2022; 10:977215. [PMID: 36110310 PMCID: PMC9468883 DOI: 10.3389/fbioe.2022.977215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaline protease has been widely applied in food, medicine, environmental protection and other industrial fields. However, the current activity and yield of alkaline protease cannot meet the demand. Therefore, it is important to identify new alkaline proteases with high activity. In this study, we cloned a potential alkaline protease gene bsp-1 from a Bacillus subtilis strain isolated in our laboratory. BSP-1 shows the highest sequence similarity to subtilisin NAT (S51909) from B. subtilis natto. Then, we expressed BSP-1 in Bacillus amyloliquefaciens BAX-9 and analyzed the protein expression level under a collection of promoters. The results show that the P43 promoter resulted in the highest transcription level, protein level and enzyme activity. Finally, we obtained a maximum activity of 524.12 U/mL using the P43 promoter after fermentation medium optimization. In conclusion, this study identified an alkaline protease gene bsp-1 from B. subtilis and provided a new method for high-efficiency alkaline protease expression in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yongfeng Liu
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Kuo Huang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xuedeng Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xuetuan Wei,
| |
Collapse
|
19
|
Lee BC, Tsai JC, Hung CW, Lin CY, Sheu JC, Tsai HJ. High antimicrobial activity of lactoferricin-expressing Bacillus subtilis strains. Microb Biotechnol 2022; 15:1895-1909. [PMID: 35238157 PMCID: PMC9151346 DOI: 10.1111/1751-7915.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
The lactoferricin expressed in Bacillus subtilis is relatively low in yield, making it hard to apply in industrial settings. We constructed a six tandem repeat of lactoferricin cDNA driven by promoter PtrnQ. After transformation, two transformants P245 and P263 possessing a stable inheritance of plasmid and high expression of lactoferricin were selected. The bactericidal activities, 1 μl of aliquot of a total 5.5 ml of solution extracted from 5 ml of cultured P245 and P263, were equivalent to the efficacy of 238.25 and 322.7 ng of Ampicillin against Escherichia coli, respectively, and 366.4 and 452.52 ng of Ampicillin against Staphylococcus epidermidis respectively. These extracts were able to kill an Ampicillin‐resistant E. coli strain. The bactericidal activities of P245 and P263 equivalent to the efficacy of Tetracycline against Vibrio parahaemolyticus and V. alginolyticus were also determined. Moreover, the bactericidal activities of P245 and P263 were 168.04 and 249.94 ng of Ampicillin against Edwardsiella tarda, respectively, and 219.7 and 252.43 ng of Tetracycline against Streptococcus iniae respectively. Interestingly, the survival rate of E. tarda‐infected tilapia fry fed the P263 extract displayed a significantly greater than that of the fry‐fed control strain. Collectively, these B. subtilis transgenic strains are highly promising for use in animal husbandry during a disease outbreak.
Collapse
Affiliation(s)
- Bing-Chang Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.,Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Jui-Che Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei Hung
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Huai-Jen Tsai
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
20
|
Falkenberg KB, Mol V, de la Maza Larrea AS, Pogrebnyakov I, Nørholm MHH, Nielsen AT, Jensen SI. The ProUSER2.0 Toolbox: Genetic Parts and Highly Customizable Plasmids for Synthetic Biology in Bacillus subtilis. ACS Synth Biol 2021; 10:3278-3289. [PMID: 34793671 DOI: 10.1021/acssynbio.1c00130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Versatile DNA assembly standards and compatible, well-characterized part libraries are essential tools for creating effective designs in synthetic biology. However, to date, vector standards for Gram-positive hosts have limited flexibility. As a result, users often revert to PCR-based methods for building the desired genetic constructs. These methods are inherently prone to introducing mutations, which is problematic considering vector backbone parts are often left unsequenced in cloning workflows. To circumvent this, we present the ProUSER2.0 toolbox: a standardized vector platform for building both integrative and replicative shuttle vectors forBacillus subtilis. The ProUSER2.0 vectors consist of a ProUSER cassette for easy and efficient insertion of cargo sequences and six exchangeable modules. Furthermore, the standard is semicompatible with several previously developed standards, allowing the user to utilize the parts developed for these. To provide parts for the toolbox, seven novel integration sites and six promoters were thoroughly characterized in B. subtilis. Finally, the capacity of the ProUSER2.0 system was demonstrated through the construction of signal peptide libraries for two industrially relevant proteins. Altogether, the ProUSER2.0 toolbox is a powerful and flexible framework for use in B. subtilis.
Collapse
Affiliation(s)
- Kristoffer Bach Falkenberg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| | - Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| | - Arrate Sainz de la Maza Larrea
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| |
Collapse
|
21
|
Delgado-Martín J, Velasco L. An efficient dsRNA constitutive expression system in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:6381-6393. [PMID: 34415390 DOI: 10.1007/s00253-021-11494-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Synthetic dsRNA are valuable tools for reverse genetics research and virus silencing applications. Its synthesis can be performed both in vivo or in vitro. Whilst the latter presents the drawback of high production cost, the former has the advantage of being less expensive and suitable for scalable production. In general, dsRNAs are obtained in vivo from Escherichia coli heterologous systems that require the gene for the T7 RNA polymerase inducible by IPTG. The (ds)RNAs for gene of interest are then synthesized under the T7 promoter. In this work, we present a reliable vector system that includes the insulated promoter proD for the constitutive expression of dsRNA in E. coli that does not require any inducer and that renders elevated dsRNA yield. In tandem, the T7 and proD promoters render the highest dsRNA yield. The accumulation of dsRNA in this system entails a high metabolic cost for the cell. Bacterial RNA extractions that included dsRNAs homologous to the m5GFPer gene and derived from both the synthetic and constitutive promoters induce silencing of GFP expression in Nicotiana benthamiana 16c.Key points• A vector system that includes a constitutive promoter and a T7 promoter in tandem for maximizing dsRNA synthesis.• The metabolic cost for bacteria is maximum when the two promoters are operating simultaneously and results from the accumulation of dsRNA.• Bacterial RNA extractions from both the induced and constitutive systems that include a mGFP5er-derived dsRNA are capable of silencing the GFP expression in Nicotiana benthamiana 16c plants.
Collapse
Affiliation(s)
- Josemaría Delgado-Martín
- Plant Protection, Centro de Málaga, Instituto Andaluz de Investigación Y Formación Agraria (IFAPA), Churriana, 29140, Málaga, Spain
- Universidad de Málaga, Málaga, Spain
| | - Leonardo Velasco
- Plant Protection, Centro de Málaga, Instituto Andaluz de Investigación Y Formación Agraria (IFAPA), Churriana, 29140, Málaga, Spain.
| |
Collapse
|
22
|
Shen P, Niu D, Permaul K, Tian K, Singh S, Wang Z. Exploitation of ammonia-inducible promoters for enzyme overexpression in Bacillus licheniformis. J Ind Microbiol Biotechnol 2021; 48:6298226. [PMID: 34124759 PMCID: PMC9113418 DOI: 10.1093/jimb/kuab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Ammonium hydroxide is conventionally used as an alkaline reagent and cost-effective nitrogen source in enzyme manufacturing processes. However, few ammonia-inducible enzyme expression systems have been described thus far. In this study, genomic-wide transcriptional changes in Bacillus licheniformis CBBD302 cultivated in media supplemented with ammonia were analyzed, resulting in identification of 1443 differently expressed genes, of which 859 genes were upregulated and 584 downregulated. Subsequently, the nucleotide sequences of ammonia-inducible promoters were analyzed and their functionally-mediated expression of amyL, encoding an α-amylase, was shown. TRNA_RS39005 (copA), TRNA_RS41250 (sacA), TRNA_RS23130 (pdpX), TRNA_RS42535 (ald), TRNA_RS31535 (plp), and TRNA_RS23240 (dfp) were selected out of the 859 upregulated genes and each showed higher transcription levels (FPKM values) in the presence of ammonia and glucose than that of the control. The promoters, PcopA from copA, PsacA from sacA, PpdpX from pdpX, Pald from ald, and Pplp from plp, except Pdfp from dfp, were able to mediate amyL expression and were significantly induced by ammonia. The highest enzyme expression level was mediated by Pplp and represented 23% more α-amylase activity after induction by ammonia in a 5-L fermenter. In conclusion, B. licheniformis possesses glucose-independent ammonia-inducible promoters, which can be used to mediate enzyme expression and therefore enhance the enzyme yield in fermentations conventionally fed with ammonia for pH adjustment and nitrogen supply.
Collapse
Affiliation(s)
- Peili Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kugen Permaul
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4001, South Africa
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.,Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
24
|
Fan X, Zhang Y, Zhao F, Liu Y, Zhao Y, Wang S, Liu R, Yang C. Genome reduction enhances production of polyhydroxyalkanoate and alginate oligosaccharide in Pseudomonas mendocina. Int J Biol Macromol 2020; 163:2023-2031. [DOI: 10.1016/j.ijbiomac.2020.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
|
25
|
Promchai R, Visessanguan W, Luxananil P. An efficient ABC transporter signal peptide directs heterologous protein secretion in food-grade hosts. World J Microbiol Biotechnol 2020; 36:154. [PMID: 32949270 DOI: 10.1007/s11274-020-02932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
An efficient expression-secretion system for heterologous protein production in food-grade hosts, Lactobacillus plantarum and Bacillus subtilis, is still required to broaden their applications. The optimal signal peptide compatible with both the desired protein and the target host is important for the system. Here, we constructed new expression-secretion vectors to be used in both bacteria. A natural plasmid originating from food-grade L. plantarum BCC9546 was used as a core vector combined with a strong constitutive promoter, L-ldh promoter, and various signal peptides from several types of L. plantarum proteins: ABC transporter, cell wall-associated and extracellular proteins. A gene encoding 88-kDa amylase isolated from starch-related L. plantarum TBRC470 was used as a gene model to evaluate the systems. By comparing the amounts of secreted amylase from the recombinant strains to that of wild type, all signal peptides gave higher yields of secreted amylase in recombinant B. subtilis. Interestingly, two ABC transporter signal peptides from glutamine and mannose ABC transporters provided noticeably high levels of secreted amylase in recombinant L. plantarum. Moreover, these signal peptides also gave high yields of secreted amylase in recombinant B. subtilis. From the results, the signal peptide of glutamine ABC transporter, which functions in essential amino acid transportation that is a precursor for synthesis of nitrogen-containing compounds and nitrogen homeostasis, has a potential use in development of an efficient expression-secretion system for heterologous protein production in both food-grade hosts.
Collapse
Affiliation(s)
- Ruangurai Promchai
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Wonnop Visessanguan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Plearnpis Luxananil
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand.
| |
Collapse
|
26
|
Developing rapid growing Bacillus subtilis for improved biochemical and recombinant protein production. Metab Eng Commun 2020; 11:e00141. [PMID: 32874915 PMCID: PMC7452210 DOI: 10.1016/j.mec.2020.e00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Bacillus subtilis is a model Gram-positive bacterium, which has been widely used as industrially important chassis in synthetic biology and metabolic engineering. Rapid growth of chassis is beneficial for shortening the fermentation period and enhancing production of target product. However, engineered B. subtilis with faster growth phenotype is lacking. Here, fast-growing B. subtilis were constructed through rational gene knockout and adaptive laboratory evolution using wild type strain B. subtilis 168 (BS168) as starting strain. Specifically, strains BS01, BS02, and BS03 were obtained through gene knockout of oppD, hag, and flgD genes, respectively, resulting 15.37%, 24.18% and 36.46% increases of specific growth rate compared with BS168. Next, strains A28 and A40 were obtained through adaptive laboratory evolution, whose specific growth rates increased by 39.88% and 43.53% compared to BS168, respectively. Then these two methods were combined via deleting oppD, hag, and flgD genes respectively on the basis of evolved strain A40, yielding strain A4003 with further 7.76% increase of specific growth rate, reaching 0.75 h-1 in chemical defined M9 medium. Finally, bioproduction efficiency of intracellular product (ribonucleic acid, RNA), extracellular product (acetoin), and recombinant proteins (green fluorescent protein (GFP) and ovalbumin) by fast-growing strain A4003 was tested. And the production of RNA, acetoin, GFP, and ovalbumin increased 38.09%, 5.40%, 9.47% and 19.79% using fast-growing strain A4003 as chassis compared with BS168, respectively. The developed fast-growing B. subtilis strains and strategies used for developing these strains should be useful for improving bioproduction efficiency and constructing other industrially important bacterium with faster growth phenotype. Fast-growing Bacillus subtilis were constructed through rational gene knockout and adaptive laboratory evolution. Specific growth rate of engineered B. subtilis increased 53.06% compared with B. subtilis 168, reaching 0.75 h-1 in M9 medium. Production of RNA, acetoin, and ovalbumin increased 38.09%, 5.40%, and 19.79% using fast-growing strain as chassis.
Collapse
|
27
|
Špacapan M, Danevčič T, Štefanic P, Porter M, Stanley-Wall NR, Mandic-Mulec I. The ComX Quorum Sensing Peptide of Bacillus subtilis Affects Biofilm Formation Negatively and Sporulation Positively. Microorganisms 2020; 8:E1131. [PMID: 32727033 PMCID: PMC7463575 DOI: 10.3390/microorganisms8081131] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is often required for the formation of bacterial biofilms and is a popular target of biofilm control strategies. Previous studies implicate the ComQXPA quorum sensing system of Bacillus subtilis as a promoter of biofilm formation. Here, we report that ComX signaling peptide deficient mutants form thicker and more robust pellicle biofilms that contain chains of cells. We confirm that ComX positively affects the transcriptional activity of the PepsA promoter, which controls the synthesis of the major matrix polysaccharide. In contrast, ComX negatively controls the PtapA promoter, which drives the production of TasA, a fibrous matrix protein. Overall, the biomass of the mutant biofilm lacking ComX accumulates more monosaccharide and protein content than the wild type. We conclude that this QS phenotype might be due to extended investment into growth rather than spore development. Consistent with this, the ComX deficient mutant shows a delayed activation of the pre-spore specific promoter, PspoIIQ, and a delayed, more synchronous commitment to sporulation. We conclude that ComX mediated early commitment to sporulation of the wild type slows down biofilm formation and modulates the coexistence of multiple biological states during the early stages of biofilm development.
Collapse
Affiliation(s)
- Mihael Špacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Polonca Štefanic
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Michael Porter
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| |
Collapse
|
28
|
Zhang L, Li X, Zhan N, Sun T, Li J, Shan A. Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N. Protein J 2020; 39:383-391. [PMID: 32661730 DOI: 10.1007/s10930-020-09908-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cecropin AD (CAD) is a hybrid peptide composed of 37 amino acids with the characters of strong antibacterial, antitumor properties and no hemolytic activity, which was regarded as a promising antibiotic candidate. Thus, a safe method to produce Cecropin AD is necessary to be found. In the study, Bacillus subtilis WB800N was employed as host strain. The CAD coding sequence fused with the signal peptide of SPsacB, the 6 × His gene and the gene of small ubiquitin-like modifier were cloned into the maltose-inducible vector pGJ148. Under the induction by 6% maltose, the recombinant fusion protein was successfully expressed and detected in culture substrate. An optimized amount (26.4 mg/L) of the recombinant CAD was purified of culture supernatant. After purification and digestion, the recombinant CAD was harvested about 4.5 mg/L with a purity of 93%. Recombinant CAD exhibited similar antimicrobial activity with synthetic CAD. This shows that the production of CAD in maltose-induced Bacillus subtilis expression system is a relatively safe method, which is vital for the application of CAD in animal husbandry production.
Collapse
Affiliation(s)
- Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiaodan Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Taotao Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
29
|
Construction of a High-Expression System in Bacillus through Transcriptomic Profiling and Promoter Engineering. Microorganisms 2020; 8:microorganisms8071030. [PMID: 32664655 PMCID: PMC7409208 DOI: 10.3390/microorganisms8071030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 01/24/2023] Open
Abstract
Bacillus subtilis is an ideal host for secretion and expression of foreign proteins. The promoter is one of the most important elements to facilitate the high-level production of recombinant protein. To expand the repertoire of strong promoters for biotechnological applications in Bacillus species, 14 highly transcribed genes based on transcriptome profiling of B. pumilus BA06 were selected and evaluated for their promoter strength in B. subtilis. Consequently, a strong promoter P2069 was obtained, which could drive the genes encoding alkaline protease (aprE) and green fluorescent protein (GFP) to express more efficiency by an increase of 3.65-fold and 18.40-fold in comparison with the control promoter (PaprE), respectively. Further, promoter engineering was applied to P2069, leading to a mutation promoter (P2069M) that could increase GFP expression by 3.67-fold over the wild-type promoter (P2069). Moreover, the IPTG-inducible expression systems were constructed using the lac operon based on the strong promoters of P2069 and P2069M, which could work well both in B. subtilis and B. pumilus. In this study, highly efficient expression system for Bacillus was constructed based on transcriptome data and promoter engineering, which provide not only a new option for recombinant expression in B. subtilis, but also novel genetic tool for B. pumilus.
Collapse
|
30
|
Xiao F, Li Y, Zhang Y, Wang H, Zhang L, Ding Z, Gu Z, Xu S, Shi G. Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis. Appl Microbiol Biotechnol 2020; 104:5409-5425. [PMID: 32333054 DOI: 10.1007/s00253-020-10618-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Bacillus licheniformis is an important industrial microorganism that can utilize a wide range of biomass. However, the lack of expression elements in B. licheniformis, especially regulated promoters, significantly restricts its applications. In this study, two promoters involved in the sugar alcohol uptake pathway, PmtlA and PmtlR, were characterized and developed as regulated promoters for expression. The results showed that mannitol, mannose, sorbitol, sorbose, and arabinose can act as inducers to activate expression from PmtlA at different levels. The induction by sorbitol was the strongest, and the optimal induction conditions were 15 g/L sorbitol during mid-logarithmic growth at 28 °C. In this work, the palindrome-like sequence 'TTGTCA-cacggctcc-TGCCAA' in PmtlA was identified as the binding site of the MtlR protein. This study helps to enrich the known inducible expression systems in B. licheniformis.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hanrong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
31
|
Scheidler CM, Vrabel M, Schneider S. Genetic Code Expansion, Protein Expression, and Protein Functionalization in Bacillus subtilis. ACS Synth Biol 2020; 9:486-493. [PMID: 32053368 DOI: 10.1021/acssynbio.9b00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The site-specific chemical modification of proteins through incorporation of noncanonical amino acids enables diverse applications, such as imaging, probing, and expanding protein functions, as well as to precisely engineer therapeutics. Here we report a general strategy that allows the incorporation of noncanonical amino acids into target proteins using the amber suppression method and their efficient secretion in the biotechnological relevant expression host Bacillus subtilis. This facilitates efficient purification of target proteins directly from the supernatant, followed by their functionalization using click chemistry. We used this strategy to site-specifically introduce norbornene lysine into a single chain antibody and functionalize it with fluorophores for the detection of human target proteins.
Collapse
Affiliation(s)
- Christopher M. Scheidler
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, Munich, 81377, Germany
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, Prague 6, CZ-166 10, Czech Republic
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians University Munich, Butenandtstraße 5-13, Munich, 81377, Germany
| |
Collapse
|
32
|
Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol 2020; 312:1-10. [DOI: 10.1016/j.jbiotec.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
33
|
Yang Z, Sun Q, Tan G, Zhang Q, Wang Z, Li C, Qi F, Wang W, Zhang L, Li Z. Engineering thermophilic Geobacillus thermoglucosidasius for riboflavin production. Microb Biotechnol 2020; 14:363-373. [PMID: 32096925 PMCID: PMC7936320 DOI: 10.1111/1751-7915.13543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
The potential advantages for fermentation production of chemicals at high temperatures are attractive, such as promoting the rate of biochemical reactions, reducing the risk of contamination and the energy consumption for fermenter cooling. In this work, we de novo engineered the thermophile Geobacillus thermoglucosidasius to produce riboflavin, since this bacterium can ferment diverse carbohydrates at an optimal temperature of 60°C with a high growth rate. We first introduced a heterogeneous riboflavin biosynthetic gene cluster and enabled the strain to produce detectable riboflavin (28.7 mg l−1). Then, with the aid of an improved gene replacement method, we preformed metabolic engineering in this strain, including replacement of ribCGtg with a mutant allele to weaken the consumption of riboflavin, manipulation of purine pathway to enhance precursor supply, deletion of ccpNGtg to tune central carbon catabolism towards riboflavin production and elimination of the lactate dehydrogenase gene to block the dominating product lactic acid. Finally, the engineered strain could produce riboflavin with the titre of 1034.5 mg l−1 after 12‐h fermentation in a mineral salt medium, indicating G. thermoglucosidasius is a promising host to develop high‐temperature cell factory of riboflavin production. This is the first demonstration of riboflavin production in thermophilic bacteria at an elevated temperature.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Qingqing Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Gaoyi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Quanwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Chuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Fengxian Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
34
|
Fu L, Wang Y, Ju J, Cheng L, Xu Y, Yu B, Wang L. Extracellular production of active-form Streptomyces mobaraensis transglutaminase in Bacillus subtilis. Appl Microbiol Biotechnol 2019; 104:623-631. [PMID: 31797004 DOI: 10.1007/s00253-019-10256-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Transglutaminase (TG) from Streptomyces mobaraensis has been widely used in the food industry. It is secreted naturally as an inactive zymogen, which is then activated by the removal of the N-terminal pro-peptide. In this study, the mtg gene from S. mobaraensis was expressed in a food-grade strain of bacterium, Bacillus subtilis. When its native signal peptide was replaced by signal peptide SacB (SPsacB) and the pro-peptide was replaced by that derived from S. hygroscopicus, an extracellular activity of 16.1 U/mg was observed. A modified Saccharomyces cerevisiae vacuolar ATPase subunit (VMA) intein was introduced into the zymogen to simplify its activation process by controlling temperature. When the cleavage site in the C-terminal of VMA was placed between the pro-peptide and core domain, the activation process was carried out at 18 °C. Promoter replacement further increased the enzymatic activity. Finally, the extracellular enzymatic activity reached 2.6 U/mg under the control of the constitutive promoter PyvyD. This is the first report on the extracellular production of active-form Streptomyces TG in B. subtilis without splicing with the cleavage enzyme.
Collapse
Affiliation(s)
- Lihong Fu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yu Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Youqiang Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. .,Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
35
|
Secretory Expression Fine-Tuning and Directed Evolution of Diacetylchitobiose Deacetylase by Bacillus subtilis. Appl Environ Microbiol 2019; 85:AEM.01076-19. [PMID: 31253675 DOI: 10.1128/aem.01076-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
Diacetylchitobiose deacetylase has great application potential in the production of chitosan oligosaccharides and monosaccharides. This work aimed to achieve high-level secretory production of diacetylchitobiose deacetylase by Bacillus subtilis and perform molecular engineering to improve catalytic performance. First, we screened 12 signal peptides for diacetylchitobiose deacetylase secretion in B. subtilis, and the signal peptide YncM achieved the highest extracellular diacetylchitobiose deacetylase activity of 13.5 U/ml. Second, by replacing the HpaII promoter with a strong promoter, the P43 promoter, the activity was increased to 18.9 U/ml. An unexpected mutation occurred at the 5' untranslated region of plasmid, and the extracellular activity reached 1,548.1 U/ml, which is 82 times higher than that of the original strain. Finally, site-directed saturation mutagenesis was performed for the molecular engineering of diacetylchitobiose deacetylase to further improve the catalytic efficiency. The extracellular activity of mutant diacetylchitobiose deacetylase R157T reached 2,042.8 U/ml in shake flasks. Mutant R157T exhibited much higher specific activity (3,112.2 U/mg) than the wild type (2,047.3 U/mg). The Km decreased from 7.04 mM in the wild type to 5.19 mM in the mutant R157T, and the V max increased from 5.11 μM s-1 in the wild type to 7.56 μM s-1 in the mutant R157T.IMPORTANCE We successfully achieved efficient secretory production and improved the catalytic efficiency of diacetylchitobiose deacetylase in Bacillus subtilis, and this provides a good foundation for the application of diacetylchitobiose deacetylase in the production of chitosan oligosaccharides and monosaccharides.
Collapse
|
36
|
Zhou C, Ye B, Cheng S, Zhao L, Liu Y, Jiang J, Yan X. Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microb Cell Fact 2019; 18:111. [PMID: 31200722 PMCID: PMC6570832 DOI: 10.1186/s12934-019-1159-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bacillus subtilis is developed to be an attractive expression host to produce both secreted and cytoplasmic proteins owing to its prominent biological characteristics. Chromosomal integration is a stable expression strategy while the expression level is not ideal compared with plasmid expression. Thus, to meet the requirement of protein overexpression, promoter, as one of the key elements, is important. It is necessary to obtain an ideal promoter for overproduction of foreign proteins from a single copy expression cassette. RESULTS The activity of promoter Pylb was further enhanced by optimizing the - 35, - 10 core region and upstream sequence (UP) by substituting both sequences with consensus sequences. The final engineered promoter exhibited almost 26-fold in β-galactosidase (BgaB) activity and 195-fold in super-folded green fluorescent protein (sfGFP) intensity than that of WT. The two proteins account for 43% and 30% of intracellular proteins, respectively. The promoter was eventually tested by successful extracellular overproduction of Methyl Parathion Hydrolase (MPH) and Chlorothalonil hydrolytic dehalogenase (Chd) to a level of 0.3 g/L (144 U/mL) and 0.27 g/L (4.4 U/mL) on shake-flask culture condition. CONCLUSIONS A strong promoter was engineered for efficient chromosomally integrated expression of heterologous proteins.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Bin Ye
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shan Cheng
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Leizhen Zhao
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yuanxin Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural, Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Liu H, Wang X, Yang S, Wang R, Wang T. Saturation mutagenesis and self-inducible expression of trehalose synthase in Bacillus subtilis. Biotechnol Prog 2019; 35:e2826. [PMID: 31021505 DOI: 10.1002/btpr.2826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 04/19/2019] [Indexed: 01/27/2023]
Abstract
Trehalose is a nonreducing disaccharide synthesized by trehalose synthase (TreS), which catalyzes the reversible interconversion of maltose and trehalose. We aimed to enhance the catalytic conversion of maltose to trehalose by saturation mutagenesis, and constructed a self-inducible TreS expression system by generating a robust Bacillus subtilis recombinant. We found that the conversion yield and enzymatic activity of TreS was enhanced by saturation mutations, especially by the combination of V407M and K490L mutations. At the same time, these saturation mutations were contributing to reducing by-products in the reaction. Compared to WT TreS, the conversion yield of maltose to trehalose was increased by 11.9%, and the kcat /Km toward trehalose was 1.33 times higher in the reaction catalyzed by treSV407M-K490L . treSV407M-K490L expression was further observed in the recombinant B. subtilis W800N(ΔσF ) under the influence of PsrfA , Pcry3Aa , and PsrfA-cry3Aa promoters without an inducer. It was shown that PsrfA-cry3Aa was evidently a stronger promoter for treSV407M-K490L expression, with the intracellular enzymatic activity of recombinant treSV407M-K490L being over 5,800 U/g at 35 hr in TB medium. These results suggested the combination of two mutations, V407M and K490L, was conducive for the production of trehalose. In addition, the self-inducible TreSV407M/K490L mutant in the B. subtilis host provides a low-cost choice for the industrial production of endotoxin-free trehalose with high yields.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, People's Republic of China
| | - Xihui Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Shaojie Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| |
Collapse
|
38
|
Cook TB, Pfleger BF. Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MEDCHEMCOMM 2019; 10:668-681. [PMID: 31191858 PMCID: PMC6540960 DOI: 10.1039/c9md00055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Bacteria have historically been a rich source of natural products (e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
Collapse
Affiliation(s)
- Taylor B Cook
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| |
Collapse
|
39
|
Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl Microbiol Biotechnol 2019; 103:4455-4465. [PMID: 30968162 DOI: 10.1007/s00253-019-09788-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
In this study, stress tolerance devices consisting of heat shock protein (HSP) genes from thermophiles Geobacillus and Parageobacillus were introduced into riboflavin-producing strain Bacillus subtilis 446 to improve its stress tolerance and riboflavin production. The 12 HSP homologs were selected from 28 Geobacillus and Parageobacillus genomes according to their sequence clustering and phylogenetically analysis which represents the diversity of HSPs from thermophilic bacillus. The 12 HSP genes and 2 combinations of them (PtdnaK-PtdnaJ-PtgrpE and PtgroeL-PtgroeS) were heterologously expressed in B. subtilis 446 under the control of a strong constitutive promoter P43. Most of the 14 engineered strains showed increased cell density at 44 to 48 °C and less cell death at 50 °C compared with the control strains. Among them, strains B.s446-HSP20-3, B.s446-HSP20-2, and B.s446-PtDnaK-PtDnaJ-PtGrpE increased their cell densities over 25% at 44 to 48 °C. They also showed 5-, 4-, and 4-fold improved cell survivals after the 10-h heat shock treatment at 50 °C, respectively. These three strains also showed reduced cell death rates under osmotic stress of 10% NaCl, indicating that the introduction of HSPs improved not only the heat tolerance of B. subtilis 446 but also its osmotic tolerance. Fermentation of these three strains at higher temperatures of 39 and 43 °C showed 23-66% improved riboflavin titers, as well as 24-h shortened fermentation period. These results indicated that implanting HSPs from thermophiles to B. subtilis 446 would be an efficient approach to improve its stress tolerance and riboflavin production.
Collapse
|
40
|
Li X, Xu S, Zhang X, Xu M, Yang T, Wang L, Zhang H, Fang H, Osire T, Yang S, Rao Z. Design of a high-efficiency synthetic system for l-asparaginase production in Bacillus subtilis. Eng Life Sci 2019; 19:229-239. [PMID: 32625005 DOI: 10.1002/elsc.201800166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
l-asparaginase has high application value in medicine and food industry, but the low yield limits its application. In this study, we designed a synthetic system in Bacillus subtilis to produce l-asparaginase by improving gene expression and optimizing the fermentation agitation speed. Gene expression was improved by respectively increasing transcription levels and translation speeds through screening promoters and RBS sequences. With the optimal promoter, P43, and the synthetic RBS sequence, the yield obtained in a shake flask was 371.87 U/mL, which was 2.09 times that with the original strain. To further enhance production in a 5-L fermenter, a multistage agitation speed control strategy was adopted, involving agitation at 600 rpm for the first 12 h, followed by a gradual increase in speed to 900 rpm, which resulted in the highest yield of l-asparaginase, 5321 U/mL, after 42 h of fermentation.
Collapse
Affiliation(s)
- Xu Li
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Shuqin Xu
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Li Wang
- School of Food Science and Technology Jiangnan University Wuxi P. R. China
| | - Huiling Zhang
- School of Agriculture Ningxia University Yinchuan P. R. China
| | - Haitian Fang
- School of Agriculture Ningxia University Yinchuan P. R. China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering The Ohio State University Columbus OH USA
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi P. R. China
| |
Collapse
|
41
|
Zhao F, Liu X, Kong A, Zhao Y, Fan X, Ma T, Gao W, Wang S, Yang C. Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Sci Rep 2019; 9:1798. [PMID: 30755729 PMCID: PMC6372614 DOI: 10.1038/s41598-019-39321-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) can be produced by microorganisms from renewable resources and is regarded as a promising bioplastic to replace petroleum-based plastics. Pseudomonas mendocina NK-01 is a medium-chain-length PHA (mcl-PHA)-producing strain and its whole-genome sequence is currently available. The yield of mcl-PHA in P. mendocina NK-01 is expected to be improved by applying a promoter engineering strategy. However, a limited number of well-characterized promoters has greatly restricted the application of promoter engineering for increasing the yield of mcl-PHA in P. mendocina NK-01. In this work, 10 endogenous promoters from P. mendocina NK-01 were identified based on RNA-seq and promoter prediction results. Subsequently, 10 putative promoters were characterized for their strength through the expression of a reporter gene gfp. As a result, five strong promoters designated as P4, P6, P9, P16 and P25 were identified based on transcriptional level and GFP fluorescence intensity measurements. To evaluate whether the screened promoters can be used to enhance transcription of PHA synthase gene (phaC), the three promoters P4, P6 and P16 were separately integrated into upstream of the phaC operon in the genome of P. mendocina NK-01, resulting in the recombinant strains NKU-4C1, NKU-6C1 and NKU-16C1. As expected, the transcriptional levels of phaC1 and phaC2 in the recombinant strains were increased as shown by real-time quantitative RT-PCR. The phaZ gene encoding PHA depolymerase was further deleted to construct the recombinant strains NKU-∆phaZ-4C1, NKU-∆phaZ-6C1 and NKU-∆phaZ-16C1. The results from shake-flask fermentation indicated that the mcl-PHA titer of recombinant strain NKU-∆phaZ-16C1 was increased from 17 to 23 wt% compared with strain NKU-∆phaZ. This work provides a feasible method to discover strong promoters in P. mendocina NK-01 and highlights the potential of the screened endogenous strong promoters for metabolic engineering of P. mendocina NK-01 to increase the yield of mcl-PHA.
Collapse
Affiliation(s)
- Fengjie Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Annie Kong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xu Fan
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Weixia Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
42
|
Zhou S, Lyu Y, Li H, Koffas MA, Zhou J. Fine‐tuning the (2
S
)‐naringenin synthetic pathway using an iterative high‐throughput balancing strategy. Biotechnol Bioeng 2019; 116:1392-1404. [DOI: 10.1002/bit.26941] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shenghu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Yunbin Lyu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Huazhong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
| | - Mattheos A.G. Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy New York
- Department of Biological SciencesRensselaer Polytechnic Institute Troy New York
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| |
Collapse
|
43
|
Zhao F, Gong T, Liu X, Fan X, Huang R, Ma T, Wang S, Gao W, Yang C. Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 2019; 103:1713-1724. [DOI: 10.1007/s00253-018-9546-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
44
|
Evaluation of promoter sequences for the secretory production of a Clostridium thermocellum cellulase in Paenibacillus polymyxa. Appl Microbiol Biotechnol 2018; 102:10147-10159. [PMID: 30259100 DOI: 10.1007/s00253-018-9369-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Due to their high secretion capacity, Gram-positive bacteria from the genus Bacillus are important expression hosts for the high-yield production of enzymes in industrial biotechnology; however, to date, strains from only few Bacillus species are used for enzyme production at industrial scale. Herein, we introduce Paenibacillus polymyxa DSM 292, a member of a different genus, as a novel host for secretory protein production. The model gene cel8A from Clostridium thermocellum was chosen as an easily detectable reporter gene with industrial relevance to demonstrate heterologous expression and secretion in P. polymyxa. The yield of the secreted cellulase Cel8A protein was increased by optimizing the expression medium and testing several promoter sequences in the expression plasmid pBACOV. Quantitative mass spectrometry was used to analyze the secretome in order to identify promising new promoter sequences from the P. polymyxa genome itself. The most abundantly secreted host proteins were identified, and the promoters regulating the expression of their corresponding genes were selected. Eleven promoter sequences were cloned and tested, including well-characterized promoters from Bacillus subtilis and Bacillus megaterium. The best result was achieved with the promoter for the hypothetical protein PPOLYM_03468 from P. polymyxa. In combination with the optimized expression medium, this promoter enabled the production of 5475 U/l of Cel8A, which represents a 6.2-fold increase compared to the reference promoter PaprE. The set of promoters described in this work covers a broad range of promoter strengths useful for heterologous expression in the new host P. polymyxa.
Collapse
|
45
|
Lim JH, Hwang HH, Lee NJ, Lee JW, Seo EG, Son HB, Kim HJ, Yoon YJ, Park JW. Enhanced Biosynthesis of 2-Deoxy- scyllo-inosose in Metabolically Engineered Bacillus subtilis Recombinants. Front Microbiol 2018; 9:2333. [PMID: 30319595 PMCID: PMC6170601 DOI: 10.3389/fmicb.2018.02333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
2-Deoxy-scyllo-inosose (DOI) has been a valuable starting natural product for the manufacture of pharmaceuticals or chemical engineering resources such as pyranose catechol. DOI synthase, which uses glucose-6-phosphate (Glc6P) as a substrate for DOI biosynthesis, is indispensably involved in the initial stage of the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics including butirosin, gentamicin, kanamycin, and tobramycin. A number of metabolically engineered recombinant strains of Bacillus subtilis were constructed here; either one or both genes pgi and pgcA that encode Glc6p isomerase and phosphoglucomutase, respectively, was (or were) disrupted in the sugar metabolic pathway of the host. After that, three different DOI synthase–encoding genes, which were artificially synthesized according to the codon preference of the B. subtilis host, were separately introduced into the engineered recombinants. The expression of a natural btrC gene, encoding DOI synthase in butirosin-producing B. circulans, in the heterologous host B. subtilis (BSDOI-2) generated approximately 2.3 g/L DOI, whereas expression of an artificially codon-optimized tobC gene, derived from tobramycin-producing Streptomyces tenebrarius, into the recombinant of B. subtilis (BSDOI-15) in which both genes pgi and pgcA are disrupted significantly enhanced the DOI titer: up to 37.2 g/L. Fed-batch fermentation by the BSDOI-15 recombinant using glycerol and glucose as a dual carbon source yielded the highest DOI titer (38.0 g/L). The development of engineered microbial cell factories empowered through convergence of metabolic engineering and synthetic biology should enable mass production of DOI. Thus, strain BSDOI-15 will surely be a useful contributor to the industrial manufacturing of various kinds of DOI-based pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Joo Hyun Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Hyun Ha Hwang
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Na Joon Lee
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Jae Woo Lee
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Eun Gyo Seo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Hye Bin Son
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Hye Ji Kim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea
| | - Je Won Park
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea.,School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| |
Collapse
|
46
|
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 2018; 34:145. [DOI: 10.1007/s11274-018-2531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
47
|
Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. N Biotechnol 2018; 44:41-49. [DOI: 10.1016/j.nbt.2018.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
|
48
|
Liu D, Mao Z, Guo J, Wei L, Ma H, Tang Y, Chen T, Wang Z, Zhao X. Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in Bacillus subtilis. ACS Synth Biol 2018; 7:1785-1797. [PMID: 29944832 DOI: 10.1021/acssynbio.8b00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Promoters are among the most-important and most-basic tools for the control of metabolic pathways. However, previous research mainly focused on the screening and characterization of some native promoters in Bacillus subtilis. To develop a broadly applicable promoter system for this important platform organism, we created a de novo synthetic promoter library (SPL) based on consensus sequences by analyzing the microarray transcriptome data of B. subtilis 168. A total of 214 potential promoters spanning a gradient of strengths was isolated and characterized by a green fluorescence assay. Among these, a detailed intensity analysis was conducted on nine promoters with different strengths by reverse-transcription polymerase chain reaction (RT-PCR) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Furthermore, reconstructed promoters and promoter cassettes (tandem promoter cluster) were designed via statistical model-based analysis and tandem dual promoters, which showed strength that was increased 1.2- and 2.77-fold compared to that of promoter P43, respectively. Finally, the SPL was employed in the production of inosine and acetoin by repressing and over-expressing the relevant metabolic pathways, yielding a 700% and 44% increase relative to the respective control strains. This is the first report of a de novo synthetic promoter library for B. subtilis, which is independent of any native promoter. The strategy of improving and fine-tuning promoter strengths will contribute to future metabolic engineering and synthetic biology projects in B. subtilis.
Collapse
Affiliation(s)
| | - Zhitao Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | | | | | | |
Collapse
|
49
|
Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat Methods 2018; 15:323-329. [PMID: 30052624 PMCID: PMC6065261 DOI: 10.1038/nmeth.4633] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 01/21/2023]
Abstract
Robust and predictably performing synthetic circuits rely on the use of well-characterized regulatory parts across different genetic backgrounds and environmental contexts. Here we report the large-scale metagenomic mining of thousands of natural 5' regulatory sequences from diverse bacteria, and their multiplexed gene expression characterization in industrially relevant microbes. We identified sequences with broad and host-specific expression properties that are robust in various growth conditions. We also observed substantial differences between species in terms of their capacity to utilize exogenous regulatory sequences. Finally, we demonstrate programmable species-selective gene expression that produces distinct and diverse output patterns in different microbes. Together, these findings provide a rich resource of characterized natural regulatory sequences and a framework that can be used to engineer synthetic gene circuits with unique and tunable cross-species functionality and properties, and also suggest the prospect of ultimately engineering complex behaviors at the community level.
Collapse
|
50
|
Husser MC, Vo PQN, Sinha H, Ahmadi F, Shih SCC. An Automated Induction Microfluidics System for Synthetic Biology. ACS Synth Biol 2018. [PMID: 29516725 DOI: 10.1021/acssynbio.8b00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The expression of a recombinant gene in a host organism through induction can be an extensively manual and labor-intensive procedure. Several methods have been developed to simplify the protocol, but none has fully replaced the traditional IPTG-based induction. To simplify this process, we describe the development of an autoinduction platform based on digital microfluidics. This system consists of a 600 nm LED and a light sensor to enable the real-time monitoring of the optical density (OD) samples coordinated with the semicontinuous mixing of a bacterial culture. A hand-held device was designed as a microbioreactor to culture cells and to measure the OD of the bacterial culture. In addition, it serves as a platform for the analysis of regulated protein expression in E. coli without the requirement of standardized well-plates or pipetting-based platforms. Here, we report for the first time, a system that offers great convenience without the user to physically monitor the culture or to manually add inducer at specific times. We characterized our system by looking at several parameters (electrode designs, gap height, and growth rates) required for an autoinducible system. As a first step, we carried out an automated induction optimization assay using a RFP reporter gene to identify conditions suitable for our system. Next, we used our system to identify active thermophilic β-glucosidase enzymes that may be suitable candidates for biomass hydrolysis. Overall, we believe that this platform may be useful for synthetic biology applications that require regulating and analyzing expression of heterologous genes for strain optimization.
Collapse
Affiliation(s)
- Mathieu C. Husser
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Philippe Q. N. Vo
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G 1M8, Canada
| | - Hugo Sinha
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G 1M8, Canada
| | - Fatemeh Ahmadi
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G 1M8, Canada
| | - Steve C. C. Shih
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G 1M8, Canada
| |
Collapse
|